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RESEARCH Open Access

Histone deacetylases (HDACs) in XPC gene
silencing and bladder cancer
Xiaoxin S Xu1, Le Wang1, Judith Abrams2 and Gan Wang1*

Abstract

Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide
each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that
DNA damage generated by environmental carcinogens and their metabolites causes development of bladder
cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage
generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for
initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of
bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene
silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of
HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription
of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the
VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of
the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further
revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p
< 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in
severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that
prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and
HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder
cancer cells and contribute to the severity of bladder tumors.

Introduction
Bladder cancer is one of the most common malignan-
cies. Worldwide, more than 350,000 new cases of blad-
der cancer are diagnosed each year with over 145,000
deaths resulting from the disease [1]. Bladder cancer is
strongly associated with exposure to environmental fac-
tors. Cigarette smoking is the single most important
environmental factor in causing bladder cancer [2].
Exposure to other environmental factors, especially poly-
cyclic aromatic amines, such as aniline, benzidine, and
turoline, is also closely correlated with bladder cancer
risk [2]. The mechanism by which the exposure to
environmental factors causes development of bladder
cancer is unknown. It is believed that the exposure to
the environment makes the bladder tissue more

susceptible to environmental carcinogens and the DNA
damage generated by these carcinogens and/or their
metabolites causes initiation and progression of bladder
cancer.
Nucleotide excision repair (NER) is the major DNA

repair pathway in repairing bulky DNA damage gener-
ated by most environmental carcinogens, including
DNA damage generated by cigarette smoking [3-5]. The
NER pathway can be further distinguished into the tran-
scription-coupled NER (TCR) and global genome NER
(GGR) sub-pathways. The TCR pathway quickly repairs
DNA damage in highly transcribed DNA sequences,
whereas the GGR pathway repairs DNA damage
throughout the entire genome, but at a dramatically
decreased rate [6,7]. In TCR, DNA damage is recognized
by a stalled transcription event [8,9], whereas in GGR,
DNA damage is recognized by XPC, a DNA damage
recognition protein [10,11]. The DNA damage recogni-
tion signal further recruits several important NER

* Correspondence: g.wang@wayne.edu
1Institute of Environmental Health Sciences, Wayne State University, 259
Mack Avenue, Detroit, MI 48201, USA
Full list of author information is available at the end of the article

Xu et al. Journal of Hematology & Oncology 2011, 4:17
http://www.jhoonline.org/content/4/1/17 JOURNAL OF HEMATOLOGY

& ONCOLOGY

© 2011 Xu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:g.wang@wayne.edu
http://creativecommons.org/licenses/by/2.0


components, including XPA, RPA, TFIIH, XPG, and
XPF-ERCC1, to the damage site [4]. The dual incisions
made by XPG [12] and XPF-ERCC1 [13,14] generates a
22-24nt single-stranded gap. The DNA polymerases (pol
δ and ε) fill the gap using the complementary DNA
strand as a template and DNA ligase seals the flanking
gaps to complete the DNA repair process [15].
Beyond its role in DNA repair, the DNA damage

recognition signal of XPC protein is also required for
many DNA damage-induced cellular responses, includ-
ing cell cycle checkpoint regulation and apoptosis [16].
Activation of p53, a key DNA damage signaling-media-
tor [4], is involved in the XPC protein DNA damage
recognition-induced signaling process [16]. The protein-
protein interactions of the XPC protein with other NER
components, most notably TFIIH [17-19], seem to play
a critical role in the DNA damage-mediated signal
transduction process. The active p53 protein further
induces transcription of important DNA damage-
responsive genes to result in relevant cellular responses.
Therefore, the presence of a functional XPC protein is
essential not only for DNA repair, but also for DNA
damage-mediated signal transduction, which results in
restoration of the disrupted cellular functions or elimi-
nation of the severely damaged cells.
Deficiency or attenuation of the XPC protein has

been strongly associated with high incidence of cancer.
The patients of xeroderma pigmentosum (XP), includ-
ing XPC patients, display an over 1000-fold increase in
skin cancer incidence [5,20,21]. The XPC patients also
display high incidences of lung, liver, and colon cancer
[5]. Transgenic animal studies reveal that XPC gene
knockout mice (XPC-/-) develop significantly higher
levels of skin, liver, and lung tumors than their wild
type (XPC+/+) or XPC heterozygous (XPC+/-) litter-
mates when exposed to chemical carcinogens [22-27].
The results obtained from others and our recent stu-
dies reveal reduced levels of XPC protein in the
tumors for a majority of bladder and lung cancer
patients [27-29]. All of these results suggest that the
presence of a functional XPC protein is essential in
protecting cells against environmental carcinogen-
caused cancer development, and XPC protein attenua-
tion and its deficiency contributes to cancer develop-
ment, especially for cancers strongly associated with
environmental factors such as lung and bladder cancer.
In addition, reduced levels of XPC protein may also be
a contributing factor in tumor cell resistance to many
commonly used DNA-damaging anticancer drugs
because of the role of the XPC protein in initiating
important cellular responses such as apoptosis follow-
ing the treatment with these drugs.
The mechanism that leads to reduced levels of XPC

