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Improved Estimator in the Presence of Multicollinearity 
 

Ghadban Khalaf 
King Khalid University, 

Saudi Arabia 
 

 
The performances of two biased estimators for the general linear regression model under conditions of 
collinearity are examined and a new proposed ridge parameter is introduced. Using Mean Square Error 
(MSE) and Monte Carlo simulation, the resulting estimator’s performance is evaluated and compared 
with the Ordinary Least Square (OLS) estimator and the Hoerl and Kennard (1970a) estimator. Results of 
the simulation study indicate that, with respect to MSE criteria, in all cases investigated the proposed 
estimator outperforms both the OLS and the Hoerl and Kennard estimators. 
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Introduction 
Multiple regression fits a model to predict a 
dependent variable (Y) from two or more 
independent variables (X): 
 

.22110 eXXY ++++= βββ  

 

If the model fits the data well, the overall 2R  
value will be high and the corresponding P value 
will be low. In addition to the overall P value, 
multiple regression also reports an individual P 
value for each independent variable; a low P 
value indicates that a particular independent 
variable significantly improves the fit of the 
model. 

If the overall P value is very low, but all 
the individual P values are high, this indicates 
that a model fits the data well, even though none 
of the X variables has a statistically significant 
impact on predicting Y. This occurs when two or 
more variables are highly correlated. If both 
variables are removed from the model, the fit 
would be much worse; thus, the overall model 
fits the data but neither X variable makes a 
significant contribution when it is added to the 
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model last. When this occurs, the X variables are 
collinear and the results show multicollinearity, 
meaning the variables are related. 

If the goal is simply to predict Y from a 
set of X variables, then multicollinearity is not 
problematic. The predictions will be accurate 

and the overall 2R  quantifies how well the 
model predicts the Y values. However, if the 
goal is to understand how the various X 
variables impact Y, then multicollinearity poses 
a big problem. These problems are summarized 
as: 
 
(1) The individual P values can be misleading, 

that is, a P value can be high, even though 
the variable is important. 

 
(2) The confidence intervals on the regression 

coefficients will be very wide – and may 
include zero – which indicates that a 
researcher cannot be confident whether an 
increase in X values is associated with an 
increase or decrease in Y values. In addition, 
wide confidence intervals can change the 
coefficients and/or their signs. 

 
For these reasons, multicollinearity must be 
examined and removed. Different methods exist 
that can be used to reduce or to eliminate the 
impact of multicollinearity, examples include: 
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(1) Removing a variable: If one of the variables 
does not seem logically essential to the 
model, then removing it may be helpful. 

 
(2) Combining the variables; for example, if 

height and weight are collinear independent 
variables, then it would be logical to remove 
height and weight from the model and 
instead use a variable such as surface area 
(calculated from height and weight). 

 
(3) Increasing sample size: Another way to 

reduce the impact of collinearity is to 
increase sample size, this results in narrower 
confidence intervals, despite 
multicollinearity, with more data. 

 
(4) Using a standard technique called ridge 

regression: Ridge regression was originally 
developed to overcome multicollinearity. 

 
Consider the standard linear regression 

model: 
 

,eXY 
+= β                         (1) 

 
formulated to result in a XX ′  in correlation 
form and where YX ′  is the vector of correlation 
coefficients of the dependent variable with each 
explanatory variable. Also assume that X is 

pn ×  of full rank p < n, E(e)= 0 and 

.)( 2
nIeeE σ=′  The p- vector of the OLS 

estimator ( β

ˆ ), is then given by the solution of: 

 

YXXX


′=′ β̂                        (2)  
 
so that, 

YXXX


′′= −1)(β̂ .                   (3) 
 

Clearly, β

ˆ  is an unbiased estimator of β


. 

There are many reasons why a data analyst is 
often not satisfied with OLS estimates. One of 
the reasons is prediction accuracy: OLS 
estimates often have low bias but large variance. 
Thus, prediction accuracy can occasionally be 
improved by shrinking some coefficients to zero. 

In doing this, a little bias is sacrificed to reduce 
the variance of the predicted values and hence 
may improve overall prediction accuracy. 

Many attempts have been made to 
improve the OLS estimator procedure. Hoerl and 
Kennard (1970a) suggested a new technique 
called ridge regression to improve OLS 

estimates. The ridge regression estimators ∗β

ˆ , 

for a fixed k > 0, satisfy,  
 

YXkIXX p


′=+′ ∗β̂)( ,              (4) 

 
so that, 

YXkIXX p


′+′= −∗ 1)(β̂ ,            (5) 

 
as an alternative to the OLS estimator for use in 
the presence of multicollinearity, where I 
denotes an identity matrix, and k is a positive 
number known as ridge parameter, which must 
be estimated from the real data. The ridge 
regression MSE is given by: 
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(6) 
 

where 2σ  represents the error variance of the 
model given by (1). When the reduction in 
variance exceeds the square of the bias, ridge 
estimates are preferred. 

