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Abstract. This paper concerns the study of dynamic optimization problems governed by delay-differential 
inclusions with finitely many equality and inequality endpoints constraints and multivalued initial condi­
tions. \"fl.'e employ the method of discrete approximations and advanced tools of generalized differentiation in 
infinite-dimensional spaces to derive necessary optimality conditions in the extended Euler-Lagrange form. 
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1 Introduction 

The main objective of this paper is to study the generalized Bolza problem (P) governed by delay­
differential inclusions in infinite dimensions with finitely many equality and inequality endpoint 

constraints given by Lipschitzian functions and with multivalued initial conditions. The problen1 

(P) under consideration is formulated as follows. 

Let X be a Banach state space, let [a, b] C lR be a fixed time interval, and let x: [a- 6., b] __, X 
he a feasible trajectory of the constrained delay-differential inclusion 

x(t) E F(x(t),x(t- 6.), t) a.e. t E [a, bj, x(a) = xo EX, 

x(t) E C(t) a. e. t E [a- 6., a), 

<p;(x(b)) ::; 0, i = 1, ... , m, 

<p;(.x(b)) = 0, i = m + 1, ... , m + r, 

(11) 

(1.2) 

(1.3) 

(1.4) 

1 Research of this author was partly supported by the US National Science Foundation under grants DMS-0304989 
nne\ DMS-0603846 and by the Australian Research Council under grant DP-0451168. 
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with a given time delay 6 > 0, where F: X x X X [a, b] =I X and C: [a- 6, a] =I X are set-valued 

mappings defined the system dynamics and the initial state conditions: respectively, and where the 
functions I.Pi, i = 1, ... , m + T 1 define the endpoint constraints. 

By a feasible arc above we mean a mapping x: [a- .6., b] ~ X that is sun1mable on [a~ .6., a], 

Frechet differentiable for a.e. t E [a, b] satisfying the Newton-Leibniz formula 

x(t) = x(a) + [ x(s) ds for all t E [a, b] (1.5) 

and all the constraints in (1.1)-(1.4), where the integral in (1.5) is taken in the Bochner sense. It 
is well known that for X = IRn the a.e. Fr8chet differentiability and Newton-Leibnitz requirements 

on x(t), a S: t :S: b, can be equivalently replaced by its absolute continuity in the standard sense. 
In fact, there is a full description of Banach spaces, where this equivalence holds true: they are 

spaces satisfying the so-called Radon-Nikodym property (RNP); see, e.g., [2]. The latter property 

is fulfilled, in particular, in any reflexive space. 

Given now the endpoint cost function <po: X _, JR. and the integrand f: X X X X X X [a, b] -; JR., 
we consider the Bolza functional 

. ·b 

J[x] := <po(x(b)) + 1 f(x(t), x(t- 6),i:(t), t) dt ( 1.6) 

and formulate the dynamic optimization/optimal control problem (P) as 

minimize J[x] subject to (1.1)- (1.4) (1.7) 

over feasible arcs x: [a- 6, b] __, X assuming that J[x] > -oo for all the feasible arcs and there is 

at least one feasible x(-) with J[x] < oo. 

It has been well recognized that the generalized Bolza problem (P) is a convenient model in 
dynamic optimization unifying many other problems of this kind and containing, in particular, con­

ventional parameterized forms of optimal control problems governed by controlled delay-differential 

eq'uations of the type 

i:(t) = g(x(t), x(t- 6), u, t), u E U, a. e. t E [a, b]. (1.8) 

Besides more generality and other advantages of model (1.1) in comparison with that for (1.8), the 

direct inclusion description (1.1) allows us to cover the closed-loop case U = U(x) in (1.8), which 

is among the most challenging in control theory and the most important for various applications. 

Note also that the presence of the set-valued mapping C(-) defined on the initial time interval 

[a- 6, a) in (1.2) is a specific feature of delay-differential systems providing an additional source 

tor optimizing the cost functional (1.6) by a choice of the initial condition x(t) E C(t) on [a- 6, a). 

The problem (P) under consideration has been studied in [12] in the case of finite-dimensional 

state spaces X = IR.n; see also the references therein for previous developments on finite-dimensional 

delay-differential inclusions as well as the books [8 1 14] for more discussions and references on a 

variety of approaches and results on nondelayed counterparts of problem (P) and related finite­

dimensional control systems. On the other hand, there are recent developments in [8, 9] for nonde­

layed differential and evolution inclusions with infinite-dimensional state spaces and various types 
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of endpoint constraints. Finally, in onr recent paper [11] we consider a counterpart of problem (P) 
in infinite dimensions with general endpoint constraints in the geometric form 

x(b) E r! C X (1.9) 

inst.ead of the functional ones given by in (1.3) and (1.4). 
The major and most restrictive assumption of [11] imposes the sequential normal compactness 

(SNC) property on the target set 0:, which is automatic when the space X is finite-dimensional 
while cannot be easily checked in infinite-dimensional settings. Roughly speaking, the SNC property 

means that a set should be "sufficiently fat'' around the point in question; in particular, it is never 

satisfied for singletons in every infinite-dimensional space. This property is closely related to the 

so-called finite-codimension property of convex sets, which is essential for the fulfillment of the 

appropriate versions of the Pontryagin maximum principle for infinite-dimensional problems of 

optimal control; see, e.g., [3, 5, 8] for more discussions and references. 
The main result of this paper justifies extended Euler-Lagrange necessary optimality conditions 

for the formulated Bolza problem (P) that are of the same type as in [11] with an appropriate 

subclifferential counterpart of the transversality inclusion, but without any SNC assumptions on 

the set of endpoint constraints given by finitely many Lipschitzian functions. The results obtained 
are extensions on the case of delay systems under consideration of those established in (9] for 

nonclelayed infinite-dimensional inclusions providing at the same time certain improvements of [9] 

even in the non delayed setting. Indeed, in contrast to [9], we consider here nonautonomous systems 
and use for them extended version of the limiting normal cone and subdifferential to describe adjoint 

inclv,sions in the corresponding necessary optimality conditions. 

In comparison with [11) we derive necessary optimality conditions not just for global solutions to 

( P) but in the essentially more subtle and difficult setting of relaxed intermediate local minimizers 

introduced here for the delay-differential problems with multivalued initial conditions following the 

scheme of [6] in the case of nonclelayed differential inclusions. The treatment of local minimizers of 
this type requires a more delicate variational analysis performed in this paper. 

The driving force of our approach to obtain necessary optimality conditions for continuous-time 

systems is the method o.f discrete approximations developed in [6] for finite-dimensional nondelayed 

inclusions and then extended in [8, 9, 11, 12} to more general settings. 

The rest of the paper is organized as follows. In Section 2 we formulate the standing assumptions 

and then define and discuss the notions of intermediate local minimizers and relaxed intermediate 

local minimizers for the delayed problem (P) under consideration. 

