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ABSTRACT

Timing techniques are powerful tools to study dynamical astrophysical phenomena. In the X-ray band, they offer
the potential of probing accretion physics down to the event horizon. Recent work has used frequency- and energy-
dependent time lags as tools for studying relativistic reverberation around the black holes in several Seyfert galaxies.
This was achieved due to the evenly sampled light curves obtained using XMM-Newton. Continuously sampled
data are, however, not always available and standard Fourier techniques are not applicable. Here, building on the
work of Miller et al., we discuss and use a maximum likelihood method to obtain frequency-dependent lags that
takes into account light curve gaps. Instead of calculating the lag directly, the method estimates the most likely lag
values at a particular frequency given two observed light curves. We use Monte Carlo simulations to assess the
method’s applicability and use it to obtain lag-energy spectra from Suzaku data for two objects, NGC 4151 and
MCG-5-23-16, that had previously shown signatures of iron K reverberation. The lags obtained are consistent with
those calculated using standard methods using XMM-Newton data.
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1. INTRODUCTION

Variability is ubiquitous in astrophysical phenomena. Ob-
served fluxes are seen to vary on different timescales for dif-
ferent classes of objects. From milliseconds in neutron stars,
stellar mass black holes, and gamma ray bursts, timescales pro-
gressively increases for different phases of planetary, stellar,
and galactic evolution. Variability has been invaluable in un-
derstanding the dynamics of many systems that are otherwise
observationally inaccessible.

Although a lot of the methodology relies on time-
domain analysis, frequency-domain techniques remain the
standard tool for characterizing timescale dependencies and
(quasi-)periodicity when good data coverage is available. Stellar
mass black holes and neutron star low-mass X-ray binaries in
particular show a rich phenomenology in the frequency domain
that is very tied to state transitions that have distinct spectro-
scopic signatures (van der Klis 2000; Remillard & McClintock
2006).

In addition to estimating the power spectral density (PSD) in
the frequency domain for a single light curve, other measures
exist when multiple, simultaneous (e.g., at different bands or
energies) light curves exist. The cross spectrum gives a measure
of the combined variability power in two light curves, the
coherence measures the fraction of one light curve that can
be predicted from the other (Vaughan & Nowak 1997), and the
phase lag gives the relative delay (in units of radians, between
−π and π ) between two light curves as a function of frequency
(Miyamoto & Kitamoto 1989). The phase lag is converted into
a time lag (in units of seconds) by dividing the phase lag by the
angular frequency of the measurement.

In the X-ray studies of active galactic nucleus (AGN) that
motivated this work, frequency-domain techniques have been
used extensively to characterize the broadband variability (Pa-
padakis & McHardy 1995; Uttley et al. 2002; Vaughan et al.
2003; McHardy et al. 2004). Periodicity is generally not seen

(see Gierliński et al. 2008 for an exception) and the power spec-
tra are characterized by a power-law of index ∼2 at high fre-
quencies that breaks or bends to ∼1 at a characteristic frequency
that appears to scale with mass (McHardy et al. 2006). A stan-
dard tool in this case is the fast Fourier transform (FFT), which,
for a continuously sampled time series, gives a set of complex
numbers at specific frequencies. The periodogram, which esti-
mates the power spectrum and is the squared amplitude of these
complex transforms.

Inter-band time delays in the standard X-ray bandpass
(0.3–20 keV) in AGNs have just started to be explored in de-
tail. Low frequency hard lags have been seen in early XMM-
Newton observations (Papadakis et al. 2001; McHardy et al.
2007; Arévalo et al. 2008), where hard bands lag softer bands
and the lag magnitude depends on the separation of energies,
similar to that in stellar mass black holes (Nowak et al. 1999;
Kotov et al. 2001). More recently, high frequency lags have also
been seen (e.g., Fabian et al. 2009; Zoghbi et al. 2010; De Marco
et al. 2013; Cackett et al. 2013). In this case, the lag can be soft or
hard depending on the selected energies, but it is distinguished
from the low frequency lags by its energy dependence. The
shape of the lag-energy spectra, which gives a measure of the
inter-band delays as a function of energy at a particular Fourier
frequency, appears to be closely related to the spectroscopic
components in a standard spectrum (Zoghbi et al. 2011, 2013;
Kara et al. 2013). The fact that the 1–3 keV band leads both the
<1 keV and >3 keV bands at high frequencies points to a reflec-
tion origin, with relativistic reflection being the most plausible
explanation. In this case, the reflection spectrum, matched by
the lag-energy spectrum, is produced within ∼10 gravitational
radii from the event horizon of the black hole and reverberation
is produced when the reflecting medium responds to the fast
variations of the illuminating source, providing a powerful tool
to probe these environments (Reynolds et al. 1999).