protein in the tumors of bladder cancer patients is

unknown. The knowledge obtained from recent epige-
netic studies suggests that epigenetic regulation may
play an important role in this aspect [30-35]. The epi-
genetic regulation involves several different mechan-
isms, including DNA methylation, histone acetylation/
deacetylation, and microRNA (miRNA). In regards to
histone acetylation/deacetylation, it is widely known
that the acetylation status of histones significantly
affects transcription of target genes [36]. The binding
of acetylated histones at the promoter region of target
genes leads to a more opened chromatin structure,
which enhances transcription of the target gene. In
contrast, the binding of deacetylated histones at the
promoter region causes a more closed DNA structure,
which causes silencing of the target gene. Deacetyla-
tion of the histones occurs through histone deacety-
lases (HDACs), a super family of proteins [37].
Abnormal levels of deacetylases have been reported in
many types of cancer, which suggests a possible role of
HDACs in the disease process [37,38].
In this study, we focused on determining the role of

histone deacetylases (HDACs) in XPC gene silencing
and bladder cancer development. Using HTB4 (T24)
and HTB9 bladder carcinoma cells, the results of our
HDAC inhibitor studies demonstrated that treatment
with a HDAC inhibitor, valproic acid (VPA), caused
increased transcription of the XPC gene in these cells.
The results obtained from our chromatin immunopreci-
pitation (ChIP) studies revealed that the treatment of
VPA enhanced the binding of transcription factors
CREB-1 and Sp1 at the promoter region of the XPC
gene in both HTB4 and HTB9 cells. The results
obtained from our immunohistochemistry (IHC) stain-
ing studies further revealed a strong correlation between
the over-expression of HDAC4 and the occurrence of
bladder transitional cell carcinomas (p < 0.001) as well
as a marginal significance between the over-expression
of HDAC4 and the severity of the bladder tumors (p =
0.08). In addition, the results of our caspase 3 activation
studies demonstrated that the prior treatment with VPA
enhanced the anticancer drug cisplatin-induced activa-
tion of caspase 3 in both HTB4 and HTB9 cells. All of
these results suggest that over-expression of the HDAC4
contributes to the XPC gene silencing and the develop-
ment of bladder carcinomas, and inhibiting the HDAC
activities with the HDAC inhibitor VPA sensitizes the
bladder carcinoma cells to anticancer drug cisplatin.
These results provide an important mechanism for the
XPC gene silencing in bladder cancer cells and suggest
an important mechanism in bladder cancer develop-
ment. In addition, the results obtained from this study
also suggest that inhibiting HDAC activity with HDAC
inhibitor may greatly benefit the bladder cancer treat-
ment through its sensitization of bladder cancer cells to
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many DNA-damaging anticancer drugs, such as
cisplatin.

Materials and methods
Cell lines and Oligonucleotides
The HTB4 (T24), HTB9, HTB2, HTB3, HTB5, HT1197,
and HT1376 bladder cancer cells were purchased from
American Type Culture Collection (ATCC) (Rockville,
MD). The GM00637 human fibroblast cells were pur-
chased from the Coriell Institute for Medical Research
(Camden, NJ). The HTB2 and HTB4 cells were cultured
in a McCoy’s 5A medium supplemented with 10% FBS
at 37°C with 5% CO2. The HTB9 cells were cultured in
RPMI1640 medium supplemented with 1× non-essential
amino acids (NEAA) and 10% FBS at 37°C with 5%
CO2. The HTB3, HTB5, HT1197, and HT1376 bladder
cancer cells were cultured in minimal essential medium
(MEM) supplemented with 10% FBS and 1× NEAA at
37°C with 5% CO2. The GM00637 cells were cultured in
MEM supplemented with 10% FBS, 2× essential amino
acids (EAA), 2x NEAA, and 2x vitamins (Vt) at 37°C
with 5% CO2.
The oligonucleotides used in this study are listed in

Table 1 and were synthesized by Retrogen, Inc. (San
Diego, CA). The primers used for determining the level
of XPC mRNA by real time PCR were designed to bind
to the XPC mRNA sequence at exon 5 and exon 6 thus
amplifying a 120 bp DNA fragment. The primers used
for determining the level of XPA mRNA by real time
PCR were designed to bind to the XPA mRNA at exon
3 and exon 4 in order to amplify a 110 bp DNA frag-
ment. The primers used for detection of the immuno-
precipitation XPC gene promoter sequence were
designed to bind to the XPC gene 5’ regulatory region
sequence at the -95 to -75 region and the +80 to +50
region to amplify a 175 bp DNA fragment.

