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Comparison of Re-sampling Methods to Generalized Linear Models and 
Transformations in Factorial and Fractional Factorial Designs 

 
Maher Qumsiyeh Gerald Shaughnessy 

University of Dayton, 
Dayton OH 

 
 
Experimental situations in which observations are not normally distributed frequently occur in practice. A 
common situation occurs when responses are discrete in nature, for example counts. One way to analyze 
such experimental data is to use a transformation for the responses; another is to use a link function based 
on a generalized linear model (GLM) approach. Re-sampling is employed as an alternative method to 
analyze non-normal, discrete data. Results are compared to those obtained by the previous two methods. 
 
Key words: Factorial experiments, fractional factorial experiments, effect estimation, confidence 

intervals. 
 
 

Introduction 
Transformation, generalized linear model 
(GLM) and bootstrap (re-sampling) are methods 
employed to examine data when systematic and 
error assumptions may not hold; this suggests a 
need for inference procedures which are not 
based on ordinary least squares. Montgomery 
and Myers (1997) used a GLM approach to 
analyze data from research conducted by 
Bisgaard and Fuller (1994) where the response 
variable was a count of the number of defects in 
car grille opening panels; they concluded that 
using GLMs will provide shorter confidence 
intervals for the mean predicted response 
compared to those obtained using 
transformations. This study shows that this is not 
necessarily true: it depends on the type of data at 
hand. 

Benski (1994) compared nine different 
techniques to determine active factors. 
Qumsiyeh and Shaughnessy (2008) showed that 
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the bootstrap (re-sampling) could be used to 
determine the active factors (factors that have an 
effect on the response) without any requirements 
on the type of data provided. This study shows 
that this method of determining active factors 
agrees with other methods, such as the half-
normal plots, in addition this study shows how 
this method can be used to obtain confidence 
intervals for responses after determining active 
factors. 

The bootstrap has been shown to 
provide better than normal estimates of 
distribution functions of studentized statistics 
(see Singh, 1981; Bickle & Freedman, 1980; 
Babu & Singh 1983; Babu and Singh 1984). 
Qumsiyeh (1994) demonstrated that bootstrap 
approximation for the distribution of the 
studentized least square estimate is 
asymptotically better, not only than the normal 
approximation, but also than the two-term 
Edgeworth expansion. Lahiri (1992) showed the 
superiority of the bootstrap for approximating 
the distribution of M-estimators. Bhattacharya 
and Qumsiyeh (1989) conducted an Lp-
comparison between the bootstrap and 
Edgeworth expansions. Finally, Qumsiyeh and 
Shaughnessy (2010) showed that the bootstrap 
can be used to determine the active factors in 
two level designs with missing responses. 
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The Data 
The data consist of three examples taken 

from the literature, the first two are fractional 
factorial and the third is full factorial. The third 
example presents data that can be analyzed using 
ordinary least squares. Results obtained were 
compared with results obtained using ordinary 
least squares.  
 
Box, Hunter and Hunter 

Box, Hunter and Hunter (1978) 
presented an example where the response Y1

  is 
the glossiness of car paint measured as counts on 
a scale of 1 to 100; this measure depended on 
the setting of 8 factors and sixteen readings were 
taken, thus, it is part of a 28-4 fractional factorial 
design. The first four factors are listed in 
standard order, other factors have the alias 
structure: E=ABC, F=ABD, G=ACD, H=BCD. 
Using normal plots, factors A and B appear to be 
the active factors. Using the transformation 
 

( )1 1 1 / 2Y Y Y= + + , 

 
the final model for the transformed responses is: 
 

   8.04 0.5173*A 0.3916*B.Y = + +      (1) 

 
Bisgaard and Fuller 

Bisgaard and Fuller (1994) presented an 
example of a 29-5 fractional factorial. The 
response Y2 is the number of defects in the 
finish of sheet molded grille opening panels. The 
first four factors are listed in the standard order. 
Other factors have the alias structure:  E=BD, 
F=BCD, G=AC, H=ACD, J=AB. Using the 
transformation 
 

( )2 2 1 / 2,Y Y Y= + +  

 
as well as normal plots, Bisgaard and Fuller 
determined that the final model for the 
transformed responses is: 
 
   2.513 0.996*D 1.21*F 0.772*BG,Y = − − −  

(2) 
 

where D, F=BCD and BG=ABC are the active 
factors. 
 