Similar to power spectra, time lags in these cases are calcu-
lated from the FFT (see Section 2) for continuously sampled
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light curves. The statistical properties of lag measurements in
this case are discussed in Nowak et al. (1999). Extending re-
verberation studies beyond XMM-Newton data is not possible
using the standard Fourier techniques because of the inherent
non-continuous sampling forced by the low-Earth orbits of other
observatories like Suzaku, NuSTAR, and AstroH. The lowest
frequencies probed with the standard Fourier techniques are
those associated with the orbital period of the satellite, which
for the case of low-Earth orbits is higher than the frequency
of the interesting reverberation in AGNs. Miller et al. (2010)
introduced a method based on likelihood maximization that di-
rectly fits for frequency-dependent time lag (along with the
power spectrum, based on the work of Bond et al. 1998). In
this work, we explicitly discuss this method in detail, assess-
ing its applicability using Monte Carlo simulations. Then, we
apply it to Suzaku observations of two objects, NGC 4151 and
MCG-5-23-16, that had previously shown relativistic reverber-
ation delays in the iron K band. We start Section 2 by reviewing
the standard Fourier techniques for both power spectra and time
lags. In Section 3, we describe the formalism of the likelihood
method. Section 4 discusses the detailed Monte Carlo simu-
lations of the applicability of the method. The application of
the method to Suzaku archival observations of NGC 4151 and
MCG-5-23-16 is presented in Section 5.

2. STANDARD FOURIER TECHNIQUES

In this section, we briefly review the standard techniques
based on the Fourier transform, which are commonly used with
evenly sampled light curves. The PSD P(f ) is a property of
the stochastic process producing the variability and it gives
a measure of the variability power as a function of temporal
frequency f. It is estimated by calculating the periodogram I. If
the observed data are in the form of a vector x of length N that
gives the count rates at times ti = iΔt , where i takes the integral
values 1, 2, . . . , N and Δt is the time bin size, the periodogram
I (f ) is given by the squared amplitude of the discrete Fourier
transform of x:

I (fj ) = A

∣∣∣∣∣
N∑

i=1

xie
i2πfj ti

∣∣∣∣∣
2

, (1)

where fj = j/NΔt with j = 1, 2, . . . , N/2. A is a normaliza-
tion factor, which we take in this work to be 2Δt/N (Vaughan
et al. 2003). The periodogram I itself is an inconsistent estimator
of P , where its standard deviation at a frequency f is equal to
its value (Priestley 1981). The variance is reduced significantly
if several frequencies are grouped together (e.g., Papadakis &
Lawrence 1993).

Let us consider a second light curve y that gives the count rate
at the same time intervals ti = iΔt but in another energy band.
The cross spectrum can be estimated as C(f ) = X∗(f )Y (f ),
where X and Y are the Fourier transform of x and y, respectively,
and X∗ is the complex conjugate of X. The cross spectrum is
a complex number. Its amplitude is usually expressed in the
form of the coherence function γ 2(f ) = |〈C〉|2/(〈|X|2〉〈|Y |2〉)
(Vaughan & Nowak 1997), where the angle brackets denote
averaging. The phase of the complex cross spectrum gives the
phase lag between the two light curves (Miyamoto & Kitamoto
1989; Nowak et al. 1999):

φ(f ) = arg[C(f )]. (2)

The time lag τ (f ) is then obtained by dividing by 2πf , so that
τ (f ) = φ(f )/2πf . τ (f ) gives a measure of the time delay

between x and y as a function of frequency (or the variability
timescale).

The above calculations require the light curve to be evenly
sampled so the Fourier transform can be utilized. If this is not
the case, other techniques are needed. The following section
discusses the method of using the likelihood function to directly
fit for the best estimates for the power and cross spectra as well
as the phase/time lags directly.