VPA treatment
The VPA was purchased from Sigma Corp. (St. Louis,
MO). The HTB4 and HTB9 cells were seeded onto 100
mm cell culture dishes at a density of 1 × 106 cells/dish

and incubated at 37°C overnight. The VPA was added
to the cell culture medium to a final concentration of 5
mM. The cells were cultured in the VPA-containing
medium for 48 hours and then used for further studies.

Real time quantitative PCR assay
Total RNA was isolated from both untreated and VPA-
treated HTB4 and HTB9 bladder cancer cells using an
RNeasy mini isolation kit (Qiagen). A reverse tran-
scription-based quantitative PCR (real time PCR) was
then performed to determine the mRNA levels of both
xpc and xpa genes from each RNA sample using a
Sybr green-based DNA quantification method (Applied
Biosystems, Foster City, CA). The mRNA level of the
b-actin gene was also determined for each RNA sam-
ple by using the real time PCR. The reverse transcrip-
tion assay was carried out using 2 μg of total RNA
utilizing the protocol suggested by the manufacturer
(Applied Biosystems). The PCR procedure was per-
formed using Taq-Man Universal PCR master mix
with 100 ng cDNA in a total volume of 20 μl. The
PCR assays were completed using the ABI prism 7500
Fast PCR system with the following conditions: 2 min
at 94°C, followed by 40 cycles of 15 seconds at 95°C,
30 seconds at 56°C, and 60 seconds at 72°C. The real
time PCR data was analyzed using a comparative cycle
threshold (Ct) method. Relative quantification was per-
formed to determine gene expression between
untreated and VPA-treated cells. The actin gene was
used as an internal control for normalization. Relative
transcriptions of the XPC and XPA mRNAs were cal-
culated as 2-ΔΔCt where ΔCt was calculated by sub-
tracting the average actin gene Ct from the average
XPC or XPA gene Ct value in the same cell line. The
ΔΔCt was obtained by the ΔCt of the VPA-treated
cells subtracted from the ΔCt of the untreated cells.

Western blot hybridization and quantification of the
protein
Cells were harvested and lysed in RIPA cell lysis buffer
(1xPBS, 1% NP40, 0.5% deoxycholic acid, 0.1% SDS).
The cell lysates (30 μg total protein) were analyzed by
SDS-PAGE using a 10% gel. The proteins were trans-
ferred to a PVDF membrane and hybridized with the
indicated antibodies for detection of the desired target
proteins. The same membrane was then soaked in a
stripping solution (62.5 mM Tris, pH 6.8, 2% SDS, 0.7%
2-mercaptoethanol) at 50°C for 30 min and then hybri-
dized with a b-actin antibody (Oncogene, Cambridge,
MA) to determine the level of b-actin in each sample.
Quantification of the western results was performed
using a Kodak Image Station 440CF system and the
level of the target protein in each cell lysate was
expressed as a relative level to that of b-actin in the

Table 1 Oligonucleotides used in the study.

Name of oligonucleotide Sequences of the oligonucleotide

1. Primers used for the real time PCR study

XPC primer 1 5’-GTGACCTCAAGAAGGCACAC-3’

XPC primer 2 5’-CTCACGTCACCCAGCACAGG-3’

XPA primer 1 5’-CTGCGGCTACTGGAGGCATGG-3’

XPA primer 2 5’-CCATAACAGGTCCTGGTTGATG-3’

2. Primers used for amplifying the XPC gene 5’ regulatory region in the
IP study

XPC IP primer 1 5’-CGTGGCCAAGCGCACCGCCTC-3’

XPC IP primer 2 5’-GGCCTTGCTCTTGGCCTTG-3’
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same cell lysate. The level of XPC protein in the VPA-
treated cells was calculated as a percentage compared to
that of the XPC protein in the untreated cells. The sta-
tistical analysis of the western data was done using
GraphPad PRISM 4.0 software.

