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An Extension of the Seasonal KPSS Test 
 

Sami Khedhiri Ghassen El Montasser  
University of Prince Edward Island,  

Charlottetown, PEI, Canada 
University of Manouba, 

Tunis, Tunisia 
 

 
The limit theory of the seasonal KPSS test is established under the null hypothesis using seasonal dummy 
variables. Taking these variables into account can result in improved finite sample performance of the 
test. The seasonal KPSS test can be interpreted as a test of deterministic seasonality and it may be used in 
addition to seasonal unit root tests to analyze the dynamic properties of time series. The seasonal indicator 
variables provide the test with an explicit model-based regression that in itself constitutes a support for its 
limit theory. 
 
Key words: KPSS test, deterministic seasonality, Brownian motion, C32 time series models. 
 
 

Introduction 
The use of seasonally unadjusted data has 
become increasingly popular in empirical 
studies; there are several possible reasons for 
this. One key reason is the argument that 
seasonal adjustment distorts inference in 
dynamic models, for example, seasonal unit 
roots can be seriously affected when working 
with seasonally adjusted data. In this respect, 
Ghysels and Perron (1993) showed that seasonal 
adjustment filters affect finite sample 
distributions of unit root test statistics under the 
null hypothesis. Further, the seasonal component 
is an unobserved part of a time series, thus it 
must be taken into consideration because its 
elimination can lead to detrimental information 
loss. It was found in several cases that the 
seasonal component and other systematic 
components, such as trend and cycle, are in fact 
non-separable. From a statistical viewpoint this 
could be attributed to the fact that economic 
propagation mechanisms transmitting seasonal  
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fluctuations from exogenous to endogenous 
variables are systematically related to business 
cycle fluctuations. Beaulieu, MacKie-Mason and 
Miron (1992) and Miron (1996) showed this in 
their studies of international economic 
aggregates such as output, labor input, interest 
rates, and prices. Canova and Ghysels (1994) 
also found that seasonality tends to differ across 
business cycle stages of recessions and 
expansions referring to an empirical study of U. 
S. macroeconomic time series. Consequently, a 
forced seasonal adjustment may lead to 
inaccurate predictions, which in turn may result 
in wrong decisions.  

The literature presents several different 
models of seasonality. As highlighted by Canova 
and Hansen (1995), the first approach is to 
model seasonality as a deterministic component. 
This approach is generally adopted by 
macroeconomists, as shown by Barsky and 
Miron (1989). The second approach is to 
consider seasonality as a deterministic process 
along with its stationary stochastic pattern as 
illustrated by Canova (1992). The third approach 
is to consider seasonality as a stochastic 
component by allowing for seasonal unit roots.  

A famous testing framework proposed 
by Hylleberg, et al. (1990) used the null 
hypothesis of seasonal non-stationarity induced 
by the presence of seasonal unit root(s) to make 
the distinction between unit roots at different 
seasonal frequencies. The subsequent rejection 
of their null hypothesis implies a strong result 
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that the series exhibits a stationary seasonal 
pattern but their test was found to suffer from 
the problem of low power with moderate sample 
sizes. Because testing for seasonal unit roots is 
an important step in time series analysis these 
tests are often used as a pre-test for seasonal co-
integration (Johansen & Schaumberg, 1999), 
several authors have contributed to the 
development of these types of tests (Canova & 
Hansen, 1995; Caner, 1998). In the testing 
approach the rejection of the null hypothesis 
would show evidence that the data are non-
stationary. Another reason why this testing 
method is interesting to practitioners could be 
explained by the necessity to take into account 
the cost of spurious inference when testing the 
dummy variables model as argued in Franses, 
Hylleberg and Lee (1995). 

Canova and Hansen (1995) and Taylor 
(2003) generalized the KPSS testing framework 
to seasonal data to test the stationarity 
hypothesis against (seasonal) unit roots. After 
specifying a general regression for their tests, 
the authors examined specific cases related to 
testing stationarity against (seasonal) unit root or 
some unit roots among a well-defined set. 
Lyhagen (2006) proposed another version of the 
KPSS test in the seasonal context which results 
in a frequency-based test and tested the 
hypothesis of level stationarity against a single 
seasonal unit root. In this study, seasonal 
indicator variables are included in the seasonal 
KPSS suggested by Lyhagen (2006). This 
approach may several have advantages over 
existing methods: It provides a model-based 
regression to the test, which is different from 
Lyhagen’s method, where the limit theory based 
on an explicit form of the model was not 
established. The novelty of results from this 
study is the development of an asymptotic 
theory of the test in the presence of seasonal 
dummies which leads to a natural extension of 
the SKPSS to include deterministic seasonality. 
 