Section 3 is devoted to the construction and justification of well-posed discrete approximations 

of intermediate local minimizers for problem (P) with taking into account the Lipschitzian func­

tional description of endpoint constraints in (1.3) and (1.4). Using further the possibility of strong 

apprmim.ation of feasible trajectories for (P) by their discrete counterparts established in [ll] and 

developing a certain relaxation procedure, we prove the L1 /1iV1•1 ~strong convergence of optimal 
trajectories for discrete problems to the given relaxed intermediate local minimizer for the original 

problem (P). This result requires appropriate geometric assumptions on the Banach state space X 

in question that hold, in particular, when X is reflexive. 

In Section 4 we briefly overview the basic constructions of dual~space generalized differentiation 

(normals to sets, coderivatives of set-valued mappings, and subdifferentials of extended-real-valued 
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functions) playing a fundamental role in the subsequent variational analysis and the derivation of 

necessary optimality conditions for discrete-time and continuous-time optimization problems. 

Section 5 is devoted to deriving necessary optimality conditions for the discrete approximation 

problems constructed in Section 31 which are governed by delay-difference inclusions with Lips­

chitzian endpoint constraints in infinite-dimensional spaces. Our approach is based on reducing the 

dyna.mic discrete-time problems under consideration to the corresponding non-dynamic problen1s of 

m.a.thematical programming that contain1 along with Lipschitzian functional constraints) an increas­

ing number of geometric constraints with possibly empty interiors. \life obtain necessary optimality 

conditions for these problems by using advanced tools of variational analysis and generalized dif­

ferential calculus in infinite dimensions. Finally1 Section 6 presents the main result of the paper on 

the Enler-LagTange necessary optimality conditions for relaxed intermediate local minimizers in the 

infinite-dimensional problem (P) with Lipschitzian endpoint constraints without SNC assumptions 

on the initial data. These. conditions are derived by passing to the limit from the "fuzzyl) optimality 

conditions for the approximating delay-difference problems established in Section 5. 

Our notation is basically standard; cf. [7, 8]. Unless otherwise stated, all the spaces considered 

are Banach with the norm II · II and the canonical pairing (·, ·) between the space in question, say 

X, and its topological dual X' the weak' topology of which is denoted by w'. We use the symbols 

1B and JB* to signify the closed unit balls of the space in question and its dual, respectively. Given 

a set-valued mapping F: X:::::::# X'\ its sequential Painlevi-Kuratowski upper/outer limit at X is 

Lims_upF(x) := {x* EX*\ :3 sequences Xk--+ X1 xk ~ x* with 
X--+X 

xic E F(xk) as k E IN:= {1, 2, ... } }· 
(1.10) 

2 Intermediate Minimizers and Relaxation 

Vle begin this section with formulating the notion of intermediate local minimizers for problem 

(P), which extends the original definition given in [6] (see also [8, Subsection 6.1.2]) from ordinary 

differential to delay-differential systems with multiva.lued initial conditions. 

Definition 2.1 (intermediate local minimizers for delay-differential systems). A feasible 

a:rc x: [a- b.,bj--+ X is an INTERMEDIATE LOCAL MINIMIZER (i.l.m.) of rank (T,p) E [1,oo)2 

fa·r (P) if" there are numbers c > 0, v 2 0, and a 2 0 such that J[x] S J[x] for all feasible arcs 

.~: [a.- 6., b] __,X to (P) satisfying the relationships 

llx(t)- x(t)ll < £ far all t E [a, b] and (2.1) 

V 1~/:, llx(t)- x(t)llr dt +at lli:(t)- x(t)llp dt < £. (2.2) 

Observe that relationships (2.1) and (2.2) mean that we consider in fact a neighborhood of x(t), 
t E [a.- 6., b], in the Sobolev space W 1·P([a, b]; X) with the norm 

(1 b )1/p 
llx(·)llwJ,,, := max llx(t)ll + ll:i:(t)IIP dt 

tE[a.,b] a 
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on the main interval [a, b] and in the classical Lebesgue space L'([a - L',, a]; X) on the initial 

interval [a - L',, a]. The case of a = 0 for nondelayed systems (L', = 0) with the only requirement 

(2.1) in Definition 2.1 clearly corresponds to the classical strong local minin1um with respect to a 

neighborhood of x(·) in the norm topology of C([a,b];X). If instead of (2.2) with!::.= 0 we put 
the more restrictive L00-norm requirement 

[[±(t)- :io(t)[[ < E a.e. t E [a, b], 

we have the classical weak local minimum in the framework of Definition 2.1. Thus the notion 

introduced for the first time in Definition 2.1 for delay-differential systems with taking into account 

the multivalv.ed initial condition (1.2) reduces to the notion of intermediate local minimizers given 

in [6] for ordinary differential inclusions and occupies1 for any p E [1 1 oo), an intermediate posi­
tion between the classical concepts of strong and weak local minima. It has been well recognized 

that this notion is indeed different from both classical notions even for convex and autonon1ous 

nondelayed systems in finite dimensions; see [8] and the references therein. Of course, all the nec­
essary conditions for intern1ediate minimizers automatically hold for strong (and hence for global) 

minimizers considered in [11] for the Case of geometric endpoint constraints. 

Let now x(·) be an arbitrary i.l.m. for problem (P). We impose the following standing assump­

tions on the the initial data of ( P) used throughout the whole paper: 

(Hl) The mapping C: [a - L',, a] =t X is compact-valued, uniformly bounded 

C(t) c MclB on [a- L',, a] with some Me > 0, 

and Hausdorff continuous for a.e. t E [a- 6, a]. 

(H2) There are an open set U C MclB and two positive numbers LF and MF such that x(t) E U for 

any t E [a, b], the sets F(x, y, t) are nonempty and compact for all (x, y, t) E Ux (MclB) x [a, b], 
and the following inclusions 

F(x, y, t) C MFJB for all (x, y, t) E U x (MclB) x [a, bj, 

F(xr, YJ, t) C F(x2, Y2, t) + LF([[xr '- x2[[ + [[Yr- Y2[[)JB, 

(2.3) 

(2.4) 

hold whenever (xr, Yr), (x2, Y2) E U x (MclB) and t E [a, b]. Note that (2.3) means the 
v.n4[n·m. boundedness of F(x, y, t) on U x (MclB) x [a, b] while (2.4) signifies the local Lipschitz 

continuity ofF(-,·, t) around (x(t), x(t- !::.)). 

(H3) F(x, y, ·) is Hausdorff continuous for a.e. t E [a, b] uniformly in (x, y) E U x (MclB). 

(H4) The endpoint cost function <po and all the endpoint constraint functions 'Pi, i = 1, .. . ,rn+T, 
are locally Lipschitzian around x(b) with the common Lipschitz constant f 2 0. 