Chromatin immunoprecipitation (ChIP)
The cells were harvested and washed in 1xPBS buffer
once. The cells were then resuspended into 1xPBS buf-
fer containing 1% formaldehyde and incubated at 37°C
for 15 minutes. The cells were collected and washed
three times with 1xPBS buffer. The cells were then
resuspended into SDS lysis buffer (1 × 106 cells/200 μl)
and incubated on ice for 10 minutes. The cells were
sonicated in order to shear the genomic DNA to lengths
of 200-1000 bp. The cell lysates were centrifuged at 4°C
for 10 minutes and the supernatants were collected. For
the ChIP assay, cell lysate (200 μl) was diluted at a ratio
of 1:10 in the ChIP dilution buffer (0.01% SDS, 1.1%
Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl,
pH8.1, 167 mM NaCl) and incubated with either Protein
A-conjugated agarose beads (for Sp1) or Protein G-con-
jugated agarose beads (for CREB1) at 4°C for 60 min-
utes. The cell lysates were centrifuged at 4°C for 5
minutes to remove the agarose beads. The cell lysates
were then incubated with 2 μg of CREB1 antibody (X-
12 from Santa Cruz) or Sp1 antibody (H-225 from
Santa Cruz) at 4°C overnight using a rotating mixer.
The Protein A-conjugated agarose beads (for Sp1) or
Protein G-conjugated agarose beads (for CREB1) were
then added and the reactants were incubated at 4°C for
2 hours with a rotating mixer. The beads were collected
and washed three time in 1xPBS buffer and three times
in ChIP washing buffer (0.1%SDS, 1% Triton X-100, 2
mM EDTA, 20 mM Tris-HCl, pH8.1, 150 mM NaCl).
Half of the beads were analyzed by western blot to
determine the amount of the CREB1 or Sp1 proteins
precipitated by the ChIP protocol. The remainder of the
beads were resuspended into 200 μl of DNA elution
buffer (0.1M Na2CO3, 1% SDS, 200 mM NaCl) and
incubated at 65°C for 6 hours to reverse the protein-
DNA cross-links. The DNA was recovered by phenol/
chloroform extraction and ethanol precipitation. The
relative level of XPC gene promoter region DNA co-
precipitated with the beads was determined by a quanti-
tative PCR (qPCR) protocol using the Applied Biosys-
tems’ Fast 7500 Real Time PCR system (Applied
Biosystems, Foster City, CA). The level of the XPC gene
promoter region DNA co-precipitated with the CREB1
or Sp1 in the untreated cells was accounted as 100%
and the level of the XPC gene promoter region DNA
co-precipitated with the beads in the VPA-treated cells
was calculated as a fold change relative to that of the
untreated cells.

Immunohistochemistry (IHC) staining
The bladder tumor tissue arrays BL208, BL2081 and
BL2082 were purchased from US BioMax Inc. (Rock-
ville, MD) and were used in the IHC staining study. The
formalin-fixed paraffin-embedded (FFPE) bladder tumor
tissue array slides were first deparaffinized in 100%
xylenes; the slides were then hydrated through a series
of graded alcohols (100%, 95%, 80%, 70%, and 30%) for
5 minutes each. The slides were washed once in H2O
for 5 minutes. The slides were then incubated in 10
mM sodium citrate buffer (pH6.0) for 15 minutes at 95°
C to unmask the antigen. The bladder tumor tissue
array slides were then incubated in 1% hydrogen perox-
ide at room temperature for 10 minutes to quench
endogenous peroxidase activity. The slides were incu-
bated in 1.5% normal blocking serum in 1xPBS for 1
hour and then incubated with the primary antibody at
1:100 dilution in 1xPBS for 30 minutes. The slides were
washed in 1xPBS three times and then incubated with a
biotin-conjugated secondary antibody (Santa Cruz) at
room temperature for 30 minutes. The slides were then
washed three times in 1xPBS and incubated with an avi-
din-biotin enzyme reagent (Santa Cruz) for 30 minutes.
The slides were incubated in peroxidase substrate (Santa
Cruz) for 1 to 10 minutes until the desired stain inten-
sity developed. The slides were counterstained in Gill’s
formulation #2 hematoxylin (Santa Cruz) for 10 seconds
and then washed in deionized H2O with several H2O
changes. The slides were dehydrated through graded
alcohols (30 - 100%) and xylenes and mounted with
glass coverslips using a Clarion permanent mounting
medium (Santa Cruz, CA). The HDAC-positive cells
were determined using light microscopy. Two hundred
cells were counted from each tissue specimen. A
HDAC-negative tissue specimen was established if >20%
of the counted cells were HDAC-positive cells and a
HDAC-positive tissue specimen was established if <20%
of the counted cells were HDAC-positive cells.

