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Abstract. This paper concerns the study of dynamic optimization problems governed by delay-differential
inclusions with finitely many equality and inequality endpoints constraints and multivalued initial condi-
tions. We employ the method of discrete approximations and advanced tools of generalized differentiation in
infinite-dimensional spaces to derive necessary optimality conditicns in the extended Euler-Lagrange form.
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1 Introduction

The main objective of this paper is to study the generalized Bolza problem (P) governed by delay-
differentiol inclusions in infinite dimensions with finitely many equality and inequality endpoint
constreints given by Lipschitzian functions and with multivalued initial conditions. The problem
(P) under consideration is formulated as follows.

Let X be a Banach state space, let [a,b] C R be a fixed time interval, and let : [a — A, Bl — X
be a feasible trajectory of the constrained delay-differential inclusion

(t) € Flz(t),z(t ~ A),1} a.e. t€a,b], z{a) =25 € X, (1.1)
z(t) € C(t) ae. t€la—Aa), {1.2)
wilz(b)) €0, i=1,...,m, {1.3)
wilz(h)) =0, i=m-+1,...,m+r, (1.4)

*Research of this author was partly suppoerted by the US National Science Foundation under grants DMS-0304989
and DMS-0603846 and by the Australian Research Council under grant DP-0451168.



with a given time delay A > 0, where F: X x X % |a,b] = X and C: [a— A, a] = X are set-valued
mappings defined the system dynamics and the initial stale conditions, respectively, and where the
functions @, 1 = 1,...,m -+ r, define the endpoint constraints.

By a feasible arc above we mean a mapping z: [a — A,b] -» X that is summable on [a — A, a],
Fréchet differentiable for a.e. t € [, b] satisfying the Newton-Leibniz formula

z(t) = z(a) + fi #(s)ds for all t € [a,b] {1.5)

and all the constraints in (1.1)—(1.4), where the integral in (1.5) is taken in the Bochner sense. It
iz well known that for X = IR™ the a.e. Fréchet differentiability and Newton-Leibnitz requirements
on z(t),a <t <.b, can he equivalently replaced by its absolute continuity in the standard sense.
In fact, there is a full description of Banach spaces, where this equivalence holds true: they are
spaces satisfying the so-called Radon-Nikodym property (RNP); see, e.g., [2]. The latter property
is fulfilled, in particular, in any reflexive space.

Given now the endpoint cost function pg: X — IR and the infegrand f: X x X x X x[a,b] = R,
we consider the Bolza functional

' b
el i= pala() + | Flet)ale — 8),5(8),0) (1.6
and formulate the dynamic optimization/optimal control problem (P) as
minimize J[z] subject to (1.1} — (1.4) {1.7)

over feasible arcs z: [a — A, b] — X assuming that J[z} > —ococ for all the feasible arcs and there is
at least one feasible z{-) with J{x] < oc.

It has been well recognized that the generalized Bolza problem (P) is a convenient model in
dynamic optimization unifving many other problems of this kind and containing, in particular, con-
ventional parameterized forms of optimal control problems governed by controlled delay-differential
equations of the type

z{t) = g{z(t), z(t — A),u,t), uwell, ae telad. (1.8)

Besides more generality and other advantages of model (1.1} in comparison with that for (1.8), the
direct inclusion description (1.1) allows us to cover the closed-loop case U = U(z) in {1.8), which
is among the most challenging in control theory and the most important for various applications.
Note also that the presence of the set-valued mapping C(-) defined on the initial time interval
la — A, a) in (1.2) is a specific feature of delay-differential systems providing an additional source
for optimizing the cost functional (1.6) by a choice of the initial condition z(¢) € C(t) on la— A, a).

The problem (P) under consideration has been studied in {12] in the case of finite-dimensional
state spaces X = IR™; see also the references therein for previous developments on finite-dimensional
delay-differential inclusions as well as the books [8, 14] for more discussions and references on a
variety of approaches and results on nondelayed counterparts of problem (P) and related finite-
dimensional control systems. On the other hand, there are recent developments in [8, 9] for nonde-
layed differential and evolution inclusions with dnfinite-dimensional state spaces and various types



of endpoint constraints. Finally, in our recent paper {11] we consider a counterpart of problem (P)
in infinite dimensions with general endpoint constraints in the geometric form

wbyec X (1.9)

instead of the funciionel ones given by in (1.3) and (1.4).

The major and most restrictive assumption of [11] imposes the seguential normal compaciness
{SNC) property on the target set (2, which is automatic when the space X is finite-dimensional
while cannot be easily checked in infinite-dimensional settings. Roughly speaking, the SNC property
means that a set should be “sufficiently fat” around the point in question; in particular, it is never
satisfied for singletons in every infinite-dimensional space. This property is closely related to the
so-called finite-codimension property of convex sets, which is essential for the fulfillment of the
appropriate versions of the Pontryagin maximum principle for infinite-dimensional problems of
optimal control; see, e.g., [3, 5, 8] for more discussions and references. 7

The main result of this paper justifies extended Euler-Lagrange necessary optimality conditions
for the formulated Bolza problem (P) that are of the same type as in [11] with an appropriate
subdifferential counterpart of the transversality inclusion, but without any SNC assumptions on
the set of endpoint constraints given by finitely many Lipschitzian functions. The results obtained
are extensions on the case of delay systems under consideration of those established in [9] for
nondelayed infinite-dimensional inclusions providing at the same time certain improvements of [9)
even in the nondelayed setting. Indeed, in contrast to [9], we consider here noneutonomous systems
and use for them extended version of the imiting normal cone and subdifferential to describe adjoint
inclusions in the corresponding necessary optimality conditions,

In comparison with [11] we derive necessary optimality conditions not just for global solutions to
(P) but in the essentially more subtle and difficult setting of relazed intermediate local minimizers
introduced here for the delay-differential problems with multivalued initial conditions following the
scheme of (6] in the case of nondelayed differential inclusions. The treatment of local minimizers of
this type requires a more delicate variational analysis performed in this paper.

The driving force of our approach to obtain necessary optimality conditions for contintous-time
systems is the method of discrete approzimations developed in [6] for finite-dimensional nondelayed
inclusions and then extended in [8, 9, 11, 12] to more general settings.

The rest of the paper is organized as follows. In Section 2 we formulate the standing assumptions
and then define and discuss the notions of intermedicte local minimizers and reloxed intermediate
local minimizers for the delayed problem () under consideration.

