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Preface to MAT 7500 Notes by David Handel

These notes developed from a one semester course at Wayne State University which I
taught several times during the last 20 years. The subject matter is analysis on manifolds,
consisting of the theory of smooth manifolds, differential forms, integration of forms, the
generalized Stokes’ Theorem, de Rham cohomology, and some related topics. The course
is intended for first or second year graduate students in Mathematics with a background
in Advanced Calculus, General Topology, linear algebra (including quotient spaces), and
a little elementary group theory (including some familiarity with the symmetric groups).
Given the above background, the notes are self-contained. In particular, we develop from
scratch the vector bundle theory and exterior algebra that we make use of. We include a
fair number of examples, as well as exercises. The notes are divided into 19 sections, which
we proceed to describe.

In Section 1 we prove that the norm topologies arising from any two norms on a
finite-dimensional real vector space V are the same, and consequently we can define the
standard topology on V to be that which arises from any norm on V.

In Section 2, topological manifolds are introduced and examples are given. Fiber
bundles are defined, and we observe that if the fiber and base of a fiber bundle are topo-
logical manifolds, then so is the total space. We also treat connected sums of manifolds to
generate further examples.

Section 3 is devoted to advanced calculus. We assume the multivariate Chain Rule,
the Inverse Function Theorem, and Fundamental Theorem of Calculus. T'wo special cases
of Taylor’s Theorem, in a form suitable for later purposes, are deduced. We reformulate
some of multivariate calculus in a coordinate-free form.

Smooth (= C*) manifolds and smooth maps between such are introduced in Section 4.
Smooth fiber bundles and smooth connected sums are treated, and examples are given.

Section 5 deals with the tangent space at a point of a smooth manifold and the tangent
map (linear approximation or differential) of tangent spaces induced by a smooth map. We
take the “directional derivative” approach to defining tangent vectors, entailing derivations
of algebras of germs. Using advanced calculus, we prove that the tangent space at a point
- of an n-dimensional smooth manifold is n-dimensional. :

Smooth submanifolds, immersions, regular values, and submersions are studied in
Section 6. Among other things it is proved (with the help of the Inverse Function Theorem)
that inverse images of regular values of smooth maps are smooth submanifolds. Some
examples are worked out.

In the case of smooth manifolds of Euclidean space, a more intuitive notion of tangent
vector in terms of velocity vectors to smooth curves is possible. We present this in Section 7
and construct a natural isomorphism between this notion of tangent space and the one
given in Section 5.

Vector bundles and vector bundle homomorphisms (both topological and smooth, with
the emphasis on smooth) are introduced in Section 8. The individual tangent spaces to
a smooth manifold are assembled to construct the tangent bundle of that manifold, and
the individual tangent maps for a smooth map are assembled to construct a vector bundle
homomorphism. Smooth sections of a smooth vector bundle are introduced.



The language of categories and functors is introduced in Section 9, and various exam-
ples are given. In particular we reformulate some of the earlier material on smooth maps,
tangent maps, and vector bundles in terms of categories and functors.

Section 10 gives a treatment of exterior powers of real vector spaces, and it is noted
that the exterior power functors are smooth. This is used in Sectlon 11 to construct exterior
powers of smooth vector bundles.

Differential forms on a smooth manifold are introduced in Section 12 as smooth sec-
tions of exterior powers of the tangent bundle. We establish the functorial properties of
differential forms, wedge products and their formal properties, and the explicit classical
description of differential forms on open subsets of Euclidean space.

Exterior differentiation of differential forms is introduced in Section 13. The de Rham
complex and the de Rham cohomology ring are introduced, and some formal properties
are established.

Section 14 deals with integration of differential forms over smooth cubical chains. A
generalized Stokes’ Theorem is proved, which enables one to establish the non-triviality of
certain de Rham cohomology groups. The classical Stokes’ Theorem, Divergence Theorem,
and Green’s Theorem are deduced.

In Section 15, the concept of smooth homotopy between smooth maps is introduced,
and it is proved that smoothly homotopic maps induce the same homomorphisms in
de Rham cohomology. This enables the determination of further de Rham cohomology
information. The latter, together with the Weierstrass Approximation Theorem (which
enables us to replace an arbitrary continous map without fixed points by a smooth map
without fixed points) yields a proof of the purely topological Brouwer Fixed Point Theorem.

Section 16 deals with technicalities concerning paracompactness, smooth partitions of
unity, and the piecing together of local smooth sections of smooth vector bundles.

Orientations of smooth manifolds are studied in Section 17. Various examples of
orientable and non-orientable smooth manifolds are given. For example, we show:

(i) Spheres are orientable.

(ii) For real projective spaces, those of odd dimension are orlentable, while those of
positive even dimension are not.

(iii) The total space of the tangent bundle of any smooth paracompact manifold is
orientable.

(iv) Any paracompact complex analytic manifold is orientable.

The section ends with a statement (but no proof) of the Poincaré Duality Theorem.

Riemannian metrics on smooth manifolds are introduced in Section 18, and it is shown
that the following three conditions on a smooth manifold M are equivalent:

(i) M admits a Riemannian metric.

(ii) M is paracompact..

(ili) M is metrizable.

Section 19 gives a brief introduction to smooth cubical homology and cohomology
on smooth manifolds, and the de Rham map from de Rham cohomology to real smooth
cubical cohomology. The de Rham Theorem, that the de Rham map is an isomorphism
under appropriate conditions, is stated but not proved.
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1. THE STANDARD TOPOLOGY ON A
FINITE-DIMENSIONAL REAL VECTOR SPACE

Definition 1.1. Let V be a vector space over the real numbers R. A norm N on
V is a function N : V — R satisfying

(i) For allv € V, N(v) > 0. N(v) =0 if and only if v = 0.

(i) For all v € V and r € R, N(rv) = |r|N(v).

(iii) For all v,w € V, N(v + w) < N(v) + N(w).
Example 1.2. Suppose V is finite-dimensional over R with basis B. The Fuclidean
norm on V relative to B is given by

(5)- (59

where the 7, are real. The proof of property (ili) uses the Schwarz inequality.
Example 1.3. Let V and B be as in Example 1.2. The box norm on V relative

to B is given by
N (Z rbb> = max 70| -

beB
Example 1.4. Let V and B be as in Example 1.2. The diamond norm on V

relative to B is given by
N (Z rbb> = Z ITbl .

beB beB

~If N is a norm on the real vector space V, the function dy : V X V — R given
by dn(z,y) = N(x — y) is easily checked to be a metric on V. Our main goal in
this section is to show that if V is finite-dimensional over R, then the topology on
V arising from the metric dy is independent of the choice of the norm N on V.
(This is false for infinite-dimensional vector spaces over R.)

If N7 and Ny are norms on V, we say these norms are equivalent if there exist
positive constants o and f§ such that for all z € V|, Ni(z) < alNa2(z) and Na(z) <
BNi(z). It is an easy exercise to check that the metric topologies arising from
equivalent norms are the same. Thus, to achieve the above goal, it remains only to
show that any two norms on a finite-dimensional real vector space are equivalent.

Theorem 1.5. Let V be a real finite-dimensional vector space. Then any two
norms on V are equivalent.

Proof. Let B = {by,...,b,} be any R-basis for V and N, the Euclidean norm on V'
with respect to B. Clearly, equivalence of norms is an equivalence relation on the
set of all norms on V, and so it suffices to prove that each norm on V is equivalent
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to N.. Let N be a norm on V. We will refer to the topology on V' arising from the
metric dy as the N-topology on V.

A metric space (X, d) is said to have the Heine-Borel property if a subspace of
X is compact if and only if it is closed in X, and bounded in the metric d. It
is well-known that R"™, with the standard Euclidean metric, has the Heine-Borel
property. The map V — R"™ which sends ), r;b; to (r1,...,7) is an isometry
with respect to the metric dy, on V' and the standard Euclidean metric on R™. It
follows that (V,dn,) has the Heine-Borel property.

- It is an easy exercise to check that N : V' — R is continuous with respect to the
N-topology on V and the standard topology on R. We proceed to show that N is
also continuous with respect to the Ne-topology on V' and the standard topology
on R.

Let £ = > 4cgToh, ¥ = D _ycpspb where 7, s € R for each b € B. Then
IN(z) = N(y)| < N@—y) = N (Cpep(re —s)b) < >ieplre — ss| N(b). Note

that |ry —sp| < Ne(z — y) for all b € B. Thus, if C = max N(v), we have

|IN(z) = N(y)] < nCNg(z —y) for all z, y € V. It now follows easily, from the
continuity of N, with respect to the Ne-topology on V and the standard topology
on R, that IV is continuous with respect to the Ny-topology on V and the standard
topology on R.

