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Chapter 1

Introduction

The resources in the Internet include network bandwidth, CPUs, storage spaces, power

and many other software or hardwares. How to use these limited resource to serve vir-

tually unlimited user population posted a unique challenge for service providers. Multi-

ple researches were carried out to study uniqueness of Internet traffics and Internet server

scheduling policies with different queueing models. This chapter first defines the research

direction for this thesis, and with introduction of unique background under Internet environ-

ment. Second, the major contributions from our research will be outlined, with highlights

of each subsequent chapters.

1.1 Motivation and Problem Statement

Scheduling is one of the most important aspect in various activities during human his-

tory. One story dated back 3000 years ago for a smart general to use scheduling to win

the horsing racing. While the scheduling in modern computer system is not as fancy as

horse racing, it certainly has more financial stakes. The basic concepts are optimization be-
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tween the order of services, quality of service (QoS) and constrained capacity. The quality

measurements include system reliability, scalability, responsive time (Sojourn time), wait-

ing time etc. Traditionally in Computer science and engineering, scheduling is studied with

queueing model. Queueing model enables mathematical analysis of several related pro-

cesses, including incoming traffic (arriving process), queue waiting, and the population ac-

tively in the service. It enabled the calculation and derivation of metrics such as average

waiting time, queue length, probability of overflow, probability of starvation, etc.

A large body of work in the past ten years in Internet performance evaluation was stimu-

lated by the discovery of self-similarity and long-range dependency (LRD) in the traffic[41].

The Poisson assumption in classical queueing model has been proved to be inadequate[55].

A lot of alternative models have been proposed to capture the correlation structures in the

input traffic. However, due to the complicated nature of Internet traffic and diversified Inter-

net applications, none of the model is entirely satisfactory. It is still in argument of whether

researchers should go back to Poisson models to in small time-scale assumptions[34].

The classical queueing models assume renewal typed input traffic, and clearly is in-

capable to handle traffics with strong correlations. Numerous researches have extended

queueing theorems to enable the correlated input traffic, such as Quasi Birth-and-Death

model (QBD), Markovian Modulated Poisson Process (MMPP) queueing model, and more

recently, LRD/GI/1 models. A lot of meaningful results have drawn from these models,

such as empirical result of input-output relationship of second-order statistics from Li and

Hwang [43, 44], negative impact of Hurst parameter in LRD traffic [52], and adaptiveness
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of queueing response to different GI and LRD in LRD/GI/1 queueing models [79].

In summary, these results are insightful but limited, for example, the study of negative

impact of Hurst parameter ignored the service size distribution (assumed constant in [52]),

or empirical, such as Li and Hwang were largely using simulation and numerical methods

to study second-order in/out relationship in queueing server, or limited as even for excel-

lent work like [79] only studied two LRD models, M/G/∞ and Fractional Gaussian Noise

(FGN). As queueing model becomes more complex, its analytical solubility suffers dramati-

cally. Results from these models are often referred as steady-state solution under assumption

of infinite time horizon or buffer size. Analytically, the solution for queueing model is very

hard to derive, even for simple low order Markovian modulated Poisson process. In prac-

tice, scalability of Internet server is still derived by stress-testing with application-specific

benchmarks or synthetic workload [51]. These empirical studies have developed plentiful

practical knowledge about scalable Internet servers. However, they are insufficient for the

study of the impact of general Internet traffic, particularly its inherent bursty traffic patterns

and auto-correlations on the server performance.

As consequence of complication in Internet traffic, A number of practically important

questions are remain unresolved or partially unresolved, which include,

1. What resource capacity should a server be configured for a requirement of certain

levels of QoS?

2. What level of QoS can a server with certain resource capacity support?

3. How to provide QoS guarantees by optimizing server scheduler?



4

4. What is the impact of LRD in servers?

In this thesis, we take an approach by constructing a decay function model for time varying

request scheduling. The model assumes a fluid or random pulse modulated request arrival

process. Each request has a randomly distributed size, and is scheduled by a decay func-

tion in the server. The decay function determines the amount of resource allocated at each

scheduling epoch. The server utilization with given capacity in the server is the accumu-

lation of individual allocations of all active requests. Decay function model reflects the

relationship among service time of request, request size, autocorrelation in the traffic, and

server workload. The first definition of decay function model is in [80].

From signal processing point of view, the proposed decay function model can be inter-

preted as filter, or referred as filtering function model. It models a server as a filter that

transforms incoming traffic process to a process of server utilization, or server workload,

with decay function as the transformer. Because there are rich theories of filter design in

digital signal processing (DSP), the decay function model open a new path to study prob-

lems stated above.

In the time domain, the filtering relationship is charactered by a convolution operation

∗ (see 1.1) between scheduling function h(t) and compound input traffic process w̃(t). The

relationship is contained naturally in the frequency domain as product of power spectral

density (PSD) functions (1.2).

l(t) = w̃(t) ∗ h(t), (1.1)
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where l(t) is the server workload at time t.

Pl(f) = Pw̃(f) · |H(f)|2, (1.2)

where Pl(f) is the PSD function.

Above derivation is under homogeneous assumption for h(·). When assumption indi-

vidual requests rk is served by hk(·), a more general form of server load can be derived as

following format.

Pl(f) = {λ[w2|Hk(f)|2 − w2|H(f)|2]}+ w2PSDr(f)|H(f)|2 (1.3)

for server workload process l(t), Pw̃(f) is PSD for compound input process w̃(t), H(f) is

Fourier transform of scheduling function h(t), and f is the frequency variable.

Specifically, decay function model brings three immediate advantages. First, most of

newly discovered second-order statistics, such as LRD, self-similarity, and more recent,

time scaling [84, 19, 5] of Internet traffic are defined or studied in the frequency domain

with Fourier or Wavelet transform. Decay function model makes it possible to apply these

frequency-domain results directly to server performance modeling and optimization. In con-

trast, queueing analysis requires the conversion of frequency domain knowledge to the time

domain. Second, frequency domain filter models provide a fresh look into the problem of

server performance optimization. The server is modeled as a finite impulse response (FIR)

filter. Filter theories are well defined and studied in DSP area. Third, the filter model
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is based on statistical signature of random processes — PSD function and autocorrelation

function (ACF), instead of random processes themselves. This broadens the applicability

of the model, and also make second-order statistics of Internet server analytically solvable

with given second-order statistics from input traffic.

Using the decay function model, the Internet server is a real-time traffic processor. At

any given time and with a wide-sense stationary process as input, we can derive the uti-

lization process with convolution in time domain or point-wise multiplication in frequency

domain. We proved that Internet server can be viewed as a non-high-pass filter. This extends

the transitional low-pass filtering view of the sever. A number of properties, such as trade

offs in time-scale — lobe-width relationship and lower bounds for lobe-width, lower-bounds

for Accumulative Power Function (APF) are defined and characterized in the model.

With the model, we also capable of deriving the optimality of server schedulers. Tra-

ditionally, the scheduler performance is evaluated as fairness or effectiveness for individual

requests (such as Lottery scheduler). Our model evaluates the optimality for scheduler from

QoS point of view of the Internet server, which is in the sense of minimizing variance of

the server utilization process, or the average power in server utilization process. It also pro-

vides a view of impact from scheduler to different component in the traffic from frequency

domain, and from traffic correlation and sizing factors respectively. We show that queue-

ing delay has effect on smoothing traffic from correlation (or PSD) of traffic point of view,

it inadvertently increases the power of workload contributed by request sizing factor. As

for sizing factor, it proofs the optimality of SRPT scheduler power spectrum of workload



7

process from frequency domain.

For highly correlated Internet traffic, the optimality is proofed with decay function model

to be convexity in the function. This applies to identical inter-independent traffic models

such as Poisson, and traffic with monotonically decreasing PSD functions which applies to

most of traffic processes with asymptotic second-order self-similarities.

Given the existence of optimal schedulers, algorithms can be constructed to solve the

equations, and which in turn, give the optimal design of schedulers in theory. We further

demonstrate its usefulness by adapting it to popular generalized processor sharing scheduler.

The result [82, 81] shows great improvement in performance.

The other application of utilizing optimal schedulers is to study the capacity planning in

the server, or QoS provisioning in the server. Such as, what amount of capacity is needed

for a given service deadline and input traffic? or what kind of service deadline can server

guarantee with capacity and input traffic? Several empirical formulas are derived in this

research to address questions like above using general inequalities in probability.

In the ultimate, decay function model provides a nature platform to study LRD phe-

nomena in the traffic, because LRD, as pointed out, is by itself defined with second-order

statistics. The performance boundaries, both upper and lower, for asymptotically second-

order self-similar traffic are derived here.

Decay function model under more general condition in time-variant variation and service

differentiation environment is also valid and with meaningful optimal results for scheduling

and performance evaluation [86].
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1.2 Background

This section will highlight recent advancements in related research areas.

1.2.1 Internet Traffic Engineering

There are two major discoveries in Internet traffic that have brought great attention to

performance analysis.

Leland, Taqqu, Willinger, and Wilson [41] observed that, over long time-scales, Internet

traffic is self-similar. Self-similar is a fractal structure discovered in the nature. A lot of

physical activities are shown to following a pattern, where a smaller portion of the object

reassembles the larger pieces and repeating. one perfect example is the crystal structure

in the snow flakes and other crystals. For traffics, the mathematical notation: Let X(0, t]

be the total amount of traffic passing through a particular point in the network in the time

interval (0, t]. Write X for the overall traffic process. Define the speed-up version XL by

XL(0, t] = X(0, Lt]. the rescaled process aHX.a has approximately the same distribution

whatever the value of a (for large a). The parameter H is the Hurst parameter and is good

indication of self-similarity; they measured H and found it typically lay in ( 1/2 , 1). A self-

similar process has bursts over all time-scales; i.e. the traffic does not become any smoother

by averaging over any longer period of time. The common recognition is that the long-range

dependency has strong negative impacts in the server performance.

From earlier work started in 1996, the size of static content in Internet has proved to be

heavy tail distributed. Heavy tail is characterized as small percent of traffic contributes to
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most of workload in the Internet. In 2001, Cherkasova and Karlsson [14] revisited the 1996

invariants, showing several new trends in modern Web server workloads. Their work shows

that 2-4% of files account for 90% of server requests. This level of skew (called concentra-

tion) is even more pronounced than claimed in 1996, when 10% of the files accounted for

90% of the activity.

1.2.2 Advancement in Scheduling Analysis

Three scheduling policies were studied widely in the computer science literatures: First-

Come-First-Served (FCFS), Processor-Sharing (PS) and Shortest-Remaining-Processing-

Time (SRPT). These policies are some of the most commonly used policies in computer

systems. FCFS is used at a packet level in network and some functional servers. PS, which

is basis for time-sharing applications, is the most common scheduling policy in computer

systems. SRPT is known to optimize the mean response time and has been studied for per-

formance improvement in various types of applications [74, 75, 29], such as OS and Web.

While a lot of researches focusing on mean value analysis with above policies, for Inter-

net server, it is desirable to have stable and controllable services guarantee to the end users.

There are many practical reasons for people to do so. Such as user may pay incentives

for better and faster services, or providers have large financial stake with some user group.

The statistical guarantees to the service profile, and with bounded capacity is what we are

addressing in this thesis. On the other hand, second-order statistics on server workload (uti-

lization) are directly associated with practical questions, such as scalability, stability and
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even power consumptions of server. This is another question that we use a function analysis

to show structural optimality of schedulers.

Another systemic approach used feedback control for server performance optimiza-

tion [2, 46]. Unlike feed-forward approaches like queueing and decay function models,

feed-back approaches regard the input traffic variation as disturbance to the server, and

operate by regulating admission and resource allocation according to the deviation of mea-

surement from desired performance. For this approach, there is a non-negligible dead time

(or delay) from the time when a correction action is taken to the time its effect is observed,

and the delay is quite long in comparison with the change of input traffic in a heavily loaded

server. The dead time sets a fundamental limit to the stability of the feedback control ap-

proaches.

1.2.3 Time Function and Unified Scheduling Framework

We point out that the idea of representing scheduling policies as a time varied function

is not totally new. Fong and Squillante proposed a time-function scheduling to treat pri-

ority of jobs in computer systems as a function of time [27]. It is a generalization of the

linear time-dependent priority discipline in queueing theories in which the priority of each

job increases (linearly) according to a per-class function of some measure of time and the

job with the highest instantaneous priority in the queue is selected for execution at each

scheduling epoch. In stead of algorithmic treatment of time-function scheduling, our decay

function model facilitates the development of analytical fundamentals of the time function
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abstraction on Internet servers.

1.3 Contributions

We constructed a functional model for schedulers, and using this function as kernel for

transforming Internet traffic to server utilization (or workload) processes. By studying this

I/O relationship, we have following major discoveries.

On top of mean value analysis, we show that second-order statistics between traffic and

server workload is a convolution by scheduling in time domain, and is multiplication in

frequency domain. Further more, there are two major parts in the transformation:

First, the transformation decided by scheduling functions and statistics averages of re-

quest sizes and average of traffic process. This part contributes to workload evenly allocated

in each frequency bandwidth, and is minimized when scheduling function is homogeneous,

and when scheduling function is minimizing

Min{|Hk(f)|2 − |Hk(f)|2}. (1.4)

This constraint optimization can be solved under homogeneous scheduling assumption.

However, condition 1.4 is especially useful in measuring the impacts of queueing delay

impact to second-order statistics of the server workload process. It shows that delaying

smaller tasks tends to increase condition 1.4 and in the mean time cause decrease to 1.5.

which explains the degrading performance of size oriented scheduler when sizing factor
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becomes less dominate as request size is light-tail distributed [29]. Because in heavy-tail

distributed traffic, the relevance of decreasing in |Hk(f)|2 for sizing factor is getting smaller

as variance in traffic increases (note that w2 − w2 is variance of the traffic).

Second, a scheduling policy that minimize the product with square of power spectrum

of the traffic.

Min{w2PSDr(f)|H(f)|2}. (1.5)

For this we proof that when power spectrum of incoming traffic is monotonically decreasing,

a convex structured traffic will minimize the variance of the traffic process.

Of course, afore mentioned optimality is under the constraint

∑
hk(t)

td
t = 1, (1.6)

where td is the predefined service deadline. Of course with different td. Given the trade off

in server capacity and service deadline, the exact optimal solution for scheduler may differ.

But the convex structure in scheduler for highly correlated traffic is invariant.

As complimentary to traditional mean value analysis, decay function model can be easily

used for capacity configuration with guarantee in responsive time. Decay function builds

response time in the model, and using capacity/workload relationship to do predication in

the second order. The entire analysis is independent from underlying distribution, which

is a big loosen in requirements in comparing to asymptotic study of tails for buffer size

or waiting time in queueing models. a very general bounds can be derived for capacity



13

planning by using the general Chebschev inequality . If distribution information is available,

the capacity estimation can be much more accurate. In unimodal distributed systems, the

bounds can be tightened with VysochanskiPetunin inequality [72]. The relationship between

scheduling deadline td and first-order/second-order statistics can also be used for predicting

server SLA. All these results can be extended from mono-policy application to server with

multiple SLA and different patterned services.

The principle of scheduling optimality is demonstrated by applying conditions to general

processor sharing policy. The simulation result shows great improvements. If statistics of

incoming traffic is known when doing scheduling, algorithms are also analyzed to derive

the optimal schedulers. On the other hand, using equations 1.5 and 1.4, the power spectrum

from traffic can also be analyzed for its impact to power spectrum of the server. Such as LRD

traffic shows shift of power to low frequency band, where the main lobe of the scheduling

function presides. The overlapping between traffic power and scheduler’s main lobe in low

frequency indicates the negative impact of LRD to server performance.

1.4 Outline of the Dissertation

The major framework of this thesis is surrounding the decay function scheduling model.

As seen in above reviews in Section 1.2, the schedulers were traditionally treated as an algo-

rithm, or policy. The mathematical representation of scheduling is often built into queueing

analysis, which separates scheduling from the modeling itself. every new scheduling policy,

a new analytical method is needed to carry out study. More than often, the policy is too hard
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for the theoretical analysis in the queueing framework.

1.4.1 The Decay Function Model

Chapter 3 gives the formal definition of the decay function model. The model is com-

posed of two parts, first, the traffic model, and second, the scheduling and system model. We

will derive the properties of the system in our modeling frame work in both time-domain

and frequency-domain. we will also illustrate the samples of traffics and scheduling that

can be represented in the framework. Model is built for both compounded traffic and traffic

modeled as random point processes.

1.4.2 Optimality of the scheduler

One of major goal of this research is to review how does correlation in the traffic impact-

ing the system performance in engineering point of view. Without knowing the optimal for-

mat of scheduling against different correlation, the above question is very hard to formulate

and to solve. In the thesis, the optimal structure of scheduler under the monotonically de-

creasing power spectrum is derived. The monotonically decreasing power is popular across

the Internet domain. We shown that the optimal structure of scheduler for that type of traffic

should be convex. The simulation proves the derivation, when we simply compare the per-

formance of system under a convex scheduler and a random scheduler. The simulation also

shown that convex scheduler can outperform PS or SRPT scheduler depending given dif-

ferent traffic setup. Based on the concept, a modified version of PS can easily out-perform
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GPS scheduler, when the modified version of PS basically overcome the randomness of

PS scheduler, by making scheduling function approaching uniform function. and uniform

function is actually optimal for independent traffics. Algorithms are proposed in this chap-

ter for theoretical solutions to each optimal conditions, with simulations demonstrate the

optimality of the schedulers.

On the other track, the model from Chapter 3 indicates that influence of scheduler to per-

formance is divided into two major components (equations 1.5 and 1.4). When distribution

of sizing factor is also considered (by further breaking down incoming traffics to random

modulated point process), the scheduler biased for small jobs (SRPT) can perform very well

in certain conditions. Our thesis shows that SRPT actually tends to dominantly minimize

the sizing factor condition 1.4. On the other hand, when overload happens, FCFS tends to

deliver the worse in sizing condition 1.4. The queueing delay, or waiting for request, or very

small initial allocation of resources to the request, has the impact on the server by increasing

the server workload spectrum in sizing factor 1.4. To translate into another words, the delay

will reduce the power from second term 1.5, but at the cost of increasing 1.4.