Seciion 3 is devoted to the construction and justification of well-posed discrete approzimations
of intermediate local minimizers for problem (P) with taking into account the Lipschitzian func.
tional description of endpoint constraints in (1.3) and {1.4). Using further the possibility of strong
approzimation of feasible trajectories for {P) by their discrete counterparts established in [11} and
developing a certain relaxation procedure, we prove the L!/Whl. strong convergence of optimal
trajectories for discrete problems to the given relaxed intermediate local minimizer for the original
problem (P). This result requires appropriate geomnetric assumptions on the Banach state space X
in question that hold, in particular, when X is reflezive.

In Section 4 we briefly overview the basic constructions of dual-space generalized differentiation
{normals to sets, coderivatives of set-valued mappings, and subdifferentials of extended-real-valued



functions) playing a fundamental role in the subsequent variational analysis and the derivation of
necessary optimality conditions for discrete-time and continuous-time optimization problems.

Section 5 is devoted to deriving necessory optimality conditions for the discrete approximation
problems constructed in Section 3, which are governed by delay-difference nclusions with Lips-
chitzian endpoint constraints in infinite-dimensional spaces. Our approach is based on reducing the
dynamic discrete-time problems under consideration to the corresponding non-dynamic problems of
mathematical programming that contain, along with Lipschitzian functional constraints, an increas-
ing number of geometric constraints with possibly empty inferiors. We obtain necessary optimality
conditions for these problems by using advanced tools of variational analysis and generalized dif-
ferential calculus in infinite dimensions. Finally, Section 6 presents the main result of the paper on
the Fuler-Logrange necessary optimality conditions for relaxed intermediate local minimizers in the
infinite-dimensional problem (P} with Lipschitzian endpoint constraints without SNC assumptions
on the initial data. These conditions are derived by passing to the limit from the “fuzzy” optimality
conditions for the approximating delay-difference problems established in Section 5.

Our notation is basically standard; cf. [7, 8], Unless otherwise stated, all the spaces considered
are Banach with the norm || - || and the canonical pairing (-, ) between the space in question, say
X. and its topological dual X* the weak* topology of which is denoted by w*. We use the symbols
IB and IB* to signify the closed unit balls of the space in question and its dual, respectively. Given
a set-valued mapping F': X =3 X", its sequenticl Painlevé-Kuratowski upper/outer limit at & is

Limsup F(x) := {.’E* e X*

- w* .
3 sequences xp — T, ©f — o with
T—F

. 1.10
z; € Fxy) as ke]N::{l,Z,...}}. (110)

2 Intermediate Minimizers and Relaxation

We Dhegin this section witl formulating the notion of intermediate local minimizers for problem
(P), which extends the original definition given in [6] (see also [8, Subsection 6.1.2}) from ordinary
differential to delay-differential systems with multivalued initial conditions.

Definition 2.1 (intermediate local minimizers for delay-differential systems). A feasible
arc T: [a — A,b] — X is an INTERMEDIATE LOCAL MINIMIZER (i.lm.) of rank (r,p) € [1,00)?
for (P) if there are numbers € > 0, v > 0, and o > O such that J[Z] < J[z] for all feasible arcs
v la— AD) — X to (P) satisfying the relotionships

lz@) —z(@)|} <e forall t €[a,b] and (2.1)

a l b
v / =(8) = 2|7 dt + o / 15() — #()|P dt < e. (2.2)
a—:0 I3 .

Ohserve that relationships (2.1} and {2.2) nean that we cousider in fact a neighborhoed of %(t),
£ ¢ la— A,b], in the Sobolev space Wh#([a, b); X) with the norm

b
el = max e+ [ soip )

4



on the main interval [a,b] and in the classical Lebesgue space L"([a — A,a}; X) on the initial
interval [a — A, a]. The case of a = 0 for nondelayed systems (A = 0) with the only requirement
(2.1) in Definition 2.1 clearly corresponds to the classical sérong local minimum with respect to a
neighborhood of Z{-) in the norm topology of C([a,b]; X). If instead of (2.2) with A = 0 we put
the more restrictive L®-norm requirement

HE(t) — z(t))i <& ae t€[a,b],

we have the classical weck local minimum in the framework of Definition 2.1. Thus the notion
introduced for the first time in Definition 2.1 for delay-differential systems with taking into account
the muliivalued initial condition (1.2) reduces to the notion of intermediate local minimizers given
in [6] for ordinary differential inclusions and occupies, for any p € [1,00), an iniermediate posi-
tion between the classical concepts of strong and weak local minima. It has been well recognized
that this notion is indeed different from both classical notions even for convex and autonomous
nondelayed systems in {inite dimensions; see {8] and the references therein. Of course, all the nec-
essary conditions for intermediate minimizers automatically hold for strong (and hence for global)
minimizers considered in [11] for the case of geometric endpoint constraints.

Let now z(-) be an arbitrary 4.l.m. for problem (P). We impose the following standing assump-
tions on the the initial data of {P) used throughout the whole paper:

(H1) The mapping C: {a — A,a] = X is compact-valued, uniformly bounded
C(t) C MeIB on [a— A,a] with some Mg >0,
and Hausdorff continuous for a.e. t € [a — A, a).

(132) There ave an open set U C Mo IB and two positive numbers Ly and Mp such that £(t) € U for
any t € [a,b], the sets F'(z,y,t) are nonempty and compact for all (z,y,t) € Ux{McB)x|a, b],
and the following inclusions

Flz,y,t) Cc MplB  for all {z,y,t) € U x (MeBB) x [a,b)], (2.3)
Flz1,y1,1) € Flza, y2,t) + Lr(llz1 = z2|| + [ly1 — vall}B, (2.4)

hold whenever (z1,11), (#2,92) € U x (MgcB) and t € [a,b]. Note that (2.3) means the
uniform boundedness of F'(x,y,t) on U x (MgIB) x [a,b] while (2.4) signifies the local Lipschitz
continutty of F{-,-,t) around (Z(t), z(t — A)).

(H3) F(z,y, }is Hausdorff continuous for a.e. t € [a,b] uniformly in (z,y) € U x {McB).

(14} The endpoint cost function ¢y and ali the endpoint constraint functions ¢;, i =1,...,m+r,
are locally Lipschitzinn around Z{b} with the common Lipschitz constant £ > 0.

(H5) The integrand f(z,y,v,-) is continuous for a.e. ¢ € [a, b] and bounded uniformly with respect
to {x,y,v) € U x (McIB) x (MpB); furthermore, there is p > G such that f(-,-,-, 1) is
continuous on the set

Au(t) = {{z,y,v) € U x (McIB) x (Mp + p)B| v € F(z,y,s) for some s € (t— p,t]}

uniformly in ¢ € {a, b].

o



It is easy to observe that the assumptions made allow us to conclude that the i.Lm. notion introduced
in Definition 2.1 is invariant with respect to any »,p € [1,c0}. We use this in what follows.