Let S = {z € V' | N.(z) = 1}, the unit sphere in V relative to N,. By the Heine-
Borel property, S is compact in the Ne-topology. Thus, by continuity of N : V — R
with respect to the Ne-topology on V and the standard topology on R, N(S) is
compact. Since N(x) > 0 for all z € S, it follows that there exist positive constants

m and M such that m < N(z) < M for all z € S. For non-zero v € V, NL(’U) €S
e

< M. Thus mN(v) < N(v) < MN(v) forallve V. It

andsom< N
- Ne(v)

follows easily that N and N, are equivalent norms on V. [

Corollary 1.6. Let V be a finite-dimensional real vector space and N any norm
on V. Then (V,dy) has the Heine-Borel property.

Proof. Exercise. [J]

By virtue of Theorem 1.5 we can make the following definition:

Definition 1.7. Let V be a real finite-dimensional vector space. The standard
topology on V is the N-topology on V for any norm N on V.

Note that what is usually called the standard topology on R (e.g. in the proof
of Theorem 1.5) is the N-topology where N(z) = |z|. Thus, in the case of R,
Definition 1.7 agrees with the usual usage.

If N is a norm on the finite-dimensional real vector space V, v € V, and r > 0,
let By(v,7) ={z € V| N(z —v) < r}, the open ball of radius r centered at v with
respect to N. {Bn(v,7) | v € V, r > 0} is a basis for the standard topology on V.

Corollary 1.8. Let m be a positive integer and V1, ..., Vy, finite-dimensional real
vector spaces. Give each V; its standard topology. Then the product topology on the
real vector space Vi X - -- X Vi, coincides with its standard topology.
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Proof. For1 < i < mlet N; be any norm on V; and define N : Vi x---xV,;, = R by
N(vi,...,vn) = max N;(v;). It is easily checked that NV is a norm on V3 X -+ X V,,.
(]

Ifv=(vi,...,Um), v; € V;, and r > 0, one checks that By(v,r) = B, (v1,7) X
+++ X By, (vm,r). Since {Bn(v,r)|v € V1 X -+ X Vi, 7 >0} is a basis for the
standard topology while { By, (v1,7) X ++ X BN, (Um,7) | v; € V4, r > 0} is a basis
for the product topology, the result now follows. [

Corollary 1.9. Let V' be a finite-dimensional real vector space and W an R-linear
subspace of V. Then the subspace topology on W induced by the standard topology
on V coincides with the standard topology on W.

Proof. Let N be any norm on V. Then Ny, the restriction of N to W, is
a norm on W. For each w € W and r > 0, By, (w,r) = W N By(w,7).
Since {Bn,, (w,r) | w € W, r > 0} is a basis for the standard topology on W while
{W N By(w,r) | we W, r >0} is a basis for the subspace topology on W induced
by the standard topology on V, the result now follows. [J

Each real finite-dimensional vector space below will be assumed to be equipped
with the standard topology, unless otherwise mentioned.

Lemma 1.10. Let V, W be finite-dimensional real vector spaces, and f:V — W
an R-isomorphism. Then f is a homeomorphism.

Proof. Let B be any R-basis of V. Then f(B) = {f(b) | b € B} is an R-basis of W.
If N1 and Ny are the Euclidean norms on V and W, respectively, with respect to
these bases, then f is an isometry with respect to the metrics dy, and dpy,. Thus,
in particular, f is a homeomorphism. ]

Let V be a finite-dimensional real vector space and B a basis of V over R. Let
X be a topological space, Y C V, and f : X — Y a function. Then there are
unique functions ff : X — R, b € B, satisfying f(z) = 3 ,c5 [ (x)b. We call the
f& the coordinate functions of f relative to B.

Proposition 1.11. Let V be a finite-dimensional real vector space, B a basis of
V over R, X a topological space, Y C V, and f : X — Y a function. Then f
is continuous if and only if the coordinate functions fg3 of f relative to B are all
continuous.

Proof. Let i : Y — V denote the inclusion map. Note that fZ = (if)f for all
b € B, and that by the characteristic property of the subspace topology on Y, f is
continuous if and only if ¢f is continuous. Thus, it suffices to treat the case Y = V.

Say B = {b1,...,bp }. Define h: V — R™ by h (>, r;b;) = (r1,...,72). Then h
is an R~isomorphism and so, by Lemma 1.10, h is a homeomorphism. Thus f will
be continuous if and only if hf is continuous.

Let 7; : R™ — R be projection on the i*" factor, 1 < i < n. By the characteristic
property of the product topology on R™, hf is continuous if and only if 7; o (hf) is
continuous for 1 < ¢ < n. Since m; 0 (hf) = flﬁ-’ , we are done. (I

Let V be an n-dimensional real vector space, X a subset of V, Y a topological
space, and f: X — Y a function. If o : R® — V is any R-isomorphism, the map
foh:h™}(X) — Y will be called a coordinate representation of f. For example,
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given an ordered basis (b1, ..., b,) of V, we get a coordinate representation foh of f
where h : R™ — V is given by h(r1,...,r,) = >, 7:b;. The following is immediate
from Lemma 1.10:

Proposition 1.12. Let V be a finite-dimensional real vector space, X a subset
of V, Y a topological space, and f : X — Y a function. Then the following are
equivalent:

(1) f is continuous.

(2) At least one coordinate representation of f is continuous.

(3) Buvery coordinate representation of f is continuous. O

We will assume the continuity of the elementary real-valued functions of several
real variables (where defined) studied in Calculus and/or Elementary Analysis.

Let V be a finite-dimensional real vector space, and W an R-linear subspace of
V. Then V/W has two natural topologies: (1) the standard topology, by virtue
of V/W being a finite-dimensional real vector space, and (2) the quotient topology
arising from the projection 7 : V — V/W given by w(v) = v+ W for allv € V. We
proceed to show that these two topologies are the same.

Proposition 1.13. Suppose V is a ﬁm’te-dimehsz’onal real vector space and W an
R-linear subspace of V. Then the standard topology on V/W coincides with the
quotient topology arising from the projection w: V — V/W.

Proof. Give V and V/W their respective standard topologies. It suffices to show
that with these topologies, 7 : V — V/W is a quotient map.

We can choose an R-linear map f : V. — W such that f(w) = w for all
w € W. Then the map g : V — W x (V/W) given by g(v) = (f(v),v+ W) is
an R-isomorphism. Thus, giving W x (V/W) its standard topology, g is a home-
omorphism by Lemma 1.10. Since, by Corollary 1.8, the latter standard topology
coincides with the product topology on W x (V/W), projection on the second factor
o : W x (V/W) — V/W is a quotient map. The diagram

g

1% W x (V/W)

N A

V/W

commutes, and so 7 is a quotient map, being the composition of the quotient maps
my and g. [



Exercises for §1

1. Establish the following claims made in this section. In each case, in order to
avoid circular reasoning, only use material which precedes the claim in the text
above.

(a) The metric topologies arising from equivalent norms are the same.

(b) If N is a norm on a real vector space V/, then N : V' — R is continuous with
respect to the N-topology on V' and the standard topology on R.

(c) If N; is a norm on the real vector space V;, 1 <i < m,and N : Vi X+ - - XV, —
R is given by N(vy,...,vm) = mzaxNi(vi), then Nisanormon Vi X -+ X V,. If
v=(v1,...,Um), v; € V;,and r > 0, then By(v,r) = By, (v1,7) XX BN, (Um, 7).
2. If V and W are real vector spaces, Homg(V, W) denotes the set of all R-
homomorphisms from V to W. Homg(V,W) is itself a real vector space with
operations as follows: If f, g € Homg(V,W) and r € R, then for all v € V,
(f+9)(v) = f(v)+g(v), (rf)(v) =rf(v). Suppose V and W are finite-dimensional
over R with norms N; and Nj, respectively. Define N : Homg(V,W) — R by
N(f)= sup Na(f(v)). Prove that N is a norm on Homg(V, W).

Ny (’U)=1
3. Let V and W be finite-dimensional real vector spaces with bases {v1,...,vm}
and {ws,...,wy}, respectively, over R. Let N7 and N; denote the box norms on V

and W, respectively, relative to these bases. Let N be the norm on Homg(V, W)
which arises from N; and Ny by the construction of Problem 2. If f € Homg (V, W)
and (a;;) is the matrix of f relative to the above bases, i.e. f(v;) = Z?:__I ajiw; for
1 <3< m,prove N(f) < mrr%e;x|a¢j|.



2. TorPOLOGICAL MANIFOLDS

Definition 2.1. Let n be a non-negative integer. A topological manifold of dimen-
sion n (or, more briefly, a topological n-manifold) is a Hausdorff space M which is
a union of open subsets, each homeomorphic to an open subset of R™. If V is a real
n-dimensional vector space, any homeomorphism from an open subset of M onto
an open subset of V is called a chart for M. A set of charts for M whose domains
cover M is called an atlas for M.

The adjective topological serves to distinguish the gadgets defined above from
gadgets with more structure, called differentiable manifolds or smooth manifolds,
which will be defined later. We will drop the adjective topological when there is no
danger of confusion (e.g. now).