(H5) The integrand f(x, y, v, ·) is continuous for a. e. t E [a, b] and bounded uniformly with respect 

to (2•, y, v) E U X (MclB) x (MFlB); furthermore, there is I' > 0 such that f(·, ·, ·, t) is 
continuous on the set 

A,(t) = { (x, y, v) E U x (IVIclB) x (MF + I')JBI v E F(x, y, s) for some s E (t- !', tl} 

uniformly in t E [a, b]. 
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It is easy to observe that the assumptions made allmv us to conclude that the i.Lm. notion introduced 

in Definition 2.1 is invariant with respect to any T, p E [1, oo ). We use this in what follows. 

To proceed further, along with the original problem (P) consider its "relaxed:' counterpart 

constructed in the way well understood in optimal control and variational analysis; see, e.g., the 

books [8, 13, 15]. Roughly speaking, the relaxed problem is obtained from (P) by a convexification 

procedure with respect to the velocity variable. Let 

fF(x, y, v, t) := f(x, y, v, t) + o(v; F(x, y, t)), 

where o(·; 8) stands for the indicator .function of the set in question equal to 0 on e and to 00 

otherwise. Denote by .fp(x, y, v, t) the biconjugate (second conjugate) function to fp in v, i.e., 

fF(x,y,v,t) := (fF)~'(x,y,v,t). 

The rdaxed generalized Bolza problem (R) for the original problem (P) governed by the delay­

differential inclusions under consideration is defined as follows: 

minimize J[x] := <po(x(b)) + t fF(x(t),x(t- fl),x(t),t)dt (2.5) 

over feasible trajectories x(t), a- fl :'0 t :'0 b, of the same class as for (P) but to the convexified 

delay-differential inclusion 

x(t) E clcoF(x(t), x(t- !'!.), t) a.e. t E [a, b], x(a) = xo (2.6) 

with the initial condition (1.2) and the endpoint constraints (1.3) and (1.4). As usual, the symbol 

;'cleo" in (2.6) stands for the convex closure of the set in question. 

Close relationships between the original and relaxed problems have been well understood in 

the calculus of variations and control theory for both differential and delay-differential systems; 

see the aforementioned hooks and the references therein. In fact, these relationships involving a 

certain relaxation stability reflect the deep hidden convexity property inherent in continuous-tin1e 
(nonatomic measure) dynamic systems defined by differential and integral operators due to the 

fundamental Lyapunov-Av.mann convex theorem and its extensions; see [8, 13, 15] for more details. 

A local version of relaxation stability regarding intermediate minimizers for the delay-differential 

Bolza problem (P) is postulated as follows and is studied in this paper. 

Definition 2.2 (relaxed intermediate local minimizers for delay-differential systems). A 
.feasible arc x(-) to the Bolza problem (P) is a RELAXED INTERMEDIATE LOCAL MINIMIZER (r.i.l.m.) 

of ra.nk (T,p) E [1, oo)2 .for (P) if it is an intermediate local minimizer of this rank .for the relaxed 

pmblem (R) providing the same value of the cost functiona.ls: J[x] = J[:r]. 

Similarly to the i.l.m. case, we conclude and use in what follows that the notion of relaxed 

intermediate local minimizers do not actually depend on rank ( T, ]J) E [1, oo )2 under the assumptions 
made. Also we always take I/ = a = 1 in (2.2) for simplicity. 
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3 Discrete Approximations 

In this section we present basic constructions of the method of discrete approximations in the 

theory of necessary opthnality conditions for delay-differential inclusions follmving the scheme of 

[11] developed there for the case of geometric constraints. Here we make important modifications 

required for intermediate local minimizers and Lipschitzian functional endpoint constraints (1.3) 

and (1.4) under consideration. 

Let us first construct discrete approximations of the delay-differential inclusion (1. 1) by replacing 

the time-derivative in (1.1) by the uniform Euler finite difference: 

'() x(t+ h)- x(t) 
X t "' h , h--> 0. 

To formalize this procedure, for any natural number N E IN take tj :=a+ jhN for j = -N, ... , k 
and tHt := b, where lw := !::,fN and k E IN is defined by 

(3.1) 

Note that LN = a - /::,, to = a, and hN --> 0 as N --> oo. Then the sequence of delay-difference 
inclusions approximating (1.1) is constructed as follows: 

{ 

XN(t1+1) E XN(t;) + h:~(XN(t;),~N(tj- !::,), t;), 

·"·N(t1) E C(t,) for J- N, ... , 1. 

j=O, ... ,k, x(to)=xo, 
(3.2) 

The collection of vectors { XN(t.;) I j = - N, ... , k + 1} satisfying (3.2) is called a discrete trajecto-ry. 
The corresponding collection 

is called a discrete velocity. We also consider the extended discrete velocities defined by 

t E [t;, t;+t), j = 0, ... , k. 

It follows from the definition of the Bochner integral that the corresponding extended discrete 
tra_jectories are given by 

XN(t) = x(a) + l VN(s)ds, t E [a, b], 

on the main interval [a, b] and by 

XN(t) := XN(t;), t E [t;, t.;+t), j = -N, ... , -1, 

on the initial tail interval [a-/::,, a). Observe that i:N(t) = vN(t) for a.e. t E [a, b]. 

The next result 1 which plays a significant role in the method of discrete approximations, es­

tablishes the strong approximation of any feasible trajectory x(·) to the original delay-differential 

inclusion given in (1.1) and (1.2) by extended feasible trajectories to its delay-difference counter­

part (3.2) in the following sense: the approximation/convergence in the W 1•1 ([a, b]; X)-norm. on the 
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main interval [a, b] and the one in the L1 ([a-!:!., a]; X)-norm on the initial interval [a-!:!., a]. Note 

that the strong H11•1-convergence of extended discrete trajectories on [a, b] implies not only their 

v:ni.fonn convergence on this interval but also the a. e. pointwise convergence of their derivatives on 

[a, b] along some subsequence of { N} as N --> oo. A detailed proof of this result is given in [11, 
Theorem 2.1] with more discussions therein. 

Lemma 3.1 (strong approximation by discrete trajectories). Let x(·) be a feasible trajec­

tory to (1.1) and (1.2) under assv.mptions (H1)-(H3), where X is an arbitrary Banach space. Then 

there is a sequence of solutions { ZN(tj) I j = -N, .. . , k + 1} to the delay-difference inclusions (3.2) 
sv.ch. that the extended discrete trajectories ZN(t), t E [a-!:!., b], converge to x(·) strongly in L1 on 

[a-!:!., a] and strongly in W 1•1 on [a, b] as N _,co. 