1.4.3 Application of the model

Finally, the thesis will bring the focus back to the application of model in answering real-

life questions, such as what allocation is needed to guarantee service in a deadline, or vice

versa, what kind of responsive time can a fixed capacity server provide. The boundaries

based on chebshev’s and tighter for unimodal is proposed with easy calculation and well
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defined measure inputs for calculation. The optimal theories can be used to derive new type

of schedulers. The improvement to GPS scheduler is proposed in Chapter 6. Further, using

the model to analyze LRD traffics, and using the model to measure practical schedulers are

also characterized in the chapter.

1.5 Chapter summary

This chapter has summarized the motivation, problem statements research backgrounds

and major results. The scheduling in the server (leave along Internet) has been well studied

in the last several decades. The approach has mostly been starting from a queueing model,

and built the scheduling in the solution process of the model. The approach is very elegant,

and produced large amount of meaningful and useful results. However, the solution of

queueing model under different scheduling policies can each become an entire chapter. The

complexity becomes major hurdle in the usefulness of the results. As we have pointed

out, influence to Internet server is major coming from two sources, the variation of the

request size, and the correlated arrival process. Many researches carried out before mainly

focusing on one of the two factors. Or dropped one by using over-simplified model. such as

commonly assumed Poisson distribution eliminates the signature of correlation in the traffic.

and constant service time partially hides any sizing factor in the performance evaluation.

These researches are summarized in the next chapter, and subsequent chapters will be using

decay function model to explicitly show the impact from sizes and impact from correlations.
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Chapter 2

Related Work

The origin of problem starts from Internet traffic characterization. It has pointed out that

Internet traffic possesses a salient feature of strong correlation — Long-range dependency

(LRD) [34, 1, 18, 33]. Internet has created a complex environment where millions of various

types of servers and computers inter-connected with each other. The complexity is high

in both time and aggregation levels. In this environment, the traditional renewal random

process, such as Poisson process, is incapable of modeling the highly complicated Internet

traffic and server processes.

In the meantime, Internet applications evolved from best-effort service models to time-

constraint and mission critical services, such as online payments, banking, trading and mul-

timedia streaming. These applications pose new challenges as they demand guaranteed ser-

vice level to end users with big financial incentives on the hook as well. Design of Internet

servers is required to provide reliable, scalable and predictable Quality of Services (QoS)

for the complex traffic processes pointed out in traffic characterization.

There are several approaches that are focusing on above challenges, including build-

ing new traffic models that can mimic complicated correlations, extending queueing models

with heavy tails service time, classification of scheduling policies and adopting control theo-
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rem for server performance evaluation. Some mathematical backgrounds are also introduced

in this chapter for Fourier transform and its properties.

2.1 Advancing in Internet Traffic Engineering

Workload characterization and modeling are fundamental activities in the design and

evaluation of performance of web systems. The study of Internet traffic can be summarized

in two sub-groups, the first group focusing on study the size distribution of Internet server.

The earlier work started in 1996, where the focus is primary on the static web content. With

the advancement of Internet applications, the latest studies are almost entirely focused on

the dynamic content in the Internet. On the other hand, the Internet traffic has been known to

have strong correlations. Especially, the Internet traffic has been proved to have long-range

dependency (LRD).

The activities on Internet is growing rapidly. Odlyzko [53] observed that the growth of

Internet traffic would double every two years (Moores Law). This observation may suggest

that the underlying measurements in Internet traffic could have changed dramastically in

the short history of Internet era. The 1996 study of Web server workloads [1] involved

six Web sites with substantially different levels of server activity. Nevertheless, all of the

Web sites exhibited similar workload characteristics. The result shows that the nature of

Internet applications have more influences on traffic, rather than sheer volume itself. The

Internet application has transited from static content based pages to dynamic, and interactive

application serving both financial and time critical functionalities.
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The sizes of HTTP requests have been increasing based on evolution of web traffic from

1995 to 2003 [32], while the sizes of HTTP responses have been decreasing. In the mean

time, Web usage by both content providers and Web clients has significantly evolved with

advances in technologies, such as such as persistent connections, server load balancing, and

content distribution networks etc. 1996 invariants for Web traffic was revisited in 2001 [14]

It shows that 2-4% of files account for 90% of server requests. This level of skew is more

pronounced than claimed in 1996, when 10% of the files accounted for 90% of the activity.

This may be attributed by the change in Internet service pattern, or in the difference between

the class of server access logs, which make result inconclusive. Such as similiar study [7]

compares measurements of workloads obtained from the same server at Boston University

between 1995 and 1998, and found that document size distributions kept the same while the

distribution of file popularity changed. A detailed survey of Web workload characterization

for Web clients, servers, and proxies is provided in [58].

On the other hand, there was recent trend to study the service time in the dynamic content

web sites. The conclusion from the study shows that there was no direct link between the

statistics of content size (transfer size), rather, the service time itself is also showing a heavy-

tailed properties. The observation for commecial website traffic shows that traffic from e-

commerce is highly busty in nature, much more than previously analyzed web traffic. Very

high self-similarity was found in the traffic. The response time is heavy-tailed. Further, it

breaks the traditionally believed link between responsive time and transfer sizes, it points

out that the the responsive time is more related to the processing time in the backend server,
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rather than from the transfer sizes.

Leland, Taqqu, Willinger, and Wilson [41] observed that, over long time-scales, Internet

traffic is self-similar. Self-similar is a fractical structure discovered in the nature. A lot of

physical activities are shown to following a pattern, where a smaller portion of the object

reassembles the larger pieces and repeating. one perfect example is the crystal structure

in the snow flakes and other crystals. For traffics, the mathematical notation: Let X(0, t]

be the total amount of traffic passing through a particular point in the network in the time

interval (0, t]. Write X for the overall traffic process. Define the speed-up version XL by

XL(0, t] = X(0, Lt]. the rescaled process aHX.a has approximately the same distribution

whatever the value of a (for large a). The parameter H is the Hurst parameter and is good

indication of self-similarity; they measured H and found it typically lay in ( 0 , 1). A self-

similar process has bursts over all time-scales; i.e. the traffic does not become any smoother

by averaging over any longer period of time.

2.2 Queueing Theorem

Queueing network (QN) models are widely used to address similar issues in packet

scheduling in networks and job scheduling in closed computer systems [64]. Queueing the-

ories are based on an assumption of input renewal or Markovian processes. There were early

studies that treated Internet requests as packets in routers or jobs in computer systems and

simply applied the QN models for performance evaluation of Internet servers; see [51, 68]

for examples. But the model applicability and accuracy were found very limited because
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recent Internet workload characterization studies [1, 18, 33] all pointed to long-range de-

pendency and heavy tail as inherent properties of Internet traffic. as a result, a number of

researches are carried out to extend classical queueing theorems to handle these complicated

situations.

2.2.1 Hierarchical Queueing Models

One approach focuses on extending the simple renewal model by incorporating a modu-

late process. Examples of the models include Markov Modulated Poisson Process (MMPP) [42,

43, 44, 6] and Quasi Birth and Death (QBD) [39] process. For example, Li and Hwang [43,

44] pointed out that queueing servers should be only sensitive to low frequency compo-

nents in the power spectral density function of the input traffic. These models can be solved

with mathematical deductions or numerical methods. But their solvability is limited to low

order Markovian processes, due to the computation complexity. Moreover, the low order

Markovian process can only model traffic with short range dependency.

To overcome the limitations of Markovian processes, there are new models based on

LRD input traffic, such as M/G/∞/G/1 queue model, and FGN/G/1 model [20, 63,

25, 52, 79]. They can only be analyzed asymptotically with Large Deviation (LD) [21]

techniques. For example, Norros [52] characterized negative impacts of self-similarity of

input traffic on storage servers; Xia and Liu [79] modeled the server performance with dif-

ferent service time distributions under the LRD traffic generated by M/G/∞ and FGN

models. However, it is also shown that the effect of LRD on server performance is ambigu-
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ous [62]. LD techniques assume the steady state of a process can be bounded by “envelope

process” [10, 30, 35, 36]. The envelop process in a simpler analytical format makes it easier

to derive performance bounds. All these results are insightful, but only give information

about system’s steady state performance under various assumptions, such as traffic models,

queueing disciplines, infinite buffer, and infinite time horizon.

2.2.2 Network Calculus

We also note that there are established frameworks for modeling of highly variable traf-

fic on network routers [54, 65, 40]. To handle the high-variability of Internet traffic, the

frameworks assume the traffic smoother model (or shaper), which essentially reduces the

burst of Internet traffic and enables subsequent rate-based scheduling/traffic analysis. To

further compensate the high variance of Internet traffic, traditional single-rate leaky-bucket

scheduling is extended to multiple leaky-bucket scheduling. These techniques for handling

the traffic variance are not applicable to end-server modeling for two main reasons. First,

routers take packets from the same connection as input, which can be buffered for smooth-

ing the downstream traffic. By contrast, Internet servers take client request as a scheduling

unit and the processing cost for each individual request cannot be smoothed by any pre-

processing. Second, from QoS point of view, drop or loss a packet in routers may cause

an intolerable loss (multimedia traffic is an exception because it can tolerate a loss rate up

to 10−5 ∼ 10−7 [65]). However, scheduling on Internet servers can have wide choices of

adaptations for different quality levels. For example, a multimedia server has choices of
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different compression ratio, different encoding to balance the resources needs and QoS.

2.3 Scheduling Policies and Advancements in Internet

The study of computer scheduling policies has long history with vast literature of ana-

lytic results. Though simple policies like FCFS and PS are traditionally the most common

policies used to model scheduling in computer systems. In recent years, there is a resurgent

study in the field, this resurgence was led by researches from [74, 75] on group studies of

scheduling performance. These researches focus on design schedulers based on priority-

based policies. There are many ways that priority-based policies can assign priorities. Com-

monly, users are willing to pay money in order to receive high priority service and, thus,

spend less time queueing. Other times, the goal may be to assign priorities in a way that

minimizes some cost function (such as mean response time) of the queue. In the second

scenario, it is often beneficial to give priority to small job sizes. In this section we will

mainly introduce the later, which is commonly referred as Shortest-remaining-processing-

time policy.. Under SRPT, at every instance, the job with the smallest remaining service

time is scheduled. In this way SRPT greedily tries to minimize the number in system by

always working on the job that can be finished the quickest. In the preempt resume set-

ting, this greedy approach is good enough to minimize the number in the system, and thus

E[response time], regardless of the arrival and service processes because any scheduling

decision can be reversed without penalty if a more attractive (smaller) candidate arrives.

Because of this optimality, SRPT has received a large amount of attention in the literature.
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in [74], mean responsive time from SRPT under M/G/1 traffic is compared to the re-

sults from processor sharing. It shows that previous conclusion ”unfairness” for SRPT is

not justified — SRPT doesn’t introduce great deal of penalty to large jobs are intuitively

envisioned before [70]. Further, average responsive time from SRPT is much smaller than

that from PS schedulers, especially when server is approaching overloaded situation.

In [75], authors define SMART schedulers, which includes Shortest remaining process-

ing time (SRPT) and preemptive shortest job first (PSJF). The upper and lower bounds on

mean response time were derived and schedulers in the group group of schedulers have very

similar mean response times. The importance of SMART scheduler is that the mean respon-

sive time from schedulers are insensitive to the variation of the request sizes. On the other

hand, the complementary research [29] shows the sensitivities of SRPT and PS scheduling

to selected characteristics of the arrival process and job size distribution.

Because these results for SRPT based scheduling policy, there are applications using

SRPT in different areas, such as web servers [31, 48] and network routers [59]. It also

triggers a wave of simulation for traffics more general than M/G/1 [29], these results further

reveals that even though SRPT is indeed optimal in mean responsive time. Its performance

in ”fairness” changes for traffics with light tail vs. heavy tail, and for Poisson traffic vs. LRD

traffics. These results call for further advancements in theoretical analysis of scheduling

policies. In this thesis, we show that two factors in the traffic, request sizes and traffic

correlation, and how these two factors each interact with schedulers to influence the second-

order statistics of server workload process. With the model in this thesis, the details of
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factors deciding optimality of schedulers are revealed.

2.4 Signal Processing Techniques in Server Models

Signal processing techniques have been used in popularity in characterizing traffic, such

as time-scaling, LRD and self-similarity. By studying the PSD functions for Internet traffic

traces, one observation is monotonically decreasing PSD function from low to high fre-

quency in many traffic traces [28, 5, 8, 49]. Given above progresses in traffic anagnorisis,

little work exists for server performance modeling and optimization in the same track. Li

and Hwang [43, 44] studied frequency responses of FCFS queueing servers using simula-

tions for MMPP traffic. Their results were mainly based on numerical methods and at lower

order of MMPP traffic model. In communication area, such as [37], authors applied the filter

concept in wireless communication that tries to reduce the power consumption of devices.

Their results is limited to a special case of independent input traffic.

2.5 Feedback Control Approach

Given the challenge of Internet server providing stable processing capabilities to end

user requests. Using feedback control to maintain system stability and optimality becomes

another choice. Since Abdelzaher and Lu [4, 2, 46] introduced the concept to Internet server

QoS management, there are several extensions to the framework, such as, using a simplified

queueing model as feed-forward predictor to help maintain stability and compensate for
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errors in the control, extending operating system kernel to enable the control mechanism

and real time measurements, introducing request admission control mechanism to handle

unexpected situations, and adopting neural network to construct self-adaptive server system

for variability of Internet traffics. The unique challenge in this approach is the stability of

the system, and non-negligible delay between correction action and effect can be observed.

In the bursty traffic of Internet, it might be simply too late for feedback to response and

taking corresponding adjustment to the fast variation in the traffic.
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Chapter 3

The Decay Function Model

The high variable nature of Internet traffic imposed great challenges for Internet service

providers to design the system architects to meet the quality demand by the users. It has been

pointed out that the response time is an important quality measurement from end-user point

of view about the service they received. The long delays increase user frustration and the

abortion of transactions. Past surveys [12] show that the experience of users is under great

influence of service delay, the sensitivity is graded in range of 5 seconds; and tolerance for

delay increases if the page can be presented and loaded incrementally as opposed to present

all the page once its entire content has been loaded.

The performance of an Internet server system depends in large part on the scheduling

policy, which decides how and when the user requested services will be processed. Schedul-

ing policies have been studied for may years in server operating and networking systems.

Especially in recent years, the reveal of heavy tailed distribution in server request require-

ment (size), and long-range dependent (LRD) arrival pattern has triggered renewed interest

in the performance evaluation in scheduling policies.

In this research, we are designing a model that can characterize the Internet server from

its basic activity, that is the scheduling of resources for each individual request. The newly
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emerged Internet applications often requires bounded service deadline, or response time for

each requests under finance-critical situations. In this chapter, we show that when assum-

ing deadline constraint for each request, the Internet server can be modeled as filter-alike

convolution relationship with compound traffic as input and server utilization process (or

workload process) as output. In Section 3.1, we describe the steps of constructing decay

function model. In Section 3.2, we show the simplification path of the model under con-

straint deadline assumption.

Analytically, two things make decay function model attractive, first, it converts rather

complicated queueing relationship into well studied filtering alike transformation, second,

we can study the general scheduling with relaxed traffic assumption but in definition of

formalism.

3.1 Decay Function

Consider an Internet server that takes requests as an input process, passes them through

scheduling — the decay function kernel, and generates a system load output process. Each

incoming request needs to consume a certain amount of resource. We define the required

resource amount as the request “size”. An Internet request often needs to consume more

than one type of resource (e.g. CPU time, memory space, network-IO bandwidth, disk-

IO bandwidth, etc.). Since the server scalability is often limited by a bottleneck resource

class, this paper focuses on the management of this critical resource. The request size is

a generic index and can be interpreted as different measures with respect to different types
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Figure 3.1: Illustration of the decay function model.

of resource. It is different from the size of its target file. In some cases, such as FTP and

static content Web servers, the request size is proportional to the file size. For the system

under consideration, we assume that the size distribution of requests is known. In a QoS-

aware system, the size of a request can be derived from quality indices in different QoS

dimensions [60].

We define the server capacity and server load accordingly. The output server load deter-

mines the level of QoS, in terms of the request completion time and rejection rate, for a given

server capacity c. Associated with the server is a scalable region [cl, ch] for each request,

0 ≤ cl < ch < c, in which the service quality of the request increases with the amount of

its allocated resource. If the maximum amount of resource ch is allocated and the request

can still not meet its quality requirements, the server performance will not be improved by

simply increasing the resource quantity. cl is the lower bound of allocated resource which is

determined by the request minimum quality requirement. In a scalable system, it is always

true that more allocated resource will lead to non-decreasing quality of service.

The load filtering model is a discrete time model, with t as sever scheduling epoch index,

ts as arrival time of a request, and td for the deadline of the request. As shown in Figure 3.1,
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the model consists of three major components: request incoming process, decay function

scheduling and evaluation of system workload process. We model the request arrivals as a

general fluid typed process:

{
n(1), n(2), n(3), . . . , n(t), . . .

}
, (3.1)

where n(t) is the number of requests arrived at time t, t = 1, 2, . . .. In the simplest case, n(t)

at different scheduling epoches can be i.i.d. random integers from a general probabilistic

distribution. Taking the request size into the model, process (3.1) can be re-written as:

{
{wt

i}i=1,2,...,n(t)

}
t=0,1,...

, (3.2)

where wt
i is the size of ith request that arrived at time t.

Scheduling activities of a computer system are represented in an algorithmic manner. In

this paper, we define a decay function to abstract the scheduling on the Internet server. It is

defined as a relationship between time and resource allocation for each request. Formally,

the decay function is a function of system time t, request arrival time ts, request size w,

and the current server workload l(t). We denote it as d
(
t, ts, w, l(t)

)
. Strictly speaking, the

decay function should also depend on request deadline td. For tractability, we treat td as a

model parameter, rather than a free variable.

In real Internet servers, the adaptation of scheduling to request size and server workload

does not change with time. That is, ∂d/∂w and ∂d/∂l are functions independent of time t.
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Figure 3.2: Decomposition of scheduling

Under this assumption, by the use of variable separation techniques the decay function can

be rewritten as a three stepped process:

d
(
t, ts, w, l(t)

)
= h(t, ts)g(w)f

(
l(t)

)
, (3.3)

where f(·) measures the effects of workload on scheduling, g(·) represents the impact of

request size w on scheduling, and h(·) is the function evolving with time to determine the

resource allocation. This scheduling decomposition is illustrated in Figure 3.2. We assume

that the scheduling is a causal activity. That is, for all t < ts, h(t, ts) = 0. It means that no

resources will be reserved in advance for a request before it arrives.

