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(d) (e) (f) (g)

Figure 5.11: (a-f) Another brain injury simulation with a time interval of 3ms. The blunt impact
occurs at the left front lobe; (g) Comparison of stress evolutions of the right thalamus under
the blunt impact.
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CHAPTER 6:
CONCLUSION

The purpose of this chapter is twofold. We first summarize the contributions made by this

dissertation, then we point towards the future work.

6.1 Contributions
In this dissertation, we are dedicated to present a general volume representation and model-

ing framework which employs dynamic multivariate simplex splines as its mathematic founda-

tion. We have made contributions in different volume-related research topics, such as volume

reconstruction, nonrigid volume registration, and physically based modeling and simulation.

1. Volume Reconstruction from 2D Images with Multivariate Simplex Splines (Chapter 3).

This part developed a new integral approach for representing, modeling, and reconstruct-

ing volume data with a hierarchical multivariate simplex spline model. The model is de-

fined over a hierarchical and progressive tetrahedralization of arbitrary 3D domains. Our

framework supports both structured and unstructured data. The modeled volume can be

of complicated geometry and arbitrary topology. We have developed a new paradigm to

reconstruct non-discrete models from a sequence of 2D images. With the flexible hier-

archical structures, our method can adaptively refine the domain tetrahedralization and

introduce more degrees of freedom locally for better fitting results. The volumes can

then be re-modeled and re-edited by manipulating the control vectors and/or associated

knots of multivariate simplex splines easily. Our results demonstrate that multivariate

simplex spline is a powerful volume representation and modeling scheme with new and

unique advantages which can be applied to diverse research areas.

2. Nonrigid Volume Registration with Multivariate Simplex Spline Based Free-Form Defor-

mation (Chapter 4).This part presented a novel nonrigid volume registration paradigm

using multivariate simplex spline based free-form deformation. Although multivariate
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simplex has already been a powerful tool in both engineering and medical research realm,

it has never been applied to the intramodality nonrigid volume registration. Our approach

first embedded the floating volume into the control space associated with its multivariate

simplex spline. With the guidance of normalized mutual information between the float-

ing and the reference volume, a rigid affine transformation is applied to the control points

of the control space, to obtain an initial rigid alignment. After that, a local, nonrigid mul-

tivariate simplex spline based free-form deformation was applied to the floating volume.

We introduce normalized mutual information, volume preserving term and smoothness

term to achieve better registration result. The experimental results have demonstrated

that multivariate simplex spline volumes are ideal for deformation-based brain registra-

tion as well as other medical imaging registration.

3. Physically Based Modeling and Simulation with Dynamic Spherical Multivariate Sim-

plex Splines (Chapter 5).This part proposed a novel physically based modeling and sim-

ulation framework based on dynamic spherical multivariate simplex splines. We have

introduced an automatic and accurate algorithm to fit the digital models of real-world

objects with a single spherical multivariate simplex spline which can represent with ac-

curacy geometric and material properties of objects simultaneously. With the integration

of the Lagrangian mechanics, the dynamic multivariate simplex spline representing the

real-world object can accurately simulate its physical behavior. We have applied the

framework in the biomechanics simulation of the brain, such as brain shifting during

the surgery and brain injury under sudden impact. We have compared the simulated

results with the ground truth obtained through interactive magnetic resonance imaging

and the ground truth from real biomechanic experiments. The experimental results have

demonstrated the excellent performance of our technique, which can be effectively used

in deformation-based brain simulation and simulation-based diagnosis/assessment.
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These contributions are described in more detail and validated in the main body of the

dissertation. Please refer to the corresponding chapters for details.

6.2 Future Work
This dissertation work also opens several venues for future work, with the focus on volume

representation and modeling.

1. Large Scale Deformed Volume Registration Using Surface Constrained 3D Mean Value

Coordinates Interpolation.Most of the current volume registration methods can only

deal with volumes with small deformation. Volume registration with large scale defor-

mation has been a severely under-explored research area for long time. One case in point

is breast disease diagnosis. As the human breast is the most deformed organ while the

subject’s position is changed from supine to prone. The large scale deformation during

the surgery will fail due to model inadequacy. In stead, I plan to investigate a novel

volume registration method, where large scale deformation is presented between the vol-

umes, using surface constrained 3D mean value coordinates interpolation.

2. Hierarchical Simulation of Biomedical Behaviors of Human Organs.Human organs

are usually heterogenous models of complex geometry and arbitrary topology. Current

prevalent human organ simulation schemes often employ traditional linear and nonlin-

ear finite element methods which are computationally expensive. Visualization of the

organ models usually require other representation schemes. This inconvenience further

reduces the flexibility of the traditional methods and greatly limits other downstream ap-

plications. Instead, I plan to investigate a more powerful simulation schemes of human

organs using dynamic multivariate simplex spline based digital volume representation.

Multivariate simplex spline’s native non-tensor product property makes it ideal for mul-

tiresolution modeling of heterogenous human organ models of complicated geometry

and topology. To further reduce the computational cost, hierarchical simulation will be
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explored to speed up the simulation for real-time applications.

These new research areas may not follow explicitly from this dissertation, however, we

should take the new understanding of our proposed powerful volume representation and mod-

eling framework gained through this dissertation into account.
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