From nmv on we fix an arbitrary relaxed intermediate local minimizer X(·) for problem (P) 

considering the case of r = p = 2 and v =a= 1 in Definition 2.1 and Definition 2.2 without loss 

of generality. Having a positive nmnber E from the latter definitions and an open set U from the 

assumptions in (H2), we always suppose that 

x(t) + c/2 E U for all t E [a, b] 

and take a sequence {zN(t),a- 1:!. S t S b} of the extended trajectories for the delay-difference 
inclusions (3.2) approximating £( ·) in the sense of Lemma 3.1. Denoting 

~N := max llzN(t)- x(t)ll--> 0 as N--> co, 
tE[a,b] 

construct the sequence of discrete approximation problems ( PN) as follows: 

-1 rtj+l 

minimize JN[XN] := <po(xN(b)) + L }, [[xN(tj)- x(t)[[ 2dt 
j=-N tj 

suhject to the constraints 

(3.3) 

(3.4) 

XN(tj+!) E XN(t;) + hNF(xN(tj),xN(tj- 6.), tj), j = 0, ... , k, x(to) = Xo, (3.5) 

XN(tj) E C(tj), j = -N, ... , -1, (3.6) 
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The next theorem justifies the existence of optimal solutions X N ( ·) to the discrete approximation 

problems (PN) and their strong convergence to the reference r.i.l.m. x(-) for the original problem 

(P). The strong convergence XN(·)----+ X(·) is understood in the same sense as in Lemma 3.1, i.e., 

<:t.s the norm convergence in L1 on the initial tail interval [a- .6., aJ and as the norm convergence in 

W 1•1 on the main interval [a, b]. In fact, under the assumptions made in (Hl) and (H2), the strong 

convergence above can be equivalently replaced by that in the norm of Lr on [a - .6., a] and in the 
norm of W 1•P on [a, b] for any ,., p ::> 1. 

In contrast to Lemma 3.1 held in the general Banach state space X, the main part (ii) of Theo­

rem 3.2 established below requires additional geometric assumptions imposed on the Banach space 

X in question. Namely, we assume that both spaces X and X* are Asplund, which automatically 
holds if X is reflexive. Recall that a Banach space X is Asplund if every separable subspace of X 

has a separable dual. This is a broad class of Banach spaces well investigated in geometric theory 
and widely applied to many aspects of variational analysis and generalized differentiation; see the 

books [1, 2, 7, 8] for more details, numerous results, and discussions. Recall a remarkable fact fron1 
the geometric theory of Banach spaces: X is Asplund if and only if the dual space X' has the 
Radon-Nikodym property. 

Furthermore, part (ii) of the next theorem requires additional technical assumptions on the 

initial data in the case of set-valued initial conditions (1.2): 

(H6) either the set C(t) is a singleton { c(t)} for a.e. t E [a-/';, a]; or the set C(t) is convex for 

a. e. t E [a-/';, a], the mapping F(x, y, t) is linear in y for a.e. t E [a, a+!';], and the function 

f(x, y, v, t) is convex in (y, v) for a.e. t E [a, a+!';]. 

Theorem 3.2 (strong convergence of discrete optimal solutions). Let x(·) be the given 

relaxed intermediate local minimizer for the original Bolza problem (P) with the Banach state space 
X, let { ( PN)} as N E IN be a sequence of discrete approximation problems constructed above, and 
let the standing assumptions (Hl )-(H5) be satisfied. Then the following assertions hold: 

(i) For all N E IN sufficiently large problem (PN) admits an optimal solution. 

(ii) ffin addition both spaces X and X' are Asplund and (H6) holds, then any sequence {xN(·)} 
of optimal solutions to (PN) extended to the continuous-time interval [a- C., b] converges to x(.) 
as N ~ oo in the L1-norm topology on [a- /';,a] and in the W 1' 1-norm topology on [a, b]. 

Proof. To justify assertion (i), we first observe that the set of feasible solutions to each problem 

(PN) is nonempty for all N E IN sufficiently large. Indeed, pick the discrete trajectory ZN(·) 
approximating the given minimizer X(·) by Lemma 2.1 and show that it satisfies all the constraints 

(3.7)-(3.11) for large N. By assumption (H4) we have 

clue to (3.3). This implies the fulfillment of the endpoint constraints (3.7) and (3.8) for zN(·), since 

those in (1.3) and (1.4) hold for x(·). The fulfillment of (3.9) for ZN(·) follows directly from the 
construction of 'I]N ----+ 0 in (3.3). Further, it is easy to check that 
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for the piecewise linear extension of ZN(·) to [a- .6.,a) and 

for the piecewise linear extension of ZN(·) to [a,b]. By the aforementioned equivalence between the 

L1 /lF1•1 and L2 jVfrl,2 convergence in Lemma 2.1, we have that O'.N -......J. 0 and f3N -......J. 0 as N -......J. oo, 

which justifies the fulfillment of (3.10) and (3.11) for large N. The existence of optimal solutions 

to (PN) follows now from the classical \~Teierstrass theorem due to the compactness and continuity 

assumptions made in (H1 )-(H5). 
To justify further assertion (ii) of the theorem on the strong convergence of discrete optimal 

trajectories 1 we observe first that 

limsupJN[xN] <:: J[x] (3.12) 
N-oo 

in any Banach spaces, which can be proved similarly to [8, Theorem 6.13] by using the Lebesgue 

dominated convergence theorem for the Bochner integral held due to (H5). Let us show that (3.12) 

implies the claimed strong convergence xN(·) --> x(·) as N --> oo under (H6) and the Asplund 

property of both spaces X and X'. This clearly follows from the relation 

lim [PN := 1" lixN(t)- x(t)ii 2 dt + lb iixN(t)- x(t)ii 2 dt] = 0, (3.13) 
N---.= a-6. a 

which we now prove by Contradiction under the additional assumptions imposed. 

Supposing that (3.13) does not hold, we get a number p > 0 such that PN --> p as N --> oo 

with no loss of generality. Observe, by the discussions above, that both spaces X and X* have the 

Ra.don·Nikod!)m property. Thus, applying the Dunford weak compactness theorem given, e.g., in [2, 

Theorem JV.I], we find x(·) E L1([a- I'., a]; X) and v(-) E L1([a,b];X) such that 

xN(·)--> x(·) weakly in L1([a- L'.,a]; X) and XN(-)--> v(·) weakly in L1 ([a, b]; X) (3.14) 

as N __, oo. It follows from [13, Theorem 3.4.2] that the sequence {xN(t),a <:: t <:: b} is relatively 
compact in the norm topology of the space C([a, b]; X). Taking into account the weak continuity 
of the Bochner integral as an operator from L1([a,b];X) into X and passing to the limit in the 

Newton-Leibniz formula for XN(t), a<:: t <:: b, as N--> oo we conclude that x(-) E C([a,b];X) on 

[a, b] and that v(t) = i:"(t) for a.e. t E [a, b]. 
Let us show next that the limiting function x(t), a- L'. <:: t <:: b, satisfies all the constraints 

in (1.2)-(1.4) and, furthermore, belongs to the prescribed neighborhood of the intermediate local 

minimizer x(·) defined by (2.1) and (2.2) with T = p = 2 and v =a= 1. 
To check this for (1.2) on the initial interval [a- I'., a], we employ to XN(·) on [a- I'., a] the 

classical Mazur theorem, which ensures by the first relation in (3.14) the L 1([a- L'.,a];X)-norm 
conveTgence to X(·) of a sequence of convex combinations of XN(-). Since the latter convergence 

implies the a.e. poir1,twise on [a- 0., a] convergence of a subsequence of these convex combinations 

and since the sets C ( t) are assumed to be Hausdorff continuous in (H1) and convex in (H6) for 

a..e. t E [a- I'., a], we conclude that x(·) satisfies (1.1) by passing to the limit in (3.6) as N--> co. 
The fulfillment of the endpoint constraints (1.3) and (1.4) for x(·) follows by passing to the limit 
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in (3.7) and (3.8) for xN(-) with tk+1 = b therein by taking into account the norm convergence 

:r:N(b) ---> x(b), the continuity of the endpoint functions <p;, and the convergence 1)N ---> 0 as N---> oo. 