Caspase-3 assay
The caspase-3 activity was measured using a protocol
described previously [39,40]. Essentially, the cells were
harvested 40 hours after the cisplatin treatment and
lysed in insect cell lysis buffer (BD Biosciences). The
protein concentrations of the cell lysates were deter-
mined. The caspase-3 assay was carried out in a 96-well
plate using fluorogenic Ac-DEVD-AMC as a substrate
(BD Biosciences). Caspase-3 activity was determined by
a spectrafluorometer (Molecular Devices) for detection
of free AMC released from the substrate during a 15-
minute incubation period at 37°C with an excitation
wavelength of 380 nm and an emission wavelength of
430-460 nm. Caspase-3 activity was measured as nano-
mole of AMC/min/mg protein
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Statistical analysis
Results were expressed as the mean + standard devia-
tion (S.D.). Statistically significant differences were
determined using a one-factor analysis of variance with
p < 0.01. The data was obtained from at least three
independent experiments.

Results
Induced transcription of XPC gene in the VPA-treated
HTB4 and HTB9 bladder cancer cells
In order to determine the role that the HDACs may play
in XPC gene silencing and bladder cancer development,
we first determined the effect of HDAC inhibitor treat-
ment on activation of XPC gene transcription in HTB4
and HTB9 bladder cancer cells. Both HTB4 and HTB9
cancer cells were treated with the HDAC inhibitor of VPA
(5 mM) for 48 hours and the total RNA was isolated.
Total RNA was also isolated from the untreated HTB4
and HTB9 cells. A reverse transcription-based quantitative
PCR (real time PCR) was performed to determine the level
of the XPC mRNA in each RNA sample (Table 2). The
level of XPA mRNA was also determined for each RNA
sample in the study. The XPA protein is an important
NER component but the level of XPA mRNA was not
affected by the DNA damaging treatment [16]. The level
of b-actin mRNA was determined for each RNA sample as
an internal control. The level of the XPC mRNA increased
2.8 ± 0.4 and 2.4 ± 0.3 fold in the HTB4 and HTB9 cells
respectively with the VPA treatment (Table 2). In contrast,
the level of the XPA mRNA was not significantly altered
in these cells following the VPA treatment (Table 2).
These results suggest that the HDACs indeed play an
important role in XPC gene silencing for both HTB4 and
HTB9 bladder cancer cells, and treatment with the VPA
HDAC inhibitor causes activation of the XPC transcrip-
tion in both bladder cancer cell lines.

The VPA treatment caused enhanced binding of the
CREB1 and Sp1 transcription factors at the promoter
region of the endogenous XPC gene in both HTB4 and
HTB9 bladder cancer cells
To determine the mechanism through which the
HDACs inhibit transcription of the XPC gene, we

further performed a chromatin immunoprecipitation
(ChIP)-based transcription factor binding study. We
chose both CREB1 and Sp1 transcription factors for our
ChIP study because the consensus sequences for both
transcription factors are present at the 5’ promoter
region of the XPC gene (Figure 1) and are likely to be
involved in the transcription regulation of the XPC
gene. Some studies also revealed the overlapping in
binding to DNA targets between the HDAC4 and the
Sp1 [41-46]. The HTB4 and HTB9 cells were treated
with the VPA (5 mM) for 48 hours and fixed in 1% for-
maldehyde. As a control, the untreated HTB4 and
HTB9 cells were also harvested and fixed in 1% formal-
dehyde. The cells were sonicated to shear the chromo-
somal DNA into small fragments. A ChIP protocol was
performed to pull down the CREB1 or the Sp1 tran-
scription factor using antibodies against the individual
transcription factors. Half of the beads obtained from
the ChIP protocol were analyzed by western blots to
determine the amount of the transcription factor pulled
down by the ChIP protocol (Figure 2). The remainder of
the beads was resuspended into an elution buffer (0.1M
Na2CO3, 1% SDS, 200 mM NaCl) and the DNA co-pre-
cipitated with the transcription factors was recovered.
The DNA was analyzed by a quantitative PCR (qPCR)
protocol to determine the amount of XPC gene promo-
ter region DNA co-precipitated with the transcription
factors (Table 3). The results of our western blots
revealed that similar amounts of the CREB1 and Sp1
were pulled down from both untreated and VPA-treated
cells for both HTB4 and HTB9 cells, suggesting a very
successful ChIP protocol (Figure 2). The results of our
qPCR studies, however, indicated a very different pattern
of XPC gene promoter region DNA co-precipitation fol-
lowing the VPA treatment. When the CREB1 antibody
was used in the ChIP study, the VPA treatment resulted
in a 4.6 ± 0.4 and 2.2 ± 0.4 fold increase of the co-preci-
pitated XPC gene promoter region DNA in the HTB4
and HTB9 cells respectively (Table 3); when the Sp1

Table 2 The effect of valproic acid (VPA) treatment on
transcription of XPC and XPA genes in both HTB4 and
HTB9 bladder cancer cells.