From the definition of decay function, the amount of resource actually consumed by a

request, must be equal to the request size w. In another words, the scheduler will always
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allocate enough amount of resources to a request by its specified deadline td. That is,

w =

ts+td∑
t=ts

d
(
t, ts, w, l(t)

)

=

ts+td∑
t=ts

h(t, ts)g(w)f
(
l(t)

)
(3.4)

We refer to (3.4) as a scheduling function.

The server workload at time t is equal to the sum of all resources allocated to the requests

that arrive before t. Thus,

l(t) =
t∑

ts=0

n(ts)∑

k=1

d
(
t, ts, wk, l(t)

)

=
t∑

ts=0

n(ts)∑

k=1

h(t, ts)g(wk)f
(
l(t)

)
(3.5)

We refer to (3.5) as a workload function. The workload and scheduling functions together

determine the dynamics of resource scheduling on the Internet server.

3.2 Filter Function Simplification

The decay function model defined above is applicable to any scheduling algorithms. To

make the model tractable, we classify the scheduling algorithms by two dimensions: request

size awareness and server load adaptation. Specifically,

1. Size-oblivious scheduling, if g(w) = 1. It means scheduling algorithms is unaware of

resource demand of the requests.
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2. Size-aware scheduling, if g(w) is an explicit function of w. This is the class of

scheduling that is able to allocate resources proportional to size of requests.

3. Non-adaptive scheduling, if f
(
l(t)

)
= 1. The resource allocation algorithm is inde-

pendent of server load l(t).

4. Adaptive scheduling, if f
(
l(t)

)
is a non-degenerating function. That is, the scheduler

will adapt its resource allocation policy to the change of server load.

Best-effort scheduling is an example of size oblivious scheduling. It is popular in to-

day’s desktop operating systems. Size aware scheduling like proportional scheduling, is

discussed extensively in QoS researches, where the feature of “controllable” is emphasized.

Adaptive scheduling is to allocate resource in response to the change of system utilization

for improving the system throughput. Non-adaptive scheduling is often oriented to appli-

cations where the quality of service cannot be compromised. In this paper, we focus on

size-aware and non-adaptive scheduling algorithms. In particular, we assume g(w) = w for

size-awareness. Recall that the request deadline td is considered as a predefined model pa-

rameter. It means the server can always finish a request in a fixed period of time. We hence

refer to it as fixed-time scheduling. Fix-time scheduling decouples the deadline constraint

from scheduling and simplifies the analysis of the decay function model.

We note that scheduling algorithms are normally time invariant. That is, h(t, ts) =

h(t − ts). Consequently, the workload function (3.5) in the case of fixed-time scheduling
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can be simplified as

l(t) =
t∑

ts=t−td

n(ts)∑

k=1

h(t− ts) · g(wk)

=
t∑

ts=t−td

h(t− ts) ·
n(ts)∑

k=1

g(wk)

=
t∑

ts=t−td

h(t− ts) · w̃(ts), (3.6)

where

w̃(ts) =

n(ts)∑

k=1

g(wk). (3.7)

Given the arrival process in (3.2) and predefined impact of request size g(w), the prop-

erties of the compounded process w̃(ts) are derivable. In the case that n(t) is i.i.d. random

number from a distribution, the size w is i.i.d. random number from another distribution,

and g(w) = w, the compounded random process w̃(ts) is a simple random process following

a distribution of random sum [26].

By introducing the convolution operator “∗” on two vectors a(n) and b(n), we have

a(n) ∗ b(n) =
∞∑

m=−∞
a(m)b(n−m).

It is known that h(t− ts) = 0 when t < ts for causality consideration. Also, we note that no

scheduling will be made before system starts running. That is, h(t − ts) = 0 when ts < 0.
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As a result, the simplified workload function (3.6) can then be rewritten as a convolution:

l(t) = h(t) ∗ w̃(t). (3.8)

Equation (3.8) presents fixed-time scheduling on Internet servers as a perfect format of

linear system model with a transfer function h(·). Meanwhile, for fixed-time scheduling,

the scheduling function (3.4) can be simplified as:

ts+td∑
t=ts

h(t− ts)g(w) = w.

That is,
td∑
t=0

h(t) =
w

g(w)
.

In the case of g(w) = w, the scheduling function becomes

td∑
t=0

h(t) = 1. (3.9)

According to theorems of random signal processing [50], when the input “signal” w̃(t)

is a wide sense (WSS) stationary—the mean of w̃ is constant and its autocorrelation function

depends only on the time difference, the statistical relationships with respect to their mean,

variance, autocorrelation and cross-correlation between input and output of (3.8) can be

established. The assumption of WSS is quite general in the modeling of random signal.

This assumption is also valid for Internet traffic. In [69], the authors proved that the Internet
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arrival process could be at least modeled as a phase-pieced WSS processes.

3.3 Filtering Analysis in Frequency Domain

In previous section, the server utilization process and input traffic process are coupled

by a convolution filter. In signal processing theories, the filter satisfying condition (3.9) is

referred to as Finite Impulse Response (FIR) filter. It is natural to study this type of filter in

Frequency domain by using Fourier transform. This chapter will first convert convolution in

(3.8) into frequency domain by using power spectral density (PSD) of input traffic and server

utilization process, we then use this relationship to reveal some basic properties of scheduler

as a filter. These properties include frequency selectiveness of the scheduler, adaptiveness

of leakage of power to the service deadline, main-lobe and its lower bound under the service

deadline constraint.

3.3.1 Fourier Transform of Scheduler

Because of the distinct environment of the Internet, we cannot follow the conventional

path of filter design in DSP to construct the scheduling function h(t). First, coefficients

of the scheduler are exclusively non-negative. This restriction implies the scheduler is a

non-high-pass filter. Second, in signal processing such as detection and modulation, the

interesting region is often in narrow frequency band. In contrast, the power of Internet

traffic usually spreads across entire frequency domain. This requires the server scheduler to

be optimized globally. Third, Internet servers impose a capacity constraint on the scheduler,
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which DSP filters do not have.

We apply Fourier transform to the scheduling and workload functions. Let f be the

angular frequency variable. The Fourier transform of the scheduler h(t), denoted by H(f),

is

H(f) =
∑
t

h(t)e−2jtf . (3.10)

Because of the symmetric property of the Fourier transform, we only need to consider the

frequency variable f in [0, π]. According to the definition of Fourier transform, H(f) has

the following properties:

Theorem 3.1. The server scheduler H(f) has following properties:

H(0) = 1 (3.11)

0 ≤ |H(1)| < 1 (3.12)

Theorem 3.1 reveals that a scheduler is not a strictly low-pass filter as traditionally per-

ceived. First, it does not guarantee |H(π)| = 0, as required by a low-pass filter. Second,

some theoretically valid schedulers satisfy this requirement, but actually exhibit a “comb-

alike” frequency shape. Figure 3.3 shows such an “edge scheduler” in both time and fre-

quency domains, which allocates resource at the beginning and the end of the request lifes-

pan. This property implies that the server performance are sensitive to low as well as high

frequency traffic.
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Figure 3.3: Edge scheduler and its Fourier transform.

3.4 PSD Functions and Adaptiveness of Scheduler

To study the impact of correction in the input traffic, we introduce Power Spectral Den-

sity (PSD) function, which corresponds to the autocorrelation function (ACF) in the time

domain. For the input compounded process w̃(t), the PSD function Pw̃(f) is

Pw̃(f) =
∑
τ

Rw̃(τ)e
−2jτf , (3.13)

where Rw̃(τ) = E(w̃(t), w̃(t+τ)) is the ACF of w̃(t). PSD function Pl(f) for the workload

process l(t) can be defined in a similar way, which characterizes the distribution of average

power in entire frequencies.

For a stationary scheduler and an WSS input process, the convolution relationship in the
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workload function (3.6) can be rewritten in the frequency domain as

Pl(f) = Pw̃(f) · |H(f)|2. (3.14)

|H(f)|2 is called energy density function (EDF) in this paper. EDF characterizes the filtering

properties of the scheduler in frequency domain. In DSP terminologies, EDF determines the

“power leakage” from PSD of input traffic process to PSD of system utilization process.

Because the optimality of the scheduler is defined across entire frequencies, we define a

cumulative power function (CPF) for scheduler h(t) as:

Ah(f) =

∫ f

0

|H(ω)|2dω. (3.15)

Similarly, the CPF for a random process w(t) is defined as:

Aw(f) =

∫ f

0

Pw(ω)dω. (3.16)

Because EDF and PSD functions are non-negative, both Ah(f) and Aw(f) take the maxi-

mum value at f = π.

From Figure 3.3 we can see the EDF of the edge scheduler has a number of lobes. The

first lobe in lower frequencies is called “main lobe” and the rest are “side-lobes.” According

to Theorem 3.1, the main lobe leaks lower-frequency power in the input traffic to server

utilization process, and the side lobes determines the power leakage in higher-frequencies.
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The main lobe often dominates the scheduler performance, because Internet traffic often has

a majority of power in low frequencies. We establish a trade-off relationship between the

main lobe size and service deadline in Theorem 3.2. It can be proved by the definition of

Fourier transform.

Theorem 3.2. Assume a scheduler h with service deadline td. We “expand” the scheduler

in the time domain by scale a to form a new scheduler h′(n) = h(n/a)/a, the Fourier

transform H(f) of the new scheduler is “compacted” by scale a and the CPF A(f) is

reduced by scale a. That is,

H ′(f) = H(af), (3.17)

A′(f) =
1

a
A(f). (3.18)

Figure 3.4 illustrates the trade off relationship. The top line in Figure 3.4(a) shows a

uniform scheduler with a service deadline of 10, in which h(t) = 1/10, for t ∈ [0, 9].

Another line shows an extension of the deadline to 20. Accordingly, the main lobe width of

the scheduler with the extended deadline drops from π/5 to π/10, as shown in Figure 3.4(b).

Figure 3.4(c) shows that its CFP value is reduced by approximately half in high frequencies.

Comparing the edge scheduler in Figure 3.3 and uniform scheduler in Figure 3.4, we

can observe the difference between their main lobe widths (π/9 versus π/5 when td = 10).

In fact, the main lobe width of a scheduler is determined by the scheduler structure and

bounded by the main lobe width of edge scheduler.
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Theorem 3.3. For any scheduler with a service deadline of td, edge scheduler has the nar-

rowest main lobe and its width equals to π
td−1

.

Proof: From the definition of H(f), we have the EDF

|H(f)|2 =

td−1∑
t=0

h(t)ejft
td−1∑
t=0

h(t)e−jft

=

td−1∑
t1=0

td−1∑
t2=0

h(t1)h(t2)e
jf(t1−t2)

=

td−1∑
t1=0

td−1∑
t2=0

h(t1)h(t2)cos
(
(t1 − t2)f

)
. (3.19)

In (3.19), the maximum multiplier for frequency variable f in the cos() function is td−1.
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We know that EDF of edge scheduler is:

|He(f)|2 = 2 + 2cos((td − 1)f). (3.20)

Clearly, |He(
π

td−1
)|2 = 0 and the width of its mainlobe is π

td−1
.

When f ∈ [0, π
td−1

), cos(nf) in (3.19) is monotonically decreasing for n ∈ {0, . . . , td −

1}, so is |H(f)2| for general traffic.

When f = π
td−1

, and td > 2,

|H(
π

td − 1
)|2 =

td−1∑
t1=0

td−1∑
t2=0

h(t1)h(t2)cos
(
(t1 − t2)

π

td − 1

)

=
∑
t1=t2

h(t1)h(t2)

+
∑

t1 6=t2

h(t1)h(t2)cos
(
(t1 − t2)

π

td − 1

)
. (3.21)

Because cos() function is symmetric around π/2 when f ∈ [0, π], and the number t1−t2
td−1

is anti-symmetric when t1, t2 ∈ [1, td − 1], and t1 6= t2, we have,

∑

t1 6=t2

h(t1)h(t2)cos
(
(t1 − t2)

π

td − 1

)
= 0. (3.22)

This proves,

|H(
π

td − 1
)|2 > |He(

π

td − 1
)|2 = 0. (3.23)

Equation (3.23) states that when an edge scheduler reaches its mainlobe, all other sched-

ulers are still having value greater than zero, while decreasing from zero frequency. This
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proves edge scheduler has the narrowest mainlobe.QED

From Figures 3.3 and 3.4, we can also see a big difference between the side lobes of

edge and uniform schedulers. It means that, other than main lobe, the scheduler structure

also determines power-leakage in high frequencies. This will be discussed in the following

sections.

3.5 Random Point Process and Decay Function Model

Because of the importance of responsive time, the majority of existing studies are fo-

cusing on the evaluation of scheduler by mean responsive time or sojourn time in the

server. The well known results have been established for both size-oblivious, such as

First-Come First-Serve (FCFS), Processor Sharing (PS) and size-based scheduling policies

like Shortest-Remaining-Processing-Time (SRPT), and preemptive Shortest Job First (SJF).

These researches have pointed out that size-based scheduling has great advantage over size-

oblivious scheduling policies. In fact the SRPT scheduler is the optimal scheduler in min-

imizing the mean responsive time, the Least Attained Service (LAS) is the approximation

for SRPT when size of jobs is unknown (size-oblivious). The researches by Harchol-Balter

et al [74, 75] further point out that the starvation faced by size-based scheduling such as

SRPT is not severe in the Internet server environments. On another hand, there are recent

studies on the configurable scheduling policies in the server that can be tuned continuously

to behave from FCFS to LAS (approximating SRPT).

The less attention has been given to the statistical guarantees of the response time. That
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is, other than the mean value of the responsive time, what is the probability for responsive

time to fall within (or fail to meet) the predefined time range, for the class of the Internet

services and level of quality of services. The solution to the responsive time with Queueing

model is analytically complicated, and often involved multiple integration. Even the second-

order statistics of responsive time is very hard to solve and few results can be drawn from

the complex mathematical formulas. The result from previous sections provides a mean-

ingful solution in second-order statistics, and will be greatly useful for optimality study in

scheduling. It hides the dual factors of the traffic into a compounded process.

The dynamics of Internet traffic are coming from two factors, the service requirement

(size) by the individual request (which is determined by the service provider) and the service

arrival process, which is determined by the end-user activities. The sizing impact to server

performance has been relatedly well studied in recent years [29, 74, 75]. The correlation

impact is largely less known. The major results are still relying on simulation for particular

given web traffic [29] — not to mention the combined analysis of dual factors with a model

capture the abstraction of scheduling policies.

This section presents a Decay function model extension. with decay function character

scheduling policies under one generic mathematical format. We apply it to analytically

study the impacts from request size distribution and the correlation in arrival process. The

optimality of scheduling policy considers the size distribution and autocorrelation in the

traffic.

With more and more statistical evidence of long-range dependence observed in com-
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munication networks [63] and in Internet server [69], it has become increasingly important

to understand the performance impact by traffic exhibiting long-range dependence struc-

ture. Previous work in this area has been mostly focused on the dependence structure while

assuming deterministic service times. Two traffic input models, the M/G/∞ model and

Fractional Gaussian Noise (FGN) model, have been used extensively to model the long-

range dependence structure. Studies using M/G/∞ include [79], while studies using FGN

input model include [20, 79, 63, 25] A number of work has been carried out by extending

deterministic service time to more realistic assumption, such as subexponential service time

in [79]. Due to mathematical difficulties, the results from above models assume the con-

stant service time, which means the results are hardly applicable to general Internet server

environments where service requirements are commonly described as heavy-tail distributed.

Also, in these researches, it is unknown how scheduling affects asymptotic behavior of the

queueing model.

3.5.1 Random Point Process

We assume that the job arrives on the server by following a random point process. The

random point process is defined as tk, where tk means the arrival time of each individual

request. To simplify the model, we assume the process follows the condition that no multiple

requests at one single time. This is a reasonable assumption in reality, since all devices in

Internet are operating on a discrete time clock, and critical devices, such as routers, and

dispatchers are all working in sequential mode. Also, tightly associated with the time of the
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arrival is the size of individual request. with it, the overall traffic is modeled as ”marked

random point process”. Figure 3.5 shows the sample of how this process looks like.

After each request comes onto the server, the scheduler will fire up and allocate resource

to the request. The allocation is modeled as time function in our model. Assume for request

arrives at tk, the allocation for it is hk(t−tk). Because the function h is describing scheduling

of the server , it has to meet certain conditions. Here is the brief of the conditions: causality

— the server will not allocate resource to any unknown request, or non-arrived requests.

limited duration — server will not allocation resource for any request that has left the server,

and each request has limited lifetime in the server.

Assume that the request for the Internet server comes at a random time tk, and {tk}k

forms a random point process. Writing in mathematical format, it is: r(t) =
∑

k δ(t− tk),

where δ is Dirac Delta function.

At each time tk, the request comes with a size wk, so the overall traffic can be written as:

s(t) =
∑

k

wkδ(t− tk)
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This process is named as marked random point process as shown in Figure 3.5.

3.5.2 Second Order Properties of Random Point Process

Given the process in Eq 3.19, assuming that the size for each individual request is in-

dependent from each other. It is interesting to see how does the major factors: size and

arrival affect the overall traffic. To see this, we derive the second order statistics of the final

process.

E[s(t)] = EwEt[
∑

k

wkδ(t− tk)]

= wλ(t) (3.24)

where w is the expected value of the size of each request, and λ(t) is the average of the point

process r(t). If we assume the wide-sense stationary condition in r(t), the Eq. can b further

simplified as: wλ.

Correspondingly, the autocorrelation of the process s(t) is
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Rs(t, τ) = E[s(t)s(t+ τ)]

= EwEt[
∑

k

wkδ(t− tk)
∑
n

wnδ(t− tn + τ)]

= EwEt[
∑

k

w2
kδ(t− tk)δ(t− tk + τ)] +

EwEt[
∑

k

wkδ(t− tk)
∑

n 6=k

wnδ(t− tn + τ)]

= w2λδ(τ) +

w2Et[
∑

k

δ(t− tk)
∑
n

δ(t− tn + τ)]−

w2Et[
∑

k

δ(t− tk)δ(t− tk + τ)]

= (w2 − w2)λδ(τ) (3.25)

+w2Rr(t, τ), (3.26)

where w = E[w] and w2 = E[w2], Ew is expectation taken on the size and Et is the

expectation taken on the time t.