By passing to the limit in (3.9), we justify the intermediate minimum relation (2.1) for x(-) 
since XN(·)---> x(·) in the norm topology of C([a, b]; X). To get the integral intermediate minimum 

relation (2.2) for x(·), we pass to the limit in (3.10) and (3.11) as N---+ oo by using subsequently 

the weak convergence in (3.14), the Mazur theorem for {xN(·)} in £ 1 ([a- Lei, a]; X) and for { XJV(-)} 
in L 1([a, bl; X), and the weak lower semicontinuity of the integral functionals 

r r" Ja_
6

ll· -x(t)ll
2 

dt and Ja II· -x(t)[[ 2 
dt 

in the aforementioned spaces, respectively. 

By using similar arguments, the structures of the cost functionals in (1.6) and (3.4), the addi­

tional assumptions on F and f together with the ilnposed standing assumptions, and the upper 

estimate (3.12) established above, we conclude by the construction of the relaxed problem (R) in 
Section 2 that x(·) is a .feasible arc for (R) satisfying the relations 

][X] = <po(x(b)) + { fp(x(t), x(t- L>), ii(t), t) dt + p <:: J[x]. (3.15) 

Since we suppose that p > 0 and we have J[x] = J[x], the inequality in (3.15) is strict, and thus 

we get ][x] < J[x] that contradicts the choice of x( ·) as a relaxed intermediate local minimizer for 

(P). Thus (3.13) holds, which justifies (ii) and completes the proof of the theorem. Lei 

4 Generalized Differentiation 

A chamcteristic feature of the original problem (P) as well as of its discrete counterpart (PN) is 

intrinsic nonsmoothness primarily due to the presence of dynamic constraints (1.1) and (3.5). In 
what follows we deal with nonsmoothness by using appropriate generalized differential constructions 

studied in detail in the book [7]. For the reader's convenience, we briefly review these constructions 

and some of their important properties in this section. Since the corresponding constructions are 

used in the paper only in Asplund spaces 1 we adjust the definitions to this setting. 

The normal cone to a set D c X at its point X E 0 (known as the basic1 Hmiting 1 or J\!Ior­

dukhovich normal cone) is defined by 

N(x;f!) := LimsupN(x;f!) 
n­

X--7X 

( 4.1) 

via the sequential Painleve-Kuratowski outer/upper limit (1.10) of the prenormaljFrechet normal 

cone to .0: at X E n given by 

~ { , , I . (":', u - x) } 
N(x; f!) := x E X lrm,~up [[u _ x[[ <:: 0 , 

u~x 

( 4.2) 

\.Vhere the symbol X ..s X indicates that X ----+ X with X E n. Note that for convex sets .0: we have 

N(x;f!)=N(x;f!)={x'EX'I (x',x-x)<::O forallxEfl}. ( 4.3) 
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Given a set-valued mapping F: X=< Yanda point (x, y) E gph F, define the basic coderivative 

ofF at (x, fi) and the FTf.chet coderivative ofF at this point by, respectively, 

D"F(.x,ij)(y") := {x' EX'\ (x',-y') E N((x,y);gphF)}, (4.4) 

D'F(x,y)(y') := {x' EX'\ (x',-y') E N((x,y);gphF)}- (4.5) 

Note that both coderivatives (4.4) and (4.5) are positively homogeneous set-valued mappings from 
Y' to X'. They both ru·e single-valued and linear 

D' F(x)(y') = D'F(x)(y') = {V'F(x)'y'} for all y' E Y' 

ifF: X ----> Y is single-valued and C 1 around X, or merely strictly differentiable at this point. 

Given now an extended-real-valued function t.p: X __, lR := ( ~oo, oo] finite at X, the (basic, 

limiting, Mordukhovich) subdifjerential of <pat xis defined by 

8<p(x) := LimsupB<p(x), 
x~X 

(4.6) 

where o: £. x means that x ---> x with <p(x) ---> <p(x), and where B<p(x) stands for the Frechet 

suudifferential of <p at X defined by 

(4.7) 

Besides the above generalized differential constructions, we employ their extended limiting ver­

sions for moving (parameter-dependent) objects needed in the case of nonautonomous systems. 

Given a moving set !1: T =< X, the extended normal cone to !l(i) at x E !l(i) is defined by 

N+(x;!!(i)) := Limsup N(x;!l(t))­
( x ,t )m~.!~,fl (X,t) 

(4.8) 

Given a parameter-dependent function <p: X X T ---> 1R finite at (x, i), the extended subdifferential 

of <p(-, i) at x is defined by 

8+<p(x, i) = Lim sup B<p(x, t), 
(x,t)~(X,f) 

(4.9) 

where B<p(-, t) is taken with respect to x under fixed t. Obviously, the extended normal cone (4.8) 

and the extended subdifferential (4.9) reduce to the basic objects ( 4.1) and ( 4.6) if, respectively, 

!1(-) and <p(-, t) are independent oft. In the recent paper [10], the reader can find more details 
about the latter extended generalized differential constructions and calculus rules for them. 

5 Euler-Lagrange Conditions for Delay-Difference Inclusions 

In this section we derive necessary conditions for optin1al solutions to the discrete optimization 

problems (PN). VVe reduce these discrete-time dynamic optimization problems to problems of 

mathematical programming with functional 1 operator1 and ·finitely many geometric constraints. 
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It is easy to observe that each discrete optimization problem (PN), for any fixed N E IN and 

the corresponding number k E 1!'-l defined in (3.1), can be equivalently written as the follmving 

problem of mathematical programming (M P): 

l 
minimize ¢0(z) subject to 

¢J(z) S 0, J = 1, ... ,.s, 
g(z) = 0, 

z E 8j C Z, j = 1, ... ,l, 

( 5.1) 

where ¢J are real-valued functions on the Banach space Z .- xN+2k+3, where g: Z ______,. E is a 

mapping between Banach spaces, and where ej C Z. To see this, let 

E :=XN, s :=k+3+m+2r, and l :=k+2, whereyf := (xf+l -x§')/hN. Rewrite (PN) as an 

(M P) problem (5.1) with the following data: 

llx.f -x(tJ)II- ~, j = 1, ... ,k+1, 

-1 lt·i+l f I: llxf- x(t)ll 2dt- 2, 
i=-N t; 

j = k+ 2, 

j = k+ 3, 

<p;(xf:+1 ) -f7)N, forj = k+3+i, i = 1, ... ,m+r, 

-<p;(xf:+1) -f~N, for j = k+3+m+r+i, i =m+1, ... ,m+r, 

_N _ ( (-N ( N ) · ( N) ._ .N .N N g(" ) - 90 " ), ... , 9l: Z ) With 9} Z .- XJ+I - Xj - hNYj , 

xf E C(t1)}, j = -N, ... , -1, 

Y.f EF(xf
1
,xf:-N,tJ)}, j=O, ... ,k. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5. 7) 

The next theorem presents necessary conditions for optimal solutions to each problem (PN) 
in the f11.zzyjapproximate discrete-time forms of the Euler-LagTange and transversality inclusions 

expressed in terms of the Frechet-like generalized differential constructions reviewed in Section 4. 