Genes HTB4 HTB5

No
treatment

VPA
treatment

No
treatment

VPA
treatment

XPC
mRNA

1 2.8 ± 0.4 1 2.4 ± 0.3

XPA
mRNA

1 1.1 ± 0.1 1 0.9 ± 0.1

Figure 1 Diagram of the promoter region structure of the XPC
gene. The consensus sequences of transcription factors CREB-1 and
Sp1 were highlighted in the box. The start codon of the XPC gene
is labeled in red.
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antibody was used in the ChIP study, the VPA treat-
ment caused a 2.2 ± 0.3 and 2.0 ± 0.3 fold increase of
the co-precipitated XPC gene promoter region DNA in
the HTB4 and HTB9 cells respectively. These results
indicate that the VPA treatment enhances the binding
of the CREB1 and Sp1 transcription factors at the pro-
moter region of the endogenous XPC gene in both
HTB4 and HTB9 cells, suggesting that inhibiting the
binding of CREB1 and Sp1 transcription factors to their

consensus sequences plays an important role in the
HDACs-mediated XPC gene silencing.

The correlation between the over-expression of HDAC4
and the development of bladder cancer
To further determine the role of HDACs in XPC gene
silencing and bladder cancer development, we deter-
mined the correlation between the presence of HDACs
and the occurrence of bladder cancer using bladder
tumor tissue arrays with an immunohistochemistry
(IHC) staining procedure (Figure 3 and Table 4). The
bladder tumor tissue arrays were purchased from US
BioMax, Inc. (Rockville, MD) and used in this study.
Both HDAC2 and HDAC4 were chosen for this study
because the work of others has revealed abnormal levels
of these proteins in many types of cancer [47-55]. The
results of our IHC study indicated that the frequency of
the HDAC4-positive tissue specimens was much higher
in the bladder tumors than in the normal bladder tissues
(Figure 3 panel and Table 4). The statistical analysis of
the data further revealed a significant difference in the
frequency of HDAC4-positive tissue specimens between
normal and cancerous bladder tissues (p < 0.001) as
well as a marginal significance between the increasing
incidence of HDAC4 positivity and the increasing sever-
ity of the bladder tumors (p = 0.08) (Table 4). The fre-
quency of the HDAC2-positive specimens, however, was
similar between normal and cancerous bladder tissues
(data not shown). These results suggest that over-
expression of the HDAC4 is strongly correlated with the
development of bladder cancer.

The HDAC4 was over-expressed in most of the bladder
cancer cells
The results of our IHC studies revealed strong correla-
tion between over-expression of the HDAC4 and the
occurrence of bladder tumors. To validate the IHC
result, we further determined expression of several
HDACs, including HDAC4, HDAC1, and HDAC2, in
the HTB4, HTB9, HTB2, HTB3, HTB5, HT1197 and
HT1376 bladder cancer cells (Figure 4). The expression
of these HDACs in the GM00637 normal human fibro-
blast cells was also determined in the western blotting
study and used as a control. The results obtained from
our western blots study indicated that the protein levels
of the HDAC1 and HDAC2 were similar in all the
tested cells (Figure 4 middle panels). In contrast, the
expression levels of HDAC4 were greatly increased in
most of the tested bladder cancer cells except the HTB4
bladder cancer cells in comparison to that of the
GM00637 normal human fibroblast cells (Figure 4 top
panel). This result confirmed our IHC results and sug-
gested the important role of HDAC4 over-expression in
the bladder cancer development.

Figure 2 Detection of CREB-1 and Sp1 protein obtained from
the chromatin immunoprecipitation (ChIP). A ChIP protocol was
performed to pull down the CREB-1 and Sp1 proteins from the
individual cell lysates using antibodies against CREB-1 and Sp1
respectively. Half of the agarose beads obtained from the ChIP
study were analyzed by western blots to determine the amount of
the transcription factors precipitated from individual cell lysates. The
remainder of the beads was analyzed by real time PCR to
determine the amount of the XPC gene promoter DNA co-
precipitated with the individual transcription factors.

Table 3 Determination of the level of XPC gene 5’
regulatory region DNA co-precipitated with the
transcription factors CREB1 and Sp1 by IP in both
untreated and VPA-treated HTB4 and HTB9 bladder
cancer cells a.