Preliminaries on the Seasonal KPSS Test 

Let ty  be a time series observed 

quarterly. This frequency was chosen because it 
provides a simple and clear analysis, however it 
should be noted that results of this study are 
valid for all seasonal frequencies (e.g., monthly 

or daily data) by simply defining seasonal unit 
roots according to their corresponding seasonal 
frequencies. Because the goal of this research is 
to test for the presence of negative unit root, it 
would be suitable to use the appropriate filter in 
order to isolate the effects of other unit roots in 
the series. Therefore, the test will be applied to 
the transformed series: 
 

,)1( 32)1(
tt yLLLy −+−=  

 
where L  is the lag operator. 

Next, test the unit root of –1 in the series 
 

(1) ' ,

1,..., ,
t t t ty x r u

t T
β= + +

=
               (1) 

 

where NT 4= , 
=

=
4

1

'

i
itit Daxβ , the shorthand 

notation ])4/)1[(4,( −−= ttiDit δ , [.] denotes 

the largest integer function and ),( jiδ  is the 

Kronecker’s δ  function. The term tu  is zero 

mean weakly dependent process with 
autocovariogram )( htth uuE +=γ  and a strictly 

positive long run variance 2.uω  

The component tr  is drawn from the 

following process:  
 

ttt vrr +−= −1 ,                       (2)  

 
where tv  is zero mean weakly process with 

variance 2
vσ  and long run variance 02 >vω . 

The transformation required to carry out the 
seasonal KPSS test for complex unit roots i±  is 

given by the variable, tt yLy )1( 2)2( −= . The 

test of such complex unit roots is based on the 
regression, 
 

tttt ecxy ++= λ')2( ,                    (3) 
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where te  is zero mean weakly dependent 

process with long run variance 02 >eω  and 
4

'

1

.t i it
i

x b Dλ
=

=  The component tc  is given by 

 

ttt cc ε+−= −2 ,                     (4) 

 
where tε  is another zero mean weakly 

dependent process with variance 2
εσ  and strictly 

positive long run variance 2
εω . 

Adding the deterministic terms in (1) 
and (3) is very important because it enables the 
seasonal KPSS test to be extended to include 
deterministic seasonality. The testing procedure 
follows in two steps: First, test for the existence 
of unit root −1, and second, test for the complex 
roots where the null hypothesis will be specified 
thereafter.  

The seasonal KPSS test is a Lagrange 
Multiplier-based test, hence, the null hypothesis 

of a root equal to −1 is 0: 2
0 =vH σ . Under this 

null hypothesis 
 

,')1(
ttt uxy += β                     (5) 

 
where the series is trend stationary after seasonal 
mean correction. Under the alternative 

hypothesis ,0: 2
1 >vH σ  )1(

ty  has a unit root 

corresponding to Nyquist frequency.  
Let tu~  be the residual series obtained 

from least squares regression applied to equation 
(5), Tt ..., ,2 ,1= . Following Breitung and 
Franses (1998, Eq. (18), p. 209), Busetti and 
Harvey (2003, Eq. (8), p. 422) and Taylor (2003, 
Eq. (38), p. 605), replace the long-run variance 

2
uω  by an estimate of ( 2π  times) the spectrum 

at the observed frequency in order to deal with 
unconditional heteroscedasticity and serial 
correlation. This nonparametric estimation of the 
long-run variance is a useful solution to the 
nuisance parameter problem (Taylor, 2003). 
Thus, the Nyquist frequency is 

2

1 2 1

1 1 1

( )

2 ( , )( ) cos( ),

u
T l T

t t t k
t k t k

l

T u T w k l u u k

ω

π− −
−

= = = +

=

+  



  

