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Examining Growth with Statistical Shape Analysis 
and Comparison of Growth Models 

 
Deniz Sigirli Ilker Ercan 

Uludag University 
Gorukle/Bursa, Turkey 

 
 
Growth curves have been widely used in the fields of biology, zoology and medicine for assessing some 
measurable trait of an organism, such as height, weight, area or volume. In statistical shape analysis, a 
size measure is obtained using the geometrical information of an object as opposed to linear 
measurements. The performances of commonly used non-linear growth curves are compared by using 
centroid size as a size measure in a simulation study. An example is provided on the relationship between 
centroid size of the cerebellum and disease duration in multiple sclerosis patients. 
 
Key words: Centroid size, growth models, statistical shape analysis. 
 
 

Introduction 
Many studies in the field of medicine are related 
to the examination of geometrical properties of 
an organ or organism. Although the data sets 
used in the statistical analyses of medical studies 
mainly consist of quantitative or qualitative 
measurement values, an organ or organism’s 
appearance or shape is also used as input data 
via imaging techniques (Ercan, et al., 2012). 
Studies performed in medicine and biology 
commonly evaluate how the shape of an organ 
or organism is affected by a disease, how the 
shape is related to covariates such as sex, age or 
environmental conditions, the comparison of 
shapes, how to discriminate and classify using 
shape data, how to describe shape variability, 
how shape changes during growth and how 
shape is related to size (Dryden & Mardia, 
1998). 
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Growth patterns can be defined as the 

composite of geometric changes in biological 
structure occurring through ontogenetic time 
(Lele & Richtsmeier, 2001). These changes can 
be analyzed with growth curve models. The 
shapes of the growth curves show differences 
according to the organism type, environmental 
conditions and the nature of the trait being 
measured (Colak, et al., 2006). Growth curves 
seek a model with a biological basis and 
biologically interpretable parameters (Seber 
&Wild, 2003). 

Several authors have conducted studies 
in the areas of biology, medicine, zoology and 
agriculture by assessing some measurable trait 
of an organism, such as height, weight, area or 
volume (Carlson & Baremore, 2005; Ersoy, et 
al., 2007; Karadavut, et al., 2010). In statistical 
shape analysis, the size measure is obtained by 
using the geometrical information of an object or 
an organism, as opposed to considering linear 
distances or measurements. One of the most 
commonly used size measures is centroid size. 
An important feature of centroid size is that it is 
statistically independent from the shape of the 
object; this is the only geometrical information 
that remains when location, scale and rotational 
effects are filtered out from an object (Dryden & 
Mardia, 1998). This independence is not valid 
for other size measures, such as height, weight, 
area, volume, ratios or angles. 
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This study compares the performance of 
commonly used non-parametric growth curve 
models and examines their efficiency by sample 
size for each model using centroid size as a size 
measure. A practical example is given for 
examining the relationship between centroid size 
of the cerebellum and the duration of multiple 
sclerosis (MS) disease in MS patients with the 
three- and four- parameter logistic, Gompertz 
and Richards models. 
 

Methodology 
Growth Models 

Some measure of the size of an object or 
living thing against time can be modeled using 
growth curves. In growth studies, both 
longitudinal and cross-sectional data can be 
used. Longitudinal data involve responses over 
time that can be modeled as a stochastic process 
(Lindsey, 1997). Cross sectional data consist of 
a group of measures for each age, but each 
individual is measured only once so that the 
sample for an age group does not contain any of 
the individuals in the previous age group. 
Longitudinal data are particularly useful in 
studying secular trends and are a requirement for 
predictive models of development. 
Alternatively, closely spaced longitudinal data 
may obscure more general patterns and reveal 
seemingly erratic, idiosyncratic patterns of 
individual growth. To study general population 
patterns, cross-sectional data may be more 
useful (Lele & Richtsmeier, 2001).  

A growth profile will generally be a 
nonlinear function of time, often reaching an 
asymptote. In this situation, linear models may 
not provide adequate explanations for growth; 
for these types of data, nonlinear models can 
provide better predictions. Different algorithms 
are used in nonlinear regression analysis, such 
as, the Levenberg-Marquardt, the Gauss-Newton 
and the Newton-Raphson algorithms (Bates & 
Watts, 1988; Hintze, 2007). A general nonlinear 
regression model is: 
 

i i iY f (X ; )

i 1, , n.