Walpole and Myers 

In this third example, the data are from a 
study to determine factors that influence the 
shrinkage of molded parts. The response 
variable Y3 is the deviation from nominal 
shrinkage in cm x104 and it is part of a 24 full 
factorial design. This example is from Walpole 
and Myers (1993) and differs from the other two 
examples, because ordinary least squares can be 
applied to this data without the need for 
transformation. Using the half-normal plot, it 
was determined that factors A, B and the AB 
interaction are the active factors and the final 
model is: 
 


3  80 5.28*A 6.22*B 5.70*AB.Y = + + +  

(3) 
 
The experimental grid for the three examples is 
shown in Table 1 and the half-normal plots for 
the three examples are shown in Table 2. In 
Table 2, based on the normal plots, it is clear 
that factors A and B are the active factors for the 
first data set, factors A, B and the AB interaction 
are the active factors for the third data set and 
for the second data set D and F and the two 
factor interaction GH are active. 
 
Bootstrap Method to Determine Active Factors 

The bootstrap method can be used, 
without need for transformation, to determine 
the active factors (that is, factors that have an 
effect on the response) and provide models 
similar to equations (1), (2) and (3). The 
bootstrap can also be used to provide confidence 
intervals for the size of the effect. The procedure 
is as follows: Assume a data set has N total 
responses (16 in the examples provided). In 
order to test whether some factor, for example Z, 
is active (Z could be the interaction of other 
factors): 
 
1) Sample N/2 responses with replacement 

from the data at the (+1) level of the factor 
Z. 
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2) Sample N/2 responses with replacement at 

the (−1) level of the factor Z. 
 
3) Estimate the effect of that factor using the 

difference between the average at the (+1) 
level and (−1) levels. 

 
4) Repeat the sampling procedure a large 

number of times, for example, 500. 
 
5) Take the average of the differences of the 

averages at the +1 level and −1 levels across 
the 500 samples: this is the effect size 
estimate. 

 
6) Determine the upper (1−α/2) and lower α/2 

percentile points of the re-sampled effect 
values. 

 
7) Use these values to construct the (1−α) 

x100% confidence interval for the effect 
size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8) If the confidence interval does not contain 

zero then the factor is identified as an active 
factor. 

 
The mean effect size and confidence intervals 
for the different effect sizes for the three 
different examples were determined using this 
procedure (see Table 3). 

Table 3 shows the LCL (2.5 percentile 
lower confidence limit) and UCL (97.5 
percentile upper confidence limit). The only 
confidence intervals that do not contain zero in 
the first example are those of A and B, this 
matches the results of the normal plots and Box, 
Hunter and Hunter. In addition, the only 
confidence intervals that do not contain zero in 
the third example are those of A, B and the AB 
interaction, this matches the results of the half-
normal plots and of Walpole and Myers. With 
respect to the second example, the only 
confidence intervals that do not contain zero are 
those of D and F. The two-factor interaction BG  
 

Table 1: Experimental Grid for Examples 
 

A B C D Y1 Y2 Y3 

(-) -1 -1 -1 -1 53 56 72.68 

A 1 -1 -1 -1 60 17 71.74 

B -1 1 -1 -1 68 2 76.09 

AB 1 1 -1 -1 78 4 93.19 

C -1 -1 1 -1 48 3 71.25 

AC 1 -1 1 -1 67 4 70.59 

BC -1 1 1 -1 55 50 70.92 

ABC 1 1 1 -1 78 2 104.96 

D -1 -1 -1 1 49 1 73.52 

AD 1 -1 -1 1 68 0 75.97 

BD -1 1 -1 1 61 3 74.28 

ABD 1 1 -1 1 81 12 92.87 

CD -1 -1 1 1 52 3 79.34 

ACD 1 -1 1 1 70 4 75.12 

BCD -1 1 1 1 65 0 79.67 

ABCD 1 1 1 1 82 0 97.8 
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may also be considered active, because the 
upper confidence limit is very close to zero; this 
agrees with the results of Bisgaard and Fuller 
and the half-normal plots. The half-normal plots 
do not clearly show that BG is active. 
 