 (6)  
 

where the weight function 
1

1),(
+

−=
l

klkw  

and l  is a lag truncation parameter such that 

∞→l  as ∞→T  and ).( 2/1nol =  From 
equation (6), a Bartlett kernel following Newey 
and West (1987) can now be chosen. It should 
be noted that Andrews (1991) and Kwaitkowski, 
et al. (1992) showed that that such a truncation 
lag can produce good results in practice. 
Similarly, the null hypothesis of the test 
regarding complex unit roots is given by 

0: 2
0 =εσH ; under this null hypothesis 

 

ttt exy += λ')2(                       (7) 

 
Using the residuals te~  obtained from the least 

squares regression of equation (7), the Bartlett 

kernel estimator 2
eω  is computed as: 

 
2

1 2 1

1 1 1

( )

2 ( , )( )cos( ),
2

e
T l T

t t t k
t k t k

l

T e T w k l e e k

ω
π− −

−
= = = +

=

+  



  

   (8) 
 

with the partial sums defined as j

t

j

ji
t ueS ~~

1


=

= π
 

and t

t

j

ji

t eeP ~~

1

2
=

=
π

. 

It follows that the test statistics for unit 
root of −1 is given by: 
 

)(~

~~
1

2
1

2
)1(

l

SS

T u

T

t
tt

ω
η


=− = .                    (9) 

 
This statistic may be written for the complex 
unit roots, as 
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)(~

~~
1

2
1

2
)(

l

PP

T e

T

t
tt

i

ω
η


=± = ,                    (10) 

 

where tS~  and tP~  are the conjugate numbers of 

tS~  and tP~ , respectively. 

 
Asymptotic Results 

Next, the asymptotic distribution of )1(η  

and )( i±η  is shown. 
 
Theorem 

a) Under 

0: 2
0 =vH σ , drrVd →− 1

0

2)1( )(η   

where )(rV  is a standard Brownian 

bridge, and d→  denotes weak 

convergence in probability and ]1,0[∈r . 
 

b) Under 

0: 2
0 =εσH , 

τττη dVV c
I

c
Rd

i ])()([
2

1 21

0

2)( +→ ±  

where )(τc
RV  and )(τc

IV  are two 
independent standard Brownian bridges 
and ]1,0[∈τ . 

 
Proof 

Starting with the first part of the 
theorem and referring to Jin and Phillips (2002) 
whose results showed that seasonal dummies 
maintain the asymptotic properties of the KPSS 
test unchanged. Also, given the mirror image of 
negative unit roots,  
 

)()1(
1 ][

1

rBu
T

Tr

j
dj

j
=

→−  

 
where )(rB  is a Brownian motion. The 
standardized partial sum process can be written 
as follows: 
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where ]1,0[∈r . Thus the following is 
obtained, 
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In addition,  
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,
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which results in the following: 
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t
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where )(rV  is a standard Brownian bridge 

process. Further, because )(~ 2 luω  is a consistent 

estimate of 2
uω , it can be shown that 

.)(
1

0

2)1( drrVd →−η  

Next it is necessary to prove the second 
part of the theorem. Because complex-valued 
roots come in conjugate pairs, it is only 
necessary to consider the complex root i  

associated with frequency 
2

π
. In this case the 

standardized partial sum process can be written 
as follows: 
 

[ ] ( )[ ] 2

1

[ ] ( )
2

1

[ ] ( ) '2

1

1

1

1
[ ( )]

T i jT
j

j

T i j

j
j

T i j

j j
j

P
e e

T T

e e
T

e e x
T

πτ
τ

πτ

πτ

λ λ

=

=

=

=

=

= − −














 

 
where 
 

[ ]

[ ] ( ) '2
1 '[ ] ( ) 12

1

1 '

Tr

T i j

jT i j j
j

j

S
T

e x
X X X ee e

T TT T

πτ

πτ −
=

=

=

 
     −       
 
 






 
 
 



AN EXTENSION OF THE KPSS TEST WITH DETERMINISTIC SEASONALITY 

74 
 

Chan and Wei (1988) showed that  
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where ieB .  are defined similarly to iuB .  in 

equation (12), 4,...,1=i . It follows that 
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where )()( τiB , 4 ,..,1=i , )(* τRB  and )(* τIB  
are all real Brownian motions and the last two 
processes are independent.  