IP
antigen

HTB4 HTB9

No
treatment

VPA
treatment

No
treatment

VPA
treatment

CREB1 1 4.6 ± 0.4 1 2.2 ± 0.2

Sp1 1 2.2 ± 0.3 1 2.0 ± 0.3
a The level of XPC gene 5’ regulatory region DNA co-precipitated in the
untreated cells was counted as 1 and the level of XPC gene 5’ regulatory
region DNA co-precipitated in the VPA-treated cells was calculated as fold
change to that of the untreated cells for each cell line. The fold change was
expressed as Mean ± S.D. The results were from three independent IP
experiments.
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Figure 3 Immunohistochemistry (IHC) stain of XPC and HDAC4 proteins in both normal and cancerous bladder tissue specimens using
bladder tumor tissue arrays. The bladder tumor tissue arrays purchased from US BioMax Inc. were stained with either XPC or HDAC4
antibodies in an immunohistochemistry (IHC) protocol. The presence of XPC or HDAC4 protein was determined by light microscopy and the
image was recorded by a DP Controller software (Olympus Corp., Center Valley, PA).

Table 4 Determination of the presence of the HDAC4 in both normal and cancerous bladder tissues from bladder
tumor tissue arrays.

Type of bladder tissues # of HDAC4(+) # of Total tissues % of HDAC4(+)

Normal bladder tissues 1 23 4.3

Transitional cell carcinomas (Grade 1) 26 58 44.8

Transitional cell carcinomas (Grade 2) 28 59 47.5

Transitional cell carcinomas (Grade 3) 8 25 32.0

P value p Δ < 0.001

ps = 0.08

Note: p Δ value is the comparison between the group of normal bladder tissues and the group of cancerous bladder tissues. ps is the comparison among the
groups of normal bladder tissues, Grade 1, Grade 2, and Grade 3 bladder carcinomas.
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Prior treatment with the HDAC inhibitor VPA enhanced
cisplatin-induced apoptosis of bladder cancer cells
Extensive studies have demonstrated the cisplatin-
induced apoptosis as major mechanism in cell killing
[16,39,56-58]. Because of the important function of XPC
protein in the cisplatin-caused apoptosis [16] and the
role HDACs in XPC gene silencing, we further investi-
gated the effect of the HDAC inhibitor VPA in cispla-
tin-induced apoptosis of bladder cancer cells. The HTB4
and HTB9 bladder cancer cells were treated with VPA
(5 mM) for 48 hours before they were treated with cis-
platin. The cells were harvested 40 hours after the cis-
platin treatment and the caspase-3 activity was
determined (Figure 5). The caspase-3 activity was also
determined from the HBT4 and HTB9 cells that were
treated with cisplatin but without the prior VPA treat-
ment (Figure 5). The cisplatin treatment itself caused an
increase in caspase-3 activity in both HTB4 and HTB9
bladder cancer cells at high concentrations (20 μM and
40 μM) but not at lower concentrations (5 μM and 10
μM) (Figure 5). When these cells were treated with VPA
prior to the cisplatin treatment, however, the caspase-3
activity was significantly increased at lower concentra-
tions as well (Figure 5). For example, when treated only
with cisplatin at 10 μM, the caspase 3 activity was
increased by a 1.5 and 2 fold in the HTB4 and HTB9
cells respectively; when the cells were treated with 5

mM VPA prior to the cisplatin treatment, however, the
10 μM cisplatin treatment resulted in a 7.3 and 6.6 fold
increase of the caspase-3 activity in the HTB4 and
HTB9 cells respectively (Figure 5). These results suggest
that the prior treatment of HTB4 and HTB9 bladder
cancer cells with the HDAC inhibitor VPA sensitizes
these bladder cancer cells to the anticancer drug
cisplatin.