To proceed further, along with the original problem (P) counsider its “relaxed” counterpart
constructed in the way well understood in optimal control and variational analysis; see, e.g., the
books [8, 13, 15]. Roughly speaking, the relaxed problem is obtained from {P) by a converification
procedure with respect to the wvelocity variahble. Let

frlz,y,v,t) = flz,y,0,1) + 6{v; F(z, 4, 1),

where 8(-; @) stands for the indicator function of the set in question equal to 0 on © and to oo
otherwise. Dencte by fr(z,y,v,t) the biconjugate (second conjugate) function to fp in v, ie.,

—~

Fr(z,y,u,t) = {fr)y (z, v, 0. 8).

The relaxed generalized Bolza problem (R) for the original problem {F) governed by the delay-
differential inclusions under consid_era,tion is defined as follows:

-

b o~
minimize J]z] := wo(z(b)) + /ﬂ Fr(z(t),z(t — A), 2(t),2) di (2.5)

over feasible trajectories #{t), a — A < ¢ < b, of the same class as for (P) but to the converified
delay-differential inclusion

£(t) € cleoF (z(t), z(t — A),t) ae. t €a,b], (o) =g {2.6)

with the initial condition (1.2) and the endpoint constraints (1.3) and (1.4). As usual, the symbaol
“cleo” in (2.6) stands for the conver closure of the set in question.

Close relationships between the original and relaxed problems have been well understood in
the calculus of variations and control theory for both differential and delay-differential systems;
see the aforementioned books and the references therein. In fact, these relationships involving a
certain relaration stability reflect the deep hidden conwvexity property inherent in continuous-time
(nonatomic measure) dynamic systems defined by differential and integral operators due to the
fundamental Lyoepunov-Aumann convez theorem and its extensions; see [8, 13, 15] for more details,

A localversion of relaxation stability regarding intermediate minimizers for the delay-differential
Bolza problem {P) is postulated as follows and is studied in this paper.

Definition 2.2 (relaxed intermediate local minimizers for delay-differential systems). A
feasible arc Z(-) to the Bolza problem (P) is o RELAXED INTERMEDIATE LOCAL MINIMIZER {r.i.l.m.)
of rank (r,p) € [1,00)? for {P) if it is an intermediate local minimizer of this rank for the relazed
problem (R) providing the same value of the cost functionals: J|z} = J]z).

Simitarly to the il.m. case, we conclude and use in what follows that the notion of relaxed
intermediate local minimizers do not actually depend on rank (r, p) € (1, 00)? under the assumptions
made. Also we always take v = o =1 in (2.2) for simplicity.



3 Discrete Approximations

In this section we present hasic constructions of the method of discrete approzimations in the
theory of necessary optimality conditions for delay-differential inclusions following the scheme of
[11] developed there for the case of geometric constraints. Here we make important modifications
required for intermediate local minimizers and Lipschilzian funciional endpoint constraints (1.3)
and {1.4) under consideration.

Let us first construct discrete approximations of the delay-differential inclusion (1.1) by replacing
the time-derivative in (1.1) by the uniform Euler finite difference:

z(t+ k) — z(t)

h i
To formalize this procedure, for any natural number N € IV take t;:=a + jhy for j =-N,... k
and tpy1 1= b, where hy 1= A/N and k € IV is defined by

a(t) = h— 0.

a+khy <b<a+ (k+ Dhy. (3.1)

Note that i_y = a— A, £ty = a, and hy — 0 as N — oo. Then the sequence of delay-difference
inclusions approximating (1.1) is constructed as follows:

en(tisn) € enlty) + A Flan(t), enlt; — A)ty), §=0,...,k, z(to) = 0,
| (3.2)
;) € Clty) forj=-N,...,—L

The collection of vectors {an(t;) | 7 = —NN, ..., k+1} satisfying (3.2} is called a discrete trajectory.
The corresponding collection

{J:N(fj_;qf)h\: SCN(tj) 1 i=0,... ’k}

is called a discrete velocity. We also consider the extended discrete velocities defined by

on(t) = $N(tj+1])”; N ()

, tE[tj,fj.;_l),j:O,...,k.

It follows from the definition of the Bochner integral that the corresponding exiended discrete
trajectories are given by

zn(t) = z{a) + ft'uN(s)ds, t € la, bl
a
on the main interval g, b] and by
aen(t) == an(t;), tE€[tntir), J=-N,..., -1,
on the initial tail interval o — A, o). Observe that £ (t) = upn(t) for a.e t € la,b].

The next result, which plays a significant role in the method of discrete approximations, es-
tablishes the strong approzimation of any feasible trajectory Z(-) to the original delay-differential
inclusion given in (1.1) and (1.2) by extended feasible trajectories to its delay-difference counter-
part {3.2) in the following sense: the approximation/convergence in the W1({[a, b]; X )-rorm on the



main interval {e, b] and the one in the L!([a — A, a]; X)-norm on the initial interval [o — A, a]. Note
that the strong W1l-convergence of extended discrete trajectories on [a,b] implies not only their
uniform convergence on this interval but also the a.e. pointwise convergence of their derivatives on
[a,b] along some subsequence of {N} as N — oo. A detailed proof of this result is given in [11,
Theorem 2.1] with more discussions therein.

Lemma 3.1 (strong approximation by discrete trajectories). Let Z(-) be a feasible trajec-
tory to (1.1) and (1.2) under assumptions (Hl)—(HS), where X is an arbitrary Banach space. Then
there is o sequence of solutions {zy(t;) | 7= —N,...,k+1} to the delay-difference inclusions (3.2)
such that the extended discrete frajectories zy(t), t € [a — A, b, converge to Z(-) strongly in L' on
[a — A, a] and strongly in W on {a,b] as N — co.

From now on we fix an arbitrary relazed intermediate local minimizer Z(-) for problem (P)
considering the case of r = p = 2 and v = @ =1 in Definition 2.1 and Definition 2.2 without loss
of generality. Having a positive number ¢ from the latter definitions and an open set U from the
assumptions in (H2), we always suppose that

) +e/2elU forall telab

and take a sequence {zy(t),0 — & <t < b} of the extended trajectories for the delay-difference
inclusions (3.2) approximating £{-) in the sense of Lemnma 3.1. Denoting

Ny = max |zn () — 2(t)]| —» 0 as N — oo, (3.3)