The proof is based on applying the corresponding fuzzy calculus rules and neighboThood criteria for 
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'/TJ.etric regv.lo.rity and Lipschitzian behavior of mappings taken from [7]. Note that fuzzy calculus 

rules provide representations of Fnkhet subgradients and normals of sums and intersections at 
the reference points via those at points that are arbitrarily close to the reference ones. Just for 

notational simplicity and convenience, we suppose in the formulation and proof of the next theorem 

that these arbitrary close points reduce to the reference ones in question. It makes no difference 

for the limiting procedure to derive the main necessary optimality conditions for constrained delay­

differential inclusions given in Section 6. 

Theorem 5.1 (approximate Euler-Lagrange conditions for delay-difference inclusions). 

Let zN (-) be an optimal solution to problem ( PN) with any fixed N E IN sufficiently large under 

the standing hypotheses (H1)-(H5). Denote Fj := F(·, ·, tj) and fJ := f(-, ·, ·, tj) and assume in 

addition that X is Asplund and that the functions 'Pi and f; are Lipschitz continuous around xJ:+l 
and cxy' x.~~Nl Y]"), respectively, .fori= 0, ... ,1n + r and j = 0, ... ' k. Consider the quantities 

ej .- 2 t hN - x(t) dt, j = 0, ... , k, l N ·- lt.i+l II xj':l - xf ~ II 

(Jf := 21:w llxf- x(t)ll dt, j = -N, ... , -1. 

(5.8) 

Then for any sequence of positive numbers EN ---). 0 as N ---). co there are sequences of Lagrange 

multipliers A{", i = 0, ... ,1n+r, and sequences of the discrete adjoint arcs pjv E X*, j = 0, ... 1 k+ 1, 

and qj EX*, j = -N, ... , k + 1, satisfying the following relationships: 

• the sign and nontriviality conditions 

>.{' ::0: 0 for all i = 0, . .. ,m+r, (5.9) 
i=O 

• the complementary slackness conditions 

(5.10) 

• the approximate Euler-Lagrange inclusion 

l (5.11) 

+N~((-N eN -N)· ) p) + JB' xj ,x.i_N,Yj ,gp1 j EN "th N IB' . - 0 k· wz some aj E , J - , ... 1 , 

• the appmximate tail conditions 

with some bf E JB*, j = -N, .. . ,-1, 
(5.12) 

• a.nd the appmximate trans-uersality inclusion 

(5.13) 
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Proof. We basically follow the procedure developed in the proof of [8, Theorem 6.19] given for 

the case of discrete approximations of nondelayed differential inclusions with geometric endpoint 

constraints, while here we take into account new elements in the structure of the initial data in 

the constn.Uned delay problem under consideration. We present a detailed proof of the theorem in 

the major case of metric regularity of operator constraints while referring the reader to our similar 

previous consideration in the remaining case, which does not actually incorporate the new specific 
features of the problem under consideration; see below. 

Consider problem (PN) in the equivalent mathematical programming form (5.1) for the decision 

variable zN E Z in (5.2) with the initial data defined in (5.3)-(5.7). Givens> 0 in (3.9)-(3.11), 

take N E JN so large that constraints (3.9)-(3.11) hold as strict inequalities; this is ensured by 

Theorem 3.2. Then all the inequality constraints in (5.4) are inactive at the point 

-N (-N -N -N -N) (-N(t ) -N(t ) -N(t ) -N(t )) Z := X_N, ... ,xk+bYo , ... ,y/;: :=X -N , ... ,X k+l ,y 0 , ... ,y k , 

and thus t.he functions ¢.7, j = 1, ... , k + 3, can be ignored in the arguments below. 
Let us exan1ine the following two mutually exclusive cases in the proof of the theorem, vvhich 

are complemented to each other. 

Case 1. Assume that the operator constraint mapping g: xN+Zk+3 --> Xk+l in (5.5) is metrically 

regular at zN relative to the set 

k 

8- n 8j, (5.14) 
j=-N 

with 8J taken from (5.6) and (5.7), in the sense that there is a constant I'> 0 and a neighborhood 
V of zN such that the distance estimate 

dist(z;S) s: l'llg(z) -g(zN)II for all z E 8nV with S:= {z E 8 I g(z) =g(zN)) 

is satisfied. Then, by Ioffe's exact penalization theorem from [4] (see also [8, Theorem 5.16]), we 

conclude that zN is a local optimal solution to the unconstrained minimization problem: 

minimize max { <Po(z) - <Po(zN), . max <p;(x/:+1)} + 1'(119(z)il + dist(z; 8)) 
zEl(xN) 

for all!' > 0 sufficiently large, where 

(5.15) 

I(xN):={iE{1, ... ,m}\'P;(x/:+l)=f1JN}U{ iE{m+l, ... ,m+T}\ either <p;(x/:+ 1)=f1JN 

or - <p;(x/:+1) = f1JN }· 

Applying the generalized Fermat rule from [7, Proposition 1.114] to the local optimal solution zN 
for (5.15), we arrive at the subdifferential inclusion 

0 E 8[ max{ <Po(·)- <Po(zN), max <p;(-)} + l'llg(·)ll + l'dist(·, 8)] (.zN). 
iEl(iN) 

(5.16) 

in terms of the Frechet subdifferential (4.7). Picking then any sequence SN 1 0 as N--> co and 

employing in (5.16) the fuzzy sum rule for Frechet subgradients from [7, Theorem 2.33(b)], we have 
by taldng into account our notational convention that 

~[ N N "" N -.. N CNhN 
IlEa max{¢o(·)-¢0 (z ), max <p;(·)}](z )+1'8119(·)11(z )+1'8dist(-;8)(.z )+--IE'. 

iEl(iN) 4 
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Computing now by [7, Proposition 1.85] the Frechet subdifferential of the distance function dist(z; 8) 

and using the simple chain rule for the composition [[g(z)[[ = (¢ o g)(z) with ¢(y) := [[y[[ and the 
smooth mapping g from (5.5), we get 