1-manifolds are sometimes called curves. 2-manifolds are sometimes called sur-
faces. A topological space is a 0-manifold if and only if it is discrete. (By convention,
R? = {0}, a one-point space.)

Example 2.2. If V is a real n-dimensional vector space, any open subset A of
V is an n-manifold which admits an atlas with exactly one chart, namely 14, the
identity map on A.

For example, let n be a positive integer and M, (R) the set of all n x n matrices
with real entries. Then M, (R) is an n?-dimensional real vector space with basis
{Eij | 1 <1< n,1<j<n} where E;; is the matrix with 1 in the ¢j position
and 0’s elsewhere. Define GL,(R) = {A € M,(R) | A isinvertible}. Then
GL,(R) = det™'(R — {0}) where det : M,(R) — R is the map which assigns
to each A € M,(R) its determinant det(A). For any ordering of the above basis
of M, (R), the resulting coordinate representation of det is a polynomial function
over R in the n? coordinates, and hence continuous. Thus, by Proposition 1.12,
det : M,(R) — R is continuous. Therefore, GL,(R) is an open subset of M, (R),
and hence is an n?-manifold. GL,(R) is called the n*® general linear group over
R.

Example 2.3. Let n > 0. For z € R™"! let ||z|| denote the standard Euclidean
norm of z. The n-sphere S™ is the unit sphere with center at the origin in R"+!
with respect to the standard Euclidean norm, ie. S* = {z € R*" | ||z| =1]}.
Thus S is a discrete two-point space, S* is a circle, and S? is a spherical surface
in R3. We proceed to show that S™ is an n-manifold by exhibiting an atlas for ™.

For x € R™! and 1 < i < n+1, let z; denote the i** coordinate of z. For
1<i<n+1llet U ={ze€S|z;>0} and U] = {z € 5" |z;<0}. Then
{UF,..., U, U, ..., Uy, 1} is easily checked to be an open cover of S™. Let
E™ = {z € R" | ||z|| < 1}, the open unit disc in R™. Define maps ¢} : U;" — E™,
Y Er - U, o7 :UT — E™ o7 : E" — U] by

Soq:,l:(m) = (131, ey L1y Tigdy e o - ,xn-i-l),

1/2
w1 = (0 oien (L= ) i),

1/2
and w:(y) = (yl)'“ayi——la_(l_’ |ly||2> ayia”-)yn) .
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One checks easily that (pj' and w;r are homeomorphisms, inverse to one another,
and similarly for ¢; and ¢;. Thus {p7,...,0} 1,07,..., 0,41} is an atlas for
S™.

Example 2.4. An atlas for S™ with exactly two charts can be given as follows:
Let U = S™ — {(0,...,0,1)}, V = S™ — {(0,...,0,—1)}. Then {U,V} is an open
cover of S™. The charts have U and V as their respective domains, and are given

by stereographic projection from the north and south poles, respectively. Precisely,
define maps o : U - R™*, T :R* - U, o™ :V —=>R", ¢~ :R" - V by

+

T (1—-$n+1)_1(£€1,...,$n),

2\ 71 2
(14 191%) ™ (201,20 ll? = 1),

1+ Znt1) " @1y -, Tn),y

2\ 7! 2
= (1+1”) " (200 20, 1= )

¢ (x)
P (y)
(z)
()

X

o
and ¥ (y

It is straightforward to check that ¢ and ™ are homeomorphisms, inverse to one
another, and similarly for ¢~ and 9~. Thus {¢*, ¢~} is an atlas for S™.

Example 2.5. For n > 0, real projective n-space P"(R) is defined to be the
quotient space obtained from S™ by identifying x with —z for each z € ™. Write
[z] for the image of z € S™ under the quotient map 7 : S — P™(R). Thus for
z,y € S™, [z] = [y] if and only if y = +z. We proceed to show that P*"(R) is an
n-manifold.

We first observe that the quotient map 7 is an open map. For let o : S — S™
be the antipodal map, i.e. a(z) = —z for each z € S™. « is a homeomorphism and
thus, in particular, an open map. For any subset W of S™, note that #~!(x(W)) =
W U a(W). In particular, if W is open in S™, so is #~!(w(W)), and hence, since
is a quotient map, m(W) is open in P*(R). Thus 7 is an open map.

We next check that P™(R) is Hausdorff. Suppose z, y € S™ are such that
[z] # [y]. Then z, y, —z, and —y are distinct points of S™. Since S™ is Hausdorff,
there exist mutually disjoint open neighborhoods A, B, C, and D of z, y, —=z,
and -y, respectively, in S™. Let U = w(A) Nn(C) and V = w(B) N7w(D). Note
that [z] € U, [y} € V. Since 7 is an open map, it follows easily that U and V
are open in P*(R). We have n71(U) = (ANa(C)) U (CNa(4)) and 7~ 1(V) =
(BNa(D)) U (DNa(B)). Since the latter two sets are disjoint, U and V are
disjoint. Thus P™(R) is Hausdorff.

Forl1<i<n+1 letV;, = 7T(Ui+) where U;‘ is as in Example 2.3. Since 7
is an open map, and the V; clearly cover P*(R), {V4,..., Va41} is an open cover
of P*(R). The restriction of = maps Ui+ bijectively to V;. Thus, since 7 is a
continuous open map, V; is homeomorphic to UZ-+. Since, from Example 2.3, Ui+
is homeomorphic to an open set in R", so is V;. It now follows that P™(R) is
an n-manifold and, in fact, admits an atlas with n + 1 charts 61,...,0,+1 Where
0;: V; — E™ is given by

L4

7

ei([mla"-axn+l]) = | (wl)"'7£i7-"axn+1)



where the notation Z; means that x; is skipped.

Using algebraic topology, it can be proved that if n is even, every atlas for P*(R)
must contain at least n + 1 charts. If we insist that the domains of the charts be
simply-connected (as is the case in Example 2.5), then at least n 4+ 1 charts are
required even if n is odd. P3(R) admits an atlas with exactly 2 charts (see the
exercises at the end of this section).

Proposition 2.6. Suppose M and N are manifolds of dimensions m and n, re-
spectively. Then M X N is an (m +n)-manifold. If A and B are atlases for M and
N, respectively, then {p x| ¢ € A, € B} is an atlas for M x N.

Proof. Since M and N are Hausdorff, so is M x N. The rest is immediate. O

Lemma 2.7. (a) Any open subspace of an n-manifold is an n-manifold.
(b) Suppose X is a Hausdorff space which is the union of some open subspaces,
each of which is an n-manifold. Then X is an n-manifold.

We leave the proof as an exercise.

Definition 2.8. A fiber bundle ¢ is a quadruple (F, E, B, p) satisfying:

(i) F, E, and B are topological spaces called, respectively, the fiber, total space,
and base space of &.

(ii) p : E — B is a continuous map called the projection for &; for each = € B,
p~1(z) is called the fiber over z.

A chart for ¢ is a homeomorphism ¢ : p~1(U,) — U, x F, where U, is open in
B, such that the diagram

commutes, where m; denotes projection on the first factor, and we abuse notation
by writing p for the indicated restriction of p.

(iii) There exists a collection A of charts for ¢ such that {U,, | ¢ € A} covers B.
Such an A is called an atlas for £.

We will frequently commit notational abuses as above, i.e. use the same notation
for both a map and a restriction of that map (e.g. if f : X — Y is such that
f(A) € B, we may write f : A — B for the restriction of f rather than a precise
but cumbersome notation such as f|§ : A — B) provided the domain and codomain
of the restriction are displayed as above, or are clear from context. If situations
arise where this abuse can cause trouble, we will use a non-ambiguous notation.

Note that if £ = (F, E, B, p) is a fiber bundle with atlas A4, then if z € B and
¢ € A are such that z € U,, it follows that ¢ : p71(z) - {2} x F &2 F is a
homeomorphism. However this homeomorphism is not canonical since it depends
on the choice of chart ¢ for £ for which z € U, and there is usually no preferred
choice for the latter. :
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Example 2.9. Let F' and B be arbitrary topological spaces. Then the quadruple
(F,B x F,B,m1) is a fiber bundle with atlas {1pxr}. This fiber bundle is called
the product bundle with base B (or over B) and fiber F'.

Example 2.10. For n > 1, let L,, denote the quotient space obtained from S™ x R
by identifying (x,r) with (—z, —r) whenever z € S*, r € R. Let ¢: S" xR — L,
denote the quotient map and write [z,7] = ¢(z,r) for z € 8", r € R. Define p,, :
L, — P"(R) by p,([z,7]) = [z]. Let V; and U;", 1 < i < n+1, be as in Examples 2.5
and 2.3. Tet ¢ : p (Vi) — Vi x R be given by ;([z,7]) = ([a], zi7). Note that
is well-defined since for all (z,7) € U;” x R, [~z] = [z] and (—z;)(~7) = z;r. Let
An = {p;|1<i<n+1}. We proceed to show that (R, L,, P*(R),py,) is a fiber
bundle with atlas A,,. We must show that p,, is continuous and that each ¢; is a
homeomorphism; the remaining conditions of Definition 2.8 are easily checked.
Continuity of p, is immediate from commutativity of the diagram

and the facts that 71, m are both continuous, and that g is a quotient map.