Discussion
In this work we have determined the role of HDACs in
XPC gene silencing and bladder cancer development.
The results obtained from our HDAC inhibitor treat-
ment studies revealed that the VPA treatment led to an
increase in transcription of the XPC mRNA in both
HTB4 and HTB9 bladder cancer cells. The results
obtained from our ChIP study demonstrated that the
VPA treatment resulted in an increase in binding of the
CREB1 and Sp1 transcription factors at the 5’ regulatory
region of the XPC gene in both HTB4 and HTB9 cells.
The results of our IHC studies further indicated a
strong correlation between the over-expression of the
HDAC4 and the occurrence of urinary bladder transi-
tional cell carcinomas. In addition, the results obtained
from our caspase-3 activation studies also demonstrated
that the pre-treatment of HTB4 and HTB9 bladder can-
cer cells with VPA enhanced the anticancer drug cispla-
tin-induced activation of caspase-3, an important
apoptotic caspase indicative of irreversible apoptosis.
Given the important role of the XPC protein in protect-
ing cells against many environmental carcinogen-
induced deleterious effects and the significance of the
HDACs in epigenetic gene transcription regulation
[31-33], these results suggest that the HDACs play an
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Figure 4 Detection of expression of HDAC4, HDAC1, and
HDAC2 in various bladder cancer cells. The cell lysates prepared
from the HTB2, HTB3, HTB4, HTB5, HTB9, HT1197, HT1376 bladder
cancer cells and GM00637 normal human fibroblast cells (30 μg
total protein) were analyzed by western blots to determine the
protein levels of HDAC4, HDAC1, HDAC2, and b-actin in each cell
lysate. The antibodies against HDAC4 (A-4), HDAC1 (C-19), HDAC2
(H-54) and b-actin (C-2) were purchased from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA) and used in the western blots
study.
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Figure 5 The cisplatin-induced caspase 3 activity in both
untreated and VPA-treated HTB4 and HTB9 bladder cancer
cells. The VPA treatment (5 mM) was done 24 hours prior to the
cisplatin treatment. The cells were treated with cisplatin at the
indicated concentrations for 3 hours and then cultured in the cell
culture incubator for 40 hours before the cells were harvested and
the caspase 3 activity was measured. The caspase 3 activity was
measured as nanomole of AMC/minute/mg of protein. (* statistical
difference to that of the untreated cells with p value < 0.01).
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important role in XPC gene silencing and bladder can-
cer development. Therefore, these results provide an
important mechanism of XPC gene silencing and blad-
der cancer development. Because of the essential role of
the XPC protein in initiating DNA damage-induced cel-
lular responses [16], these results further suggest that
silencing of the XPC gene may provide a critical early
event for initiation of bladder tumors. In addition, the
results obtained from these studies further suggests that
reactivation of the XPC gene by HDAC inhibitors may
have great benefits for bladder cancer treatment, espe-
cially for DNA-damaging anticancer drugs such as
cisplatin.
The results of our ChIP studies revealed that the VPA

treatment led to an increase in binding of the CREB1
and Sp1 transcription factors to the 5’ regulatory region
of the XPC gene. These results suggest that inhibiting
the binding of these transcription factors to their con-
sensus sequences plays an important role in the
HDACs-caused XPC gene silencing of bladder cancer
cells. This provides an important basis for understand-
ing the mechanism of XPC gene silencing in bladder
cancer cells. However, it is widely known that the con-
sensus sequences of many transcription factors are pre-
sent at the promoter region of the XPC gene, whether
or not the bindings of these transcription factors are
also affected by HDACs, and therefore, contribute to
the XPC gene silencing is largely unknown. It may be
important to determine the effect of HDACs on the
bindings of these individual transcription factors at the
promoter region of the XPC gene in order to provide a
better understanding of the molecular basis by which
the HDACs cause silencing of the XPC gene in bladder
cancer cells.
The results of our IHC studies reveal that the fre-

quency of the HDAC4-positive tissue specimens was sig-
nificantly increased in the urinary bladder transitional
cell carcinomas in comparison to normal bladder tissues.
However, the results obtained from our IHC study using
a HDAC2 antibody did not show a significant change in
the frequency of HDAC2-positive tissue specimens
between normal and cancerous bladder tissues (data not
shown). Given the similarity between the HDAC2 and
HDAC4 proteins in both their functions, these results
suggest that only certain HDACs are involved in the XPC
gene silencing in the urinary bladder transitional cell car-
cinomas. Since the HDACs family proteins also include
several other HDACs, it would be important to deter-
mine the correlation between the presence of the indivi-
dual HDACs and the bladder cancer occurrence for each
HDAC in order to provide a better understanding of the
role of specific HDACs in XPC gene silencing and blad-
der cancer development.

The work described in this study was mainly focused
on determining the role of HDACs in XPC gene silen-
cing and bladder cancer development. However, it is
known that other epigenetic gene regulation mechan-
isms, including DNA methylation and microRNA
(miRNA), can also lead to silencing of the target genes
[32,33]. In fact, recently reported results suggest that
DNA methylation may play an important role in XPC
gene silencing of lung cancer cells [29]. Therefore,
future studies also need to determine the roles of these
epigenetic regulation mechanisms in XPC gene silencing
and bladder cancer development in order to provide a
better understanding of the mechanism of XPC gene
silencing and bladder cancer development.
Attenuated XPC protein has been observed in many

types of cancer, including bladder and lung cancer
[27,59]. Given the strong correlation between environ-
mental carcinogen exposure and cancer occurrence for
both bladder and lung cancer as well as the similarity of
the lung and bladder organs in exposure to environmen-
tal carcinogens, it is possible that silencing of the XPC
gene may play an important role in cancer development
for many different types of cancer. Therefore, the
knowledge obtained from this study will be important
not only for understanding the mechanism of bladder
cancer development but also for grasping the mechan-
ism of development of these cancers as well. In addition,
the knowledge obtained from this study is also impor-
tant for detection, treatment, and risk assessment of
cancer as well as new anticancer drug design and
development.
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