N-1 
~[ N ] N '\"' N ~ N ENhN 0 E 8 max{ ¢o(·)- ¢o(z ), max rp,(-)} (z ) + L.. V 9J(z )'ej + N(z ; 8) +--IE' 

tEl(xN) . 4 
J=O 

for some ej E X* satisfying 

k 

L \lgJ(zN)*ej = (0, ... , 0, -eQ, eO- ei, ... , ek_1 - ek, ek, -hNeQ, ... , -hNejJ 
j=O 

(5.17) 

(5.18) 

due to the specific structure of the operator constraints in (5.1) and (5.5). By the fuzzy rule for 

Fn§chet subgradients of the maximum function from [7, Theorem 3.46] we have the inclusion 

(5.19) 

where the multipliers Af, i = 0, ... , rn + T, satisfy the sign, nontriviality, and complementary 

slackness conditions in (5.9) and (5.10). Taking into account the structure of cost functional ¢0 in 
(5.3) and the specific forms of its terms, we get from the aforementioned fuzzy sum rule that 

(5.20) 

where the Frechet subdifferential of the function f is considered with respect to its all butt variables, 

and where the classical relationship 8[[·[[ 2(x) C 2[[x[[JB' is used together with the subdifferentiation 
formula under the integral sign in (5.3) well known from convex analysis. 

Apply further the fuzzy intersection rule from [7, Lemma 3.1] to the set 8 in (5.14) and get 

(5.21) 

Let zj = (:r~N,J' ... , xf::+l,j' YO,j, ... , Yk,i) and observe from the set structures in (5.6) that for any 

.:.J E N(z.N;8j), j = ~N, ... ,~l, all but one components of zj are zero with the remaining one 

satisfying x;,; E N(xf; C(tj)), j = -N, ... , -1. Similarly the relationship zj E N(zN; 8J) for 

.7 = 0, ... , k implies that 

j = 0, ... ,k, (5.22) 

with all the other components of zj, j = 0, ... , k, equal to zero. Combining these relationships 
with (5.17)-(5.21) and using the notation 

N 2 ( N ) ( N N N) iif( -N -N -N t ) , uk+l E ur.po Xk+l , vj , n,j-N• w1 E u. xj , xi-N' Yj , j , j = 0, ... , t>:, 
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with yJ" = (i'f+ 1 - xJ")/hN due to g(zN) = 0 in (5.5), we arrive at 

• • .\NI N .\N NIB• 1 JB' · ]IT 1 -Xj,j- xj,j+N E 0 ~NK,j + 0 O"j . + E:JV lN 1 J =- , ... 1 - 1 

·' • E.\NJ N+.\NI N+' '+ h JB" . 1 k N -xj,.i- Xj,j+N o lJVKj o 1NVj ej-l - ej EJV N 1 J = , ... 1 - , 

-:~.:j,j E A~ h.Nvf' + ej_1 - ej + EJVhNlB*, .i = k- N + 1, ... , k, 

-yj,j E A~'hNwr + )..~ Bf JB*- hNej + ENhNJB*, j = 0, ... , k, 

0 ' .\N N * I IB' E 1:/r+l,k+l + 0 uk+l + ek + fN lN ' 

-xQ,0 E A~hNK,{j + A~'hNv{j- eQ + hNENlB*, 

where the triples (xj,;, xJ-N,j• Yj,;) satisfy (5.22) for all j = 0, ... , k and where 

m rn+r 

xk+l,k+l E I>f'atp,(xf:'+!l + I: .\f'[Btp,(xt'+r) u B( -tp,)(xt'+r)]. 
i=l i=m+l 

Further, we denote 

{ 
iif := ej_1 for j = 1, ... , k + 1, qJ" := .\{;'r.;f + xjl~;N 
ijf:=O for j=k-N+1, ... ,k+1 

and define the the adjoint discrete trajectories (pJ", qJ") by 

for j=-N, ... ,k-N, 

{ 
qJ:+l := 0, qJ" := qf+1 - iiJ" hN for j = -N, ... , k + 1, 
p~7 

:= -q{;', and pf := P.f - qf' for j = 1, ... , k + 1. 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

It is easy to check that qJ" = 0 for j = k- N + 1, ... , k + 1. Combining finally the relationships 
and notation (5.22)-(5.26), we get the optimality conditions (5.11)-(5.13) of the theorem along an 

arbitrarily chosen sequence EN l 0 as N ~ oo. This completes the proof of the theorem in Case 1. 

Case 2. It remains to consider the situation when the mapping g from (5.5) is not metrically 

regulaT at zN relative to the set 8. In this case the restriction 

ge(z) := { g(z) if z E 8, (5.27) 
0 otherw1se 

of the mapping g on the set 8 from (5.14) is not metrically regular around ZN in the standard 

sense; see1 e.g. [7 1 Definition 1.47). Observe that neither g nor 8 involves the functional constraints 

of the problems (PN) and (5.1) under consideration. Thus we can proceed as in the proofs of [8, 

Theorem 6.19] and [11, Theorem 5.1] for the geometric constraint cases therein and, employing 

the ne·ighborhood characterizations of the metric regularity and Lipschitz-like properties from [7, 

Theorem 4.5 and Theorem 4.7] as well as calculations similax to the above Case 11 arrive at the 

conclusions of the theorem in the remaining case. This completes the proof of the theorem. D. 

6 Euler-Lagrange Conditions for Delay-Differential Inclusions 

The concluding section of the paper presents the main result on new necessary optimality conditions 

for relaxed inteTmediate local minimizers in the delay-differential systems under consideration given 
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in the eJ;tended Euler- Lagrange form. These conditions and their proof are based on passing to 

the limit from the optimality conditions for discrete approximations obtained in Section 5 with 

t.he use of the well-posedness/strong convergence results for discrete approximations established in 

Section 3 and special properties of the generalized differential constructions reviewed in Section 4 
that allm\' us to justify the appropriate convergence of adjoint trajectories. 

In this section we keep the standing assumptions (Hl)-(H4) and (H6), but instead of (H5) 
impose its following strengthened modification: 

(H5') The integrand f(x, y, v, ·)is continuous for a.e. t E [a, b] and bounded uniformly with respect 
to (x, y, v) E U X (MclB) X (MplB); furthermore, there are numbers JL > 0 and Lf 2: 0 such 
that .f(-, ·, ·, t) is Lipschitz continuous on the set A~(t) from (H5) with constraint LJ uniformly 
intE[a,b]. 

Now we are ready to formulate and prove aforementioned necessary optimality conditions for 

relaxed intermediate local minimizers in (P) without imposing any sequential normal compactness 

assumptions on endpoint constraints given by finitely many Lipschitzian equalities and inequalities. 