Let 3; : UF x R — U;" x R be given by @;(z,7) = (z,z;r). Clearly, each
component function of ¢; is continuous, and hence so is ;. Continuity of ¢; is now
immediate from commutativity of the diagram

UF x R—2> U xR

"l lmR

p7(Vi) —5—> Vi X R,

the continuity of §; and 7 x 1g, and the fact that the indicated ¢ (the restriction
of the quotient map q above to ¢~! of an open set) is a quotient map.

Define 9; : V; x R — p-1(V;) by ¥i([z],7) = [=,7/x;]. ; is well-defined since
z; # 0 for [z] € V; and [—z,r/(—2;)] = [, r/x;]. It is easily checked that ¢; and 1;
are inverses of one another. Thus, to prove that ; is a homeomorphism, it remains
only to check that ; is continuous. Since 7 : Ui+ — V; is a quotient map and R
is locally compact and Hausdorff, = X 1gr : Uf x R — V; x R is a quotient map.
Define ; : Ur xR — Ul xR by {Z)Vi(a:,r) = (z,7/2;). Jz is clearly continuous.
Continuity of 1; now follows from commutativity of

U xR—2>U¥ xR

mal lq

Vi X RTpgl(V:b)a
9



the continuity of Jz and ¢, and the fact that = X 1g is a quotient map.
This fiber bundle is called the canonical line bundle over P*(R).

Example 2.11. We construct a fiber bundle having the Klein bottle K as total
space, with both base space and fiber homeomorphic to the circle S*. Write I =
[0,1], the closed unit interval. K is the quotient space I X I/ ~ where ~ is the
equivalence relation on I x I generated by (s,0) ~ (s,1), (0,t) ~ (1,1 —¢) for all
s,t € I. Write [s,t] € K for the image of (s,t) € I x I under the quotient map
IxI—K.

Write 0 = {0,1}. Note that I/0I, the quotient space obtained from I by
identifying 0 and 1, is homeomorphic to S. In fact, writing [¢] € I/0I for the
image of ¢t € I under the quotient map I — I/8I, h : I/0I — S' given by
h([t]) = (cos(2nt),sin(2nt)) is well-defined and is a homeomorphism. (We leave
the details as an exercise.) Define p : K — I/0I by p([s,t]) = [s]. It is easily
checked that if (s1,¢1) ~ (s2,t2) in I x I, then [s1] = [s2], and so p is well-defined.
p is illustrated in the figure below:

We proceed to prove that {x = (I/0I, K,1/01,p) is a fiber bundle. We first check
that p is continuous. _
We have the commutative diagram

IxT——s7

where the ¢; are the respective quotient maps and 7, is projection on the first factor.
Since 71 and ¢; are both continuous, it follows that pgs is continuous. Thus, since
g2 is a quotient map, p is continuous.

We will show that there exists an atlas for {x consisting of 2 charts. Suppose
c € (0,1), the open unit interval. Write U, = I/0I —{[c]}. Since I/0I is Hausdorff,
it follows that U, is open in I/81. If ¢, co are distinet points in (0,1), Ue, UU,, =
I/8I. Thus we will be done if we show that for each ¢ € (0, 1), there exists a chart
we 1 p 1 (U,) — U, x I/01 for €. :

For c € (0,1) define ¢, : p~1(U,) — U, x I /01 and . : U, x I/01 — p~Y(U.) by

IR f0<s<e,
eells f) = { ([s],[110—t]) ifecs<1,



[s,4] if0<s<e,
%([8],[75]) :{ [s,l—t] ifc<s<l.

It is straightforward to check that both ¢, and . are well-defined, are inverses of
one another, and that the diagram

- Ue x 1/01

p~H(U) -
A

C

commutes. Thus it remains only to prove continuity of ¢, and ..
We have the commutative diagram

(I={H)xI s (T-{}) x> (T —{c}) xI

qél lqixfh lqé

p_l(Uc) T Uc X I/(?I —J"—'—)p—l(Uc)

where .
0(s,t):{(8’t) TfO§s<c,
(s,1—1t) ife<s<l,
and the ¢ are restrictions of the quotient maps ¢; above. The restrictions of  to
[0,¢) x I and (c, 1] x I are clearly continuous, and so since the latter two sets form
an open cover of (I — {c}) x I, 6 is continuous.

Since (I —{c}) x I is the complete inverse image of p~!(U,) under g, and is open
in K, it follows that g5 is a quotient map. Since 6, ¢f and gy are all continuous, it
follows from commutativity of the left-hand square in the above diagram that ¢.qj
is continuous. Thus, since ¢} is a quotient map, it follows that ¢, is continuous.

Since I — {c} is the complete inverse image of U, under ¢; and is open in I, it
follows that ¢} is a quotient map. Since both I —{c} and I are locally compact and
Hausdorff, it follows that ¢} X ¢ is a quotient map. Since 8 and ¢} are continuous, it
follows from commutativity of the right-hand square that ¥.(q; X ¢1) is continuous.
Thus, since ¢} X ¢; is a quotient map, 1. is continuous, completing the proof.

Example 2.12. Every covering map p : X — X is a fiber bundle projection. The
fibers are discrete spaces.

Lemma 2.13. Suppose £ = (F, E, B,p) is a fiber bundle with F' and B Hausdorff.
Then E is Hausdorff.

Proof. Let z, y be distinct points of E. We first consider the case p(z) # p(y). Then
since B is Hausdorff, there exist disjoint open neighborhoods X and Y of p(z) and
p(y), respectively, in B. Then p~!(X) and p~1(Y") are disjoint open neighborhoods
of  and y, respectively, in F.

Now suppose p(z) = p(y). Choose a chart ¢ for £ such that p(z) € U,. Since
@ is injective, there exist distinct points w, v in F such that ¢(z) = (p(z),u),
©(y) = (p(y),v). Since F is Hausdorff, there exist disjoint open neighborhoods U
and V of v and v, respectively, in F. Then ¢~ '(U, x U) and ¢~} (U, x V) are
disjoint open neighborhoods of z and y, respectively, in £. 0O
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Proposition 2.14. Suppose (F, E, B,p) is a fiber bundle with F' an m-manifold
and B an n-manifold. Then E is an (m + n)-manifold.

Proof. By Lemma 2.13, E is Hausdorff. Let A be an atlas for (F, E, B,p). For
each ¢ € A, U, is an n-manifold by Lemma 2.7(a). Thus, by Proposition 2.6,
each U, X F is an (m + n)-manifold. Thus, since U, x F' is homeomorphic to
p~*(U,), each p~1(U,,) is an (m + n)-manifold. The conclusion now follows from
Lemma 2.7(b) since {p~*(U,) | ¢ € A} is an open cover of E. [

If {X; | j € J} is a collection of topological spaces where J is an index set,
their disjoint union HXj is UXj x {j}. We topologize HXj by taking all
j€J jeJ jeJ
UUj x {j}, U; open in X; for each j € J, as its open sets. In particular each
JjeJ
X; x {j} is open (and closed) in HXJ" The function X; — X; x {j} sending

JjeJ
z to (z,j) is a homeomorphism. In case J = {1,...,n}, we sometimes write
[[X;=X1. 1IX,
jeJ

The index coordinate assures us that if ¢ # 7, then X; x {i} and X; x {j}
are disjoint. In case the X;’s are already mutually disjoint, we drop the index

coordinate and identify HX j with UXj’ where the open sets of the latter are
jeJ jeJ
precisely all U Uj, U; open in X;. In proving general results about disjoint unions
jeJ
we can oftenjsuppose, without loss of generality, that the X; are mutually disjoint
and drop the index coordinate. In specific examples where the X; might not be
disjoint (e.g. RII R), the index coordinate is required to avoid ambiguity.
Example 2.15. Suppose {M; | j € J} is a collection of n-manifolds. Then their
disjoint union HM ; is an m-manifold.
jeJ

Our next goal is a construction called connected sum which manufactures new
n-manifolds from old ones. The intuitive idea is to take two n-manifolds, punch
a hole in each, and connect the punctured manifolds together by a pipe. For
topological manifolds, the construction we give below is a little more complicated
than necessary. However, when we come to smooth manifolds later, this more
complicated construction will facilitate putting smooth structures on connected
sums.

Suppose X and Y are topological spaces, A C X, BC Y,and h: A — B a home-
omorphism. We write XU,Y for the quotient space obtained from the disjoint union
X II'Y by identifying (a,1) ~ (h(a),2) for all a € A (a ~ h(a) if X and Y are dis-
joint).