Bootstrap Method to Determine Confidence 
Intervals 

Confidence intervals for the mean 
predicted responses can be obtained as follows: 
For each effect size determined in step (3) of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
bootstrap method, find the predicted value of Y1 
for the first example, (Y2 for the second example 
and Y3 for the third), using the two active factors 
found for the first example, A and B, and use as 
coefficients the effect size divided by two. (Note 
that there are 3 active factors for the second and 
the third examples). Because the data consists of 
counts for the first two examples, if the 
predicted value is negative, zero was substituted 
for its value. This was necessary for the 
Bisgaard and Fuller example, however it was not 

Table 2: Half-Normal Plots for the Three Examples 
 

Data Set 1: Box, Hunter and Hunter (1978) Data Set 2: Bisgaard and Fuller (1994) 

  

Data Set 3: Walpole and Myers (1993) 
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necessary for the first and third examples 
because none of the responses were zero and 
responses were large positive values. Re-
sampling was repeated 1,000 times, and one 
thousand predicted values were produced at each 
setting of the active factors. These 1,000 values 
were used to construct 95% confidence intervals 
for the mean predicted responses. Results are 
summarized and shown Tables 4-8. Note that, 
for the first two examples, after finding the 
confidence intervals for the transformed mean 
and for the lower and upper confidence limit, the 
results are un-transformed using a software 
package that can solve for x, when y is known in 

the equation: ( )1 / 2.y x x= + +  For the 

third example, because no transformation was 
used, the confidence interval provided by the 
ordinary least squares method is reported. 

Table 7 gives the mean predicted values 
and confidence intervals for the mean predicted 
values, these results were obtained using the 
SQL procedure in the statistical software SAS. 
Re-sampling was repeated 1,000 times. A slight  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

difference occurred between re-sampling 500 
and 1,000 times; the length of the confidence 
interval was slightly smaller when re-sampling 
1,000 times. Very little difference was observed 
between re-sampling 1,000 times and re-
sampling more than 1,000 times.  

Table 8 shows the length of the 
confidence intervals using the different methods 
for the three different examples. For the Box, 
Hunter and Hunter example the Bootstrap gave 
shorter confidence intervals than those of the 
Generalized Linear Model (GLM). For the 
Bisgaard and Fuller example, the bootstrap 
results are not inferior to the untransformed or 
GLM procedures. For data with count responses 
where some of the responses are zeros using a 
transformation is questionable, therefore the 
bootstrap provides a good alternative. For data 
such as the third example taken from Walpole 
and Myers, ordinary least squares (OLS) can be 
applied and this method results in confidence 
intervals that are shorter than both the Bootstrap 
and GLM approaches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Mean Effect Size and Confidence Intervals for the Different Effect Sizes 
for the Three Different Examples 

 

Factors 

Box Hunter and Hunter  Bisgaard and Fuller  Walpole and Myers 

Mean LCL UCL  Mean LCL UCL  Mean LCL UCL 

A 16.82 10.75 22.50  -9.16 -24.63 4.38  16.82 10.75 22.50 

B 13.12 6.00 20.75  -1.97 -17.13 15.00  13.12 6.00 20.75 

C 0.07 -10.75 10.75  -4.04 -20.50 11.75  0.07 -10.75 10.75 

D 2.59 -6.75 12.50  -14.97 -32.50 -1.13  2.59 -6.75 12.50 

AB 1.19 -10.63 13.38  0.06 -16.88 16.00  11.43 2.45 20.14 

AC 3.03 -6.00 13.38  -2.17 -17.25 13.75  1.30 -8.33 11.90 

AD 1.69 -9.00 12.25  11.58 -2.38 27.50  -1.67 -12.09 7.86 

BC -2.27 -11.63 7.75  10.77 -2.63 26.25  2.01 -8.28 12.02 

BD 0.18 -9.88 10.75  3.87 -13.88 19.75  -2.20 -13.31 7.88 

CD 2.75 -7.00 13.00  0.55 -15.75 16.25  1.45 -9.30 11.11 

ABC -0.04 -9.75 9.25  -11.84 -28.38 0.68  2.58 -5.36 12.15 

ABD -0.60 -11.50 10.38  2.28 -14.50 18.25  -1.94 -11.70 7.38 

ACD -3.64 -13.13 6.13  0.88 -14.88 17.00  -2.99 -13.07 5.32 

BCD 2.11 -10.00 12.63  -16.95 -32.25 -3.38  -0.29 -10.19 9.22 

ABCD -0.32 -10.75 10.00  10.24 -5.13 29.00  -1.59 -10.82 7.97 
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Table 4: Results of the Box, Hunter and Hunter (1978) Example 
 

Obs. 