Theorem 6.1 (extended Euler-Lagrange conditions for relaxed intermediated local min­
imizers in delay-differential inclusions with functional endpoint constraints). Let x(-) 
be a. relaxed intermediate local minimizer for problem (P) under hypotheses (Hl)-(H4), (H5'), 
ond (H6). Assume in addition that both spaces X and X' are Asplund. Then there are multipliers 

(.ilo, ... ,Am+,.) E JRm+,.+l a.ndabsolutelycontinuousdualarcsp: [a,b]...., X' andq: [a-Ll,b] _,X' 
satisfying the following relationships: 

• the sign and nontriviality conditions 

m+r 
Ai 2:: 0 for all i = 0, ... , ?n + r, and L Ai = 1; 

i:::O 

• the complementary slackness conditions 

.il;<p;(x(b)) = 0 .for i = 1, ... , m; 

• the extended Euler-Lagrange inclusion 

(P(t), q(t- Ll)) E cleo{ (u, w)l (u, w,p(t) + q(t)) E Aoil+f(x(t), x(t- Ll), i:(t), t) 

+ N+ ((x(t), x(t- Ll), i:(t)); gph F(·, ·, t))} a. e. t E [a, b], 

wheTe the norm-clos'ure operation can be omitted when the state space X is reflexive; 

• the optim u.l tail cond1:tions 

1 
(q(t), x(t)) = min (q(t), c) 

cEC(t) 

q(t) = 0, t E [b- Ll,bj; 

a.e. t E [a-Ll, a), 
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• the transversality indu,sion 

m 1n+T 

-F(b) E 2::.>-;il<p;(x(b)) + L .>-,[il<p;(x(b))uil(-<p;)(x(b))]. (6.5) 
i=O i.=m+l 

Proof. Given the relaxed intermediate local minimizer x(·) for the original problem (P), we 

first employ Theorem 3.2 that ensures the strong L1-approximation of x(-) on the initial interval 

[a- t.,a] and the strong W 1•1-approximation of x(·) on the main interval [a,b] by a sequence of 

optimal solutions iN(-) to the discrete approximation problems (PN). As mentioned, we actually 

have the L2 /VV1,2-approximation under the assumptions made. Picking a sequence fN 1 0 as 

N ---). oo and using the necessary optilnality conditions for XN(·) obtained in Theorem 5.1, find 
the corresponding sequences of multipliers Af", i = 0, ... , m + r, and of the discrete adjoint arcs 

P.f EX*, j = O, ... ,k +1, and qf EX*, j = -N, ... ,k+ 1, satisfying all the relationships ii1 
(5.9)-(5.13). By (5.9), we suppose without loss of generality that 

Af --> Ai as N ---). oo for all i = 0, ... , rn + 1·, 

where the limiting multipliers Ai, i = 0, ... ,1n + T, satisfy the sign and nontriviality conditions in 

(6.1). We easily get the complementarity slackness conditions (6.2) by passing to the limit in (5.10) 

with taking into account that 'l}N ---). 0 as N ----+ oo. 
Consider the piecewise linear extensions pN (t) and qN (t) of the discrete adjoint trajectories to 

the continuous-time intervals [a, b] and [a-!:::.., b], respectively, and define by 

()I:! 
eN (t) := - 1-aN for t E [t;, lj+J), j = 0, ... , k, 

hN J 

the piecewise constraint extensions of the discrete quantities (5.8) to the corresponding intervals, 

where of and bf are taken from (5.11) and (5.12), respectively. 
By the constructions of eN (t) and CTN (t) we have the estimates 

rb ]]eN (t)ll dt = i)efll <:, 2 t t+l II xf+;1 ~ xf - x(t)ll dt = 2 t llxN (t)- x(t)ll dt, 
Ja. j=O .i=O t} ]\ a 

{!:>II (TN (t)ll dt = ;~N II(Tfll <:, 2 J~N /HI llxf - x(t)ll dt = 2 {{:, llxN (t)- x(t)ll dt, 

which imply by Theorem 3.2 and classical real analysis that 

eN(t)->0 a.e. tE[a,b], CTN(t)->0 a.e. tE[a-t.,a] as N->oo (6.6) 

along a subsequence of IN that is assumed to be the whole natural series. Proceeding further 

similarly to the proofs of [8, Theorem 6.21] and [11, Theorem 6.1], we derive from the approxi­

mate Euler-Lagrange and transversality inclusions of Theorem 5.1 with the use of the coderivative 

condition for the Lipschitzian property of set-valued mappings from [7, Theorem 1.43] and the 
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uniform boundedness ofF.r€chet subgradients for Lipschitzian functions [7, Proposition 1.85} that 

the sequences {pN (t)} and { qN (t- L::.)} are uniformly bounded in £ 1 ([a, b]; X'). Since both spaces 

X and X* have the Radon-Niko:Ym property, we conclude without loss of generality, by using the 

Dunford weak compactness theorem and arguing similarly to the proof of Theorem 3.2, that 

{ 
pN (t) -+ p(t) weak' in X' for all t E [a, b], 

pN (·)-+ p(-) weakly in L1([a, b); X') 

as 1N--> oo with the absolutely continuous limiting function p: [a, b]-----+ X* and 

{ 
qN (t- L::.) -+ q(t- L::.) weak' in X' for all t E [a, b], 
qN(·-L':.)-+q(·-L':.) wealdyin L 1([a,b];X') 

(6.7) 

(6.8) 

as JN --> oo with the absolutely continuous limiting function q: [a- .6., b} -----+ X*. The latter implies 

the optimal tail conditions in (6.4) by passing to the limit in (5.12) as N -+ co and taking into 

account the specific structure of the normal cone to the convex sets C(t) therein as well as the 
pointwise convergence of uN (·) in ·(6.6). 

Further, it is easy to observe that the approximate Euler-Lagrange inclusion (5.11) can be 

equivalently written as 

).NeNaN 
(pN(t),qN(t-L':.))E{(u,v)EX'xX'I (u,v,pN(ti+r)+qN(tJ+r) 

0 h~ 1
) 

E ).~fif(x(tJ), x(tj- L::.), EN (t), tJ) (6.9) 

+ N ( (xN (tJ ), xN (tJ - L::.), tN (t)); gph F(·, ·, tJ))} +<NIB' 

for all t E [t.i, tJ+ 1), j = 0, ... , k, and N E IN. Using (6.6)-(6.8) and applying the classical Mazur 

convexification theorem to (6.9), we get the extended Euler-Lagrange inclusion (6.3) by passing to 

the limit in (6.9) as N-----+ oo and taking into account the extended normal cone and subdifferential 
constructions in (4.8) and (4.9). Note that the closure operation in (6.3) can be omitted of X is 
reflexive. Indeed, in this case the weak and weak* topology agree and, furthermore, every bounded 
and convex set is weakly compact in X* being therefore automatically norm-closed closed in the 

latter space due to the aforementioned Mazur theorem. Hence the arguments above allow us to 
drop the closure operation in the limiting convexification procedure. Finally, passing to the limit 

in (5.13) as N-+ oo and taking into account the basic subdifferential construction (4.6), we arrive 

at the transversality inclusion (6.5) and thus complete the proof of the theorem. 6 
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