Lemma 2.16. Let X and Y be topological spaces, A open in X, B open inY, and
h: A — B a homeomorphism. Let q: XI1Y — X U, Y denote the quotient map.
Then:
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(a) q is an open map.

(b) The restrictions ¢ : X x {1} — ¢(X x {1}) and ¢: Y x {2} — q(Y x {2})
are homeomorphisms.

(c) ¢(X x {1}) and g(Y x {2}) are both open in X U, Y.

(@) X Un Y = q(X x {1}) Ug(¥ x {2}).

Proof. We can suppose X and Y as disjoint and drop index coordinates. Note that
foranyUC Xand V CY,q qUuUV)=UUMUNAUVURYVNB). IfU
is open in X, then since h is a homeomorphism, h(U N A) is open in B, and hence
open in Y since B is open in Y. Similarly if V is open in Y, then h=}(V N B)
is open in X. Thus if U and V are open in X and Y, respectively, ¢~1q(U U V)
is open in X I'Y. Thus, since q is a quotient map, ¢(U U V') is open in X U, Y,
establishing part (a).

Note that the restrictions ¢ : X — ¢(X) and ¢ : Y — ¢(Y') are both bijective.
Thus, since ¢ is an open continuous map and X, Y are both open in X I Y, these
restrictions are homeomorphisms, proving part (b).

Part (c) follows immediately from part (b) and the fact that both X and Y are
open in XIIY.

Part (d) follows immediately from the fact that X 1Y = X UY. O

In particular, if M and N are n-manifolds and h is a homeomorphism from an
open subset of M to an open subset of V, M U N is a union of two open subspaces,
each of which is an n-manifold. The only thing that prevents us from concluding
that M U, N is an n-manifold is that it may fail to be Hausdorff.

Example 2.17. Consider R U, R where A : (0,00) — (0, 00) is the identity map.
We proceed to show that R Uy, R is not Hausdorff.

Let ¢ : RIR — R U, R denote the quotient map. For each z € R, S C R,
and j = 0, 1, write z; instead of (z,7) € R x {j} C RII R and S; instead of
S x{j} C RUR to make the notation less cumbersome. Then ¢(0;) and ¢(02) are
distinct points of R Up R. We will see that these two points cannot be separated in
R U, R. Let U and V be open neighborhoods of ¢(01) and ¢(02), respectively, in
RULR. Then ¢~}(U) and ¢~ (V) are open neighborhoods of 0; and 02, respectively,
in RIIR. Thus there exists a § > 0 such that the open intervals (0,4); and (0, §),
are contained, respectively, in ¢~*(U) and ¢~ (V). But then ¢((0,6):) C UNV
and so UNV # 0.

Thus R U R is a non-Hausdorff space which is the union of two open subspaces,
each homeomorphic to R. This shows that the Hausdorff condition in the definition
of manifold is not superfluous.

We next give a sufficient condition to ensure that X Up Y is Hausdorff. If
h: A — B is a homeomorphism where A and B are open in X and Y, respectively,
we say X and Y are unpinched by h if there exists an open subspace U of X such
that A— A C U and h(UN A) C B.

Lemma 2.18. Let X and Y be Hausdorff spaces, A open in X, B open inY, and
h: A — B a homeomorphism. Suppose X andY are unpinched by h. Then X U,Y
is Hausdorff.

Proof. Let ¢ : XII1Y — X U, Y denote the quotient map. We may assume X
is disjoint from Y and drop the index coordinate. Suppose v and w are distinct
13



points of X U, Y. We first consider the case where v and w both lie in ¢(X). From
Lemma, 2.16(b), ¢(X) is homeomorphic to X and hence Hausdorff. Thus there exist
disjoint open neighborhoods V' and W of v and w, respectively, in g(X). Since, by
Lemma 2.16(c), ¢(X) is open in X U, Y, V and W are both open in X Uy ¥ and
thus separate v and w in X U, Y. The case where v, w both lie in ¢(Y") is the same.
Thus it remains only to treat the case v € ¢(X) — ¢(Y), w € ¢(Y) — ¢(X).

Since g is injective on X, ¢(X — A) is disjoint from q(A). Thus, since ¢(X) N
q(Y) = q(A), ¢(X — A) is disjoint from ¢(Y). Thus if v € ¢(X — A4), ¢(X — A) and
q(Y) are disjoint open neighborhoods of v and w, respectively, in X Up Y.

Thus it remains only to treat the case v € ¢(X) — ¢(Y) but v ¢ ¢(X — A4), and
w € q(Y) — ¢(X). Since q is injective on X and v ¢ ¢(X — A), we must have
v € q(A). But since v ¢ ¢(Y) and ¢(X)Ng(Y) = q(A), it follows that v € g(A— A).

By hypothesis, there exists an open subspace U of X such that A — A Cc U
and h(UNA) C B. Thus ¢(U) is an open neighborhood of v in X U, Y, and
w € q(Y)—q(X)=q(Y — B) C q(Y — h(U N A)). Thus q(U) and ¢(Y — h(U N A)) -
are open neighborhoods of v and w, respectively, in X Uy Y. It remains only to
show that these neighborhoods are disjoint.

Proceed by contradiction. Suppose z € U and y € Y — h(U N A) are such
that q(z) = ¢(y). Then ¢(z) € ¢(X) Nq(Y) = ¢(A) and so, since q is injective
on X, we must have ¢ € A. Thus ¢ € U N A. Since ¢(z) = g(h(z)), we have
q(y) = q(h(z)). Since g is injectiveon Y, y = h(z) and so y € h(UNA) C h(U N A),
a contradiction. [J

Corollary 2.19. Let M and N be n-manifolds. Suppose h is a homeomorphism
from an open subset of M to an open subset of N such that M and N are unpinched
by h. Then M Up, N is an n-manifold.

Example 2.20. Let n > 1. We now construct the connected sum M # N of
two non-empty connected n-manifolds M and N. Recall that E™ denotes the open
unit disk in R™, i.e. {x € R" | ||z|| < 1} where || || denotes the standard Euclidean
norm. Suppose ¢ : dom ¢ — E™ and ¢ : dom ¢ — E™ are homeomorphisms where
dom ¢ and dom ¢ are open sets in M and N, respectively. Say ¢(P) = ¢(Q) = 0.
For any subinterval J of (0,1), write E} = {z € E" | ||z| € J}. For r € (0,1),
write EP = {z € E" | ||z|| =7}

Let A=~ (Bp, /) € M~ {P}, B=y~ (B}, /) < N~{Q}. Ais open
in dom ¢, and hence open in M — {P} since dom ¢ is open in M. Similarly, B is
open in N—{Q}. Write p1 : A — Ef,1/2) and Y1 : B — Efj 1 oy for the restrictions
of ¢ and v, respectively. ¢1 and 1; are homeomorphisms.

Note that for any r € (0, 1), the map «; : Ef»y — Ef .y given by ar(z) =

(r— |zl ”—z—ﬂ is continuous and satisfies a.c;. = 1pn

o Thus each «, is a homeo-

morphism. Descriptively, o, reflects each open ray of length r emanating from the
origin about its midpoint. Define h : A — B to be the composition

o -1
A—"> By 5y —> By 1y —— B .
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Each map in this composition is a homeomorphism, and so h is a homeomorphism.
We proceed to check that M — {P} and N — {Q} are unpinched by h.

We claim that if 7 € (0,1), then " (B,) s closed in M — {P} and that
Pt ( (76,7‘]) is closed in N — {Q}. For writing D = {z € R" | ||z|| < r}, D¥ is

compact and so, since ¢ : dom ¢ — E™ is a homeomorphism, ¢~!(D?) is compact,
and hence closed in M. Thus ¢~1(D?) N (M — {P}) is closed in M — {P}. The

claim for 7! (EZ}),TO now follows since ¢~ (D?)N(M —{P}) = ¢;* (E(%’T]). The
proof of the claim for 1! ( (%,T]) is the same.

Thus, since A = gol_l (E&’lﬂ)) C <p1_1 (Egm/z]) and, by the above claim, this
last set is closed in M —{P}, it follows that A4 C o7 ? (E&,l /2]) (where the bar indi-

cates closure in M — {P}). Thus A— A C o7 ( ;1/2). Take U = =1 (E?1 s /4)).
Then U is open in dom ¢, and hence open in M — {P} since dom ¢ is open in
M. Note that UN A = ¢7" (Ef 4, 5), and AU N A) = o7 (Bfy 14 ). Thus

h(UNA) C 97 1 (E&m /4]) and, by the claim above, this latter set is closed in

N - {Q}. Thus, W(UNA) C i (Bpy, ) € vt (B, /) = B where this
last closure is in N — {Q}, completing the proof that M — {P} and N — {Q} are
unpinched by h.

We thus obtain, by Corollary 2.19, an n-manifold M # N as indicated above.