= θ + ε
= …

                  (1) 

 
Such a model is reasonable to use with cross-
sectional data in which a single size 

measurement is obtained for each individual or 
experimental unit. In equation (1), θ  is the 
predicted parameter’s vector and iε  is the 
independent and identically distributed error 
term with mean 0 and variance 2σ . The X, or 
independent variable, corresponds to age or 
another time variable, and Y, the dependent 
variable, represents the related size measure. 
Parameters used in growth models – α , β , κ , 

γ  and δ  – have biological meanings. The α  
parameter represents the final size, this 
parameter also mathematically corresponds to 
the maximum asymptote point of the curve; β is 
the initial size and corresponds to the minimum 
asymptote point of the curve; κ is the parameter 
that shows the growth rate; γ  is the inflection 

point of the curve; and δ  is the second inflection 
point, which is found in the Richards growth 
model (Seber & Wild, 2003; Hintze, 2007). 
 
Three Parameter Logistic Model 

The three parameter logistic model is an 
S shaped function:  
 

x
f (x)

1 e

x .

−κ

α=
+ β

−∞ < < ∞
                    (2) 

 
The curve has two asymptotes, when −∞→x  
as 0=)x(f  and when ∞→x  as α=)x(f . 
Growth typically begins prior to observation 
when 0>)x(f , this can create some 

difficulties. When 2/)x(f α= , γ=x  is 
obtained and the growth rate reaches a 
maximum level. 
 
Four Parameter Logistic Model 

The four parameter logistic model is an 
extended form of the three parameter logistic 
model: 
 

f (x) .
x1 e

α − γ= γ + −κ+ β
                 (3) 

 
The four parameter model is frequently used in 
bioassays or immunoassays, such as ELISAs or 
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dose-response curves (Plikaytis & Carlone, 
2005; Wang, et al., 2008; Healy, 1972). In this 
logistic model, a monotonic function is either 
always increasing or decreasing for all values of 
x. 
 
Gompertz Model 

The Gompertz model (Gompertz, 1825) 
was introduced to describe mortality rates in 
humans (Walter & Bailer, 2005). According to 
Winsor (1932), Wright first suggested the use of 
the Gompertz curve for biological growth in 
1926. The Gompertz growth curve is given by: 
 

{ }(x )

.
e

f (x) e
−κ −γ−

= α                   (4) 
 
Richards Model 

Developed by Richards in 1959 as a 
generalization of the classical growth curves, the 
Richards model is a widely used and flexible 
growth model with four parameters. This model 
provides a flexible curve with an arbitrarily 
placed point of inflection. 
 

1
(x ) 1f (x) [1 ( 1)e ] ,

1.

−κ −γ −δ= α + δ −
δ ≠

        (5) 

 
Other growth functions can be obtained from the 
Richards function according to the values that δ  
can take. When 0=δ , a monomolecular growth 
function is obtained; when 2=δ , a three-
parameter logistic function is obtained; when 

32 /=δ , and when 1→δ , a Gompertz growth 
function is obtained (Seber & Wild, 2003; 
Hintze, 2007). The Gompertz, logistic and 
Richard’s growth models have points of 
inflection and are sigmoid. These models are 
suitable for quantifying a growth phenomenon 
that exhibits a sigmoid pattern over time. 
 
Centroid Size 

If X k×m is a k × m configuration matrix 
(Cartesian coordinates of k landmarks in m real 
dimensions) of an object with k landmarks in m 
dimensions, then a size measure, g(X), is any 
positive, real value function of the configuration 
matrix, such that 
 

g(aX) = a g(X)                        (6) 
 
for any positive scalar, a. The main size 
measures used in statistical shape analysis are 
centroid size, baseline size (as proposed by 
Galton) and the radius of the inscribed circle for 
the triangles (as proposed by Miles) (Dryden & 
Mardia, 1998). 

Centroid size is the most frequently used 
size measure in statistical shape analysis and is: 
 

2

1 1

( ) ( ) ,
k m

ij j
i j

km

S X CX X X

X R
= =

= = −

∈

    (7) 

 

where 
=

=
k

1i
ijj X

k

1
X  and )X'X(traceX =  

are the Euclidean norm; C is the centering 
matrix and is given by 
 

k k k

1
C I 1 1 '

k
= −                       (8) 

 
where kI  is the kk ×  identity matrix and k1 is 

the 1k ×  vector of ones. Centroid size 
additionally can be identified as the square root 
of the sum of the variances of the landmarks 
around the centroid in x- and y-directions as 
shown by: 
 

k 2

i
i 1

S(X) (X) X ,
=

= −                (9) 

 
where i)X(  is the ith row of the X matrix and 

)X,...,X(X m1=  is the centroid (Dryden & 
Mardia, 1998). 
 