When using ridge estimates, the choice 
of k-values in (5) is crucially important and 
several methods have been proposed for this 
purpose (see Hoerl & Kennard, 1970a; Saleh & 
Kibria, 1993; Singh & Tracy, 1999; Khalaf & 
Shuker, 2005; Alkhamisi & Shukur, 2008; 
Khalaf, 2011; Khalaf, 2011). 
 
The Proposed Estimator 

The general form of ridge regression 
suggested by Hoerl and Kennard (1970a) 
reduces XX ′  to a diagonal matrix by applying 
an orthogonal transformation Q, thus, 
 

Λ=′′ QXXQ )( , 
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where Q is a pp ×  orthogonal matrix, Λ  is a 
diagonal matrix whose diagonal elements 

pλλλ ,,, 21   are the eigenvalues of XX ′ . If 

QXX ′=∗  and βα Q= , then model (1) may 
be rewritten as, 
 

eXY 
+= ∗α , 

where 

.)()( Λ=′ ∗∗ XX  
 
The general ridge estimation procedure is 
defined as, 
 

( ) YXKXX


)()()(ˆ
1 ′+′= ∗−∗∗∗α ,     (7) 

 
where K is a diagonal matrix with non-negative 
diagonal elements .0,,,, 21 >ip kkkk   It 

follows from Hoerl and Kennard (1970a) that 
the value of ik  which minimizes the MSE of 

∗α̂  given by: 
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is: 

,
2

2

i
ik

α
σ=                             (8) 

 

where 2σ  represents the error variance of 

model (1) and iα  is the thi  element of α . 

Equation (8) gives a value of ik  that is fully 

dependent on the unknown 2σ  and iα , and 

therefore must be estimated from observed data. 
Hoerl and Kennard (1970a) recommended 

replacing 2σ  and iα  by their corresponding 

unbiased estimators, that is: 
 

,
ˆ

ˆˆ
2

2

i
ik

α
σ=                            (9) 

where 
pn

e
i

i

−
=
 2

2σ̂  is the residual MSE, which 

is an unbiased estimator of 2 ,σ  and iα̂  is the 

element of α

ˆ  which is an unbiased estimator of 

α . Hoerl and Kennard found that the best 

method for achieving a better estimator ∗α

ˆ  is to 

use kki =  for all i, and they suggested k to be 

HKk̂  where: 

.
)ˆmax(

ˆˆ
2

2

i
HKk

α
σ=                  (10) 

 

They showed that the estimator HKk̂  (HK) is 
sufficient to give ridge estimators with smaller 
MSEs than an OLS estimator. This article 
proposes a modification of the Hoerl and 
Kennared (1970a) estimator shown in (10) to 
obtain a new estimator, given by: 
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where ,, minmax λλ  are the largest and smallest 

eigenvalues of the matrix XX ′ , respectively. 
This estimator will be denoted by GK. Because 

,0
2

minmax

>
+ λλ

 then GK is greater than HK. 

 
Monte Carlo Simulation 

Monte Carlo simulation was used to 
investigate the properties of the considered 
estimators. It is convenient to make the 
comparison among the OLS estimator, HK 
estimator given by (10) and the new proposed 
GK estimator given by (11). These choices were 
made for many reasons: First is that; interest 
herein lies in studying the properties of the 
proposed GK estimator as an alternative to the 
OLS estimator in the presence of 
multicollinearity. Second, GK is a modified 
version of HK, so it is necessary to make a 
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comparison between them. Finally, the HK 
estimator was the first ridge estimator proposed 
among all other estimators, therefore, most 
studies comparing ridge estimators consider the 
HK estimator. 