The construction of M # N above depends on the choices of the charts ¢ and 1.
It can be shown that for compact connected 2-manifolds, the homeomorphism type
of M # N is independent of these choices, but for higher dimensional manifolds
the homeomorphism type of M # N may depend on the “orientation classes” of
these charts, a concept which we will deal with later.

If M and N are compact connected n-manifolds, so is M # N (see the Exercises
for §2). We inductively define two sequences of compact connected 2-manifolds
Ty, T5,... and Py, P,,... as follows: Ty = S x S!, the 2-dimensional torus, and
T, =Ty # Tp-1 for n > 1. P, = P%(R), real projective 2-space (or the real
projective plane), and P, = Py # P,_1 for n > 1. It is known that every compact
connected 2-manifold is homeomorphic to exactly one of S?,Ty,T3,..., P, P,,. ...
References for the classification of compact connected 2-manifolds are the following:
(1) W. S. Massey, Algebraic Topology: An Introduction, Harcourt, Brace & World,
Inc. 1967, Chapter 1.

(2) A. J. Sieradski, An Introduction to Topology and Homotopy, PWS-Kent Pub-
lishing Co. 1992, Chapter 13.

3) D. B. Fuks & V. A. Rokhlin, Beginner’s Course in Topology, Springer-Verlag
1984, Chapter 3, §5.3.

It is elementary, though tricky, to show that every compact connected 1-manifold
is homeomorphic to S'. A proof is given in the third of the above references,
pp. 139-140.
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Exercises for §2

1.(a) Check the claim in Example 2.3 that ¢ and ¢;" are inverses of one another.
(b) Check the claim in Example 2.4 that ¢ and ¢ are inverses of one another.

2. Prove Lemma 2.7.
3. Prove that every connected n-manifold is path-connected.

4. Prove that if M and N are connected n-manifolds, then M # N is connected.
If, further, M and N are both compact, then M # N is compact.

5. Using informal cut and paste arguments, show
(a) P?(R) # P?(R) is homeomorphic to the Klein bottle.
(b) P2(R) # (S! x S!) is homeomorphic to P?2(R) # P*(R) # P%(R).

6. Let G be a Hausdorff topological group. Suppose G contains a non-empty
open subset which is homeomorphic to an open subset of R"™. Prove that G is an
n-manifold.

7. The orthogonal group O(n) consists of all T € GL,(R) such that T-! = T*
where T* denotes the transpose of T, topologized as a subspace of GL,(R).

(a) Prove that O(n) is a Hausdorff topological group.

(b) Let Skew(n) = {4 € M,(R) | A* = —A}. Show that if A € Skew(n), then
(I, + A)(I, — A)~! € O(n) where I,, denotes the n x n identity matrix. (Recall
that the eigenvalues of a real skew-symmetric matrix are pure imaginaries, and so
I — A is invertible.)

(c) Show that if A € Skew(n), then —1 is not an eigenvalue of (I + A)(I — A)~1.

(d) Prove that O(n) is a zn(n — 1)-manifold.

8. Forn > 1, let T(S") = {(z,y) € S® x R"! | z 1 y} where L denotes
“orthogonal with respect to the standard inner product on R™t1”. Define p :
T(S™) — 8" by p(z,y) = z. Show that (R",T(S™), S™, p) is a fiber bundle.

9. The goal of this exercise is to show that P3(R) is the union of two open subsets,
each homeomorphic to an open subset of R3.

Identify R? with C in the standard way, i.e. (a,b) is identified with a -+ bi. Then
for n > 1, §"1 can be identified with {(z1,...,2,) € C" | ¥, |=|* =1}, and
P?"~1(R) with the quotient space obtained from $2"~! by identifying (z1,...,2,)
with (—21,...,—2,) for all (z1,...,2,) € S?"~1, Write [21,...,2,] € P }(R) for
the image of (21,...,2,) € $?2"~! under the quotient map.

(a) Let h : PL(R) — S? be given by h([z]) = 22. Show that h is well-defined
and is a homeomorphism.

(b) Find an explicit homeomorphism from S* x R onto an open subset of R2.

(¢) Deduce that P'(R) x C is homeomorphic to an open subset of R3.

(d) Let U = {[z,w] € P(R) | 2 # 0} and V = {[2,w] € P>(R) | w # 0}. Show
that U and V are both open in P3(R) and that P}3(R) =U UV.

(e) Let f: PY(R) x C — U be given by

f(l2],w) = [Z/\/ 1+ |w|?, zw//1+ |w|2] .
16



Show that f is well-defined, and is a homeomorphism. Similarly, show that V is
homeomorphic to P}(R) x C. Deduce that P3(R) is the union of two subspaces,
each homeomorphic to an open subspace of R3.

(f) Generalize this to a result about P?"~1(R).

10. For n > 0 regard S?"*! as the unit sphere in C™*! as in Problem 9. In par-
ticular we identify S* with the set of complex numbers of absolute value 1. Define
complex projective n-space P*(C) to be the quotient space obtained from S?7+!
by identifying (z1,...,2n4+1) ~ (A21,..., Aznt1) for all (21,...,2p41) € 2! and
Ae St

(a) Prove that P™(C) is a 2n-manifold.

(b) Write [z, w] € P(C) for the image of (2, w) € S under the quotient map.
Let C* denote the one-point compactification of C. Let f : P1(C) — C* be given
by 2 w0

flzw]) = { w ’

oo ifw=0.

Show that f is well-defined, and is a homeomorphism.
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3. DIFFERENTIAL CALCULUS

We assume a basic knowledge of Advanced Calculus. In particular, we assume
the multivariate Chain Rule and the Inverse Function Theorem (stated below) as
well as other standard analytic facts at that level. We include proofs of two cases
of Taylor’s Theorem in a form which will be needed later, but not found in some
treatments of Advanced Calculus. We will reformulate some of Advanced Calculus
in a coordinate-free form suitable for our purposes.

If f is a real-valued function defined on an open subset U of R"™, we write D, f
for the partial derivative of f with respect to the i*® variable. If I = (41,.. cylp)
where i, € {1,...,n} for 1 < k < r, we write Drf = D;,...D;_f and call the
latter an r*" order partial derivative of f.

Definition 3.1. Let U be open in R™ and f : U — R a function. We say f is C*°
if f and all its possible partial derivatives of all orders exist and are continuous on
U.

If g: U — V where U is open in R™ and V open in R", we say g is C* if each
of its coordinate functions g1, ..., g, (relative to the standard basis of R™) is C*°.

Thus if a real-valued function is C°°, so are all its partial derivatives of all
orders. In what follows, the results can usually be made more general by replacing
C®® hypotheses by weaker differentiability hypotheses. Since we only need the C*°
case, we sacrifice this generality in exchange for simplicity of statement.

Definition 3.2. If f : U — V is C° where U is open in R™ and V open in
R™, then for each z € U, the derivative of f at x, denoted D f(x), is the linear
transformation D f(z) : R™ — R™ whose matrix with respect to the standard bases
is the Jacobian matrix of f at z, i.e. '

Difi(z) Dz2fi(z) ... Dmfi(z)

Difo(z) Dafa(z) ... Dpfa()
Df(z) = . _ . '

len(x) D2fn(m) ce Dmfn(x)

(Here, and possibly later, we identify a linear transformation from R™ to R"™ with
its matrix with respect to the standard bases.)

Theorem 3.3. (Chain Rule) Suppose f : U — V and g : V — W are C®
maps where U, V, and W are open in R™, R™, and R, respectively. Then the
composition g f is C* and for all z € U, D(gf)(z) = Dg(f(z))Df(x). O

Theorem 3.4. (Inverse Function Theorem) Suppose f : U — V is a C* map
where U and V' are open in R™. Suppose xo € U is such that the linear transforma-
tion Df(zo) : R™ — R™ is invertible. Then there exist open neighborhoods W of zq
inU, X of f(zo) in V, such that f maps W bijectively onto X and f™1: X - W
is C°. 0O
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Theorem 3.5. (First Taylor Theorem) Let U be a convez open set in R™ and
f a C* real-valued function defined on U. Let a = (ai,...,a,) € U. Then there
exist C° real-valued functions g1,...,g, on U satisfying:

(a) gi(a) = Dy f(a) for1 <i<n.
(b) For oall z = (21,...,2,) € U,

f(@) = fla)+ ) gilw)(zi — as).
i=1

Proof. By the convexity of U, for all t € [0,1] and z € U we have tz+ (1 —t)a € U.
By the Chain Rule,

ccli< (m_l—(l—t )> ZDf(tcH—(l—t) )( — a;).