It is evident that 

),(
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~ 2
][ τωτ ce

d
T V
T

P
→  where )(τcV  is a 

complex Brownian bridge that can be written as 

)()()( τττ c
I

c
R

c iVVV +=  )(τc
RV  and )(τc

IV  
are two independent real standard Brownian 
bridges. As a result, 
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because )(~ 2 leω  is a convergent estimate of 2
eω  , 

it may be concluded that 
 

1( ) 2 2

0

1
[( ) ( ) ( ) ( )]

2
i c c

d R IV V dη τ τ τ± → + , 

(15) 
 
as claimed.  

It should be noted that asymptotically 
)1(−η  has the Cramer-von Mises distribution 

(CvM) under the null hypothesis, although the 

limit theory of )( i±η  was shown as a function of 
a generalized CvM with two degrees, 

specifically, ).2(
2

1)( CvMd
i →±η  The critical 

values of the seasonal KPSS test with seasonal 
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dummies can be computed from Nyblom (1989) 
or from Canova and Hansen (1995). These 
critical values are shown in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Monte Carlo Analysis 

To evaluate the size performance of the 
seasonal KPSS statistic, Monte Carlo simulation 
experiments were conducted using seasonal 
roots of a quarterly process. The data generating 
process (DGP) for the negative unit root is 
 

' ,

1,..., ,
t t ty x r

t T
β= +

=
                    (16a) 

 

where β'tx  is defined as in (1) and the 

autoregressive process tr  is given by:  

 
,1 ttt vrr += −α                   (16b) 

 
The error terms tv  are normally distributed with 

zero mean and unit variance. The DGP for 
complex unit roots is given by: 
 

' ,

1,..., ,
t t ty x c

t T
λ= +

=
                    (17a) 

 

where λ'tx  is defined in (3) and the process tc  

is given by: 
 

,2 ttt cc εα += −                 (17b) 

 

and tε  are normally distributed with zero mean 

and unit variance. 
Alternative values of ∈α

{ }8.0 ,2.0 ,0 ,2.0 ,8.0 ,1 −−−  were chosen and 
only the 5% nominal size was considered. The 
bandwidth values chosen in these experiments 
are given by: 00 =l , =4 l integer 

[ ]4/1)100/(4 T  and =12 l integer 

[ ]4/1)100/(12 T . Twenty-thousand (20,000) 
replications were conducted and all the 
simulation experiments were carried out with 
Matlab programs. 

Results in Table 2 show that the test size 
increases as values of α  decrease. Also note 
that larger data samples do not significantly 
affect the test size. These simulations raised 
another point, which was observed by Lyhagen 
(2006) for similar testing but without 
deterministic components: they show that, as 
opposed to the original KPSS testing 
framework, 4l  and 12l  do not have better size 
performance than 0l . In fact, in the seasonal 
KPSS framework, the test size deterioration 
induces substantial power. Results of the 
simulation experiments performed in this study 
(see Table 1) suggest an overall good power 
performance of the seasonal KPSS test, 
particularly against near seasonal unit root 
alternatives. 
 

Conclusion 
The joint use of unit root and stationarity tests is 
recommended in empirical studies. Such a joint 
use can lead to a more in-depth analysis of the 
dynamic properties of the time series. This 
article established asymptotic theory of the 
seasonal KPSS test in the presence of seasonal 
dummies and extended SKPSS to include 
deterministic seasonality. Given that seasonal 
unit root tests have low power in moderate 
samples, the test represents an adequate solution 
as illustrated by the simulation results. Lyhagen 
(2006) also showed good power properties of the 
test when there is no deterministic term in the 
model, however, it would be interesting to study 
both power and size performance of the test 
when factors affecting the time series such as 
measurement errors and additive outliers are 
present. Khedhiri and El Montasser (2010) used 

Table 1: Critical Values of the 
Seasonal KPSS Test 

 

 1% 5% 10% 

Root −1 0.743 0.461 0.347 

Roots i±  0.537 0.374 0.3035 
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Monte Carlo methods to show that the seasonal 
KPSS test is robust to the magnitude and the 
number of additive outliers. Furthermore, the 
statistical results obtained demonstrate overall 
good performance on the finite-sample 
properties of the test. 
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