@y

construct the sequence of discrete approzimation problems { Py) as follows:

minimize Jy[zy] = wo(zn (D)) + Z / aen (t5) — 2(2)]|%dt
j=-N7t

+ by jzzof(azzv(tj), wn(t; — A), Q:N(thJL\I () ,tj) (3.4)

koortia
DY
j=0ts

an(tie) —an(t) i(t)uzdt

subject to the constraints

'L,\r(t:,.;{.]) € an(t 7) +hNF(SEN( ), :EN(lf ~ Ay, tj) J=0,...k, 2(to) = zo, (35)
zn(t;) € Clt), j=—-N,...,-1, (3.6)
wilzn(tes1)) <o, fori=1,...,m, (3.7)
—fnn < (,oz-(rz;g\r(tkﬂD <fny, fori=m+1,...,m+r, (3.8)
£ .
el = S € 50 7= 1.+ 1, (39)
Z / e (L) — ()| %dt < 2 (3.10)
2’
J=-N
tnan (i) - 2n(t) o2 5
T < =, .
Z[ . —at)| dt <5 (3.11)



The next theorem justifies the existence of optimal solutions v (-) to the discrete approximation
problems (Pn) and their strong convergence to the reference r.ilm. Z{-) for the original problem
(P). The strong convergence Tn(-} — (-} is understood in the same sense as in Lemma 3.1, i.e.,
as the norm convergence in L' on the initial tail interval [a — A, ] and as the norm convergence in
W1 on the main interval [a,8]. In fact, under the assumptions made in (H1} and (H2), the strong
convergence above can be equivalently replaced by that in the norm of L™ on [a — A, a] and in the
norm of WP on [a,b] for any r,p > 1.

In contrast to Lemma 3.1 held in the general Banach state space X, the main part {ii} of Theo-
rem 3.2 established below requirves additional geometric assumptions imposed on the Banach space
X in question. Namely, we assume that both spaces X and X* are Asplund, which automatically
holds if X is reflezive. Recall that a Banach space X is Asplund if every separable subspace of X
has a separable dual. This is a broad class of Banach spaces well investigated in geometric theory
and widely applied to many aspects of variational analysis and generalized differentiation; see the
hooks [1, 2, 7, 8] for more details, numerous results, and discussions. Recall a remarkable fact from
the geometric theory of Banach spaces: X is Asplund if and only if the dual space X* has the
Radon-Nikodym property.

Furthermore, part (ii)} of the next theorem requires additional technical assumptions on the
initial data in the case of set-valued initial conditions (1.2):

(H6) either the set C(2) is a singleton {c(t)} for a.e. t € [a — A, a]; or the set C(2) is convex for
a.e. t € [a—A,a], the mapping F(z,y,t) is linear in y for a.e. ¢ € [a,a+ A, and the function
flz,y,v,t) is convex in (y,v) for ae. ¢ € [a,a+ Al

Theorem 3.2 (strong convergence of discrete optimal solutions). Let Z(-) be the given
reloged intermediate local minimizer for the original Bolza problem (P) with the Banach state space
X, let {(Pn)} as N € IN be a sequence of discrete approximation problems constructed above, and
let the standing assumptions (H1)—(HB) be satisfied. Then the following assertions hold:

(i) For oll N € IN sufficiently large problem (Py) admits an optimal solution.

(ii) If in addition both spaces X and X* are Asplund and {H6) holds, then any sequence {Zn (-
af optimal solutions to (Py) extended to the continuous-time interval [a — A, D] converges to T
as N — oo in the L*-norm topology on [a — A, a] and in the Whi-norm topology on [a,b].

1}
()

Proof. To justify assertion (i), we first observe that the set of feasible solutions to each problem
{Pn) is nonempty for all N € IV sufficiently large. Indeed, pick the discrete trajeciory an(-)
approximating the given minimizer Z(-) by Lemma 2.1 and shew that it satisfies all the constraints
(3.7)-(3.11) for large N. By assumption (H4) we have

loi(zn (bre1)) — @i(ED))] < £z (tap1) — Fltngpr)] < fnw foralli=1,...,m+r

due to (3.3). This implies the fulfillment of the endpoint constraints (3.7) and (3.8) for zy (), since
those in (1.3) and (1.4} hold for &{-). The fulfillment of (3.9) for zy{-) follows directly from the
construction of ny — 0 in (3.3). Further, it is easy to check that

-1

>/ T awtty) — (0Pt = | Newtt) = aolPes = o

j=—N7h



for the plecewise linear extension of 2y {:) to [a — A, &) and

tit1

k .
)
F=07"a

for the piecewise linear extension of zy(-) to [a,b]. By the aforementioned equivalence between the
Ll/Wl’1 and L?/W L2 convergence in Lemma 2.1, we have that ay — 0 and Gy — 0 as N — oo,
which justifies the fulfillment of (3.10) and {3.11) for large N. The existence of optimal solutions
to ( Py} follows now from the classical Welerstrass theorem due to the compactness and continuity
assumptions made in (H1}-(H5).

zn(tiv1) — 2N (s
hy

) _ i(t)”zdt - /: in(t) — 3(0)]%dt = By

To justify further assertion (ii) of the theorem on the strong convergence of discrete optimal
trajectories, we chserve first that

limsup Jy[zn] < J[7 (3.12)
N—co
in any Banach spaces, which can be proved similaily to [8, Theorem 6.13] by using the Lebesgue
dominated convergence theorem for the Bochner integral held due to (HS). Let us show that (3.12)
implies the claimed strong convergence Zy(-) — T{-}) as N — oo under (H6) and the Asplund
property of both spaces X and X*. This clearly follows fromn the relation

a b
Jin fowi= [ lawt) -a@Far+ [ s - s d] =o (313)

which we now prove by contradiction under the additional assumptions imposed.

Suppesing that (3.13) does not hold, we get a number p > 0 suck that py — pas N — oo
with no loss of generality. Observe, by the discussions above, that both spaces X and X* have the
Radon-Nikodiim property. Thus, applying the Dunford weak compactness theorem given, e.g., in [2,
Theorem IV.]], we find F(-) € L*{ja — A, a]; X} and v{*) € L!([a, b]; X) such that

Zn{) — () weakly in LYla —~ A,a]; X) and Fx(-) — v(-) weakly in Ll(fa,8); X)  (3.14)

as N — oc. It follows from (13, Theorem 3.4.2] that the sequence {Zn(t),a <t < b} is relatively
compact in the norm Lopology of the space C{[a,b], X}, Taking into account the weak continuity
of the Bochner integral as an operator from L!([a,b]; X) into X and passing to the limit in the
Newton-Leibniz formula for zy(t), a <t < b, as N — o0 we conclude that Z(+) € C({a,b]; X) on
[a,] and that v{t) = ¥(¢) for a.e. i € [a,b].

Let us show next that the limiting function Z(t), e — A <t < b, satisfles all the constraints
in (1.2)-{1.4) and, furthermore, belongs to the prescribed neighhorhooed of the intenmediate local
minimizer Z(-) defired by (2.1) and (2.2) withr=p=2andv=a=1.