Thus; by the Fundamental Theorem of Calculus,

n

f(x) = fla) = Z (/OlDif(t:c—i—(l —t)a) dt) (-m,;-—ai).

i=1

1
Define g;(z) = / D;f (tm +(1 - t)a) dt. It follows from the Advanced Calculus
0

theorem on differentiating under the integral sign that each g; is C*. Since g;(a) =

1
/ D; f(a)dt = D, f(a), the proof is complete. [J
0

Theorem 3.6. (Second Taylor Theorem) Let U be a convex open set in R™
and f a C* real-valued function on U. Leta € U. Then there exist C*° real-valued
functions hy; on U, 1 <4 <n, 1< j <n, such that for all x € U,

n n

fle)=fa)+ ) Dif(a)(mi—a)+> > hi(@)(zi — ai)(z; — aj).
i=1 i=1 j=1
Proof. By the First Taylor Theorem there exist C* functions g; on U, 1 <1< n,
such that g;(a) = D;f(a) and f(z) = f(a) + E 9i(z)(z; — a;). Applying the First
Taylor Theorem to each of the g;, we deduce that there exist C'*° functions h;; on U,

1 < j < n, such that for each z € U, g;(z) = gi(a) + Z hij(z)(z . The result

now follows by substituting this into the above and the fact that g;(a) = D;f(a)
for each i. O
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Theorem 3.7, Let f: U — 'V be a C* map where U is open in R™ and V' is open
in R™. Let || |1 and || ||2 be arbitrary norms on R™ and R", respectively. Then
for each a € U there exists a neighborhood N of a in U and a posztwe constant C
such that for all x € N,

I () — £(a) = Df(a)(z — a)ll2 < Cllz - all}.

Proof. Clearly, if the result holds for one choice of norms || |1 and || ||2, it holds for
all choices by Theorem 1.5. Thus we may suppose || ||1 and || ||2 are the respective
box norms relative to the standard bases (see Example 1.3). Given a € U, choose
¢ > 0 such that the open ball B(a, €) (with respect to the standard Euclidean norm)
is contained in U. Take N = B(a,¢/2).

For each z € U,

/(@) ~ (a) ~ Df(@)(z ~ a)]l» = max

fi(@) = fila) = > D; fila)(z; — a5)|.
j=1

Applying the Second Taylor Theorem to each f;, there exist C°° real-valued func-
tions hs;; on B(a,€) such that for all z € B(a,¢),

fi(z) - ZD fi(a —a;) = Z Zh”k — a;)(zr — ak).

j=1 k=1

Since N is compact and the hi;x are all continuous on N, there exists a positive
constant M such that |hx(z)| < M for all z € N and all 4, 4, and k. Thus for all
x €N,

If (@) ~ f(a) ~ Df(@)(@ = a)ll2 < D D M lw; - agl|ax — axl

i=1 k=1
<m?M|z — al?. O

The next result, together with Theorem 3.7, characterizes the derivative D f(a).

Theorem 3.8. Let f: U — V be a C*™ map where U is open in R™ and V is open
in R™. Let a € U and suppose T : R™ — R" is an R-linear transformation with
the property that with respect to some choice of norms || |1 and || |2 on R™ and
R™, respectively, there exists a neighborhood N of a in U and a positive constant
C such that for all x € N,

I£ (@) — £(a) = T(z ~ a)}2 < Cllz — al}.
Then T = D f(a).

Proof. By Theorem 3.7 we can suppose, by passing to smaller neighborhoods and
larger constants, if necessary, that IV is convex and that for all x € N we have, in
addition to the postulated inequality,

If(z) ~ f(a) = Df(a)(= — a)ll2 < Cllz ~ ali.
20



We then have, for all z € N,
|(z-D1t@)) @~ a

= |7@) - 7@ - Df(@)( - a) - ($(=) - (@) - Tz —0)) |,

<|If(@) - £(a) = Df(@)(z = k2 + (@) - £(a) ~ T(@ = )l

< 2C||z - alﬁ.

If T — Df(a) # 0, we can choose zo € N such that (T - Df(a)) (zo —a) # 0 and
hence H (T - Df(a)) (xo — a)“2 # 0. For any positive § < 1 we have

8|(z = Ds(@) @0 = a)], = (7 - D1(@) (8620 - )
- ” (T ~ Df(a))(6%0 + (1 - O)a - a)HQ.
By convexity of N, 6zo + (1 — 8)a € N and so
H (T- Df(a))(&co +(1—8)a— a)H2 < 2C||6z0 + (1 — 8)a — a2
=2C ||6(zo — a)|I7 = 208 ||zo — o} .
Thus “(T— Df(a))(wo - a)“2 < 206 ||zo — af? whenever 0 < & < 1. It follows
that “ (T - Df(a))(z0 - a) H2 =0, a contradiction. [J

Example 3.9. Let T : R™ — R"™ be an R-linear transformation. 7" is C°° since
its coordinate functions are linear functions. For any @ and = in R™,

T(z)—T(a) —T(x —a) =0.
It follows from Theorem 3.8 that DT'(a) = T for all a € R™.

We now wish to talk about C°° maps between open subsets of general finite-
dimensional real vector spaces, perhaps without any preferred bases. This is made
possible by the next lemma.

Lemma 3.10. Let X and Y be finite-dimensional real vector spaces of dimensions
m and n, respectively. Let f : U — V be a function where U and V' are open
in X and Y, respectively. Suppose a1,cg : X — R™ and 81,02 : Y — R™ are
R-isomorphisms. Then Byfai’ : ay(U) — B1(V) is C™ if and only if Bofas’ :
ag(U) — B2(V) is C°.

Proof. We have ﬂzfagl = (,32,81"1) (ﬁlfal_l) (alagl). The functions a1a2_1 :
az(U) — ay(U) and Bo57 : B1(V) — B2(V) are both C since they are restrictions
to open sets of R-linear transformations o 05 1. R™ - R™ and B2 7 lL.R” 5 R",
respectively. Thus if 81 fa;! is C®, so is Bofayt. O

Definition 3.11. Suppose X and Y are finite-dimensional real vector spaces of
dimensions m and n, respectively. Suppose f: U — V is a function where U and
V are open in X and Y, respectively. We say f is C* if for some (and hence all)
R-isomorphisms o.: X - R™ and 8:Y — R™, Bfa~!: a(U) — B(V) is C*°.
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Proposition 3.12. Let X, Y, and Z be finite-dimensional real vector spaces. Sup-
pose f:U—-V andg:V — W are C*® maps where U, V, and W are open in X,
Y, and Z, respectively. Then gf : U — W is C*°.

We leave the proof as an exercise.

Proposition 3.13. Let X and Y be real finite-dimensional vector spaces, and
T:X —Y an R-linear transformation. Then T is C.

Proof. Let o : X — R™ and 8 : Y — R™ be R-isomorphisms. Then STa~?! :
R™ — R™ is an R-linear transformation, and hence C*°. 0O

Proposition 3.14. Let X and Y be finite-dimensional real vector spaces, and B
an R-basis forY. Let f: U — V be a function where U and V are open in X and
Y, respectively. Then f is C* if and only if the coordinate functions of f relative
to B are C*.

Proof. Say B = {b1,...,b,}. Recall from Section 1 (just preceding Proposi-
tion 1.11), that the coordinate functions fzf : U — R of f relative to B are

characterized by f(z) = Y, f2(2)b; for all z € X. Let a : Y — R™ be given by
a (3, mibs) = (r1,...,m0). Thus af (z) = (fE(z),..., fE(z)) for allz € U.

Let B : X — R™ be any R-isomorphism. Then for all u € R®, aff~1(u) =
(fB(B71(w)),..., f2(67 (u))). Thus the coordinate functions of af 3~ relative
to the standard basis of R™ are given by (af 871); = f£ 0871, 1 <i < n. We have
the equivalences

fis C® « afBtis C* (Definition 3.11)
& (afB1);isC® for 1 <i<n (Definition 3.1)
& fEoplisC®for 1<i<n (by the equality above)
& f,f isC*® for 1 <i<n (by Proposition 3.12 since,
by Proposition 3.13, both 3 and §~* are C*°.) O

Our next task is to extend the notion of derivative to the class of C* functions
of Definition 3.11.

Lemma 3.15. Let X and Y be finite-dimensional real vector spaces of dimensions
m and n, respectively. Suppose f : U — V is a C® map where U and V are
open in X and Y, respectively. Let o : X — R™ and B:Y — R"™ be choices of
R-isomorphisms. Then for each a € U the composition

D a " YH(ala -1
P T . e CLO) B

is an R-linear transformation which depends only on f and a, and not on the
choices of o and f3.
22



Proof. Let a1 : X — R™ and f; : Y — R"™ be other choices of R-isomorphisms.
Consider the diagram

D(Bfa"")(a(a))

R™ R™
/ N
X ara”! BBt Y
N z
R™ — R"
D(B1fa7i ") a1(a))

The two triangles trivially commute, and so it remains only to check commutativity
of the rectangle.

ThBy Example 3.9, ajo™! = D(aiat)(afa)) and 1871 = D(B18~1)(8f(a)).
D(Bifar*)(aa(a))ara™ = D(Bifar*)(an(a)) D{ena™")(afa))  and
A8~ D(Bfa") (a(a)) = D(B1B7Y)(Bf(a)) D(Bfa)(a(a)).