The correlation of the traffic is composed of two parts: First, the correlation caused by

the random size of each request, under independent situation, this correlation is an impulse

function with the only nonzero value at zero displacement, with weight equal to the variance

of the size. Second part is caused by the correlation of the arrival point process, weighted

by the square of mean of size.

Correspondingly, the power spectrum of the incoming traffic, which is the Fourier trans-
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form of the traffic can be written as:

PSDs(θ) = λ(w2 − w2) + w2PSDr(θ) (3.27)

Assume that as each request arrives at the server, it is subject to a scheduler for resource

allocation. The scheduler in our model is described as a random function hk(t), for the

request arrived at time tk. Several conditions are imposed, for the fact that it is a scheduler

in the server.

1.

hk(t) ≥ 0,∀t. (3.28)

2.

hk(t) = 0, for t ≤ 0. (3.29)

3.

hk(t) = 0, for t ≥ t′ (3.30)

First condition means that request can only consume the resources, not increase re-

sources to the server. The second condition ensure the causality of the scheduler, i.e. no

resource should be assigned before this request comes to the server. The third condition

ensures the resource can only stay in the server for limited duration.

Naturally, the workload in the server is the accumulation of resources that have assigned
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modulated functions leads to server workload process.

to all active requests in the server, that is

l(t) =
∑

k

wk{δ(t− tk) ∗ hk(t)}, (3.31)

where ∗ is the linear convolution operator. Or simply,

l(t) =
∑

k

wkhk(t− tk) (3.32)

Based on above definition, it can be seen that server can be effectively modeled as the fil-

tering relationship with the kernel of the system corresponds to the scheduling of the system.

Figure 3.6 shows that when server allocate resource to each point, with a (set of) schedul-

ing function, the aggregation of these allocation translates into the workload (utilization)

process in the server.

To simplify the derivation, let,

wkhk(t− tk) ≡ dk(t− tk) (3.33)
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The second order statistics of the workload process can be derived as:

E[l(t)] = EtEd[
∑

k

dk(t− tk)]

= Et[
∑

k

d(t− tk)]

= Et[
∑

k

δ(t− tk)] ∗ d(t)

= λ(t) ∗ d(t), (3.34)

where, d(t) is the average of dk(t), Ed[dk(t)].

If the random point process is stationary, the expression can be further simplified as:

E[l(t)] = λ

∫ ∞

−∞
d(t)dt (3.35)
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The autocorrelation function of the workload process is then:

Rl(t, τ) = EtEd[
∑

k

dk(t− tk)
∑
n

dn(t− tn + τ)]

= EtEd[
∑

k

dk(t− tk)dk(t− tk + τ)] +

EtEd[
∑

k

dk(t− tk)
∑

n 6=k

dn(t− tn + τ)]

= Et[
∑

k

Rd(t− tk, τ)] +

Et[
∑

k

d(t− tk)
∑
n

d(t− tn + τ)]−

Et[
∑

k

d(t− tk)d(t− tk + τ)]

= Et[
∑

k

δ(t− tk) ∗Rd(t, τ)] + Et[(
∑

k

δ(t− tk) ∗ d(t))

·(
∑
n

δ(t− tn + τ) ∗ d(t))]− Et[
∑

k

δ(t− tk) ∗ d(t)d(t+ τ)]

= λ(t) ∗Rd(t, τ) +

∫ ∫
Rd(t− x, τ + x− y)d(x)d(y)dxdy − (3.36)

λ(t) ∗ [d(t)d(t+ τ)] (3.37)

When the random point process follows stationary condition, the autocorrelation simpli-

fies as:

Rl(τ) = λ

∫ ∞

−∞
Rdk(t, τ)dt+

∫ ∞

−∞

∫ ∞

−∞
Rd(τ + x− y)dxdy−λ

∫ ∞

−∞
d(t)d(t+τ)dt. (3.38)

And apply Fourier transform to above expression, we can derive the power spectrum of
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the workload process:

PSDl(θ) = λ[Dk(θ)|2 − |D(θ)|2] + PSDr(θ)|D(θ)|2 (3.39)

Note that the first group of expression is the difference between “mean of square” and

“square of mean” of the Fourier transform of the random function dk(t).

Corresponding to the equation for the pure traffic, the power spectrum of the workload

process is also formed by two parts. The first term corresponding to the power that is caused

by the random sizes, while the second term refers to the power in the correlation of the

request arrival random process.

3.5.3 Decay Function Modulated Random Point Process

In this section, we assume that the service agreement in the server requires that all re-

quests to be completed within a fixed time window, so that the users of the services can have

meaningful and bounded service delay (in making above assumption, we temporary ignore

the delay factor caused by the network during the computation). Denoting the fixed service

deadline as td, the random scheduling function can now be written as:

dk(t) ≡ wkhk(t), (3.40)
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where hk(t) is another random function following an additional condition:

∫

t

hk(t)dt ≡ 1. (3.41)

Under this assumption, the power spectrum of the workload process can be simplified

as:

PSDl(θ) = {λ[w2|Hk(θ)|2 − w2|H(θ)|2]}+ w2PSDr(θ)|H(θ)|2 (3.42)

Above expression 3.42 can be separated into two halves, the first half {λ[w2|Hk(θ)|2 −

w2|H(θ)|2]} is independent of correlation of the incoming traffic. Thus why we call it

”sizing factor”. The second half, w2PSDr(θ)|H(θ)|2, is exactly what we derived for com-

pounded traffic with correlation of traffic — power spectral reflected in the formula, and

thus we call it ”correlation factor”.

Recall that previous researches have pointed out the two dynamics for the traffic [78].

Correspondingly, we show that power spectrum of the server workload is also heavily influ-

enced by the two factors from traffic, and with expressions in Eq. 3.42. This relationship is

illustrated in Figure 3.7.

In Chapter 4, the effect of scheduling and its relationship with above two factors in

Eq. 3.42 are analyzed in details.
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Chapter 4

Optimality Analysis of the Scheduler

Traditionally, people emphasis more on the impact of scheduler to individual requests

rather on the performance of the server, such as fairness analysis of lottery scheduler and

its variants, response-time analysis of Shortest-Job-First scheduling. Above approach is

valid under the situation that incoming requests are well bounded, and that QoS of server is

predictable when capacity is overly-provisioned. This assumption is no longer the truth in

Internet, where traffic is much more dynamic and traditionally overly-provisioning capacity

can no longer provide guarantee for the server. In this circumstance, it is important to

evaluate the impact of each individual scheduling on the overall server performance. In

queueing theories, this has to be done for each type of scheduling individually. Our model

provides a more convenient approach as we show that there exists an optimal scheduler for

each given traffic and service deadline constraint. All the encountered server performance

analysis can be carried around the optimal scheduler, which not only provides response

time guarantee to individual requests, but also optimize the server performance in terms of

minimizing variance of server workload process.

This chapter will prove the existence of such an optimal scheduler, and will conduct

simulations to validate the optimality of such scheduler.
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4.1 Optimal Fixed Time Scheduling

It is known that the requirement for server capacity can be relaxed by reducing server

load variance so as to maintain a uniform server load timewise. The goal of scheduling is to

minimize the workload variance.

Define h(t) = [h(t), h(t+1), · · · , h(t+ td− 1)]′ as a vector form of the decay function,

and w(t) = [w̃(t), w̃(t − 1), · · · , w̃(t − td + 1)]′ as a vector form of request sizes. Let

Ω(t) = E[w(t)w′(t)], being the correlation matrix of input process w̃ in the order of td. We

formulate the optimization problem in the following theorem. We also prove there exists

one and only one solution to this problem.

Theorem 4.1. If the compounded input process w̃(t) is wide sense stationary, the optimal

fixed-time scheduling is to find a h that

Minimize h′Ωh (4.1)

Subject to
td∑
i=0

hi = 1, and hi ≥ 0. (4.2)

Moreover, the optimization problem (4.1) has a unique solution.

Proof: Write (3.6) in vector format as

l(t) = h′(t)w(t). (4.3)

Recall that w̃ is a WSS (wide sense stationary) process and
∑

t=0,...,td−1 h(t) = 1. It follows



58

that the mean of system load at time t

E[l(t)] = E[h′(t)w(t)] = E[w].

The explanation is that the server must finish all the work requirements for the requests. As

we assume no degradation in the services (sum of h must be one), it has nothing to do with

scheduling policy.

The variance of system load at time is

V ar(l(t)) = E[l2(t)]− (E[l(t)])2

= E[h′(t)w(t)h′(t)w(t)]− (E[w])2

= E[h′(t)w(t)w′(t)h(t)]− (E[w])2 (4.4)

= h′(t)Ωh(t)− (E[w])2. (4.5)

where Ω = E[w(t)w′(t)].

We point out that Ω is semi-positive definite matrix. That is, for any non-zero vector

x ∈ Rtd , x′Ωx ≥ 0. In real Internet environment, the covariance of input traffic random

process should be non-degenerating — it is impossible to determine one component of w(t)

from other components of w(t) with probability one [26]. This means the correlation matrix

is strictly positive definite.

Since Ω is a symmetric positive definite matrix, there exists an orthogonal matrix U,



59

such that U−1ΩU = Λ and

Λ = diag(λ1, λ2, . . . , λtd)

where λi are the eigenvalues of the matrix Ω and λi > 0.

Let y = h′Ωh. It follows that

y = h′UΛU−1h

Define g = U−1h. It follows y = g′Λg. This is a standard form. It is minimized when

λig
2
i = λjg

2
j for any 1 ≤ i, j ≤ td. Since h′1 = 1 and Ug = h, there exits one and only one

solution of h for the optimization problem (4.1). QED

This theorem reveals the impact of correlation structure of Internet traffic on the schedul-

ing policy.

In the following, we give two optimal results in the case that the compound input pro-

cess is homogeneous. The first result can be derived from Theorem 4.1 and its proof is

omitted. We demonstrate the calculus of the results by examining input traffic with different

autocorrelation functions.

Corollary 4.1. If the compounded input process w̃(t) is independent for different time t, the

optimal fixed-time scheduling is to allocate equal amount of resource to a request at each

time unit before its deadline.

The optimal scheduler in Theorem 4.1 can be solved by non-linear programming tech-

niques. We demonstrate the shape of optimal scheduler in the following example.
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Example 4.1. In the first example, we illustrate the above theorem by considering several

traffic with distinct autocorrelation functions(ACFs) p(τ), where τ is the lag of time unit.

The server is assumed to finish each unit of task by 10 time units; that is, td = 10 for each

request. The first two sample traffic models are multimedia traffic patterns introduced in

[38]. One with shifted exponential scene-length distribution whose ACF is p(τ) = e−β|τ |

and β = 1/49 and the other is subgeometric scene-length distribution with ACF in recursive

form p(τ) = p(τ −1)−α
√
τ/d, where α = 0.8 and d = 40.67. The third traffic model under

consideration is the Fractional Gaussian Noise process with a Hurst parameter H = 0.89,

as described in [56]. We applied an exponential transformation to this traffic to eliminate

negative values.

The last traffic model was generated from a real scene-based MPEG I video trace from

the popular “Simpsons” cartoon clip [66]. It consists of around 20,000 frames which lasts

for about 10 mins at 30 frames per second. The video clip has a Hurst parameter 0.89 and

thus posses high degrees of long-range dependence and burstiness. The autocorrelation

structure was produced at a coarse-grained Group-of-Pictures level under the assumption

that the expected scene length was 50.

Figure 4.1 shows the ACFs of the traffic models, where ACFEXPON, ACFSUBGEO,

ACFFGN, and SCFMPEG represent the four distinct traffic models respectively. Their radi-

cal impacts on the optimality of scheduling functions (Theorem 4.1) are shown on Figure 4.2.

A uniform decay function for independent traffic (Corollary 4.1) is included in Figure 4.2

for reference.
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4.2 Performance Evaluation

To verify the above analytical results, we conducted simulations of the Internet server

based on the decay function model. The simulation was conducted in two aspects: (1) Com-

pare the decay function scheduling with another popular GPS scheduling [54]; (2) Analyze

the sensitivity of the decay function to request traffic.

4.2.1 Experiment Setup

We generated normal random numbers for request size and lognormal random numbers

for the number of arrival requests at each scheduling epoch (unit time). All these random

numbers are generated inter-independently. The server was simulated with an infinite queue

so that we can find exact distribution for the completion time of each request. This dis-

tribution serves as a common base for comparison of different scheduling algorithms. We

did not consider admission control in the simulated server because the relationship between

completion time and rejection rate is beyond the scope of this paper. The simulated server

treats all requests with the same priority. When a request arrives at the server, it first be

buffered in the queue. If the server has enough resource, the request will be scheduled for

processing immediately without any queueing delay. Otherwise, the request will be blocked

in the queue. We implemented two different schedulers on the server module: one for fixed-

time scheduling and the other for GPS scheduling. GPS scheduling ensures fair-sharing of

resource between requests in processing at any scheduling epoch. Two performance metrics

were used: completion time and server load. Completion time of a request includes waiting
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Table 4.1: Notations of Performance Metrics
µt the mean of completion time
σ2
t the variance of completion time

%t the percentage of requests meeting the deadline td
µl the mean of server workload
σ2
l the variance of workload

%c the percentage of server workload less than capacity c

time in the back logged queue, plus its processing time.

In summary, the simulation proceeds in the way as: (1) generate the number of arrival

requests n(t) at time t from a lognormal distribution; (2) for each request, it is assigned a

size w(t) from a normal distribution; (3) each request then enters the server for scheduling;

(4) measure the completion time of each request and the server workload at each scheduling

epoch as output. Because the number of arrival requests at each time and their sizes are i.i.d.

random numbers, the compounded workload w̃(t) is not only a WSS process, but also an

ergodic process [50]. In this section, we use notations as listed in Table 4.1.

4.2.2 Comparing Different Schedulers

We compared the optimal fixed-time scheduling with the GPS scheduling. In addition,

we implemented two more heuristic fixed-time scheduling algorithms. One is randomized

allocation that takes td to random numbers from a uniform distribution and then scales

them to standard decay functions h(t) so that
∑td

i=1 h(t) = 1. The other is incremental

scheduling, in which the server increases resource allocation at a constant rate b to a request

as its deadline approaches. That is, h(t+ 1) = h(t) + b. We assume the initial allocation in

the first scheduling epoch h(1) = b, as well. Table 4.2 presents their comparative results.
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Table 4.2: Statistics of server with various scheduling algorithms. (c = 171000, n(t) ∼
ln(1, 1.5), w ∼ n(5000, 1000), td = 10)

Scheduling GPS Incremental Random Optimal
Load Mean µl 37534 37534 37534 37534

Load Variance σ2
l (109) 1.68 1.22 1.00 0.894

Capacity Satisf. %c 99.8% 96.7% 99.2% 99.3%
Time Mean µt 4.25 10.08 10.13 10.08

Time Variance σ2
t 5.38 0.70 0.51 0.33

Deadline Satisf. %t 96.7% 90.6% 97.0% 97.3%

From the table, it can be observed that the optimal fixed-time scheduling outperformed

the others in two aspects. First, it dramatically lowers the variance of server workload by up

to 50% in comparison with the GPS scheduling and more than 10% in comparison with the

other fixed time scheduling. Second, it provides better guaranteed completion time. GPS

scheduling leads to a lower mean of completion time and a high variance. As a result, the

percentage of requests that miss their deadlines is much higher than fixed-time scheduling.

All the fixed-time scheduling algorithms guarantee completion-time, the optimal schedul-

ing algorithm yields a much smaller time variance, in comparison with incremental and

randomized allocations.

Figure 4.3 shows the empirical CDF of the server load due to different scheduling algo-

rithms. From this figure, we can see the tail of the optimal fixed-time scheduling is lighter

than GPS and other heuristic fixed-time scheduling algorithms. This again indicates the

superiority of the optimal fix-time scheduling.
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Figure 4.3: The empirical CDF of server load with various scheduling algorithms.
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Table 4.3: Statistics server with various scheduling algorithms. (c = 171000, n(t) ∼
ln(1, 1.7), w ∼ n(5000, 1000), td = 10)

Scheduling GPS Incremental Random Optimal
Load Mean µl 52497 52497 52497 52497

Load Variance σ2
l (109) 2.92 2.31 2.04 0.189

Capacity Satisf. %c 99% 96.2% 96.8% 97%
Time Mean µt 9.2 11.1 11.1 10.9

Time Variance σ2
t 65.7 14.8 14.5 13.2

Deadline Satisf. %t 84% 77% 81% 86%

4.2.3 Sensitivity to the Change of Traffic Intensity

The Internet features high variability traffic patterns. It is not uncommon for an Internet

server to experience a heavier-than-expected incoming request traffic without any warning.

In this simulation, we show that the optimality of fixed-time scheduling stands when the

number of arrival requests n(t) increases for each unit time. We increased the lognormal

distribution parameter σ from 1.5 to 1.7, while keeping all the other parameters unchanged.

This small increase in the parameter σ leads to a jump of server workload by almost 140%.

Table 4.3 shows that the variances of server load and request completion time due to the

optimal fixed-time scheduling are significant lower than those in GPS and other heuristic

fixed-time scheduling. The 97% of capacity satisfactory rate %c reveals that the optimal

fixed-time scheduling likely leads the server to fully loaded conditions. In other words, the

optimal fixed-time scheduling is able to fully utilize existing resource on the server. This

can be seen from the completion time index. It shows that more requests can be finished

within deadline in the optimal fixed-time scheduling than the other scheduling algorithms .

With a lower variance, the tail of completion time due to the optimal fixed-time scheduling
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Figure 4.4: The CDF plot of completion time when n(t) ∼ ln(1, 1.7)

is significantly lighter than GPS scheduling in Figure 4.4 and Figure 4.5. With a light-

tail and small variance, the optimal fixed-time scheduling tends to provide better deadline

guarantees in terms of both maximum and average delays.

Notice that in the above simulation, the average utilization of the server was maintained

at a range of [40%, 60%]. From this point of view, the price for providing guaranteed service

time on the Internet server under high-variability traffic is very high.

4.3 Optimality of Scheduling for Power Spectral

Theorem 4.1 in Chapter 4 points out the existence of optimal scheduler. This optimality,

as shown in the proof, is actually achieved by minimizing variance in server workload pro-

cess. In Chapter 3, the input and output relationship for scheduler is extended into frequency
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domain. In this chapter, we not only extend optimal condition of scheduler into frequency

domain, but also prove the Convex scheduling policy for traffic with monotonically decreas-

ing PSD functions. The convex rule is applied into GPS scheduler, simulation shows the

performance improvement through convex-enhancement.