To check this for {1.2) on the initial interval [a — A, a], we employ to Zy(-) on [a — A, a} the
classical Mazur theorem, which ensures by the first relation in (3.14) the Li(Ja — A, a]; X)-norm
convergence 1o Z(-) of a sequence of convexr combinations of Zy(-). Since the latter convergence
implies the a.e. pointwise on [a — A, a] convergence of a subsequence of these convex combinations
and since the sets C(t) are assumed to be Hausdorff continuous in (H1) and convex in (H6) for
a.e. t € [a — A, a], we conclude that Z(-) satisfies (1.1) by passing to the limit in (3.6) as N — oc.
The fulfillment of the endpoint constraints (1.3} and {1.4) for (-} follows by passing to the limit
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in (3.7) and (3.8) for Ey(-) with tpy; = b therein by taking into account the norm convergence
(b)) — F{b), the continuity of the endpoint functions ¢;, and the convergence iy — 0 as N — co.

By passing to the limit in (3.9), we justify the intermediate minimum relation (2.1) for Z{-)
since Zn{-) — Z(-) in the norm topalogy of C({a,b]; X). To get the integral intermediate minimum
relation (2.2) for Z(-), we pass to the linit in (3.10) and (3.11) as N — co by using subsequently
the weak convergence in (3.14), the Mazur theorem for {Zx ()} in Z'{[a— A, a]; X) and for {Zn ()}
in L'([a, b]; X), and the weak lower semicontinuity of the integral functionals

[ ]
| 1-awPa ma [ 2o
a— [#3

in the aforementioned spaces, respectively.

By using similar arguments, the structures of the cost functionals in (1.6) and (3.4), the addi-
tional assumptions on F' and f together with the imposed standing assumptions, and the upper
estimate {(3.12) established above, we conclude by the construction of the relaxed problem (R) in
Section 2 that T(-) is a feasible arc for (R) satisfying the relations

—~ b —~ -
78] = wo(F(b)) + f FriE(e), (e — 8),5(8),0)dt + p < J[a). (3.15)

Since we suppose that p > 0 and we have J[z] = J] [Z], the inequality in (3.15) is strici, and thus
we get J[T] < J[Z] that contradicts the choice of Z(-) as a relazed intermediate local minimizer for
{P). Thus (3.13) holds, which justifies (ii) and completes the proof of the theorem. VAN

4 Generalized Differentiation

A characteristic feature of the original problem (P) as well as of its discrete counterpart {FPy) is
intrinsic nonsmoothness primarily due to the presence of dynamic constraints (1.1) and (3.5). In
what follows we deal with nonsmoothness by using appropriate generalized differential constructions
studied in detail in the book [7]. For the reader’s convenience, we briefly review these constructions
and some of their important propertias in this section. Since the corresponding constructions are
used in the paper only in Asplund spaces, we adjust the definitions to this setting.

The normal cone to a set 8 C X at its point & € £ (known ag the basic, limiting, or Mo:r-
dukhovich normal cone} is defined by

N(z;Q) := Limsup f\}('t,ﬂ) (4.1)

Q.
=i

via the sequential Painlevé-Kuratowski outer /upper limit (1.10) of the prenormal/Fréchet normal
cone to & at = € ) given hy

ITT(I,Q) = {:c* e X*| limsup Whu=-z) < 0}, 4.2

o " Tu—a]

U=
€ .o o
where the symbol # = 7 indicates that  — 7 with x € {1. Note that for convex seis €} we have

N(Z;Q) = N(z; Q) = {z* ¢ X*

{z*,z— %) <0 foralaeQ} (4.3)

il



Given a set-valued mapping F: X = Y and a point {Z,§) € gph F, define the basic coderivative
of F at {Z,7) and the Fréchet coderivative of F at this point by, respectively,

D*F(%,5)(y") == {2" € X"

(«*, —y") € N((Z,7);eph F')}, (4.4)

D*F(z,9)(y") == {z* e X*

(a*,—y") € N((z,9);eph )} (4.5)

Note that both coderivatives (4.4) and (4.5) are positively homogeneous set-valued mappings from
Y™* to X*. They both are single-valued and linear

D*F(z)(y*) = D*F(z)(y") = {VF(E)*y*} for all y* € Y™

if F: X — Y is single-valued and C! around %, or merely strictly differentiable at this point.
Given now an extended-real-valued function @: X — IR = {—o0,00| finite at #, the (basic,
lhniting, Mordukhovich) subdifferential of ¢ at 7 is defined by

"@p(F) = Limsup 5{,0(3:}, (4.6)

where 22 5 % means that = — T with ¢(z) — (Z), and where 5(,0{:1:) stands for the Fréchet
subdifferentiol of  at x defined by

=~ . u) —plr) — (z*u—x
aﬂmﬁ{ﬁex*mmﬁﬂ) plz) - (%, )zq. (4.7
‘ i [u—e]

Besides the above generalized differential constructions, we employ their extended limiting ver-
sions for moving (parameter-dependent) objects needed in the case of noncutonemeus systems.
Given a moving set Q: T = X, the extended normal cone to §1(2) at T € Q(t) is defined by

No(z: Q) := Limsup N(z: Q). (4.8)
gph

()" (ixf)

Given a parameter-dependent function w: X x T — IR finite at (F,7), the extended subdifferential
of (-, ) at.Z is defined by

Oy0(Z,1) = Limsup 599(:&15), (4.9)
(2,4} 5(2.0)

where é\tp(-, f) is taken with respect to x under fixed ¢. Obviously, the extended normal cone (4.8)
and the extended subdifferential {4.9) reduce to the basic objects (4.1} and (4.6) if, respectively,
() and (-, 1) are independent of ¢t. In the recent paper [10], the reader can find more details
ahout the latter extended generalized differential constructions and calculus rules for them.

5 FEuler-Lagrange Conditions for Delay-Difference Inclusions

In this section we derive necessary conditions for optimal solutions to the discrete optimization
problems (Pr). We reduce these discrefe-time dynamic optimization problems to problems of
mathematical programming with functienal, operator, and -finitely many geometric constraints.
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It is easy to observe that each discrete optimization problem (Py), for any fixed N € IV and
the corresponding number & € IV defined in (3.1}, can be equivalently written as the following
problem of mathematical programming (M FP):

minimize ¢p(z) subject to
$i(2) <0, 5=1,...,s,

(5.1)
g9(z) =0,
2€0; CZ j=1,...,1
where ¢; are real-valued functions on the Banach space Z := XN+2%+3 where g: Z — E is a
mapping between Banach spaces, and where ©; C Z. To see this, let
N N N
P = @yl = @ ) 2 () o)AV B € 2, (52)