Simulation 

The original data set, which was used as 
the reference in the simulation study, consisted 
of 15 healthy individuals (4 male, 11 female). 
Corpus callosum (CC) images of these healthy 
individuals were obtained from the mid-sagittal 
sections of the magnetic resonance imaging 
(MRI) scans. The selected landmarks were 
marked on the digital images using TPSDIG 
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2.16 software (Rohlf, 2010). The mean, variance 
and other parameters used for data generation in 
the simulation study were obtained from this 
landmark coordinate data set.  

The corpus callosum images of the 
individuals were divided into seven regions 
according to Witelson’s sub-division framework 
(Witelson, 1989). For the growth curve models, 
5th and the 6th regions were combined and 
analyzed together as one region. A total of 5 
landmarks were marked for that region 
(landmarks 1, 2, 4, 5 and 6). The first 4 
landmarks (1, 2, 3 and 4) are the anatomical 
landmarks defined as in Ozdemir, et al. (2007). 
To better describe the shape of the brain 
structure, two additional landmarks (5 and 6) 
were constructed by referencing these 
anatomical landmarks. The third landmark was 
not included in the study but was used in the 
determination of landmarks 5 and 6 (see Figure 
1); a descriptive list of the landmarks is provided 
in Table 1. 

Using age as an independent variable 
and centroid size as the dependent variable, 
different growth models were constructed using 
the   original   data    set.    These    models    are:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. The three parameter logistic model: 

 

e
e).(

).(
y

x).(
+

+
= −− 1241084851

44011838
 

 
2. The four parameter logistic model: 
 

e
e).(

).,(
).(y

x).(
+

+
−+= − 427078811

70036275711992700362757

 
3. The Gompertz model: 

 

ee).(y
)).(x)(.(e

+=





 −−−−− 7735840020

6368953  
 
4. The Richards model: 
 

1
( 0.153)(x ( 54.227)) (1 14.756)

y

304.851[1 (14.756 1)e ] e− − − − −

=

+ − +
 

In the simulation study, the x values 
(age) were generated from a normal distribution  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The Sub-Divisions of the Corpus Callosum Based on the Witelson Framework and the Landmarks 
Marked on the 5th and 6th Regions 
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by using the mean and the variance of the age 
values from the original data set for each model, 
and error terms, e~N(0, 1), were generated. The 
dependent variable’s values (centroid size) were 
generated using values from the models obtained 
from the original data set. Simulations were 
performed for sample sizes n = 20, 50 and 100 
with 250 repetitions. 
 

Results 
To compare the performance of the growth 
models, mean square error (MSE) criteria were 
used as given in equation (5). (See Table 2 and 
Figures 2-3 for MSE values.) The MSE is: 
 

n
2

ij ijt
i 1

j 1

ˆ(y y )
1

MSE
t n p

=

=

 − 
 =

− 
 
 


            (10) 

 
where t is the number of replications, p is the 
number of parameters in the model and n is the 
sample size in each repetition. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To investigate the efficiencies of the 
parameter estimates according to sample size, 
the mean absolute deviations (MAD) and the 
bias of the estimated coefficients criteria were 
used. These two criteria were used only to 
examine each model’s performance in itself 
according to change in the sample size. 
To show the difference between the predicted 
and the actual values of the parameters, the 
MAD criteria were calculated as: 
 


= =

β−β=
t

i

p

j
jij

ˆ
pt

MAD
1 1

11
          (11) 

 
where t is the number of replications, p is the 
number of parameters in the model, n is the 

sample size in each repetition, ijβ̂  is the 

predicted value of the jth parameter in the ith 
model and jβ  is the actual value of the jth 

parameter. (See Table 3 and Figure 4.) 
 
 
 
 
 

Table 1: A Descriptive List of the Landmarks Used For the Corpus Callosum (CC) 
 

Landmark Number Landmark Definition Landmark Illustration 

1 CC-fornix junction  

2 Interior notch of the splenium  

3 Posterior-most point of the CC  

4 Top most point of the CC  

5 

The point at which the line that passes through 
landmark 4 is perpendicular to the segment, which 
was drawn from landmark 3 to landmark 4, and cuts 
the lower bound of the CC  

6 

The point at which the line that passes through the 
midpoint of the segment, which was drawn from 
landmark 3 to landmark 4, is perpendicular to this 
segment and cuts the upper bound of the CC  
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Table 2: MSE Values for Growth Models 
 

n Three Parameter Logistic Four Parameter Logistic Gompertz Richards 

20 1.06808 1.0752 1.05095 1.42999 

50 1.01298 1.01018 1.00929 1.03037 

100 0.95822 0.96118 0.95646 0.96734 

 
 

Figure 2: MSE Values for Growth Models 
 

 
 
 

Figure 3: Percentage Change for MSE Values 
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To show the difference between the 
mean of the predicted values and the actual 
values of the parameters, the bias criteria were 
calculated using  
 

t

ijp
i 1

j
j 1

ˆ
1

Bias
p t

=

=

β
= −β


               (12) 

 
where t is the number of replications, p is the 
number of parameters in the model, n is the 

sample size in each repetition, ijβ̂  is the 

predicted  value  of  the  jth  parameter  in  the  ith 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model and jβ  is the actual value of the jth 

parameter. (See Table 4 and Figure 5.) 
 