4.4 Minimum Power Scheduling

Server scheduler leaks power of input traffic process into server utilization process. It is

known that the cumulative power function (CPF) of a random process reflects its variance

in the time domain. Reducing the CPF of system utilization process leads to a more stable

and predictable server operation condition. It can also help reduce the demand for server

capacity in QoS provisioning. Therefore, the optimality of a scheduler in second-order
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statistics is to minimize the power leakage for input traffic.

The existence of such an optimal scheduler has been proved in the time domain in pre-

vious chapter in the sense of least-mean-square. From the definition of PSD function, we

know that CPF Al(π) is equivalent to the variance of process l(t) in the time domain. We

present the existence of the optimal scheduler in the frequency domain in the following

theorem.

Theorem 4.2. For input traffic with a wide-sense stationary compounded input process w̃(t)

in (3.7), there exists one and only one scheduler that minimizes the CPF Al(π) of server

utilization process l(t).

Generally, the optimal scheduler could be any structure as long as it meets the require-

ments for scheduling function in (3.4). When input traffic is i.i.d., its PSD function corre-

sponds to a horizontal line in the frequency domain. The flat PSD function means the power

of input traffic is distributed evenly in all frequencies. In the following theorem, we prove

that uniform scheduler hu(t) is optimal for i.i.d. traffic.

Theorem 4.3. For an i.i.d. traffic and a given service deadline td, uniform scheduler hu(t)

minimizes the CPF Al(π) of server utilization process.

Proof: By Parseval theorem, we have

Ah(π) =

∫ π

0

|H(f)|2df

= π
∑
t

h2(t). (4.6)
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According to Cauchy Inequality, the time domain constraint for h(t) in (3.4) becomes,

1 =
( td−1∑

t

h(t)
)2 ≤ td ·

td−1∑
t

h2(t), (4.7)

Consequently, (4.6) becomes

Ah(π) ≥ π

td
, (4.8)

and it takes equality only when h(t) = 1
td

. The lower bound of the Ah(π) for schedulers

with deadline td is inversely proportional to td.

When the input traffic is i.i.d, the PSD function takes a constant value in all frequencies

f . This means that minimizing Al(π) is equivalent to minimizing Ah(π). QED

4.5 Evaluation of Optimality in Correlated Traffics

In this chapter, we used traffic models that go beyond the i.i.d. case used in previ-

ous chapter to validate the optimality. We assume an Internet server with defined capacity

C. The server uses the scheduling function h to schedule resources for the requests. Re-

quests arrive at the server according to three different patterns: (1) A video trace taken

from Simpson Cartoon Video [66], (2) A trace generated from FGN model using Paxson

method [56], (3) A measured Internet HTTP trace from Internet Traffic Archive [71]. For

FGN and Video traffic, each request is matched independently with size from Gaussian dis-

tribution N(20637, 95992). The mean and variance for the distribution were taken to match

with the mean and variance of response size in HTTP trace. The HTTP traffic is matched
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with real HTTP response size from the trace. When the server is overloaded (utilization

is close to 1), the additional requests are kept in a waiting queue. Four performance in-

dexes were considered in the simulation: mean value of response time, variance of response

time, percentage of requests that exceed predefined service deadline of 10 time units (dead-

line missing rate), and the maximum response time among all requests. Response time is

defined as queueing delay plus actual service time.

Three scheduling policies were considered in the experiment, (1) random scheduling

function, (2) optimal scheduling function, (3) uniform scheduler.

Figure 4.6(a) shows the wave shapes of three traffic. Their PSD functions for each traffic

were estimated using periodiagram method, as shown in Figure 4.6(b). FGN traffic has more

power in low frequencies. HTTP trace appears to be more independent than other two, with

PSD in high frequencies approximately of being flat. The video traffic has less power in the

lower frequency range than the FGN trace. It shows a spike in frequency range [0.6π, 0.7π].

The spike in its PSD function indicates a periodic scene in video traces, which is common

for VBR video streams.

The martingale distributions for three input processes are shown in Figure 4.6(c). From

the figure, HTTP trace is showing an Zipf-alike distribution, which is in agreement with

past findings in Internet traffic characterization. In summary, three experimental traces have

distinct time-domain wave shapes, distributions and PSD functions. The choice of these

traces is to demonstrate the applicability of our model in typical Internet traffic.

We calculated the optimal scheduler for each traffic trace with with nonlinear program-
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Table 4.4: Server performance with different scheduling policies for different traffic traces.
Each trace is simulated using three different schedulers: uniform scheduler, optimal mini-
power scheduler and a random scheduler.

FGN optimal random uniform
missing rate 12.20 14.31 12.54

mean 10.2930 10.3684 10.3014
variance 0.8480 1.3657 0.8672

max 15 24 16
Video optimal random uniform

missing rate 6.32 14.35 6.30
mean 10.0640 10.2237 10.0641

variance 0.062 0.5257 0.063
max 11 22 12

HTTP optimal random uniform
missing rate 11.90 15.33 11.94

mean 10.1481 10.2550 10.1526
variance 0.1866 0.5190 0.1982

max 13 20 13

ming under the conditions in Theorem 4.2. They were plotted in Figure 4.7(a). From the

figure, we can observe that the schedulers for FGN and HTTP are both convex-structured,

with FGN’s has a “deeper bowel”. scheduler for video streams shows a local concaveness

within the valley of convex function. By looking at their EDF plots in Figure 4.7(c), FGN

scheduler has the narrowest main lobe, which explains the deeper bowel in convex shape.

HTTP scheduler is closer to uniform allocation, this is because HTTP trace is more inde-

pendent than the other two traces, and the uniform scheduler is optimal for i.i.d. traffic. The

video scheduler has a much lower value in frequency range [0.6π, 0.7π], which illustrated

that optimal scheduler is adapted to the spike in video trace’s PSD function. By looking at

plot of CPF functions in Figure 4.7(c), FGN and video schedulers share the similar proper-

ties: lower value in low frequencies at the cost of higher value in high frequencies.
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Table 4.4 shows the simulated server with different schedulers. Optimal schedulers can

outperform other two schedulers in all three traffic in each sense of measurement. Compar-

ing to random scheduler, the optimal schedulers reduced the deadline missing rate by 50%

for all input traffic. Same is true for the maximum response time.

The optimal schedulers outperform uniform scheduler marginally There are two reasons

for this. even though three traffic traces have different PSD functions, the functions have

the same structure — they all decrease fast in lower frequencies band and at a much slower

rate in higher frequencies. This corresponds to the signature of i.i.d. traffic. Second, the

main lobe width of the schedulers almost covers the fast decreasing region in PSD func-

tions. We define this the cut-off frequency of this fast decreasing region as “cut frequency”,

and define the corresponding time unit in time domain as “main time-scale”. Since service

deadline determines the width of main lobe, we conclude that if service deadline is approx-

imately the same as main time-scale of input traffic, the uniform scheduler can be used as

a good approximation to the optimal scheduler. The big performance difference between

random scheduler and optimal scheduler raised an important question. What determines the

optimality of scheduler from structure point of view? This is the problem we answered in

following section.

4.5.1 Convex Scheduling

The optimality of scheduling in Theorem 4.2 is in the sense of balancing power leakage

across the entire frequency domain. The uniform structure is optimal for i.i.d. input traffic.
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In reality, Internet traffic can rarely be modeled as independent.

In previous simulation, the three input traffic traces: video stream, FGN and HTTP trace,

share common characteristics in PSD function (Figure 4.6(b)). Their power is mainly con-

centrated in lower frequencies, and their PSD functions are asymptotically “monotonically

decreasing.” These characteristics are common in real Internet traffic [28, 5, 8, 49].

In this section, we prove that for traffic with such decreasing PSD functions, the optimal

scheduler structure is convex. Before presenting the main result, we introduce the concept

of scheduler permutation. For a given scheduler h with service deadline k, we represent its

structure as a sequence of instant allocation

〈h(0), h(1), . . . , h(k − 1)〉.

The scheduler can be in different structures: random, convex, concave, etc.

Let σ denote a permutation of list (0, 1, . . . , k − 1). The permutation hσ is

〈h(σ(0)), h(σ(1)), . . . , h(σ(k − 1))〉.

In the time domain, the permutation for a request changes the sequential order of its resource

allocation. In the frequency domain, this structure change causes the redistribution of power

in the EDS function in the system utilization process.

According to Parseval theorem, we have



78

0 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) random

h(
t)

0 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) descending

h(
t)

0 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) concave

h(
t)

0 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

(d) convex

h(
t)

Figure 4.8: Sample permutation of a random scheduling to decreasing, concave and convex
shaped scheduling function

Lemma 4.1. Let hσ be a permutation of scheduler h. Its CPF remains unchanged and

Ahσ(π) = Ah(π). (4.9)

The permutation operator provides us a tool to study the impact of scheduler structure

on the server performance. A special structure is “exact-convex”, defined as a permutation

hσ, such that

{h(σ(0)), h(σ(k − 1))} ≥ {h(σ(1)), h(σ(k − 2))}

≥ {h(σ(2)), h(σ(k − 3))}, . . . ,

where {a, b} ≥ {c, d} means a ≥ c, b ≥ c, a ≥ d, and b ≥ d.
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Figure 4.8 shows the sample of permutation of a random scheduler to different structured

shapes: monolithically decreasing, concave, and convex.

Theorem 4.4. For input traffic with monotonically decreasing PSD functions, the optimal

scheduler that minimizes the CPF of server utilization process is in an exact convex struc-

ture.

Proof By Theorem 4.2, there exists one and only one optimal scheduler that can min-

imize the power of workload process. Assume the optimal scheduler is h∗. We prove that

if h∗ is not convex, there exists a convex permutation hσ of h∗, that will generate smaller

power of the workload process.

It is know that

Al(π) =

∫ π

0

|H∗(f)|2Pw̃df

=

∫ ω

0

|H∗(f)|2Pw̃df

+

∫ π

π−ω

|H∗(f)|2Pw̃df. (4.10)

Suppose that |Hσ(f)|2 > |H∗(f)|2. According to Lemma 4.1, it follows that,

|H∗(f)|2 > |Hσ(f)|2, f ∈ [0, ω]

|H∗(f)|2 < |Hσ(f)|2, f ∈ (ω, π] (4.11)

Because Pw̃(f) is monotonically decreasing with f , by using Rearrangement Inequality,
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we can prove,

Alσ(π) =

∫ π

0

|Hσ(f)|2Pw̃df

<

∫ π

0

|H∗(f)|2Pw̃df = Al(π). (4.12)

It means that in order to prove hσ is a better scheduler than h∗, we only need to prove

inequalities (4.11)

Following the proof of Theorem 3.3, we know

|H(f)|2 =
td−1∑
t1=0

td−1∑
t2=0

h(t1)h(t2)cos
(
(t1 − t2)f

)
(4.13)

We define two matrices to simplify the equation,

C =
[
h(t1)h(t2)

]
t1,t2∈N[0,td−1]

, (4.14)

and,

S(f) =
[
cos

(
(t1 − t2)f

)]
t1,t2∈N[0,td−1]

, (4.15)

where N[0,td−1] is set of integers between 0 and td − 1.

It follows that,

|H(f)|2 = C ⊗ S(f), (4.16)

where ⊗ is the “inner product” of two matrics that sums up element-wise products of the
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Figure 4.9: The Cosine surfface S(f) changing with different frequency f .

matrics.

We call matrix S(f) as cosine surface (see Figure 4.9) Cosine surface has the following

properties when f ∈ [0, π/(td − 1)]:

(1) S(f) takes the maximum value at the center. That is S(f)
[
td
2
],[

td
2
]
≥ Si,j, for all

i, j ∈ [0, td − 1];

(2) S(f) is monotonically decreasing from this maximum point. Proof follows: First

draw a straight line from maximum point, ([ td
2
], [ td

2
]), to any point on the edge of (t1 − t2)

plane; Taking two points in the straight line, say (x1, y1), (x2, y2) and their corresponding

projections in the Cosine surface S(f) is S(f)x1,y1 and S(f)x2,y2 . Without loss of generality,

assuming (x1, y1) is closer to the center ([ td
2
], [ td

2
]). It is evident that |x1 − y1| ≤ |x2 − y2|,
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which means S(f)x1,y1 ≥ S(f)x2,y2 . The two inequalities only take the equal sign when the

straight line happens to be the main-diagonal line.

Similarly, we can prove that, when a scheduler is in the shape of exact-convex, the

scheduling surface defined by C takes minimum value at its center ([ td
2
], [ td

2
]). It is mono-

tonically increasing in the same fashion as S(f) according to the definition of exact convex.

Based on Rearrange Inequality, an exact convex permutation will have a smaller value

in |Hσ(f)|2, when f ∈ [0, π/(td − 1)]. This exactly proves the inequalities (4.11). Conse-

quently, the optimal scheduler must have an exact convex shape.

The above proof make an simplification at the center of (t1 − t2) plane. Strictly to say,

the points in the plane are discrete. When td is an even number, there would be four points

qualifying for the plane center. We can make further discussions by treating one of them as

the center. The conclusion remains the same.

This completes our proof.QED

Intuitively, for traffic with a decreasing PSD function, we would expect the optimal

scheduler can minimize the power leakage in lower frequencies covered under its main

lobe. This is exactly what a convex scheduler achieves.

To validate the theorem, we conducted another simulation under the same setup as in the

last experiment. We built a new convex scheduler by permuting the random scheduler used

in that experiment. The sequence for the new scheduler, which is exact-convex, is

hσ = 〈h(σ(0)), h(σ(1)), . . . , h(σ(k − 1))〉
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Table 4.5: Server performance with a convex scheduler. The scheduler is a permuation of
the random scheduler used in the last experiment.

traffic FGN Video HTTP
missing rate 12.93 6.64 12.29

mean 10.3012 10.0672 10.1517
variance 0.8625 0.0651 0.1871

max 16 11 13

such that

h(σ(0)) ≥ h(σ(k − 1)) ≥ h(σ(1)) ≥ h(σ(k − 2)), . . . .

Table 4.5 listed the results. Comparing them with the performance of the random sched-

uler in Table 4.4, we can see that the convex scheduler performs almost as good as optimal

schedulers. It is a surprise that reshuffling same resource allocation would produce more

than 50% of improvement in response-time variance and deadline-missing rate for HTTP

traffic, 100% for video streams and 20% for FGN traces. It is also interesting to see that

different traffic can lead to different performance gains in this situation. The small improve-

ment for FGN traffic is because FGN generates traffic with LRD property, and that LRD has

some negative impact in server performance.

4.5.2 Improved GPS Scheduler

GPS is a popular scheduler for Internet traffic without assuming any advance knowledge

of request sizes and their correlation. It allocates server resource equally to all requests

waiting for service at any time.

An Internet server can be run into one of the four states with respect to system utilization:
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Figure 4.10: System utilization process under an input of video traffic.

(1) under-load, (2) transition from under to heavy load, (3) heavy load, and (4) transition

from heavy to under load. Figure 4.10 shows an example of server utilization processes

under the input of video traffic benchmark in our simulation.

In states (1) and (4), the server has more than enough resource to allocate. As a con-

servative scheduler, GPS can process requests at their fastest paces. There is little space

for improvement of resource allocation in these two situations. In state (2), as the server

becomes more heavily loaded, the waiting requests tend to receive less and less resource

until their completion. In state (3), the amount of resource allocated to a request tend to be

a random number, depending on the actual number of requests in the server. According to

Theorem 4.4, for traffic with monotonically decreasing PSD functions, GPS is not optimal

in either of these two cases.
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Table 4.6: Statistics of server under two PS schedulers: original PS scheduler and an
Convex-enhanced PS scheduler.

Original GPS FGN Video HTTP
missing rate 5.47 7.57 7.89

mean 3.2417 3.941 3.2806
variance 12.4885 15.8016 52.8519

max 33 36 284
Modified GPS FGN Video HTTP
missing rate 1.67 0.48 5.96

mean 2.2031 2.2237 2.7198
variance 5.0409 3.2818 28.0067

max 25 19 220

An improvement is to integrate the exact-convex scheduling principle into the GPS

scheduler. For each request, the scheduler calculates an resource amount using the standard

GPS algorithm. It compares this number with the past average of allocation for the request

and then assigns the larger one. This modification incurs little overhead to the original GPS

implementation.

The motivation for the modification is to keep the allocated amount in each schedul-

ing epoch from randomly fluctuating. (Because GPS assumes no knowledge about request

sizes.) Although there is no way to devise a strictly convex-structured scheduler, the result-

ing scheduler becomes close to uniform allocation, which is an approximate of the optimal

scheduler for the input traffic with monotonically decreasing PSD functions.

We compare the convex-structured GPS scheduler with the original GPS scheduler in

simulation. Table 4.6 listed the quality of service under the GPS schedulers for three traces

used in previous experiments. The enhanced PS scheduler clearly outperforms the original

PS scheduler. For all of the traces, the improvements are more than 50%, except the 30%



86

gain in maximum response time in HTTP traffic. The high variance in request response time

indicates GPS scheduler would be a bad choice if stringent QoS is required by all requests.

It also implies that filter function scheduler fits HTTP-typed traffic much better.

As seen from above optimality analysis, the PSD functions of input traffic have great

impact on scheduler optimality and the server performance. For example, FGN traffic pos-

sesses LRD property that the other two traces do not have, or not as strong. Reflected in

its PSD function, FGN trace has more power concentrated in lower frequencies. In above

simulations, the impacts by different schedulers on FGN trace are among the least. It means

that is harder to get server performance improved by adaptive scheduling.

4.6 Optimal Analysis of Sizing Factor

From Section 3.5, it shows that power spectrum of server workload is under influence

of both request sizes and correlation in the traffic. In previous sections of this chapter,

we have put major focus on the scheduling influenced by autocorrelation in the traffic. In

this section, the relationship between sizing factor and scheduling policy will be analyzed.

Recall the basic formula for sizing factor is:

λ{E[|Hk(f)|2]− |H(f)|2}, (4.17)

where Hk(f) is Fourier transform (F(·)) hk(t), the scheduling function for request k, arrived

at tk. H(f) = F{h(t)}, with h(t) = Eh[hk(t)]. Given that Fourier transform is linear
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operation, we have,

H(f) = F{h(t)}

= F{Eh[hk(t)]}

= Eh[F(hk(t))]

= Eh[Hk(f)].