E:=XN s:=k+34+m-+2r, and I := k + 2, where ij = (:1::;.V+1 - a::,:.\")/hN. Rewrite {Py) as an
(M P) problem (5.1) with the following data:

bo(=) = ol + 3 f la - 2()|2at

f=—N

(5.3)
k
7
b S $ N, ) ,m+Z f lu — (6%,
j=0 .
N - £
|z — =zl - 5 i= 1., k+1,
Dl - aePa -5, =k,
> | >
i=—N
(bj(zN) = k tip1 . ) c (54)
S [T -dea -5 5=k,
=0 Y 2
@y (%-H) oy, forj=k+3+¢ i=1,...,m+r
—goi(rckN_l_l) —fpy, dorj=k+34+m+r+i, t=m+1,...,m+n
g(z"y = (g (™), ..., ge{z™)) with gj(zN) = "L;\f!_l - mﬁv - hNyf, i=0,...,k, (5.5)
8, = {(ay, .., uf) | Y ecCty)}, d=-N,..., -1 (5.6)
0; = {(aNn, ...yl | v e Pl 2l yit))}. §=0,... k. (5.7)

The next theorem presents necessarv conditions for optimal solutions to each problem {Pp)
in the fuzzy/approzimate discrete-time forms of the EBuler-Lagrange and transversality inclusions
expressed in terms of the Fréchet-like generalized differential constructions reviewed in Section 4.
The proof is based on applying the corresponding fuzzy celeulus rules and neighborhood criteria for
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metric requlerity and Lipschifzian behavior of mappings taken from {7]. Note that fuzzy calculus
rules provide representations of Fréchet subgradients and normals of sums and intersections at
the reference points via those at points that are arbitrarily close to the reference ones. Just for
notaticnal simplicity and convenience, we suppose in the formulation and proof of the next theorern
that these arbitrary close points reduce to the reference ones in question. It makes no difference

for the limiting procedure to derive the main necessary optimality conditions for constrained delay-
differential inclusions given in Section 6.

Theorem 5.1 (approximate Euler-Lagrange conditions for delay-difference inclusions).
Let 2¥(.) be an optimal solution to problem (Py) with any fired N € IN sufficiently large under
the standing hypotheses (H1)~(HS). Denote F; (= F(-,-,t;) and f; == f(,-, -, t;) and assume in
addition that X is Asplund and that the functions @; and f; are Lipschitz continuous around "E}{yﬂ

and (&, & Y)Y, respectively, fori=0,...,m+7 and 5 =0,..., k. Consider the quantities
5 =N Yy g =54
b &Y —FN
9%"::2] L—:E(::)Hah:, j=0,... K
g h
tj N

i (5.8)
NxQ/ lz;" —z{&)ldt, j=-N,...,~L

t;
Then for any sequence of positive numbers )y — 0 as N -+ oo there are sequences of Lagrange
multipliers )\;fv, 1=0,...,m+7r, and sequences of the discrete adjoint arcs pj,-\’ €X*i=0,... k+1,
and qj\' € X*, j=—=N,...,k+1, satisfying the following relotionships:

e the sign end nonfriviality conditions

T
A >0 forall i=0,...,m+m Z)\?’:l; (5.9)
=0
o the complementary slockness conditions
MeEl ) —n] =0 fori=1,...,m; (5.10)

the approximate Euler—Lagmnge inclusion

N N N NaN
Pivs — P GimN+1 — g N )‘09' N N N N
( i i - i al +pj+1+qj+1) P ar(zy T ,”cj N,yJ ,f)

hy ' hy hy (5.11)
H’\T((a‘:?’,E?Lnr,ﬂfr);gphf’j) +eniB* with some aﬁ-\r eB*, i=0,...,k
o the approvimate tadl conditions
g - a) N : N
—-%— )\ e b EN(’E C(t;)) +enBB™ with some b} € BY, j=-N,..., 1,
N (5.12)
qu& j=k-N+1,..,k+1;
o and the approrimate transversality inclusion
m m+r
T is _N o
ol €S Mlael)+ S W [a@z #00) Ua( e (:L;H)] +enhy B (5.13)
i=() i=m+1
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Proof. We basically follow the procedure developed in the proof of [8, Theorem 6.19] given for
the case of discrete approximations of nondelayed differential inclusions with geometric endpoint
constraints, while here we take into account new elements in the structure of the initial data in
the constrained delay problem under consideration. We present a detailed proof of the theorem in
the major case of metric regularity of operator constraints while referring the reader to our similar
previous consideration in the remaining case, which does not actually incorporate the new specific
features of the problem under consideration; see below.

Cousider problem (Py} in the equivalent mathematical programming form (5.1) for the decision
variable 2% € Z in {5.2) with the initial data defined in (5.3)~(5.7). Given ¢ > 0 in {3.9)~(3.11),
take N € IV so large that constraints (3.9)-(3.11) held as strict inequalities; this is ensured by
Theorem 3.2. Then all the inequality constraings in (5.4} are inactive at the point

_N _N _N _N _N _ _N _ _N
2"]\ = (:I:fN'l"'!m{;}-t-l!yOA?"‘!yi‘\) = (.’EN(tL_N),...,.’E (tk+l)1yN(t0)1"'1y1 (tk)):
anc thus the functions ¢4, j =1, ...,k + 3, can be ignored in the arguments below.

Let us examine the following two mutually exclusive cases in the proof of the theorem, which
are complemented to each other.

Case 1. Assume that the operator constraint mapping g: X V+2k+3 _, X*+1 i (5.5) is metrically
reqular at 2 relative to the set

@:= () o (5.14)
with ©; taken from (5.6) and (5.7}, in the sense that there is a constant 4 > 0 and a neighborhood
V of 2V such that the distance estimate

dist(z; ) < wllg(2) — g(z")|| forall ze©NV with S:={2€©| glz) = g(z"}}

is satisfied. Then, by Ioffe’s exact penalization theorem from [4] (see also [8, Theorem 5.16]), we
conclude that 2V is a local optimal solution to the unconstrained minimization problem:

minimize max {¢o(2) — ¢o("), _I}"l(a){ ) ei(zhig)} + p{ilg(2))] + dist(z; ©)) (5.15)
e ZEn
for all u > O sufficiently large, where

Hzn) = {'L € {1,...,m}l tpi(fi.\;l) =€17N}U{ ie{m+1,...,m+r}

either (2, ) = énn

or — gpi(:'ckN+1) = Em\r}.