Least Squares 
GLM Poisson 

Transformed Untransformed 

Predicted 
Value 

95% 
Confidence 

Interval 

Predicted 
Value 

95% 
Confidence 

Interval 

Predicted 
Value 

95% 
Confidence 

Interval 

1 7.14 (6.92, 7.36) 50.42 (47.32, 53.63) 51.26 (42.45, 61.9) 

2 8.17 (7.95, 8.39) 66.26 (62.7, 69.92) 11.74 (8.14, 16.94) 

3 7.92 (7.7, 8.14) 62.22 (58.76, 65.76) 1.12 (0.6, 2.08) 

4 8.95 (8.73, 9.17) 79.67 (75.76, 83.68) 4.88 (2.87, 8.32) 

5 7.14 (6.92, 7.36) 50.42 (47.32, 53.63) 1.12 (0.6, 2.08) 

6 8.17 (7.95, 8.39) 66.26 (62.7, 69.92) 4.88 (2.87, 8.32) 

7 7.92 (7.7, 8.14) 62.22 (58.76, 65.76) 51.26 (42.45, 61.9) 

8 8.95 (8.73, 9.17) 79.67 (75.76, 83.68) 11.74 (8.14, 16.94) 

9 7.14 (6.92, 7.36) 50.42 (47.32, 53.63) 0.81 (0.42, 1.56) 

10 8.17 (7.95, 8.39) 66.26 (62.7, 69.92) 0.19 (0.09, 0.38) 

11 7.92 (7.7, 8.14) 62.22 (58.76, 65.76) 1.96 (1.16, 3.3) 

12 8.95 (8.73, 9.17) 79.67 (75.76, 83.68) 8.54 (5.62, 12.98) 

13 7.14 (6.92, 7.36) 50.42 (47.32, 53.63) 1.96 (1.16, 3.3) 

14 8.17 (7.95, 8.39) 66.26 (62.7, 69.92) 8.54 (5.62, 12.98) 

15 7.92 (7.7, 8.14) 62.22 (58.76, 65.76) 0.81 (0.42, 1.56) 

16 8.95 (8.73, 9.17) 79.67 (75.76, 83.68) 0.19 (0.09, 0.38) 
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Table 5: Results of Montgomery and Myers (1997) for the Bisgaard and Fuller Example 
 

Obs. 

Least Squares 
GLM Poisson 

Transformed Untransformed 

Predicted 
Value 

95% 
Confidence 

Interval 

Predicted 
Value 

95% 
Confidence 

Interval 

Predicted 
Value 

95% 
Confidence 

Interval 

1 5.50 (4.13, 6.84) 29.75 (16.65, 46.41) 51.26 (42.45, 61.9) 

2 3.95 (2.6, 5.3) 15.11 (6.25, 27.65) 11.74 (8.14, 16.94) 

3 1.53 (0.17, 2.88) 1.86 (**, 7.78) 1.12 (0.6, 2.08) 

4 3.07 (1.71, 4.42) 8.9 (2.45, 19.04) 4.88 (2.87, 8.32) 

5 1.53 (0.17, 2.88) 1.86 (**, 7.78) 1.12 (0.6, 2.08) 

6 3.07 (1.71, 4.42) 8.9 (2.45, 19.04) 4.88 (2.87, 8.32) 

7 5.49 (4.13, 6.84) 29.61 (16.65, 46.41) 51.26 (42.45, 61.9) 

8 3.95 (2.6, 5.3) 15.11 (6.25, 27.65) 11.74 (8.14, 16.94) 

9 1.07 (-0.28, 2.42) 0.7 (*, 5.41) 0.81 (0.42, 1.56) 

10 -0.47 (-1.82, 0.89) * (*, 0.36) 0.19 (0.09, 0.38) 

11 1.96 (0.6, 3.31) 3.34 (0.04, 10.49) 1.96 (1.16, 3.3) 

12 3.49 (2.14, 4.85) 11.7 (4.13, 23.1) 8.54 (5.62, 12.98) 

13 1.96 (0.6, 3.31) 3.34 (0.04, 10.49) 1.96 (1.16, 3.3) 

14 3.49 (2.14, 4.85) 11.7 (4.13, 23.1) 8.54 (5.62, 12.98) 

15 1.07 (-0.28, 2.42) 0.7 (*, 5.41) 0.81 (0.42, 1.56) 

16 -0.47 (-1.82, 0.89) * (*, 0.36) 0.19 (0.09, 0.38) 

*values that can’t be calculated using the transformation because of the negative predicted value; 
**values that appear to be incorrectly calculated in Montgomery and Myers (1997) work. 
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Table 6: Results of the Walpole and Myers (1993) Example 
 

Obs. 