3. LIKELIHOOD ANALYSIS

The principal idea behind the method was first presented in
the context of X-ray light curves by Miller et al. (2010). Here,
we expand it and show explicitly how the method works and
perform Monte Carlo simulation to assess its applicability. The
method fits for the most likely variability powers and time lags
given the observed data. Starting with a model for the power
and time lags (which can be of a functional form such as a
power law or parameterized with the values of power and time
lags in pre-defined frequency bins), a likelihood function that
compares the model to the data is constructed (by comparing the
auto- and cross-correlations of the data with those expected from
the model) and the best estimates are obtained by maximizing
this likelihood function. We start in Section 3.1 by applying
it to estimating the power spectrum. In Section 3.2, with a
simple extension, we use the method to estimate the cross power
spectrum and the time lag as a function of Fourier frequency.

3.1. Power Spectrum Estimate

As before, the light curve is taken to be x with values xi for
i = 1, . . . , N , but now ti �= iΔt . Following Bond et al. (1998;
although that work is for two-dimensional cosmic microwave
background data), each xi is the sum of the contribution from
the signal si and noise ni. The noise is assumed Gaussian, which
is almost always the case given that each xi results from binning
measurements obtained at a sampling smaller than Δt . So, the
observed light curve is

x = s + n (3)

with a model correlation matrix given by

Cx = Cs + Cn, (4)

where Cs = 〈sisj 〉 is the source signal correlation matrix
and Cn = 〈ninj 〉 is the noise correlation matrix. The angle
brackets indicate the ensemble average and we have assumed
that the source noise components are independent. Because
the measurement errors in light curves are independent, Cn

is diagonal with entries nini , i = 1, . . . , N . In general, if
the observations have correlated noise, they can be easily
incorporated here by adding non-diagonal elements to Cn.

Cs is unknown and its components cij defined at τ = tj − ti
are related to the underlying power spectrum through the
autocorrelation function A(τ ):

〈s(t)s(t + τ )〉 = A(τ ) =
∫ +∞

−∞
P(f ) cos(2πf τ )df, (5)

using the relation that the autocorrelation is the Fourier trans-
form of the power spectrum and for real functions only the
cosine term is included. Now, starting from P(f ) that depends
on a number of parameters ap (of length np, say) to be found,
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we construct Cs (following Equation (5)) and calculate the like-
lihood functions for those parameters:

L(ap) = (2π )−N/2|Cx |−1/2 exp
[− 1

2 xT C−1
x x

]
, (6)

where the dependence on ap is in Cx through its dependence on
P and xT is the transpose of x. Thus, Cx is calculated from the
model and x is the data vector. The procedure now is to select
a model P(f ) and fit for the parameters ap that maximize the
likelihood function in Equation (6).P can be taken to be a power
law or a broken power-law function of f. Alternatively, we can
fit the band powers directly, taking the powers in pre-defined
frequency bands as the parameters ap. This is the best option
when the intrinsic shape is unknown, which might not be the
case for P , but is certainly the case for the frequency-dependent
lags τ (f ).

The standard is to maximize log(L) instead of L. Because
of the functional form of the likelihood, the gradient and the
second derivatives of the likelihood can be calculated (Bond
et al. 1998). An iterative quadratic approximation is then used
to find the maximum likelihood. The structure of the log-
likelihood function is relatively smooth and converges within
a few iterations.

3.2. Time Lag Estimate

Extending the previous formalism to include time lags is
straightforward. Now, we have another light curve y = r + ny

that represents the count rates in a different band, for example.
y can be appended to the vector x to give an augmented data
vector x̃ = (x

y) (Rybicki & Press 1992). The covariance matrix
C̃ of the new data vector is

C̃ =
(

Cx Cxy

CT
xy Cy

)
, (7)

where Cy is the model covariance matrix of the second light
curve y defined in a similar way to Equation (4), with Cr being
in general different from Cs . The matrix Cxy is the model
cross-covariance matrix corresponding to 〈xiyj 〉. The noise
components of x and y are assumed to be independent because
the two light curves are produced by independent events in the
two bands. The noise components are also independent of the
two light curves so that 〈nixj 〉 = 0, 〈niyj 〉 = 0, etc. Therefore,
Cxy = 〈sirj 〉.