A comparison was made based on MSE 
criterion. Following McDonald and Galarneau 
(1975), Wichern and Churchill (1978), Gibbons 
(1981) and Kibria (2003), the explanatory 
variables were generated using the device: 
 

1
2 2(1 ) ,

1,2,..., ,

1, 2,..., .

ij ij ipx z z
i n
j p

ρ ρ= − +

=
=

             (12) 

 
where ijz  are independent standard normal 

pseudo-random numbers, ρ  is specified so that 
the correlation between any two explanatory 

variables is given by 2ρ  and p is the number of 
explanatory variables. Once more, the variables 
are standardized so that XX ′  and YX ′  are in 
correlation forms. Four sets of correlations were 
considered corresponding to ρ = 0.7, 0.8, 0.9 
and 0.99. Using the condition number, 

min

max

λ
λ

=CN , it can be shown that these values 

of ρ  will include a wide range of low, moderate 
and high correlations between variables. The n 
observations for the dependent variable Y are 
determined by: 
 

0 1 1 2 2 ... ,

      1, 2,...,

i i i p ip iY X X X e
i n
β β β β= + + + + +

=
 

 

where ie  are independent normal ( )20,  σ  

pseudo-numbers and 0β  is considered 

identically zero without loss of generality. Three 
different sample sizes, n = 20, 30, 50 were used 
with 10, 15 and 20 explanatory variables, 
respectively. These choices of p were chosen to 
study the behavior of the estimators for small,  
 
 

moderate and large number of explanatory 
variables. 

The parameter values were chosen so 

that 2

1

1,
p

j
j

β
=

=  which is a common restriction in 

simulation studies (see Muniz & Kibria, 2009). 
For given values of p, n and ρ , the experiment 
was repeated 5,000 times by generating 5,000 
samples. For each replicate r (r = 1, 2, …, 
5,000) the values of k different proposed 
estimators and the corresponding ridge 
estimators were calculated using: 
 

YXIk


∗−∗ ′+Λ= 1)ˆ(α̂ ,             (13) 
 

where GKHKk ,ˆ = . The MSE for the 
estimators were calculated as follows: 

 


=

∗∗∗ −′−=
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1

).()(
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)ˆ(
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(14) 
 

Results 
The results of the simulations that compared the 
MSE to the other estimators are summarized in 
Tables 1-3. To compare the performances of the 
considered estimators, the MSE was calculated 
for each. The estimator that resulted in the 
minimum MSE was considered to be the best. 
The statistics package Minitab 14 was used for 
all calculations.  

Tables 1-3 show that both HK and GK 
are better than the OLS estimator, and the GK 
estimator performs better than the HK estimator. 
This also reveals that for low correlation, r = 
0.7, the performance of the GK estimator is 
slightly better than the HK estimator. Moreover, 
it was observed that, for given n and p, the MSE 
for all estimators increased as the correlation 
among the explanatory variables increased. 
Conversely, as the sample size and the number 
of explanatory variables increase, the MSE of all 
estimators decreased. 
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Conclusion 
Several procedures for constructing ridge 
estimators have been proposed in the literature. 
These procedures aim at a rule for selecting the 
constant k in equation (13). The best method for 
estimating k remains an unsolved problem and 
no constant value of k is certain to yield an 
estimator that is uniformly better in terms of 
MSE than the OLS estimators in all cases.  

This study investigated the properties of 
a newly proposed method for estimating the 
ridge   parameter   (k)    in    the    presence   of  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
multicollinearity. The investigation used Monte 
Carlo experiments, where levels of correlation, 
numbers of explanatory variables and sample 
sizes were varied. Each combination was 
replicated 5,000 times. The evaluation of the 
new estimator was accomplished by comparing 
the MSE of this estimator with the OLS 
estimator and the Hoerl and Kennard (1970a) 
estimator. Results show that the proposed 
estimator uniformly dominates the other 
estimators. 
 
 
 

Table 1: Estimated MSE and the values of CN with p = 10 and n = 20. 

 ρ  0.99 0.9 0.8 0.7 

 CN 980.58 90.17 44.24 18.93 

Estimators 

OLS 0.03877 0.02844 0.02147 0.01679 

HK 0.03453 0.02613 0.02015 0.01611 

GK 0.02820 0.02241 0.01826 0.01393 

 
Table 2: Estimated MSE and the values of CN with p = 15 and n = 30. 

 ρ  0.99 0.9 0.8 0.7 

 CN 2834.43 255.92 89.68 64.19 

Estimators 

OLS 0.01886 0.01299 0.00933 0.00738 

HK 0.01822 0.01275 0.00922 0.00733 

GK 0.01641 0.01112 0.00875 0.00701 

 
Table 3: Estimated MSE and the values of CN with p = 20 and n = 50. 

 ρ  0.99 0.9 0.8 0.7 

 CN 25266.30 2235.51 945.37 399.63 

Estimators 

OLS 0.01454 0.00922 0.00665 0.00505 

HK 0.01416 0.00910 0.00660 0.00503 

GK 0.00694 0.00436 0.00320 0.00488 
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