Practical Example 

The data set used in this example 
consists of the MRI scans of 44 (17 (38.64%) 
male, 27 female (61.36%)) multiple sclerosis 
(MS) patients. The mean age was 32.07 ± 8.46 
(mean ± standard deviation) years. The median 
duration of the MS disease was 25 (4-72) 
months (median (min–max)). All MS patients fit 
the McDonald, et al., 2001 criteria. An 
institutional review board approved the 
retrospective study and all participants gave 
informed consent prior to the start of the study. 

 

Table 3: MAD Values for Growth Models 
 

n Three Parameter Logistic Four Parameter Logistic Gompertz Richards 

20 3061.241 5438899 2076.513 374.8195 

50 3007.479 372227.4 1954.277 330.3648 

100 2986.007 299968 1997.179 96.05916 

 
 

Figure 4: Percentage Changes for MAD Values 
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Eight midline cerebellar landmarks were 
selected from the image of the mid-sagittal plane 
(see Figure 6). The landmarks were chosen on 
the basis of reliability, significant anatomical 
coverage and previous cerebellar morphological 
descriptions in MS patients. A descriptive list of 
these anatomical landmarks is provided in Table 
5. The relationship between centroid size of 
cerebellum and the duration of the MS disease 
was examined using the three and four 
parameter logistic, Gompertz and Richards 

models. The mean squared error and 2R  for the 
models are shown in Table 6. 

Among the models of the studied 
relationship, the Gompertz model and three 
parameter logistic model had lower MSE values, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
while the four parameter logistic model had the 

highest 2R  value. All models significantly 
predicted the relationship between centroid size 
and the duration of disease. Figures 7-10 show 
that a decrease occurs in the cerebellum size of 
the MS patients as the duration of disease 
increases. 
 

Conclusion 
With the technological advances in the fields of 
biology and medicine, different methods have 
been developed to analyze an organ’s or an 
organisms’ forms by recording the geometrical 
locations of landmarks. Statistical shape analysis 
plays an important role in such studies. 

Table 4: Bias Values for Growth Models 
 

n Three Parameter Logistic Four Parameter Logistic Gompertz Richards 

20 3009.35 5392501 2063.3 339.116 

50 3007.48 240113 1954.28 279.614 

100 2953.82 157085.5 1996.45 46.7993 

 
 

Figure 5: Percentage Changes for Bias Values 
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Figure 6: T1-Weighted Mid-Sagittal Slice Demonstrating the Cerebellar Landmarks 
 

 
 
 

Table 5: Descriptive List of the Landmarks Used for the Cerebellum 
 

Landmark Number Landmark Definition 

1 Velum medullare superius angulation-cerebellar outline junction 

2 Superior cerebellum 

3 Primary fissure- cerebellar outline junction 

4 Posterior cerebellum 

5 Prepyramidal fissure- cerebellar outline junction 

6 Inferior cerebellum 

7 Velum medullare inferius angulation-cerebellar outline junction 

8 Fastigium cerebelli 

 
 

Table 6: Growth Models of the Relationship between Cerebellum Size and Disease Duration* 
 

Model Predicted Equation 2R  MSE p-value 

Three 
Parameter 
Logistic 

e
e).(

).(
CS

DD).(
+

+
= −− 00903501

893
 0.26992 0.04849 0.00158 

Four 
Parameter 
Logistic 

e
e).(

)..(
).(CS

DD).(
+

+
−+= −− 01703701

373571373  0.26993 0.04970 0.00524 

Gompertz ee).(CS
)).(DD)(,(e

+=





 −−−− 2740060

47159  0.26992 0.04849 0.00158 

Richards eeCS DD +−+= −−−− )81.21(
1

))89.19()(39.1( ])181.2(1[03.418  0.27445 0.04940 0.00468 

*CS: centroid size; DD: disease duration; 2R : the coefficient of determination; MSE: Mean Squared Error 
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Figure 7: Three Parameter Logistic Model 

 
 
 
 

Figure 8: Four Parameter Logistic Model 
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Figure 9: Gompertz Model 

 
 
 
 

Figure 10: Richards Model 
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Biological processes, such as disease or 
injury, ontogenetic development or adaptation to 
local geographic factors can cause shape 
differences between individuals. These 
differences in shape may signal differences in 
the processes of growth and morphogenesis. A 
shape analysis is one approach to understanding 
the diverse causes of variation and 
morphological transformation (Zelditch, 2004). 