The cross covariance is related to the cross-power spectrum
and the phase lag through the cross-correlation function X (τ ):

〈s(t)r(t + τ )〉 = X (τ ) =
∫ +∞

−∞
C(f ) cos(2πf τ + φ(τ ))df. (8)

The parameters we are interested in are now in the matrix C̃.
The likelihood equation is similar to Equation (6), replacing x
and C with x̃ and C̃, respectively. Again, we use a pre-selected
model (e.g., a power law) or choose the powers and lags in
pre-defined frequency bins as the parameters of interest. In this
work, we choose the latter parameterization. If nB is the number
of frequency bins, then we have np = 4nB parameters: the
powers for each light curve, the cross powers, and the phase lags.
For this case, the maximization procedure starts with obtaining
the PSD values for individual light curves first, then the cross
power and phase lags.

In practice, there are also other effects that need to be
considered. Aliasing is a consequence of the fact that power

cannot be calculated beyond the Nyquist frequency fN =
1/2Δt . The result is that the measured powers at a frequency f
also contain contributions from its aliases above fN . Fortunately,
however, X-ray light curves generally have power-law PSDs, so
the power above fN is small. Also, Δt is a width of a bin, not
the actual sampling time. The binning process is equivalent to
convolving the light curve with a binning window b(t) = 1/Δt
for −Δt/2 < t < Δt/2 and 0 otherwise. The result is that
the P is multiplied by the Fourier transform of b(t), which is
sinc2(πf Δt) (e.g., van der Klis 1989). Red noise leak is another
problem and it is the result of the finite length of the observation.
P in this case is convolved with the Fourier transform of the
window function and mainly causes power below the lowest
measured frequency (fmin = 1/T , where T is the length of
the observation) to leak into frequencies above fmin. One can
explicitly include the convolution of the window in Equations (5)
and (8). However, we found that it is computationally easier to
include the additional power below fmin in the fit by extending
the lowest boundary of the lowest frequency bin to values
smaller than fmin; this was found to correct for the power biases
(see Section 4.1). Extending the first bin to frequencies lower
than fmin assumes that the power below fmin does not change
significantly, which is a reasonable assumption given that the
PSD in almost all cases is a smooth power law.

3.3. Estimating Uncertainties

As discussed in Miller et al. (2010), the uncertainties can
be estimated as part of the fitting procedure by calculating the
Fisher matrix, which is related to the second derivative of the
log-likelihood (see the detailed related discussion in Tegmark
et al. 1997). The Fisher matrix basically measures how fast on
average the likelihood function falls off around its maximum.
When the best fit is found, an estimate of the covariance matrix
of the parameters is given by the inverse of the Fisher matrix. The
variance of the estimates parameters are the diagonal elements
of this covariance matrix. These estimates are, however, only
a lower limit on the uncertainties when the off-diagonal values
are not small (i.e., the parameters are correlated).

The alternative is to step through the parameters, taking the
68% uncertainty as the value that changes −2 log(L/Lmax) by
1 (Miller et al. 2010). Another approach involves using Monte
Carlo Markov Chain (MCMC) in a Bayesian framework to map
the full probability space, obtaining probability distributions for
the parameters directly. The uncertainties quoted in this work,
unless stated otherwise, are the result of stepping through each
parameter individually, allowing the rest to change, and taking
the error as the value that changes the value of −2 log(L/Lmax)
by 1. This choice works when the number of parameters to
be fit is small (np < ∼20, so stepping through parameters is
computationally feasible relatively quickly). If the number is
large, the best option is to use MCMC to obtain the uncertainties.

4. SIMULATIONS

In order to test the above method, we simulate light curves
with known underlying power spectra and time delays, introduce
gaps, and explore how well they can be recovered. Starting with
a functional form for P , we randomize the amplitude and the
phase and then inverse Fourier transform to obtain one light
curve realization (Timmer & Koenig 1995). When a second
light curve is needed, we shift the phase by the desired amount
before performing the inverse Fourier transform. This assumes
unity coherence. When fitting real data, the coherence can be
estimated from the cross spectrum and the individual power
spectra. Poisson noise is added to all light curves.
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(a)

(b)

Figure 1. Two cases of base power spectra used in the simulations. Solid lines
represent the underlying generating spectrum. Dashed lines include the effect of
Poisson noise. Case (a) corresponds to a bright variable (35% rms) source and
case (b) corresponds to a relatively fainter and less variable source (10% rms).

(A color version of this figure is available in the online journal.)