The sizing factor can be rewritten as based on above derivation:

E[|Hk(f)|2]− |E[Hk(f)]|2. (4.18)

To minimize the overall variation, the sizing condition is expressed as

Min{
∫ π

0

{E[|Hk(f)|2]− |E[Hk(f)]|2}df}. (4.19)

In this section, we will focus on boundary conditions that simplify problem 4.19. The

first case is when scheduling functions hk(t)k are the same for all the k’s. Under this condi-

tion, E[|Hk(f)|2] ≡ |E[Hk(f)]|2.

According to theorem 4.3, a uniform scheduling function will minimize the sizing factor.

This leads to following conclusion:

Corollary 4.2. When scheduling function is time-invariant, and unified for all requests, the

optimal scheduling function is the uniform scheduling function that allocation resources
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equally during the life cycle of the requests.

Proof: Assuming that for a incoming traffic {wkδ(t− tk)}, the scheduling functions are

hk(t), where h(t) ≥ 0 when 0 ≤ t ≤ td, and h(t) = 0 otherwise.

Noticing that condition 4.19 becomes:

Min{
∫ π

0

{w2
kE[|H(f)|2]− wk

2|E[H(f)]|2}df}. (4.20)

It is known that E[|H(f)|2] = |E[H(f)]|2, with which w2
k|H(f)|2 −wk

2|H(f)|2 can be

rewriten as (w2
k − wk

2)|H(f)|2.

From Theorem 4.3, when h(·) is a uniform function, it minimizes the condition. QED

Above conclusion, even in its simple format, directly leads to following theorem that

demonstrates the theoretical relevance of assumption made for time-invariant and unified

scheduling function.

Theorem 4.5. For a system serving particular traffic {wkδ(t−tk)}, for any scheduling poli-

cies expressed with a set of random scheduling function hk(t), there exists a time-invariant

and unified scheduling function that provide lower bound in the variance for server work-

load process.

Proof: let h(t) = E[hk(t)], and we let all requests be scheduled by h′
k(t) = h(t). It can

be proved that for two policies, the sizing factor in 4.18,

|E[Hk(f)]|2 ≡ |E[H ′
k(f)]|2, (4.21)
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and,

E[|Hk(f)|2] ≥ E[|H ′
k(f)|2].

QED

This theorem shows that for any scheduling policies, we can find a time function sched-

uler that performs better in minimizing the variances of the server. Since variance is indi-

cator of the tail of request responsive time, or sojourn time, it means that we can almost

always find a decay function scheduler to approximate the tail and provide a tighter bound

of any scheduling policies. The simulations (Figure 4.4 and 4.5) in previous section 4.2.3

demonstrate validness of this Theorem.

Under lossless service requirement, with the assumption in Corollary 4.2 for scheduling

function, when system is overloaded, the requests will inevitably be delayed with queueing

waiting. Assuming a special situation when one request k̃ is queued with waiting time ∆,

and the rest of request are still scheduled by their original scheduling function hk(t). Using

time-shift property of Fourier transform, we have

hk̃(t) ≡ h(t−∆) F←→e−jw∆H(ejw) (4.22)

From property 4.22, queueing delay will not affect value of E[|Hk(f)|2], as |e−jw∆| ≡ 1;

queueing delay will reduce the value of |E[Hk(f)]|2 given well known inequality:

|x+ ejyx| = |1 + ejy| · |x| ≤ 2|x| = |x+ x|. (4.23)
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This leads to an intrinsic view of queueing delay:

Theorem 4.6. Queueing delay will increase the power of server workload process from the

sizing factor under time-invariant and unified scheduling.

Queueing delay will increase the variance from sizing factor. In the mean time, it is

reducing the variance from correlation factor, as its impact is translated into reduction of

|E[Hk(f)]|2.

The queueing delay in reality happens in more complication situation than the condition

specified in Theorem 4.6. Such as for Equation 4.23,

|x1 + ejyx2| � |x1 + x2|,

when x1 6= x2. However, the model proposed here still gives a good measurement tool for

performance indicator for the schedulers. In following example, we will show an example

for the effect of queueing delay — when scheduling function and requests are different, how

different queueing delay choices impact the sizing factor.

In traditional scheduling analysis, specifically, we use size-aware scheduling policy

SRPT and commonly discussed first-in-first-out — FIFO as policies in the example.

Example 4.2. Assuming a stream of requests, showing as Figure 4.11. The traffics are

coming at three sizes — 2 at t(0), 10 at t(1), and 1 for the rest of 10 requests. The requests

are served by a single server, with capacity serving size-1 during each time unit. We further

assume that scheduling is none-preemptive.
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Figure 4.11: A sample piece of incoming traffic in the stream.

In this setup, the queueing delay will not have impact over factor E[|Hk(f)|2]. This

can be easily verified with time-shift property of Fourier transform. We will focus on the

|E[HSRPT
k (f)]|2 vs. |E[HFCFS

k (f)]|2.

With this simple example, the scheduling function E[hSRPT (t)] and E[hFCFS(t)] is il-

lustrated in Figure 4.12. Derivation is simple — SRPT will delay the largest job t(1) in this

sequence by 10 time units, and then finish job t(1) in next 10 time units. whereas FCFS will

finish jobs in order of arrival, and thus delay all “size 1” jobs coming after t(1) for 10, 9, ...

to 1 time unit respectively. Corresponding |H(f)| for SRPT and FCFS is calculated using

FFT, and is shown in Figure 4.13. The accumulative power from scheduler A(f) for SRPT

and FCFS is shown in Figure 4.14.

From this example, it shows that SRPT is superior in reducing the variances of server

workload process from correlation factor, with the cost (increase) in the sizing factor.

Alternative, continuing on this example, when the request at time t(1) is size 3 — request

size is less heavy-tail than previous set up. The H(f) and A(f) for SRPT and FCFS are
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Figure 4.12: Average of decay function for SRPT and FCFS scheduling
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Figure 4.14: |ASRPT (f)| and |AFCFS(f)|

shown correspondingly in Figure 4.15 and Figure 4.16.

It can be observed that in this situation, SRPT’s correlation benefit is not as significant as

heavy tailed situation, and verse vice for sizing factors. This can be seen from the shift of cut

off of main-lobe from lower frequency to higher frequency. And in both examples, it shows

that SRPT responds better to traffics with heavy power concentration in lower frequency

bandwidth. In Chapter 6, we show that this corresponds to traffic with LRD features.

Above examples demonstrate the powerfulness of the decay function model in analyz-

ing the real life scheduling policies. We also recognize that some theoretical analysis can

be done in this approach to generalize the conclusions based on examples, which leads to

further expansion of study and application decay function model.
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Chapter 5

Service Differentiation and Adaptive Scheduling

In this chapter, we extend the decay function model in three aspects to further match

against real world situations. First, with popularity of virtual machine technologies and

VMWareTM , it is common practice that service providers can now host multiple different

types, or same application with different SLA on the same set of hots. We show that decay

function model can be extended to support requests with different delay constraints and

close expression for the optimal solution is derived as well.

Second, in order to simply the theoretical analysis, most of discussion made in previous

sections are under time-invariant scheduling assumption. This chapter shows that by allow-

ing the scheduler to be adaptive according to input traffic dynamics, we can further reduce

the server load variance and hence the requirements for server resource. An algorithm is

introduced to accomplish the calculation of such time-variant decay function scheduling.

Simulation results show that while time-variant indeed provided more optimal resource uti-

lization. On the other hand, it also shows that time-invariant scheduling is a close approx-

imate to time variant version in probability of overloading and the variance of workload

process.
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Figure 5.1: Decay function model with multiple queues to support service differentiation

5.1 System With Multiple Service Level Agreements

First, we extend the decay function model into a system with multiple running queue.

This is very typical server farm provision technologies in industry with support of virtual

machines and VMWareTM . The extended system model can be viewed as the Figure 5.1.

Let td denote the supreme of the constraints of all the requests. We make td separate

queues which contain requests with remaining delays 1, 2, ..., td. All requests with delay

constraints j are put into queue j. Scheduling is conducted in all the td running queues.

Requests in each queue are given a fractional-capacity on a full-time basis, which is similar

to the processor-sharing concept in CPU scheduling. After all the scheduled requests have

been served at the current scheduling slot, all requests with remaining delay j now have

delay j-1. Thus queue 1 becomes empty and queues 2, 3,..., td become queue 1, 2, ..., td-1.

Newly arrived inputs are dispatched into the queues according to their delay constraints. A

request entering queue j at time t enters queue 1 at time t + j − 1 and out of the system at

the beginning of t+ j.
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If an input request could result in system overload, this request should not be dispatched.

We can either develop an admission control policy to decline the request or put it into a

waiting queue to wait for the next scheduling slot. The choice can be made depending

the type of the server. For example, if it is a media-server providing a stream of video

frames at a certain rate. A frame that misses its deadline can be simply dropped because the

application is very delay-sensitive. One can still tolerate a few missed deadlines without a

significant degradation in video quality. For a Web contents server providing web contents,

since customers may tolerate a little bit longer delays, a request that would miss its deadline

can be put into the waiting queue temporarily.

Applying the decay function model to queue j, the load lj(t) becomes the output of

aggregated inputs w̃j(t) passing through a system with resource allocation function hj(t).

Define h′
j = [hj0, hj1, ..., hj(j−1)] and wj(t) = [w̃j(t), w̃j(t− 1), ..., w̃j(t− j+1)]. The load

at queue j can be expressed as

lj(t) = w̃j(t) ∗ hj(t) =

j−1∑
i=0

hjiw̃j(t− i) = h′
jwj(t)

subject to
j−1∑
i=0

hji = 1 and hji ≥ 0, (5.1)

where hji means the proportion of resource allocated in queue j to the request w̃j(t) at time

slot t+ i.

The system load at time t, l(t), is simply the sum of load over all the queues. Assume
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the load in each queue is independent, the variance of system load at time t is:

V ar[l(t)] = V ar[

td∑
j=1

lj(t)] =

td∑
j=1

V ar[lj(t)]

=

td∑
j=1

E[l2j (t)]−
td∑
j=1

(E2[lj(t))].

Assume the input process to queue j is WSS. Then E[lj(t)] = E[w̃j] is a constant. Accord-

ing to equation 5.1, we have

E[l2j (t)] = E[h′
jwj(t)h′

jwj(t)] = h′
jΩjhj. (5.2)

We hence have the following result.

Theorem 5.1. The optimization of server load variance due to a time-invariant decay func-

tion for input with different delay constraints is to

Minimize
td∑
j=1

h′
jΩjhj

subject to cjhj = 1 and hji ≥ 0, (5.3)

where cj is a row vector with j components all equal to 1.

This is a typical minimization problem subject to a linear constraint and can be solved

using Lagrange multipliers. We first ignore the non-negativity constraint and consider the
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jth item in the Lagrangian,

L(hj, λj) = h′
jΩjhj + λj(cjhj − 1).

Its gradient is 2Ωjhj + λjc′j with a solution h∗
j = −(

λ∗
jΩ

−1
j c′j
2

). To find the value of the

Lagrange multiplier, the solution must satisfy the constraint. Imposing the constraint, the

solution can be expressed as

h∗
j =

Ω−1
j c′j

cjΩ−1
j c′j

. (5.4)

A special case is when the input arrivals to the jth queue is independent, the covariance

matrix becomes diagonal matrix and the resource allocation function is uniform with values

1/j.

Note that the solution must be positive to satisfy the non-negativity constraint of equa-

tion 5.3. As Ωj is a symmetric positive definite matrix, the denominator of the solution is

always positive. However, the numerator is not necessarily positive. Since cj is a constant

for a given queue, the covariance matrix determines the sign of the numerator. There exists

some covariance matrix that leads to negative solution. We show by simulation in Section

5.3.1 that the solution gives negative values only in extreme cases for synthetic input. The

equation 5.4 provides an extremely simple solution for the resource allocation function for

real world traffic. In case it produces a negative value, the solution can still be retrieved by

solving the optimization problem in equation equation 5.3 directly.
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5.2 Time Variant Solution to Decay Function Model

The resource allocation function discussed in the preceding section is optimal only in the

set of feasible functions that do not change during the scheduling process. The load variance

can be further reduced if h(t) can be adapted according to input traffic in each scheduling

epoch. In this section, we propose a time-variant scheduler and prove it to be optimal in the

minimization of server load variance. Define qj as the backlog of queue j. We formulate and

solve the optimization problem in the following theorem.

Theorem 5.2. The optimal delay bounded scheduling can be achieved by finding a scheduler

that

Minimize L =

td−1∑
i=0

(

td∑
j=i+1

lj(i))
2

subject to lj(i) > 0, 0 ≤ i ≤ td − 1, 1 ≤ j ≤ td

j−1∑
i=0

lj(i) = qj, 1 ≤ j ≤ td, (5.5)

The optimal solution can be achieved by the following process for each queue j, 1 ≤ j ≤ td,

lj(i) = (µj −
j−1∑

k=i+1

lk(i))
+, 0 ≤ i ≤ (j − 1), (5.6)

where the notion (x)+ = max(x, 0) and µj is determined by evaluating the backlog con-

straint in equation 5.5.

Proof : We first show that the optimization solution can be achieved by the optimization
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of L. Recall that for a WSS input process, we have E[l(t)] = E[w̃] and it is a constant. The

variance of system load is

V ar[l(t)] = E[l2(t)]− (E[l(t)])2 = E[l2(t)]− (E[w̃])2.

Therefore, the optimization problem is to find a scheduler that minimizes the second mo-

ment E[l2(t)].

At any of the scheduling slot, the scheduler needs to consider the current queue backlog

including new arrivals in the last time slot and history arrivals not yet finished. To complete

all the requests in the td queues, the second moment it generates can be estimated as

E[l2(t)] =
1

td

td−1∑
i=0

l2(i) =
1

td

td−1∑
i=0

(

td∑
j=i+1

lj(i))
2. (5.7)

It is an average of the square of load in the next td time-slots summed over all queues. It

means the minimization of the second moment of load can be achieved by minimizing the

L from equation 5.5. The solution to the problem gives optimal load for all queues from

the current time to the next (td − 1) time slots. The sum of load from all queues at the

current time,
∑td

j=1 lj(0), forms the optimal solution for current load. However, for all other

time, the solutions are not necessarily optimal if there are new input arrivals after the current

time. It is because the arrival may change the queue backlog. In this case, the optimization

process needs to be performed again to get the optimal load.

The minimization objective in equation 5.5 is a standard constrained optimization prob-
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lem. It can be solved by using Lagrange Multipliers. For all i and j, we form the Lagrangian

L(lj(i), λj) =

td−1∑
i=0

(

td∑
j=i+1

lj(i))
2 − λj(

j−1∑
i=0

lj(i)− qj)

and differentiate it with respect to lj(i). Applying the Kuhn-Tucker conditions [57], we have

td∑
j=i+1

lj(i)− 1

2
λj = 0

j−1∑

k=i+1

lk(i) + lj(i) +

td∑

k=j+1

lk(i)− 1

2
λj = 0

lj(i) =
1

2
λj −

td∑

k=j+1

lk(i)−
j−1∑

k=i+1

lk(i). (5.8)

The condition in equation 5.8 gives the solution for queue j at time i, depending on values

of all other queues. This dependence makes the condition hard to solve.

Define the variable µj = 1
2
λj −

∑td
k=j+1 lk(i) for each queue j. The condition equa-

tion 5.8 becomes

lj(i) = µj −
j−1∑

k=i+1

lk(i).

Consider the fact that the load lj(i) is nonnegative. This leads to the condition in equation 5.6

with an unknown value µj . The value can be determined by the constraint in equation 5.5 for

queue backlog qj . Therefore, we can get the values of µj and lj(i) that satisfy the condition

in equation 5.8. Note that equation 5.8 only gives necessary conditions for the existence

and solution of a global minimum. Since the optimization problem we address is a convex
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Figure 5.2: Illustration of the optimal time-variant resource allocation for queue j.

function, the conditions are also necessary. ¤

The optimal solution of equation 5.5 can be illustrated graphically in Figure 5.2. For

queue j at time i, starting from i = 0 for simplicity, the vertical white area indicates the

current accumulated load from queue i+1 to j-1. As input size increases from zero, the

requests are first distributed to the time slot with the lowest accumulated load, denoted

by the shaded areas. The first time slot to be distributed is always j − 1. As the input

increases further, parts of the requests will be put into busier slots. Once the load in a

queue reaches the level denoted by µj , no more requests will be distributed to that queue in

the current scheduling slot. This process in which requests are distributed among different

time slots is similar to the way in which water is distributed in a vessel. It was initially

referred to as a “water-filling” process when distributing power among a set of parallel

Gaussian channels for maximum information capacity [16]. The water-filling process has

been applied to various fields. A recent application is the minimization of average transmit

power over Gaussian channels where the water-filling process is interpreted as a time-variant

low-pass filter [37].
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The optimal solution can be fit into the decay function model as time-variant coefficients

in equation 5.1. The coefficients from current to the next (j-1) time slots for queue j can be

written as:

hj(t+ i) =
(µj −

∑j−1
k=i+1 lk(t+ i))+

w̃j(t)
. (5.9)

When all requests have the same delay constraints td, the process only needs to be per-

formed at the queue td. Load in other queues remains the same. Since the solution depends

on accumulated values of all queues with smaller delays, the complexity of the solution is

O(td).

When requests have different delay constraints, the requests may enter different queues

instead of only queue td. By aggregating input requests with identical delay constraints into

to the same queue, the input process becomes less bursty and more controllable. All queues

with new arrivals during the last time slot need to follow the solution process to get the new

scheduled load. The worst case is when requests arrived in the last time slot have delays

ranges from 1 to td. Then the complexity of the process is O(t2d).

5.3 Performance Evaluation

In this section, we verify the previous analysis and evaluate the proposed scheduler

through simulation. The first objective was to verify the effectiveness of the proposed

scheduler in minimizing server load variance. When using the time-invariant scheduler,
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we assume the input correlation structure is known. No assumption about the input is made

when using the time-variant scheduler. We also investigated the bound tightness due to both

general and special cases.