Growth studies produce important 
information on aspects of the biology of an 
organism, such as the genetic basis of 
morphogenesis, the phylogenetic underpinnings 
of developmental patterns or the role of 
hormones, teratogens, dietary elements and other 
environmental variables on the growth processes 
(Lele & Richtsmeier, 2001). The relationship 
between a measurable trait of an organism and 
time can be modeled with a growth curve. 
Several applied studies have been performed 
using growth curves and taking a measurable 
trait such as area, length, weight or volume as a 
size measurement (Carlson & Baremore, 2005; 
Ersoy, et al., 2007; Karadavut, et al., 2010; Ozel 
& Ertekin, 2001); however, in a statistical shape 
analysis, size measurement is obtained by using 
geometrical information about an object or 
organism. One commonly used size measure in 
shape analysis is centroid size (Dryden & 
Mardia, 1998). An important feature of centroid 
size is that it is independent from the shape; this 
feature is not valid for the other size measures, 
such as length, weight, area or volume.  

This study used centroid size, as 
opposed to the classical measurements used in 
nonlinear growth curves. In the literature, 
especially in the field of geometric 
morphometry, several studies have investigated 
the relationship between size and age. In these 
studies, linear models have usually been used 
with the natural logarithm of the centroid size as 
the dependent variable and age as the 
independent variable. The only study in the 
literature where non-linear growth models were 
used with centroid size was the size measure 
study by Colak, et al. (2011). This illustrates the 
necessity of investigating the performance of 
non-linear growth models where centroid size is 
the dependent variable. Cardini and Elton (2007) 
investigated the effect of sample size on 
geometric morphometric studies of size and 

shape; they note that sampling error might affect 
estimates of the statistical parameters – this 
observation was virtually absent in geometric 
morphometrics and few studies have performed 
simulations and mathematical modeling to 
theoretically examine the issues (Cardini & 
Elton, 2007). It appears that this is the first study 
to compare non-linear growth models according 
to sample size by using centroid size as a size 
measure. 
 
Summary 

In all growth models examined in this 
study, the MSE decreased as the sample size 
increased. The Richards model had the largest 
MSE values in small sample sizes of all the 
models. As the sample size increased, the MSE 
value of the Richards model become lower, 
reaching a comparable value to the MSE values 
of the other models. Therefore, the Richards 
model is not suitable for small sample sizes. The 
Gompertz model and the three and four 
parameter logistic models had similar MSE 
values for all sample sizes and experienced 
similar effects from the decrease of sample size. 
Except in the small sample size condition, there 
were no major differences between the models 
in terms of MSE values.  

When the growth curves were assessed 
in terms of the MAD measure, there was a 
decrease in the MAD values of the Richards 
model and the three parameter and four 
parameter logistic models; however, there was a 
slight increase in the MAD value of the 
Gompertz model as sample size increased. The 
three parameter logistic and Gompertz models 
showed the lowest decrease in MAD as sample 
size increased. The four parameter logistic 
model experienced the largest effects from 
changes in sample size and exhibited the largest 
percent change decrease in its MAD value. 
While transitioning from a moderate to a large 
sample size, the Richards model showed a 
significant decrease in MAD value, but the 
Richards model did not show a remarkable 
decrease in transitioning from a small to a 
moderate sample size.  

Results for the bias measure were 
similar to the results for the MAD measure. 
Although a decrease was observed in the bias 
values of the Richards model and the three and 
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four parameter logistic models, there was a 
small increase in the bias value of the Gompertz 
model in transitioning to a large sample size. 
The models that showed the smallest decrease in 
bias with the increase in the sample size were 
the three parameter logistic model and the 
Gompertz model. The four parameter logistic 
model was the model most affected by sample 
size, and it was the model that had the largest 
decrease in its bias value. When transitioning 
from a moderate to a large sample size the 
Richards model showed a large decrease in bias 
but it did not show a remarkable decrease in 
transitioning from a small to a moderate sample 
size.  

Generally, the Richards model is not 
convenient for small samples in terms of both 
model performance and parameter estimates. 
The three parameter logistic and Gompertz 
models do not display differences in parameter 
estimates by sample size, therefore, the three 
parameter logistic and Gompertz models are 
preferable to the other two models, particularly 
for small samples. 
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