In this work, we take the input power spectrum P to be a
broken power law of the form:

P(f ) = Ab

(
f

fb

)α

, (9)

where α = −1 below some break frequency fb, and
α = −1.5 above it. Ab is a normalization factor. We take
fb = 10−6 Hz. This break frequency is consistent with a black
hole mass of ∼5 × 107 M	, which is typical of many Seyfert
galaxies (McHardy et al. 2006). The lag in the simulated light
curves is taken to be constant in phase (at 1 radian), so that the
lag scales with τ (f ) ∝ f −1. For the gaps, we tried different
patterns, as will be discussed. The most relevant given X-ray
observations are those that have a period of ∼1.6 hr, typical of
low-Earth orbit observations. Throughout the following simu-
lations, we study two cases: Ab = 3 × 106 and Ab = 8 × 103,
representing the high and low power cases, respectively. The
count rates for the two cases are 5 and 1 s−1, respectively. These
are chosen as typical values for a bright variable and relatively
faint, less variable sources, corresponding to rms variabilities of
∼35% and 10% in each case. For each of these two cases, we
run simulations with and without gaps. The simulations without
gaps are used for comparison and consistency checks. All the
simulated light curves are equivalent to an exposure of 200 ks.
In simulations with gaps, we discuss both on-source and total
exposures of 200 ks, as detailed below.

4.1. Power Spectra

First, we discuss estimating the power spectrum, starting with
a simple, high power, high signal to noise case without including
gaps to use as a proof of concept. We simulated more than 2000
light curve realizations from case (a) PSD with a 1 s sampling
rate, added Poisson noise, and then binned the light curves in
512 s bins. We used frequency bins that give, in the case of
even sampling, at least 10 Fourier frequency points per bin. The
same experiment is repeated for the low-rms case. The model
PSDs and typical light curve realizations for these two cases are
shown in Figures 1 and 2.

The result is summarized in Figure 3, where we show the
ensemble-averaged measured power in nine frequency bins,
along with histogram distributions for two selected frequency
bins. Each simulated light curve gives an estimate of the power

(a)

(b)

(c)

Figure 2. Typical light curve realizations from case (a) (panel (a)) and (b)
(panel (b)) in Figure 1. In each case, the second light curve is delayed by
1 radian with respect to first. Panel (c) shows typical light curves with gaps for
the two cases. The y-axis is similar to panels (a) and (b).

(A color version of this figure is available in the online journal.)

(a)

(b)

Figure 3. Left: the average estimated PSD for the high- (a) and low-rms (b)
cases without including gaps. Right: the histogram of the values for two selected
frequency bands (marked with vertical lines in the left panel). For each of the
high- and low-rms cases, more than 2000 separate light curves are simulated.
For each one, the power is estimated at nine frequency bins. The means of the
resulting distributions are plotted in the left panel. Their errors bars represent
the standard deviation of the distribution. The average errors from the 2000
estimates are plotted as the dotted lines above and below the best estimate. The
solid line is the value of P (i.e., the input) at that frequency. The frequency error
bars representing the width of the bin are omitted for clarity. The vertical lines
in the histogram plots represent the mean (the solid lines) and input model (the
dotted lines).

(A color version of this figure is available in the online journal.)
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spectrum at the nine frequencies and their uncertainties. The left
panel of Figure 3 shows the means of these estimates (points).
The errors on those points are taken to be the standard deviation
of the estimates around the mean. The averages of the measured
uncertainties are also plotted as the dotted lines around the best
estimates. The right panel shows the distribution of the 2000
values for two selected frequency bins (first and fifth bins).

There are several points to note from Figure 3. The power
spectrum is well-recovered both for the high- and low-rms
cases, even in noise-dominated bands in the low-rms case
(>2 × 10−4 Hz; see Figure 1). The noise in the light curves
is accounted for automatically (n and Cn in Equations (3)
and (4)), so that the measured PSD is the underlying, noise-
less P . The estimates are nearly Gaussian, particularly at
intermediate frequencies. The distribution tails at the lowest
frequencies are consistent with expectations from standard
Fourier analysis for bins with a small number of averaged
frequencies (e.g., Papadakis & Lawrence 1993). The shape of
the distribution depends essentially on the effective number of
independent frequencies present in the light curve. The central
limit theorem ensures that when a relatively large number is
averaged, the distribution is Gaussian. If the number is small,
an estimate is obtained and the errors may not be Gaussian,
but the formalism presented here allows us to also estimate the
probability distribution of the lags using either direct evaluation
of the likelihood function or through MCMCs assuming some
priors.