5.3.1 Minimization of Server Load Variance

The first experiment was conducted based on traces from the 1998 World Soccer Cup

server logs (WorldCupTrace) [3]. To show performance of the schedulers under traffic with

different burstiness, we chose two days logs: day 17 and day 27. Their Hurst parameters are

0.9 and 0.72 respectively calculated by using the variance-time plot method [17]. The Hurst

parameter H is used to denote the traffic burstiness. The higher is the Hurst parameter, the

greater is the burstiness of the traffic. It means the day 17 trace is more bursty. To determine

the request size of each request, we first retrieve the file size of each HTTP request and

assume a proportional relationship between the file size and actual request size. Each request

with a file size of 1K bytes is assumed to require one unit of resource under consideration.

Figure 5.3 shows the workload variance with different time constraints for day 27 (H =

0.72). We assume each request has the same delay constraint for simplicity. We observe that

both schedulers are effective in reducing the impact of input burstiness to 1/td of the original

variance. The variance due to the optimal time-variant scheduler is consistently smaller. For

example, when td is 10 time units, the time-variant scheduler reduces the variance 20% more

than the time-invariant schduler. We can also observe that as the delay constraints increase,

the variances given by both methods decrease. This is expected because the schedulers have
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more time slots to smooth the input requests so the load variance becomes smaller. With the

increase of delay constraint, the time-variant process has more time slots to adapt resource

allocation according to the inputs so as to achieve smaller load variance. As a result, it can

benefit slightly more from the increase of delay constraints.

Figure 5.3 also shows the server load variance for the trace of day 17 (H = 0.9). We

observe that as the traffic becomes more bursty, the benefit by time-variant decay function

become less obvious. Intuitively, the time-variant decay function achieves the optimal bound

by adapting resource allocation according to the input requests to minimize load variance.

When the requests get more bursty, the requests may cause sudden resource demands on the

server. In this case an adaptation of resource allocation becomes less effective in keeping

the load in small variance. We also observe from the figure that for the trace of day 17,

the system load variance decreases slower with the increase of delay constraint than that of

day 27. This can be verified from the fact that the presence of self-similarity makes it less

effective to smooth the input with longer delay.

We also examined the system load based on a synthetic inputs from FGN processes with

different Hurst parameters settings. The load variance and relative performance of the two

schedulers show the same trend. Please refer to [86, 85] for more details.

It is interesting to compare the resource allocation functions of the two types schedulers.

In the time-variant scheduler, the coefficients of the resource allocation function are adaptive

according to the input. For comparison, we record the coefficients by all input requests and

take the average to see the overall trend of resource allocation. The solution for the time-
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Figure 5.3: Impact of Delay Constraints with WorldCupTrace.

Figure 5.4: Comparison of the resource allocation functions.
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Figure 5.5: Impact of server overload probability with WorldCupTrace.

invariant function is attained by (5.4). We tried the same two traces as previous experiment

and fixed the delay constraints to be 10. Figure 5.4 shows the results. The resource alloca-

tion denotes the percentage of resource in each time slot. It can be observed that the two

functions are very different. In the time-invariant function, h(t) is relatively stable with each

value being around 1/10. While in the time-variant scheduling, the h(t) increases slowly in

the beginning and abruptly in the last time slot. This shows the scheduler attempts to post-

pone the resource allocation as long as possible subject to the delay constraint. An intuitive

explanation for this is as the deadline approaches, a request should have a higher priority to

be processed so as to improve its chance of meeting deadlines. This can also be verified by

(5.9) which shows that with a certain input, the coefficients are proportional to the predicted

load at queue j in the next i time slots. With the increase of i, system load from less number

of queues is accumulated, from queue i + 1 to j − 1. Therefore, the average coefficients
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show a trend of increase with time slot i. As time slot i becomes j−1, system load becomes

the maximum µj and the coefficient also reaches its maximum µj/w̃(t).

We also observe that as the traffic burstiness varies, there is only subtle change in the

optimal time-variant function. In the time-invariant case, the minimum value of the function

becomes smaller. We tried traces from other days in the WorldCupTrace and another real

scene-based MPEG-I video trace from the popular Simpson cartoon clip [66]. We found

for all real traces the solution was always positive. We only got negative values for FGN

process with Hurst parameter larger than 0.999, when the input is extremely correlated.

5.3.2 Comparison with Different Scheduling Policies

Using the same set of parameters as of last experiment, we compared both the optimal

time-invariant and time-variant decay function scheduling with other schedulers. We set

overload probability as 1% and delay constraint as 10. To compare the scheduling by a tight

capacity configuration, we set the capacity to 171000 as shown from Figure 6.4.

The server was simulated with an infinite queue so that we can find exact distribution for

the completion time of each request. The simulated server treats all requests with the same

priority. When a request arrives at the server, it is first buffered in the queue. If the server

has enough resource, the request will be scheduled for processing immediately without any

queueing delay. Otherwise, the request will be blocked in the queue. We implemented two

other different schedulers on the server module. One is GPS scheduling which ensures fair-

sharing of resource between requests in processing at any scheduling epoch. In addition,
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Table 5.1: Statistics of server with various scheduling algorithms
Scheduling GPS Random Time-invar. Time-var.
Load Mean 37534 37534 37534 37534

Load Var. (109) 1.68 1.00 0.894 0.71
Capacity Satisf. 99.8% 99.2% 99.3% 99.6%

Time Mean 4.25 10.13 10.08 10.04
Time Var. 5.38 0.51 0.33 0.19

we also implemented a heuristic time-variant randomized allocation algorithm. It takes

td random numbers from a uniform distribution and then scales them to standard decay

functions h(t) so that
∑td

i=1 h(i) = 1. Table 5.1 shows the comparative results in terms of

load mean and variance, completion time, and server capacity satisfactory rate. Completion

time of a request includes waiting time in the backlogged queue, plus its processing time.

Capacity satisfactory rate is the percentage of server workload less than the pre-defined

capacity.

From the table, it can be observed that the optimal time-variant scheduling outperforms

the others in two aspects. First, it dramatically reduces the variance of server load by up

to 42% and 30% in comparison with GPS and random scheduling, respectively. Second, it

provides better guaranteed completion time. GPS scheduling leads to a lower mean com-

pletion time and a high variance. Both the optimal schedulers guarantee completion time

and yield much smaller time variance comparison with the other schedulers. In agreement

with the findings in previous evaluation, the table also shows that the optimal time-variant

scheduler consistently outperforms the time-invariant one.
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Chapter 6

Applications of Model

In this chapter, we apply the analytical results derived from preceding chapters to solve

the problems we posed in the Introduction. The first question is that given an arrival process

and fixed-time scheduling, what server capacity should be configured so as to satisfy a pre-

defined quality requirement.

6.1 Basic Formulas for Performance Boundaries

With a priori known mean and variance of the server load l(t), we can estimate the

probability distribution tail by Chebyshev’s inequality [26].

Lemma 6.1. The upper bound of the probability of workload l exceeding capacity c, prob(l >

c), is

σ2
l

σ2
l + (c− µl)2

. (6.1)

Proof: From Chebyshev’s inequality, it is known that

F{I} ≤ a−1E(u(y)),



112

where y is random variable, I is an interval, F{I} is distribution function, u(y) ≥ 0, u(y) >

a > 0 for all y in I .

Substitute y with workload l, and define u(l) = (l + x)2 with x > 0. It can be verified

that u(l) ≥ 0 and u(l) > (c+ x)2 for l > c > 0. Therefore,

prob(l > c) ≤ 1

(c+ x)2
E((l(t) + x)2).

Since

E((l(t) + x)2) = σ2
l + µ2

l + 2xµl + x2,

we have

prob(l > c) ≤ 1

(c+ x)2
(x2 + 2xµl + σ2

l + µ2
l ).

It can be proved that the right side of the inequality takes the minimum value at x = −µl +

σ2
l /c. This proves the lemma. QED

From this lemma, we have an estimate of server capacity as follows.

Theorem 6.1. Let v be a pre-defined bound of the probability that workload exceeds the

server capacity. The estimate of capacity is

c =

√
1− v

v
· σl + µl. (6.2)

This theorem tells that the capacity is determined by the mean and variance of server

load. Because of the high variability of the Internet traffic, the workload variance is often
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Figure 6.1: The capacity and chance of overload

a dominating factor in the calculation formula of the resource capacity. The relationship

between server capacity, the chance of overload (workload exceeding capacity), and work-

load mean and variance is illustrated in Figure 6.1. From the figure, it can be seen that the

capacity requirement increases sharply with setting of high criteria v, and this increase is

amplified in the situations of high variance of workload. Note that Chebyshev’s inequality

provides a loose upper bound of prob(l > c). In reality, depending on different underlying

distributions, there could exist more accurate estimates of the bound. A tighter bound would

be able to provide more precise estimate capacity or deadline. In this paper, we focus on

general situations, where Chebyshev’s inequality provides a uniform solution that applies to

all distributions with finite first and second order moments.

Corollary 6.1. If the compounded input process w̃(t) is independent for different time t,
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then the relationship of length of deadline, capacity, chance of failure and input statistics

can be characterized by equation

td =
(1− v)σ2

w̃

v(c− µw̃)2
. (6.3)

Proof: According to Corollary 4.1, the function h(t) should be set to a constant value

1/td for period 0 < t ≤ td for minimizing the server load variance. Thus,

σ2
l = σ2

w̃

t=∞∑
t=−∞

h2(t) =
σ2
w̃

td
.

From Theorem 6.1, we know that

c =

√
1− v

v
· σl + µl.

Combining the two equations completes the proof. QED

This corollary shows that QoS (in terms of completion time) can be adapted in response

to the change of traffic intensity. To keep the same level of QoS for traffic with different

means and variances, say (µ1, σ
2
1) and (µ2, σ

2
2), the ratio of their completion time is

td2
td1

=
σ2
2 · (c− µ1)

2

σ2
1 · (c− µ2)2

. (6.4)

When c À µ1 and c À µ2, their ratio approximates σ2
2/σ

2
1 .

Example 6.1. The second example assumes the number of request arrivals at each time
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conforms to a lognormal distribution ln(1, 1.5), the size of request fits a normal distribution

n(5000, 1000). Also, the sever uses fixed-time scheduling.

1. What is the resource capacity necessary to be configured so as to keep the deadline of

each request within 10 time units and the chance of failure below 1%?

2. Given a server capacity of 400,000, what kind of deadline can the server guarantees

if it wants to keep the chance of failure below 1%?

Answer to Question 1: From properties of a random sum distribution, we know that

E(w̃) = E(ln(1, 1.5))E(n(5000, 1000)),

V ar(w̃) = E(ln(1, 1.5))V ar(n(5000, 1000))

+(E(n(5000, 1000))2V ar(ln(1, 1.5))),

which leads to

µw̃ ≈ 41, 864,

σ2
w̃ ≈ 1.4884e+ 10.

According to Corollary 4.1 , the workload variance

σ2
l = σw̃/10 ≈ 1.4884e+ 9.
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Thus the server capacity can be calculated according to Theorem 6.1 as

c ≈
√
99 · √1.4884e+ 9 + 41, 864 ≈ 425, 730.

From this calculation, we see that for a high variable traffic, the server capacity require-

ment is mainly determined by its variance, Purely mean-value analysis is insufficient for the

resource configuration and allocation problem.

Answer to Question 2: According to Corollary 6.1, the target deadline can be calculated as

td =
(1− v)σ2

w̃

v(c− µl)2

≈ 0.99 · (1.4884e+ 10)

0.01 · (400, 000− 41864)2

≈ 12. (6.5)

The above calculations show the applicability of our model in practical situations. In the

next session, we will also show through more examples that when workload distribution tail

is a lognormal tail, the estimate of td2/td1 ≈ σ2
2/σ

2
1 in 6.4 is very precise.

6.2 Special Cases for Tight Capacity Bounds

In this section, we consider two special cases to tight the bound in (6.2) when more

information about the input distribution is assumed.

We first show that a better bound can be derived if the distribution of the load is uni-
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modal distributed. In (5.1), the load is modeled as the convolution between input and the

resource allocation function. Assume the input distribution is continuous and its density g

is logconcave (i.e., log(g) is concave). The logconcave property can be found in several

widely used standard distributions such as Poisson distributions, Gaussian distributions. For

example, Gaussian distributions are commonly used as the marginal distributions in model-

ing self-similar process with FGN and F-ARIMA [45]. The set of logconcave distributions

are strongly unimodal [22] in the sense that they are closed under convolutions and hence

the resulted load is unimodal distributed.

Let X be a random variable with a unimodal distribution, meaning that for some mode

m, its CDF is concave on [m,∞) and convex on (−∞,m]. From the Vysochanskiı̂ and

Petunin inequality [72], we can derive the probability that X exceeds k as:

P (X ≥ k) ≤





4E[X2]
9(E[X2]+k2)

if k2 ≥ 8
3
E[X2],

4E[X2]
3(E[X2]+k2)

− 1
3

if k2 ≤ 8
3
E[X2].

(6.6)

Applying the inequality (6.6), the probability that system load l exceeds capacity c be-

comes

P (l ≥ c) = P (l − µl ≥ c− µl)

≤





4σ2
l

9(σ2
l +(c−µl)2)

if c ≥
√

5
3
σl + µl,

4σ2
l

3(σ2
l +(c−µl)2)

− 1
3

if c ≤
√

5
3
σl + µl.
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Recall that the probability is denoted as v. The upper capacity bound can be expressed

as

c ≤





2
3

√
1−v
v
σl + µl if 0 < v ≤ 1

6

√
3−3v
3v+1

σl + µl if 1
6
< v < 1.

(6.7)

Usually the probability v should be well below 1/6 for an Internet server to provide accept-

able performance. The first bound is thus more useful. In both cases, the capacities are

much tightened in comparison with the bound from 6.2.

We next consider the case when the number of arrival requests at each time and their

sizes are i.i.d. random variables. For independent input, the load distributions can be deter-

mined according to the input distributions and delay constraints. The implication of deriving

the distribution is a sharp capacity bound can be calculated directly by considering the sys-

tem load tail distribution.

Let the size of each request w1(t), w2(t), ... at time t be mutually independent random

variables with a common distribution f(w). Recall that n(t) is the number of requests

arrived from time t − 1 to t. The aggregated input w̃(t) =
∑n(t)

i=1 wi(t) has the density

f(w)n(t)∗, namely the n(t)-fold convolution of f(w) with itself. Denote L(t), N(t), W (t),

and W̃ (t) as the random variables of l(t), n(t), w(t), and w̃(t). Let P (N(t) = n(t)) = pn.
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The PDF of the resulting random sums is the density of the aggregated input W̃ (t) [26]

f(w̃(t)) =
∞∑
n=1

pnf
n(t)∗(w(t)).

By using Equation 3.19, the distribution of the load at time t is

f(l(t)) =
1

td
f td∗(w̃(t)) =

1

td
(

∞∑
n=1

pnf
n(t)∗(w̃(t)))td∗. (6.8)

A simpler approach to get the output distribution is to use characteristic functions. Let

ΦW (t)(ω) be the characteristic function corresponding to the random variable W (t) and

GN(t)(z) be the generating function of N(t). For distributions that the functions exist, the

characteristic function of the aggregated input W̃ (t) can be retrieved as [26]

ΦW̃ (t)(ω) = E[zN(t)(t)]|z=ΦW (t)(ω) = GN(t)(ΦW (t)(ω)).

That is, the characteristic function of W̃ (t) can be found by evaluating the generating func-

tion of N(t) at z = ΦW (t)(ω).

The characteristic function of load L(t) at time t can be derived as

ΦL(t)(ω) = (ΦW̃ (t)(
ω

td
))td = (GN(t)(ΦW (t)(

ω

td
)))td .

The PDF of the output load at time t is found by taking the inverse transform of the above

expression.
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Figure 6.2: The compounded input w̃(t)

6.3 Simulation

We carried on the experiment with same setup as the one in Chapter 4, Section 4.2. In

this experiment, we are intended to uncover the inherent properties of fixed-time scheduling.

The simulated server deployed the optimal fixed-time scheduling algorithm with a request

completion deadline of 10 time units (td = 10). We used the lognormal ln(1, 1.5) and

normal n(5000, 1000) distributions to generate input traffic. We wish to keep the percentage

of server load being less than its capacity %c ≤ 99%, as the setting in Example 6.1. The

compounded input pattern is shown in Figure 6.2.

Table 6.1 gives the statistics of the simulated server according to the Chebyshev esti-

mation in Lemma 6.1. The 100% satisfactory rates in the table with respect to both of the

server load and completion time show the conservativeness of this estimation because of the
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Table 6.1: Statistics of server with optimal fixed-time scheduling. (c = 425730, n(t) ∼
ln(1, 1.5), w ∼ n(5000, 1000), td = 10)

Performance mean variance percentage
Server Load 37534 1.0402× 109 100%

Completion Time 10 0 100%

target 99% server capacity satisfactory rate.

As we mentioned in the preceding section, the Chebshev estimation can be tightened

by taking into consideration of the empirical distribution tail. Figure 6.3 shows the normal

plots of compounded input w̃(t) and server workload l(t). Note that the normal plot for

samples from a normal distribution is a straight line. The figure shows both log(w̃) and

log(l) are close to normal distributions in the tail. However, the slope of the workload plot

is steeper than that of the compounded request. This indicates that a scheduling algorithm
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Table 6.2: Statistics of server with various scheduling algorithms. (c = 171000, n(t) ∼
ln(1, 1.5), w ∼ n(5000, 1000), td = 10)

Scheduling GPS Incremental Random Optimal
Load Mean µl 37534 37534 37534 37534

Load Variance σ2
l (109) 1.68 1.22 1.00 0.894

Capacity Satisf. %c 99.8% 96.7% 99.2% 99.3%
Time Mean µt 4.25 10.08 10.13 10.08

Time Variance σ2
t 5.38 0.70 0.51 0.33

Deadline Satisf. %t 96.7% 90.6% 97.0% 97.3%

is essentially a “smoother” of fluctuating traffic that reduces server load variance and leads

to better schedulability and QoS assurance.

We used the estimated lognormal tail with distribution ln(10.3, 0.74) to approximate the

server workload. From this distribution, the estimated capacity is 171,000. The simulation

results are shown in the last column of Table 4.2. From the table, it can be seen that the

99.3% capacity satisfactory rate is in agreement with the initial 99% rate in simulation

setting. Because of occasional overloads in the simulation, the queueing delay leads to

only 2.7% of requests that missed their deadlines.