Applying the generalized Fermat rule from [7, Proposition 1.114] to the local optimal solution Y
for (5.15), we arrive at the subdifferential inclusion

0 € Blmax{n() - ("), max (3} +plgOl +udit(- OIY).  (5.10)

in terms of the Fréchet subdifferential (4.7). Picking then any sequence ey | 0 as N — oo and
employing in (5.16) the fuzzy sum rule for Fréchet subgradients from [7, Theorem 2.33(h)], we Lave
sy taking into account our notational convention that

€ Bmax{to() — do(="), mex wi )+ wdlgCIE") + bt 0)(a) + N B
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Computing now by [7, Proposition 1.85] the Fréchet subdifferential of the distance function dist(z; ©)
and using the simple chain rule for the composition ||g(z)| = (¢ o g){z) with ¢{y) := ||y| and the
smooth mapping g from (5.5), we get

- - h
0 & 8| max{go(-) — $o(zM), Jnax wil- )+ Z Vgi(z")e; + NiEY o) + €N4 LAY (5.17)

(Zn)

for some € € X* satisfying

Zng(EN)*ej =(0,...,0,—¢€f, e — €],...,€f_1 ~ ek, ch, —hNES, ..., —hNES) (5.18)

due to the specific structure of the operator constraints in {5.1) and (5.5). By the fuzzy rule for
Fréchet subgradients of the maximum function from [7, Theorem 3.46] we have the inclusion

8 max{o(:) = go(z" 0 g e[ MY + 3 N Beulal)

clEn) i=1
iy = o~ E‘NhN
+ 3 )\;N[a(,oz‘(:ﬁg_i_l)Ua(—wi)(ff_‘_l)]+TIB*, | (5.19)
i=m+1

where the multipliers )\jN 3 = 0,...,m + 7, satisfy the sign, nontriviality, and complementary
slackness conditions in {5.9) and (5.10). Taking into account the structure of cost functional ¢q in
{5.3) and the specific forms of its terms, we get from the aforementioned fuzzy sum rule that

-1

P t}
5oo(=) < Boolally) + Z[f 2la - o)) de| B

k k i,
SN _N - . ENhN *
+hf\;j§aj(xj, AT +§Utj 27 —:c(t)||dt]]B + =B,

where the Fréchet subdifferential of the function f is considered with respect to its all but t variables,
and where the classical relationship 8||-||2(z) C 2||z||/B* is used together with the subdifferentiation
formula under the integral sign in (5.3) well known from convex analysis.

Apply further the fuzzy intersection rule from [7, Lemma 3.1] to the set © in (5.14) and get

(5.20)

_ . N ]
N(E10) € R0 )+ + Bzien) + 202 . (5.21)

Let z;f = (:L'*_Nj,. . x:ﬂ+1’j,y61j, PN Th j} and observe from the set structures in (5.6) that for any

s N(= N9, 5, 4= —N .+, —1, all but one components of 2}

batlsfymfr Ty, € N( Cit)), 5 = ~N,...,—1. Similarly the relationship zj € ﬁ(f‘v;@j) for
i=0,..., k Jmphes that

are zero with the remaining one

(255, %3N UG 5) € N(( Ty, ;, N T ),bphF) i=0,...,k, {5.22)

with all the other components of 27, j = 0,..., &, equal to zero. Combining these relationships
with (5.17)-(5.21) and using the notation

J a5 =N N N N N =N o
U;{-\+1 € 8‘100($k+1)! (U_;: 1f‘-'_j—Na'wj ) € 3f('{23 s Ly N)ygvat ) .? *O ]'
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with ﬂj-‘r = (T?itl - rZ'jV)/hN due to g(z") = 0 in (5.5), we arrive at

w55 = T gen € M el + N o BT +enhy B, j= =N, -1,
—at =ty € A sl + M byl el — b +enhwB®, j=1,...,k- N,
—ay e M hyol 4 o5 — s +enhnBr, j=k-N+1,...,k, (5.23)
—y;:j € )\grhf\fw}r\r -+ A{I)Vaij* - ]’LNC} +enhnIB*, §=0,...,k,
0e 131:+17k_+1 + /\[')Vu,{,‘zrl + e FenhyiBT,
—x50 € M hrg + M hnvg —eb + hyen B,
where the triples (z7 ;, 27 N’j,y;,j) satisfy (5.22) for all § =0,..., &k and where
SN ™ N N N
* A =V e a —
Tryikeel € Z)\i Opi(Ty) + Z Ai {6(Pi(mk+l)Ua(_ﬂoi}(mk-i-l)}' (5.24)
i=1 i=m+1
Further, we denote
BV =eiy for j=1,..,k+1, @ =2al+ %;N for j==Ny k=N, (o
gro=0for j=k-N+1,...,k+1
and define the the edjoint discrete trajectories (p;-\r, q;V) by
q;‘i\;_l =0, qjy = q}i\il - :;f\rhNI for j=-N,....k+1, (5.26)
pé,\ = —q[‘;V, a.ndp_‘,;-\‘r ::p;;-\‘ —q;-\ for 7=1,...,k+1

It is easy to check that qj-v =0forj=k-N+1,...,k+ 1. Combining finally the relationships
and notation (5.22)-(5.26), we get the optimality conditions (5.11)-(5.13) of the theorem along an
arbitrarily chosen sequence ey | 0 as NV — co. This completes the proof of the theorem in Case 1.

Case 2. It remains to consider the situation when the mapping g from (5.5) is not metrically
requlor at £V velative to the set ©. In this case the restriction

go(z) == { gz) if =€, (5.27)

) otherwise

of the mapping ¢ on the set @ from (5.14) is not metrically regular eround Zy in the standard
sense; see, e.g. [7, Definition 1.47]. Observe that neither g nor © involves the functional constraints
of the problems {Py) and (5.1) under consideration. Thus we can proceed as in the proofs of [8,
Theorem 6.19} and [11, Theorem 5.1] for the gecmetric constraint cases therein and, employing
the neighborhood characterizations of the metric regularity and Lipschitz-like properties from [7,
Theorem 4.5 and Theorem 4.7] as well as calculations similar to the above Case 1, arrive at the
conclusions of the theorem in the remaining case. This completes the proof of the theorem. JAN

6 FKuler-Lagrange Conditions for Delay-Differential Inclusions

The concluding section of the paper presents the main result on new necessary optimality conditions
for relazed intermediate locel minimizers in the delay-differential systems under consideration given

17



in the exfended Fuler-Lagrange form. These conditions and their proof are based on passing to
the limit from the optimality conditions for discrete approximations obtained in Section 5 with
the use of the well-posedness/strong convergence results for discrete approximations established in
Section 3 and special properties of the generalized differential constructions reviewed in Section 4
that allow us to justify the appropriate convergence of adjoint trojectories.

In this section we keep the standing assumptions (H1)-{H4) and (HG), but instead of (H5)
impose its following strengthened modification:

{H5’) Theintegrand f{x,y, v, -} is continuous for a.e. ¢ € [a, b] and bounded uniformly with respect
to (z,y,v) € U x (MoIB) x (MpB); furthermore, there are numbers p > 0 and Ly > 0 such
that f(:,,- ) is Lipschitz continuous on the set A, () from (H5) with constraint Ly uniformly
in# € [a,b.