It is also clear that the method gives unbiased, consistent es-
timates of the power. The plot also shows that the uncertainty
estimates (dotted envelopes), discussed in Section 3.3 and taken
here as the average of individual uncertainties, are very consis-
tent with the standard deviation of an ensemble of estimates.
In fact, for the cases of Figure 3 where no gaps are included,
the frequencies are independent and so the uncertainties taken
directly from the Fisher matrix and those estimated by stepping
through parameter space are the same.

Similar simulations were performed for the low- and high-
rms cases (as defined in Section 4 and Figure 1) considering
light curves with gaps. For comparison, we simulate light
curves where the length of observation is 200 ks and also light
curves where the on-source exposure is 200 ks. The gaps are
generated randomly assuming that both the length of the data
stream and the gaps are Gaussian random variables with means
of 5700 and 4000 s, respectively, with a standard deviation
of 100 s. These gap patterns roughly resemble those usually
encountered in Suzaku observations and are relevant to NuSTAR
and AstroH. Other gap patterns have also been explored and
the conclusions are in general the same (with the obvious
change of the frequencies affected). The result is plotted in
Figure 4.

High- and low-rms cases are plotted in the top and bottom
panels, respectively. In each case, the left plot is similar to that
in Figure 3. The points and the errors bars are for the case
with no gaps, for comparison. The red dotted and green dashed
lines are the envelope of the standard deviation of the PSD
estimates for light curves with gaps and light curve lengths of
200 ks (hereafter, case G1) and an on-source exposure of 200 ks
(hereafter, case G2), respectively.

The gaps have several effects compared with the continuous
case. The errors are in general larger because there are less data
on the whole, except for the very lowest frequencies where
the errors in G2 are smaller than the no gap case because
the requirement of a on-source exposure of 200 ks means that

Figure 4. Left: the average estimated power spectra (similar to Figure 3)
including light curves with gaps for high (top panel) and low (bottom panel) rms
cases. The points represent the distribution means for the case of no gaps (similar
to Figure 3) and the error bars are the standard deviation around the mean. The
red dotted envelope is the standard deviation of the estimates including gaps with
the light curves of length 200 ks (data + gaps, G1). The green dashed envelope
is the standard deviation of the estimates for light curves with gaps, but with
on-source exposure of 200 ks (data only, G2). Right: a histogram distribution
of the estimates at the fifth frequency bin (∼2 × 10−4 Hz), which corresponds
roughly to the periodicity of the gaps. The blue line is for light curves without
gaps. The red line is for the case of a total exposure of 200 ks and the green line
is for the case of an on-source exposure of 200 ks.

(A color version of this figure is available in the online journal.)

there are more low frequency data. Also, the errors for both G1
and G2 are larger for frequencies close to the gap periodicity.
The reason is that information on those frequencies is missing
because of the gaps. This is a general result that we found
throughout the simulations and it shows that the periodic gaps
cause the uncertainties at the frequency corresponding to the
gap periodicity (∼1 × 10−4 Hz). G1 has about 60%–70% less
exposure and its errors are slightly larger than those of G2
(the difference for a single frequency band is not huge, but all
frequency bins are affected). The distribution histograms for the
frequency bin closest to the gap frequencies are also plotted in
Figure 4.

4.2. Time Lag

An analysis similar to that presented in Section 4.1 was
extended to include time lags. Figure 2 show typical light curves
pairs for the high- and low-rms cases defined in Section 4, where,
for each pair, the second light curve is shifted with a phase of
1 radian. The results are presented in Figure 5. Although the
presented simulations are for the case of a constant phase lag
of 1 radian, we tested for other forms (e.g., a constant time lag,
a time lag that has a functional dependence on f, etc.) and the
results are not different from those discussed here.

The Figure 5, analogous to Figure 3, shows the averaged lag
calculated from an ensemble of 2000 light curve realizations for
the high- and low-rms cases without gaps. The lags are well-
recovered for all frequencies for both cases. The distributions of
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(a)

(b)

Figure 5. Similar to Figure 3 but now showing lags instead of the PSD. High-
and low-rms cases are shown in panels (a, top) and (b, bottom), respectively,
for light curves without gaps. The average estimated lag is shown as points.
The standard deviations around the mean are shown as error bars. The envelope
dotted line shows the average estimated uncertainties. The right panels in each
case show the (normalized) number of values histogram for the first (open) and
fifth (shaded) frequency bins, marked with vertical lines in the left panels.