In this experiment, we estimate the capacity required by the two types of scheduling

in order to guarantee a specified delay constraint according to (6.2). Figure 5.5 shows the

capacity bounds with different server overload probability. We fixed the delay constraint

as 10 time units and used the trace at day 27. It is expected that the capacity requirement

becomes higher with lower deadline miss rate, characterized by a lower overload probability.

A close look at the data also tells that with a lower overload probability, the time-variant

decay function provides a little bit tighter capacity bound. This can be explained by the fact

that the time-variant scheduling is best at minimizing load variance. With the decrease of v,
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more resource is requirement. According to (6.2) and the fact the load mean is a constant,

the variance plays a more important role in determining the capacity bound. As a result, the

time-variant decay function provides a better bound. However, the difference is only about

3% as v varies from 0.1 to 0.01 and it is hard to be observed from the figure.

As predicted that for unimodal distributed traffics, a tigher bounds exists. We com-

pare the next experiment to show the effectiveness of the bounds for general input (6.2),

tight bounds for unimodal input (6.7) in Figure 6.4. We assumed the number of request

arrivals at each time conforms lognormal distribution ln(1, 1.5), the size of request fits nor-

mal distribution n(5000, 1000). We get consistent results using the time-variant and the

time-invariant decay functions with previous experiments. We therefore only present the

results of time-invariant decay function. The normal distribution is strongly unimodal and

the marginal distribution of the aggregated input process is strongly unimodal, as well. The

input is slightly correlated due to the default random number generator in use and the corre-

lation structure is used to derive the coefficients in the decay function which are not exactly

uniformly distributed. The system load is therefore a convolution between the aggregated

inputs; the load distribution is guaranteed to be unimodal distributed. We can then apply the

bound in (6.7). Figure 6.4 also includes bounds retrieved by approximating the tail distribu-

tion of the system load through simulation. From the figure, it is expected that the general

bounds are loose. By use of the unimodal density, we reduce the bounds to 72% of the

general bounds.
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Figure 6.4: Capacity bounds for inputs with unimodal distribution.

6.4 Performance Prediction

In this experiment, we show that the server performance will degrade with more arrival

requests. Interesting questions are how much degradation there will be and how much more

resource the server needs to keep the same level of QoS. Answers to the first question will

provide a higher customer satisfaction because people is likely to have more tolerance in

performance degradation if they are informed of extra delay. Answers to the second question

can enable Internet service providers to predict the needs for increasing capacity on their

servers.

Although Chebyshev estimations of absolute server capacity and request completion

time are conservative, their relative predictions are precise. Following the previous experi-

ment with the number of requests coming in lognormal distribution ln(1, 1.7), we wish to

predict the server capability to assume service completion time.
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From the remarks of Corollary 6.1, we can calculate the new request completion time

told for ln(1, 1.7) distribution based on the old completion time told for ln(1, 1.5) as:

tnew =
σ2
new

σ2
old

· t1 ≈ 5.65e10

1.4884e10
· 10 ≈ 38.

We ran simulations with a new deadline of 38 time units under the optimal fixed-time

scheduling algorithm. The results are shown in Table 6.3. The simulation data shows that

in response to the change of incoming traffic, more than 98% of the requests can meet their

adjusted deadline of 38 and that there were less than 1% of chances for the server getting

overload.

Table 6.3: Statistics of server with optimal fixed-time scheduling. ( c = 171000, n(t) ∼
ln(1, 1.7), w(t) ∼ n(5000, 1000), td = 38)

Performance mean variance percentage
Server Load 52497 7.0448× 108 99.3%

Completion Time 38.04 0.2 98.1%

If the server wants to keep the original deadline of 10 time units, it needs to be configured

with more resource. According to 6.1, we have

1 =
σ2
new · (cold − µold)

2

σ2
old · (cnew − µnew)2

.

As a result, the new server capacity cnew = 313000.

We ran simulations based on this new predicted capacity. The experimental results in Ta-

ble 6.4 show that with an adjusted server capacity 313000, 96% of the requests would meet
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their deadlines and the server would rarely become overloaded. Again, this demonstrates

the prediction accuracy of Corollary 6.1.

Table 6.4: Statistics of server with optimal fixed-time scheduling. ( c = 313000, n(t) ∼
ln(1, 1.7), w(t) ∼ n(5000, 1000), td = 10)

Performance mean variance percentage
Server Load 52497 2.733× 109 99.4%

Completion Time 10.17 1.25 96.0%

6.5 Impact of LRD on Server Performance

Internet traffic has an important property of LRD. In [52], the author proved that LRD

has negative impacts on the server performance by using the Hurst parameter. Using queue-

ing models to study its impact has limitations, LRD is defined by ACF or PSD of the input

traffic. Queueing model is unable to provide direct input and output relationship based

on ACF and/or PSD functions themselves. One must build a random process model, and

fit LRD into the process. This raises two immediate questions, (1) how to measure the

LRD in the original traffic? (2) which model is more proper for fitting LRD traffic? The

first question has been proved to be difficult, because LRD indicates lower rate of conver-

gence in statistical measurement, and it even causes the divergence in classical confident

interval analysis[15]. Numerous models, such as FGN, FARIMA, M/G/∞, Wavelet, and

even chaotic map, were proposed to address second question[9, 73]. However, no common

guidelines are available for when to use them. Theoretical results from one model cannot be

borrowed directly by researches on different traffic models. Consequently, there are often
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contradictory results about effects of LRD on the server.

In this section, we use our filter model to study the impact of LRD on server performance

from the perspective of power distribution in the frequency domain. It is more fundamental

than the Hurst parameter approach, independent of parameter estimation. The result is also

applicable to all LRD traffic models. Estimating PSD function from random process has

been a throughly studied and matured area in digital signal processing, and is proved to be

an easier and more reliable task than estimating Hurst parameter.

In the frequency domain, LRD is characterized by a highly condensed power in low

frequencies. Asymptotically, a LRD process has the PSD function in the following format:

Pw(f) ∼ Cp|f |−β, (6.9)

as f → 0 for some constant Cp and a real number β ∈ (0, 1). β is related to Hurst parameter

η and β = 2η − 1.

By (3.14), we know the power of server utilization process is,

Pl(f) = Pw(f)|H(f)|2. (6.10)

Its CPF function at f = π is,

Al(π) =

∫ π

0

Pw(f)|H(f)|2df. (6.11)
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Because Pw(f) in (6.9) has a singular point at f = 0 for LRD traffic, for a given ε, ε ∈ (0, π)

and ε → 0, (6.11) can be rewritten as:

Al(π) =

∫ ε

0

Pw(f)|H(f)|2df +

∫ π

ε

Pw(f)|H(f)|2df

= C(ε) +

∫ π

ε

Pw(f)|H(f)|2df. (6.12)

Because Pw(f) is monotonically decreasing, based on our convex scheduling policy,

there exists an optimal scheduling function h∗(t) that leads to a smaller Al(π) than all other

scheduling functions, including uniform scheduling hu(t). In light of these, (6.12) becomes,

Al(π) = C(ε) +

∫ π

ε

Cpf
−β|H∗(f)|2df

≤ C(ε) +

∫ π

ε

Cpf
−β|Hu(f)|2df

= C(ε) +
Θ

t2d

∫ π

ε

sin2(ftd
2
)

f 2+β
df, (6.13)

where td is service deadline. Model and traffic constant parameters are summarized into Θ.

Because f−2−β is a non-increasing function of f , and f−2−β > 0 for f > 0, there exists an

X ∈ (ε, π), such that,

∫ π

ε

sin2(ftd
2
)

f 2+β
df = ε−2−β

∫ X

ε

sin2(ftd
2
)

t2d
df

= ε−2−βB(td, X, ε)

t2d
, (6.14)

assuming B(td, X, ε) ≡ ∫ X

ε
sin2(ftd/2)df . The value of B is a definite integration of func-
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tion sin2(). Using the theorem of mean value in definite integration, B ∼ (X − ε)sin2(λ),

where λ ∈ (ε,X). When ε is considerably smaller than X , the value of B can be treated as

a constant.

When a server is optimized for LRD input traffic, we assume there exists a uniform

scheduler h′
u with service deadline t′d ∈ (td, 2td), and the CPF of h′

u being smaller than the

CPF of optimal scheduler h∗ in the mainlobe. That is:

Ah∗(f) ≥ Ah′
u
(f). (6.15)

From the property of edge scheduler in Theorem 3.3, we know that the width of main

lobe for schedulers with service deadline td is lower bounded by π/(td − 1), which corre-

sponds to the mainlobe width of the uniform scheduler with a service deadline 2td−2. From

Theorem 3.2, we can then conclude the existance of the h′
u. Figure 6.5 gives an example of

the upper bound and the lower bound of uniform schedulers for the optimal scheduler.

Similar to (6.13), we have the following inequality as a lower bound for Al(π):

Al(π) = C(ε) +

∫ π

ε

Cpf
−β|H∗(f)|2df

≥ C(ε) +

∫ π

ε

Cpf
−β|H ′

u(f)|2df

= C(ε) +
Θ′

t
′2
d

∫ π

ε

sin2(
ft′d
2
)

f 2+β
df.

= C(ε) +
Θ′

t
′2
d

ε−2−βB(t′d, X
′, ε). (6.16)

Putting the upper and lower bounds together, we have:
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Figure 6.5: The illustration of upper bound and lower bound for server optimal scheduling
function. Through convex scheduling and minimum power theorems, an optimal sched-
uler can be bounded by the uniform scheduler with same service deadline and a uniform
scheduler with longer service deadline.

C(ε) + Θ′ε−2−βt−2
d B(t′d, X

′, ε) ≤ Al(π)

≤ C(ε) + Θε−2−βt−2
d B(td, X, ε). (6.17)

Unlike previous results from queueing theorems, where the performance boundary is

estimated asymptotically for tail of the buffer size distribution, our bounds are established on

the power of server utilization process. Clearly, for pure LRD traffic, this power approaches

to ∞ as ε → 0. For real Internet traffic, PSD function can never take an infinite value at

zero frequency. This means that we can treat ε as the first starting point that PSD function

begins the power-rate decreasing in (6.9).
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Several conclusion can be drawn from these bounds directly:

Theorem 6.2. When PSD function starts power-law decreasing at very low frequency ε < 1,

the stronger LRD, or higher value in β, will increase the average power in server utilization

process with a relationship of ε−2−β .

Since the condition for Theorem 6.2 states that ε is in lower frequency, it is equally to

say that by increasing LRD, or value β, the power of server utilization process will increase

in lower frequency. Also notice that as the PSD starts decreasing at the higher frequency,

or ε is getting larger, the negative impact of LRD will becoming smaller, or disappear when

ε ≥ 1.

Theorem 6.3. When service deadline td increases, the power for server utilization will

decrease.

Finally, we remark that, in reality, Internet traffic cannot have singular point at f = 0.

The value of ε becomes crucial to server performance evaluation. In another word, when

evaluating log-log plot of the PSD function of the traffic, it is the feature at the lower-

frequency end that dominates the performance of the queueing server. There has been little

discussion about impact of value ε on server performance in the past. When using PSD

function to estimate Hurst parameter of a traffic trace, a common mistake is to fit the straight

line across the entire frequency domain, by ignoring the skewness at lower frequency.
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Chapter 7

Summary

The target of our research is to construct a flexible and solvable model to facilitate future

study of Internet server under diversified traffic environment. We have successfully built

the model, with demonstration of its capabilities of predicting optimal scheduling policy,

planning server capacity, and provisioning QoS of service deadline. This part of result

was summarized in paper:“Decay Function Model for Resource Configuration and Adaptive

Allocation on Internet Servers”, and was published in IWQoS’04.

We extend our model into frequency domain. By using Fourier transform, the PSD of

server utilization process is the filtering output of the PSD of input traffic by the server

scheduler. Similar to time domain, the existence of a minimum-power scheduler is iden-

tified in frequency domain, further more, the structure of the optimal scheduler must be

“convex” for traffic with monotonically decreasing PSD functions. This condition in PSD

function has proved to be very a very general situation in Internet. It has strong implication

in designing and optimizing scheduling algorithms in Internet servers. We gave an exam-

ple of enhancing GPS scheduler using the policy. With basic properties of scheduler and

optimality, we derived performance bounds for average power in server utilization process

under asymptotically second-order self-similar traffic. The previous research on the LRD
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traffic was focused on the Hurst parameter. Our model demonstrated that it can start directly

from definition of LRD or self-similarity instead of using this parameter. This has important

implication because Hurst parameter has been proved to be hardly measurable in practice.

Above results were summarized into paper “Frequency Domain Filter Design and Analysis

for Optimal Scheduling in Internet Servers”, paper was published in ICDCS’08 and journal

version in ITPDS’10.

The extension for the model to multiple service disciplines and time variant is accom-

plished with similar optimal conditions and corresponding algorithms to derive the optimal

scheduling policies. The application of the model results for server performance evaluation,

such as capacity planning and overload probability prediction, is also extended by narrowing

the boundary conditions for unimodal distributions and for models with probability charac-

teristic functions. These results were published in RTAS’05.

When breaking the compounded traffic model into modulated marked random point pro-

cess, further detail between sizing factor and correlation factor in the traffic and their inter-

action with scheduling functions is revealed. As optimality condition for correlation factor

is derived, corresponding optimality study was conducted in this research for sizing factor. It

reveals that SRPT scheduling policy actually tends to reduce more in correction factor, while

reducing the sizing factor, and which explains its optimality over other scheduling policies

as studied in previous literatures. These results were summarized in technical report for

CIC’2010.

The current result clearly indicates the bright future of using this model to study broad
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range of performance problem in Internet environment, either independently or as supple-

ment to queueing models.

7.1 Future Work

There are challenges and open questions that deserve attention for future work along the

line of this dissertation. Even with the extension to service differentition domain, our model

is still covering a simplifed environment and topology for Internet server. For example, in

reality, a request arriving at Interent server is normally served by multiple special service

endpoints, with each one of them serving a subset of functions. Further, the topologies of

Internet servers can even make cascading execution of the tasks in a pipeline, or fork the

sebset of tasks at different endpoints in parallel. For this domain of problems, the model

proposed in this dissertation has special advantage. For cascading services, we can have:

l(t) = w̃(t) ∗ (h1(t) ∗ h2(t)) = (w̃(t) ∗ h1(t)) ∗ h2(t). (7.1)

We can see that Equation 7.1 can easily simplify the complicated problem into either a

combination of multiple smaller systems, or a convolution operation sequencially, with one

system’s workload becoming another system’s input. Similiar for parallel processing situa-

tion, the problem can be converted into:

l(t) = w̃(t) ∗ [h1(t) + h2(t)] = w̃ ∗ h1(t) + w̃ ∗ h2(t). (7.2)
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However, when optimizing for operation cost or capacity cost under a guaranteed time

scheduling situation, how to balance the allocation function accross different service end-

points can be an interesting problem.

Another area deserves attention is the influences to the variance of server workload pro-

cess. In the dissertatin, we have derived that power spectral density function of server work-

load is influenced by three expressions:

λE[|Hk(f)|2], (7.3)

λ|E[Hk(f)]|2, (7.4)

and

λu2
wPr(f)|E[Hk(f)]|2. (7.5)

These three factors clearly decide, (1) how does scheduling function influence the second

order statistics of server? (2) how to optimal the sizing factor in Expression 7.3? and (3) how

does Pr(f) relate to the average of arrival process λ? We show that potentially these fac-

tors combined provides a good tool for studying traffic correlation and sizing continuously.

classification in size and correlation
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Internet traffic often exhibits a structure with rich high-order statistical properties like

self-similarity and long-range dependency (LRD). This greatly complicates the problem of

server performance modeling and optimization. On the other hand, popularity of Internet

has created numerous client-server or peer-to-peer applications, with most of them, such

as online payment, purchasing, trading, searching, publishing and media streaming, be-

ing timing sensitive and/or financially critical. The scheduling policy in Internet servers is

playing central role in satisfying service level agreement (SLA) and achieving savings and

efficiency in operations. The increasing popularity of high-volume performance critical In-

ternet applications is a challenge for servers to provide individual response-time guarantees.

Existing tools like queuing models in most cases only hold in mean value analysis under the

assumption of simplified traffic structures.

Considering the fact that most Internet applications can tolerate a small percentage of



149

deadline misses, we define a decay function model characterizes the relationship between

the request delay constraint, deadline misses, and server capacity in a transfer function based

filter system. The model is general for any time-series based or measurement based pro-

cesses. Within the model framework, a relationship between server capacity, scheduling

policy, and service deadline is established in formalism. Time-invariant (non-adaptive) re-

source allocation policies are design and analyzed in the time domain. For an important

class of fixed-time allocation policies, optimality conditions with respect to the correlation

of input traffic are established. The upper bound for server capacity and service level are

derived with general Chebshev’s inequality, and extended to tighter boundaries for unimodal

distributions by using VysochanskiPetunin’s inequality.

For traffic with strong LRD, a design and analysis of the decay function model is done

in the frequency domain. Most Internet traffic has monotonically decreasing strength of

variation functions over frequency. For this type of input traffic, it is proved that optimal

schedulers must have a convex structure. Uniform resource allocation is an extreme case

of the convexity and is proved to be optimal for Poisson traffic. With an integration of

the convex-structural principle, an enhance GPS policy improves the service quality signifi-

cantly. Furthermore, it is shown that the presence of LRD in the input traffic results in shift

of variation strength from high frequency to lower frequency bands, leading to a degradation

of the service quality.

The model is also extended to support server with different deadlines, and to derive

an optimal time-variant (adaptive) resource allocation policy that minimizes server load
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variances and server resource demands. Simulation results show time-variant scheduling

algorithm indeed outperforms time-invariant optimal decay function scheduler.

Internet traffic has two major dynamic factors, the distribution of request size and the

correlation of request arrival process. When applying decay function model as scheduler to

random point process, corresponding two influences for server workload process is revealed

as, first, sizing factor — interaction between request size distribution and scheduling func-

tions, second, correlation factor — interaction between power spectrum of arrival process

and scheduling function. For the second factor, it is known from this thesis that convex

scheduling function will minimize its impact over server workload. Under the assumption

of homogeneous scheduling function for all requests, it shows that uniform scheduling is

optimal for the sizing factor. Further more, by analyzing the impact from queueing delay

to scheduling function, it shows that queueing larger tasks vs. smaller ones leads to less

reduction in sizing factor, but at the benefit of more decreasing in correlation factor in the

server workload process. This shows the origin of optimality of shortest remain processing

time (SRPT) scheduler.
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