Now we are ready to formulate and prove aforementioned necessary optimality conditions for
relaxed intermediate local minimizers in {£) without imposing any sequential normal compactness
assumptions on endpeint constraints given by finitely many Lipschitzian equalities and inequalities,

Theorem 6.1 {extended Euler-Lagrange conditions for relaxed intermediated local min-
imizers in delay-differential inclusions with functional endpoint constraints). Let Z(.)
be o relozed intermediate local minimizer for problem (P) under hypotheses (H1)-(H4), (H5",
und (HB). Assume in addition that both speces X and X* are Asplund. Then there are multipliers
(A0, Amar) € R™TL and absolutely continuous dual arcs p: [a,b] — X* andq: [a—A, b — X~
satisfying the following relationships:

o the sign and nontrivielity conditions

m+4r

Az 0 forall i=0,...,m+r and » N=1 (6.1)
i=0
¢ the complementary slockness conditions

e the extended Euler-Lagrange inclusion

(3(1),4(t = 8)) € cleo{ (w,w)| (u,,p(8) + a(2)) € 2D F(5(8), 3¢ — A}, 3(2),1)

(6.3)
+ N3 (B8 20 - A) 3 gph F(, 1) b ae 1€ o,b),
where the norm-closure operation can be omitted when the state space X is reflezive;
s the optimal toil conditions
(g(t),2(t)) = min (§{t), e} ae t€la— 4 a),
cEC(1)
(6.4)

glt) =0, telb- A0,
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o the transversality inclusion

m+tr

“p(b) € Y Adpat) + S Al [Opi(2(8)) U B(~i)(z(B))]- (6.5)

i=0 i=m+t1l

Proof. Given the relaxed intermediate local minimizer Z{:) for the original problem (P), we
first employ Theorem 3.2 that ensures the strong Ll-approximation of Z(-) on the initial interval
[o — A, a] and the strong Wh-approximation of Z(-) on the main interval [a,b] by a sequence of
optimal solutions Ty (-) to the discrete approximation problems (FPy). As mentioned, we actually
have the L?/W!% approximation under the assumptions made. Picking a sequence ey | O as
N — oo and using the necessary optimality conditions for Zn(-) obtained in Theorem 5.1, find
the corresponding sequences of multipliers AY, i = 0,...,m +r, and of the discrete adjoint arcs

NeX* i=0,....k+1, and qnf;v € X* j=—N,. .., k-1, satisfying all the relationships in
(5. 9) (5.13). By (5.9), we suppose without loss of generality that

)\ﬁv—b\i as N — oo forall i=0,...,m+,

where the limiting multipliers A;, ¢ = 0,...,m + 7, satisfy the sign and nontriviality conditions in
(6.1). We easily get the complementarity slackness conditions (6.2) by passing to the limit in (5.10)
with taking into account that ny — 0 as N — co.

Consider the piecewise linear extensions p™ (¢) and g (t) of the discrete adjoint trajectories to
the continuous-time intervals [a,b] and [a — A, b], respectively, and define by

oy
oV (1) = Lal for telt;ti), =0,....k
hy 7
o
oM (t) = ?;,—j;;ij for t € [tj,tj41), F=-N,...,-1,

the piecewise constraint extensions of the discrete quantities (5.8) to the corresponding intervals,

where a?’ and b?" are taken from (5.11) and (5.12), respectively.

By the constructions of 6% () and o™ (t) we have the estimates

zl b
f 6™ (e)lat = Zne”n<22 / ”;w =) de =2 [ 1870 - e
M GCIEES W AR sldt=2 | Il (8) - a(6)] s,
/s Znsey [ TGS

which imply by Theorem 3.2 and classical real analysis that
O¥(t) = 0 ae. t€iab], o¥(E) » 0 ae tE€ja—Aa] as N — oo (6.6)

along a subsequence of IV that is assumed to be the whole natural series. Proceeding further
similarly to the proofs of [8, Theorem 6.21] and [11, Theorem 6.1], we derive from the approxi-
mate BEuler-Lagrange and transversality inclusions of Theorem 5.1 with the use of the coderivative
condition for the Lipschitzian property of set-valued mappings from [7, Theorem 1.43] and the
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uniform boundedness of Fréchet subgradients for Lipschitzian functions [7, Proposition 1.85] that
the sequences {5 (1)} and {¢" (t — A)} are uniformly bounded in L!([a, b]; X*). Since both spaces
A and X* have the Radon-Nikeym property, we conclude without loss of generality, by using the
Dunford weak compactness theorem and arguing similarly to the proof of Theorem 3.2, that

I (t) = p(t) weak* in X for all t € [a,b], (6.7)
PN {) — B(-) weakly in L([a, b); X*) '
as IN — co with the absolutely continuous limiting function p: [a,b] — X* and
gVt —A)— q(t — A) weak® in X* for all ¢ € [a,d], (6.:8)
V(- — A) = ¢(- — A) weakly in L([a,b]; X*) '

as IV — oo with the absolutely continuous limiting function g: ja — A, 5] — X*. The latter implies
the optimal tail conditions in (6.4) by passing to the limit in (5.12) as N — oo and taking into
account the specific structure of the normal cone to the convex sets C(¢) therein as well as the
pointwise convergence of o (-} in (6.6).

Further, it is easy to cbserve that the approximate Euler-Lagrange inclusion {(5.11) can be
equivalently written as

Aol al
N N 0"

(u,v,p (tre1) +4 (tj“)—h;\r“z_)
& N'BF(a(ty), 2t — ),V (), 15) - (6.9)

R (E 1,2~ 80,5 ) gph F( 1)) ) +enB*

BN @), 6V (¢t — A)) € {(u,'u) €X' x X*

for all ¢ € [t5,t541), 7 =0,...,k, and N € IN. Using {6.6)-{6.8} and applying the classical Mazur
convexification theorem to (6.9), we get the extended Euler-Lagrange inclusion {6.3) by passing to
the limit in (6.9) as N — oc and taking into account the extended normal cone and subdifferential
constructions in (4.8) and {4.9). Note that the closure operation in (6.3) can be omitted of X is
reflexive. Indeed, in this case the weak and weak* topology agree and, furthermore, every bounded
and convex set is weakly compact in X™ being therefore automatically norm-closed closed in the
latter space due to the aforementioned Mazur theorem. Hence the arguments above allow us to
drop the closure operation in the limiting convexification procedure, Finally, passing to the limit
in (5.13) as N — oo and taking into account the basic subdifferential construction (4.6), we arrive
at the transversality inclusion (6.5) and thus complete the proof of the theorem. FAY
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