(A color version of this figure is available in the online journal.)

Figure 6. Similar to Figure 5 but now including light curves with gaps for the
high-rms case. The average estimated lag for light curves without gaps is shown
as points. The standard deviations around the mean are shown as error bars. The
envelope dotted line (red) shows the standard deviation for light curves with
gaps and lengths of 200 ks (G1). The envelope dashed line (green) is for the
case of light curves with gaps and on-source exposures of 200 ks (G2). The
right panel shows the corresponding (normalized) number of values histogram
for the fifth frequency bin, which corresponds roughly to the frequency of the
periodic gaps.

(A color version of this figure is available in the online journal.)

the estimates (shown in Figure 5) are almost perfect Gaussians.
The plot also shows that the uncertainty estimates (dotted
envelopes), discussed in Section 3.3 and taken here as the
ensemble average of individual uncertainties, are also consistent
with the standard deviation of an ensemble of estimates. The
slight difference at the noise-dominated frequencies (highest
frequencies in panel (b) in Figure 5) is an artifact of the
simulation, where the noise-dominated parameters sometimes
fail to converge; it is therefore hard to obtain uncertainties and
those are removed when estimating the average uncertainties.
In practical data analysis, one would reduce the number of
frequency bins to improve the signal to noise ratio.

Extending the analysis to light curves with gaps is again
straightforward (Figure 6). As in the case of power spectra,
the errors are larger for light curves with gaps because less
information is available in the data. The lowest frequencies are
not affected much because the long timescale trends in the light
curves are not affected if there are gaps on smaller timescale.

Figure 7. Similar to Figure 6 but with a different gap pattern. The gaps now have
a periodicity that corresponds to a frequency of ∼7 × 10−5 Hz. The histograms
are for the second frequency point.

(A color version of this figure is available in the online journal.)

Table 1
Observations of NGC 4151 and MCG-5-23-16
from the Suzaku Archive Used in This Work

Object Obs. ID Exposure Date
(ks)

NGC 4151 701034010 125 2008 Aug
906006010 60 2011 Apr
906006020 60 2001 Apr

MCG-5-23-16 700002010 95 2005 Dec

The periodic gaps have the effect of increasing the uncertainty of
the measured lags at frequencies close to the gap frequency and
also its harmonics where information is missing. This, combined
with the gap randomness (i.e., it is not a single frequency) and
frequency binning produces the fluctuations seen in Figure 6.
The results for the low-rms case are very similar. The low signal-
to-noise ratio, however, means that the errors are larger and
sometimes simulations are not constrained. Better estimates are
obtained when using fewer frequency bins (i.e., improving the
signal per bin) and, in this case, the results are similar to those
of the high-rms case.

This increased uncertainty at the gap periodicity is fur-
ther illustrated in Figure 7, which is similar to Figure 6 but
for a different gap pattern. Here, the gaps have a periodicity
corresponding to a frequency of ∼7 × 10−5 Hz. Again, the
effect of the gaps is that less information is available to the
gap frequency and therefore the uncertainty is larger.
The distribution of the estimates is Gaussian or very close to
Gaussian in most cases. The power of the likelihood method
presented here is that, even in frequency bands where the ef-
fective number of independent frequencies is small, one can
obtain a direct measure of the probability distribution whether
by stepping through the likelihood function or more efficiently
by using MCMC.

5. APPLICATIONS

In this section, we discuss the application of the above method
to calculate time lags in Suzaku observations of two sources:
NGC 4151 and MCG-5-23-16. Time delays have been seen in
these two objects using XMM-Newton and standard lag calcula-
tion methods (Zoghbi et al. 2012, 2013). The observations used
in the following discussion are summarized in Table 1.

Data were retrieved from the archives and reduced using
heasoft 6.13 and the latest calibration files (caldb ver-
sion 20130305). Cleaned events files for all X-ray imaging

6
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Figure 8. Lag-energy plot for NGC 4151 (left) and MCG-5-23-16 (right). The points represent the estimated lag at frequencies 3 × 10−5–3 × 10−4 Hz (NGC 4151)
and 1 × 10−5–3 × 10−4 Hz (MCG-5-23-16) between the marked energy band and the entire 2–10 keV band taken as a reference (after removing the band of interest
to keep the noise uncorrelated; see Zoghbi et al. 2012 for details on lag-energy plots). The shaded plots are the lag-energy plots from the XMM-Newton data (Zoghbi
et al. 2012, 2013).