Least Squares GLM Poisson 

Predicted 
Value 

95% Confidence 
Interval 

Predicted 
Value 

95% Confidence 
Interval 

1 74.20 (69.82, 78.57) 74.2 (66.22, 83.14) 

2 73.36 (68.98, 77.73) 73.36 (65.42, 82.25) 

3 75.24 (70.87, 79.61) 75.24 (67.2, 84.24) 

4 97.21 (92.83, 101.58) 97.21 (88.01, 107.36) 

5 74.20 (69.82, 78.57) 74.2 (66.22, 83.14) 

6 73.36 (68.98, 77.73) 73.36 (65.42, 82.25) 

7 75.24 (70.87, 79.61) 75.24 (67.2, 84.24) 

8 97.21 (92.83, 101.58) 97.21 (88.01, 107.36) 

9 74.20 (69.82, 78.57) 74.2 (66.22, 83.14) 

10 73.36 (68.98, 77.73) 73.36 (65.42, 82.25) 

11 75.24 (70.87, 79.61) 75.24 (67.2, 84.24) 

12 97.21 (92.83, 101.58) 97.21 (88.01, 107.36) 

13 74.20 (69.82, 78.57) 74.2 (66.22, 83.14) 

14 73.36 (68.98, 77.73) 73.36 (65.42, 82.25) 

15 75.24 (70.87, 79.61) 75.24 (67.2, 84.24) 

16 97.21 (92.83, 101.58) 97.21 (88.01, 107.36) 
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Table 7: Bootstrap Mean and Confidence Interval for the Predicted Values for the Three Examples 
 

Obs. 

Bootstrap (Re-sampling) 

Box, Hunter and Hunter Bisgaard and Fuller Walpole and Myers 

Predicted 
Value 

95% Confidence 
Interval  

Predicted 
Value 

95% Confidence 
Interval 

Predicted 
Value 

95% Confidence 
Interval 

1 50.87 (45.39, 57.03) 31.86 (19.22, 45.56) 73.95 (66.32, 82.06) 

2 65.88 (59.29, 73.19) 19.19 (5.06, 33.72) 73.65 (66.08, 81.29) 

3 61.88 (55.57, 68.9) 10.26 (0, 26.78) 75.18 (68.45, 81.64) 

4 80.12 (72.63, 88.38) 15.05 (3.44, 27.34) 97.22 (89.44, 105.26) 

5 50.87 (45.39, 57.03) 10.26 (0, 26.78) 73.95 (66.32, 82.06) 

6 65.88 (59.29, 73.19) 15.05 (3.44, 27.34) 73.65 (66.08, 81.29) 

7 61.88 (55.57, 68.9) 31.86 (19.22, 45.56) 75.18 (68.45, 81.64) 

8 80.12 (72.63, 88.38) 19.19 (5.06, 33.72) 97.22 (89.44, 105.26) 

9 50.87 (45.39, 57.03) 3.41 (0, 15.06) 73.95 (66.32, 82.06) 

10 65.88 (59.29, 73.19) 0.07 (0, 0.91) 73.65 (66.08, 81.29) 

11 61.88 (55.57, 68.9) 5.72 (0, 16.69) 75.18 (68.45, 81.64) 

12 80.12 (72.63, 88.38) 17.76 (5.44, 30.38) 97.22 (89.44, 105.26) 

13 50.87 (45.39, 57.03) 5.72 (0, 16.69) 73.95 (66.32, 82.06) 

14 65.88 (59.29, 73.19) 17.76 (5.44, 30.38) 73.65 (66.08, 81.29) 

15 61.88 (55.57, 68.9) 3.41 (0, 15.06) 75.18 (68.45, 81.64) 

16 80.12 (72.63, 88.38) 0.07 (0, 0.91) 97.22 (89.44, 105.26) 
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Conclusion 
The bootstrap method can be used to determine 
active factors and to construct confidence 
intervals for effect size and for a predicted mean 
response. The results are not inferior to those 
obtained using transformations or generalized 
linear models procedures and are actually better 
in some situations. The availability of computers 
and statistical software makes using re-sampling 
(bootstrap) easy and fast and provides good 
predictions. 
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