(A color version of this figure is available in the online journal.)

spectrometer (XIS) detectors operational during the obser-
vations were produced following the Suzaku user guide.
Then, xselect was used to extract source and background light
curves with time bins of 512 s. The source region in each case
was circular with a radius of 3.5 arcmin and background regions
were selected from source-free regions on the CCD. In order to
study time lags, we extracted light curves in eight energy bins
between 2–10 keV in steps of 1 keV. Background light curves
were than scaled to match the area of the source region before
subtracting them from the source light curves. The XIS0 and
XIS3 counts were combined to produce a total front-illuminated
light curve, while the XIS1 gives a back-illuminated light curve.
The two light curves can then be fit simultaneously using the
formalism discussed in Section 3.

Figure 8 shows the lag-energy plots for NGC 4151 (left)
and MCG-5-23-16 (right), along with plots from previously
published XMM-Newton data (Zoghbi et al. 2012, 2013). Each
point in the plots is a result of maximizing the likelihood function
for the power spectra and phase lags between individual light
curves and the total 2–10 keV light curves, excluding the current
energies (see Zoghbi et al. 2012 for details on the lag-energy
plots). The plotted frequencies are 3 × 10−5–3 × 10−4 Hz and
1 × 10−5–3 × 10−4 Hz, respectively. Although the uncertainties
at the highest energies are relatively large, it is clear that there
is a structure at 6–7 keV consistent with that seen in the
XMM-Newton data. The match between the Suzaku and XMM-
Newton plots in the case of MCG-5-23-16 (Figure 8, right) is
remarkable. For the case of NGC 4151, although the shapes
are statistically consistent, the lag-energy shape in this source
is known to be flux- and frequency-dependent (Zoghbi et al.
2012). The length and quality of the Suzaku observations do not
allow for a direct comparison at the same exact frequencies, but
the fact that there is a peak at ∼6 keV adds further evidence
that the iron line is responsible for these lags. A further test
is achieved by adding artificial gaps to the XMM-Newton and
calculating lags. This, however, reduces the amount of available
data and smears the signals out.

The likelihood method allows us to obtain full probability
densities for lag estimates and hence quantify directly the
significance of any lag detection. For example, Figure 9 shows
the probability density of the estimated lag values at 1–2 and
6–7 keV for the case of MCG-5-23-16, plotted in the right panel
of Figure 8. After the best estimates are obtained by maximizing

Figure 9. Probability densities for MCG-5-23-16 for the two lag points at 1–2
and 6–7 keV shown in Figure 8 estimated using MCMC.

(A color version of this figure is available in the online journal.)

the likelihood function, the multi-dimensional parameter space
is mapped out using MCMC assuming uniform priors for the
parameters. The chains were generated with an affine-invariant
ensemble sampler (Goodman & Weare 2010; Foreman-Mackey
et al. 2013) and the result is a probability density for each of the
estimated values.

6. SUMMARY

We presented and discussed a method to calculate frequency-
dependent power spectra and time lags for unevenly sampled
data. The method, first introduced by Miller et al. (2010), relies
on likelihood maximization and gives the most likely power and
lag estimates given the data. We tested the method using Monte
Carlo simulations and showed that the main effect of periodic
gaps, typical of low-Earth orbit X-ray observations, is to give
unconstrained estimates of the frequency corresponding to the
gap periodicity, while information at other frequencies is recov-
ered. We applied the method to Suzaku archival observations of
NGC 4151 and MCG-5-23-16 and showed that their lag-energy
spectra are consistent with those observed using XMM-Newton,
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giving further support to their interpretations of being due to
relativistic reverberation close to black holes.
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Gierliński, M., Middleton, M., Ward, M., & Done, C. 2008, Natur, 455, 369
Goodman, J., & Weare, J. 2010, Commun. Appl. Math. Comput. Sci., 5, 65
Kara, E., Fabian, A. C., Cackett, E. M., Miniutti, G., & Uttley, P. 2013, MNRAS,

430, 1408
Kotov, O., Churazov, E., & Gilfanov, M. 2001, MNRAS, 327, 799
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