By the Chain Rule (Theorem 3.3),

D(B: far*)(ar(@))D(era ) (ala) = D((Bifar?) o (1a™) ) (@(a))
=D(Aifo)(a(e),  and

D(8:67)(B5(@))D(Bfa)(la)) = D((B:87) o (Bfa™)) (a(a))
= D(B1fa~)(a(a)).

By comparison, we are done. U

Lemma 3.15 permits the following definition.

Definition 3.16. If X and Y are finite-dimensional real vector spaces of dimensions
m and n, respectively, and f : U — V is a C°° map where U and V are open in
X and Y, respectively, then for each a € U the derivative of f at a is the R-linear
transformation Df(a) : X — Y defined by

Df(a) = B7'D(Bfa")(a(a))x

where oo : X — R™ and 8 :Y — R" are arbitrary R-isomorphisms.

Theorem 3.17. Let X andY be finite-dimensional real vector spaces and f : U —
V a C* map where U and V are open in X and Y, respectively. Suppose || ||x
and || ||y are norms on X andY, respectively. Then for each a € U there exists a
neighborhood N of a in U and a positive constant C' such that for all x € N,

I (@) = £(a) = Df(a)(z ~ a)lly < Cllz - alk.
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Proof. Let @ : X — R™ and 8:Y — R™ be R-isomorphisms. Let || ||; and || ||2
be the norms on R™ and R", respectively, such that o and 3 are isometries with
respect to || [|x, || [l1 and || ||y, || |l2, respectively. By Theorem 3.7 there exists a
neighborhood N of @ in U and a positive constant C such that for each = € N,

1(8fa")(a(z)) — (Bfe ) (e(a)) — D(Bfa)(e(a)) () ~x(a)l2
< Clla(z) — a(a)l3

o 18(f(z) — £(a)) - BDF(a)(z — a)|l» < Cllaz — a)|I2

Since « and G are isometries, the left-hand side of this last inequality is equal to
| £(z) — f(a) — Df(a)(z — a)|ly while the right-hand side equals C|lz —a|%. O

The next theorem generalizes Theorem 3.8. Its proof is the same as that of
Theorem 3.8.

Theorem 3.18. Suppose X and Y are finite-dimensional real vector spaces, and
that f: U — V is a C* map where U and V are open in X and Y, respectively.
Let a € U and suppose T : X — Y is an R-linear transformation with the property
that with respect to some choice of norms || ||x and || ||y on X and Y, respectively,

there exists a neighborhood N of a in U and a positive constant C' such that for all
x €N,

1£(z) = £(a) - T(z - a)|ly < Cllz - all%.
Then T = Df(a). O

Example 3.19. Suppose X and Y are finite-dimensional real vector spaces and
T : X — Y is an R-linear transformation. Using the same argument that was
used to deduce Example 3.9 from Theorem 3.8, it follows from Theorem 3.18 that
DT(a)=T for alla € X.

The next theorem generalizes Theorem 3.3.

Theorem 3.20. (Chain Rule ) Let X, Y, and Z be finite-dimensional real vector
spaces. Suppose f : U —V andg:V — W are C* where U, V, and W are open
in X, Y, and Z, respectively. Then for each a € U, D(gf)(a) = Dg(f(a))Df(a).

Proof. Let a: X - R™, B:Y — R", and v: Z — RY be R-isomorphisms. Then

D(gf)(a) ="' D(vgfa~")(a(a))ex
(by Definition 3.16)

=y"'D(vgB ' Bfa" ) (a(a))e

=77'D(1g67)(B(f(e)) ) D(Bfa"")(ala))a
- (by Theorem 3.3)

=77 D(1987") (8(£(a)) )86 D(Bfa™) (a(a))a
= Dg(f(a))Df(a)
(by Definition 3.16). O
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Proposition 3.21. (Local Property) Suppose X and Y are finite-dimensional
real vector spaces and f: U — V is a function where U and V are open in X and
Y, respectively.

(a) Suppose Uy and Vi are open in U and V', respectively, and that f(Up) C Vp.
If f is C°°, then the restriction f : Uy — Vg is C*°.

(b) If U is a union of open subsets such that the restriction of f to each of these
is C*°, then f is C*°.

(c) If f is C®, a € U, and g is a C™ function from an open subset of X to an
open subset of Y which agrees with f on some neighborhood of a, then Df(a) =
Dg(a).

Proof. Part (c) is a formal consequence of Theorems 3.17 and 3.18. It also, of course,
follows quickly from the definitions since the partial derivatives D; f(a) only depend
on f in a neighborhood of a. In case X = R™ and Y = R"™ for some m and n, parts
(a) and (b) are immediate since existence and continuity of the Dy f at a point only
depends on f in a neighborhood of that point. Using Definition 3.11, the general
case now follows easily. [

We conclude this section with a version of the Product Rule suitable for our later
needs. If X is a real finite-dimensional vector space, U openin X,and f, g: U — R
are C°, let f-g:U — R be given by (f - g)(z) = f(z)g(z) for all z € U.

Theorem 3.22. (Product Rule) Let X be a real finite-dimensional vector space
and suppose U is an open subset of X. Suppose f,g : U — R are C*. Then
f-g:U—="RisC>, and for all z € U,

D(f - 9)(z) = (Df(2))g(z) + f(z) Dy ().

Proof. We first consider the case X = R™. Then f:g is C°° by the classical Product
Rule. We have
D(f-g)(z) = (D:i(f -9)(=) D2(f g)(x) ... Daulf-g)(z)).

By the classical Product Rule, the i** component of the latter is (Di f (ac)) g(z) +
f(z)D;g(z), and the result follows.

For the general case, choose an arbitrary R-isomorphism « : X — R"™. Note that
(f-9)a™t = (fa=1)-(ga™t). It now follows from the case above and Definition 3.11
(using B = 1gr) that f - g is C°°. By Definition 3.16 (using 8 = 1r),

D(f - g)(z) = D((f - g)a ™) () ).
By the case already done,
D((f - g)a™") (e=))
= D(fo™")(a(z)) (9o ) (a(2)) + (fo™ ') (e(z)) D(ga™") (a(x))
= (D(fa™)(a(2)) ) 9(2) + £(2)D(ga~") (a(x).
The result now follows by composing with o on the right and invoking Defini-

tion 3.16. O
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Exercises for §3

1. Prove Proposition 3.12.

2. Let n and g be positive integers. Write M, 4(R) for the vector space of all
n-rowed, g-columned real matrices. Let Sym(n) = {T' € M,(R) | T = T*} where
T™ denotes the transpose of T'. Define f : M, ,(R) — Sym(n) by f(T) = TT* for
T € M, 4. (Note: (I'T*)* =T**T* =TT* and so TT* € Sym(n).)

(a) Show that f is a C* map.

(b) Show that for each A € M, 4(R), Df(A) : My 4(R) — Sym(n) is given by
Df(A)(T) = AT* + TA*.
3. Let m, n, and g be positive integers. Define f : My, n(R) X My, q(R) = Mp, (R)
by f(S,T) = ST (matrix multiplication).

(a) Show that f is C°.

(b) Show that for each (A, B) € My, n(R) X M, 4(R),

Df(A,B): Mpyn(R) x My o(R) = Mp, 4(R)

is given by Df(A, B)(S,T) = AT + SB.
4. Suppose X, Xo, Y7, and Y5 are finite-dimensional real vector spaces. Suppose
Uy, Us, V1, and V5 are open, respectively, in X1, Xo, Y1, and Ys. Suppose f: U; —
Vi and g : Uy — V4 are C°.

(a) Show that f x g: Uy x Uy = V; x Vs, given by (f x g)(a,b) = (f(a), g(b)) is
C*,

(b) Show that for each (a,b) € Uy x Uz, D(f x g)(a,b) : X1 x Xg = Y1 x Yy is
equal to Df(a) x Dg(b).
5. Let n be a positive integer. Recall, from Example 2.2, that GL,(R) is open in
the real vector space M, (R). Let f : GL,(R) — GL,(R) be given by f(T) =T"1.

(a) Show that f is C.

(b) Show that for each A € GL,(R), Df(A) : M,(R) — M,(R) is given by
Df(A)(T)=-A"1TAL.
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4, SMOOTH MANIFOLDS

If f: X — Y is a function, we will sometimes write X = dom f, the domain of
f, and Y = codom f, the codomain of f. Recall (from Definition 2.1) that if M
is a topological n-manifold, a chart ¢ for M is a homeomorphism where dom ¢ is
an open subset of M and codom ¢ is an open subset of some real n-dimensional
vector space.

Definition 4.1. Let M be a topological n-manifold. Suppose ¢ and 7 are charts
for M. We say ¢ and v are smoothly related if the compositions

-1
w(dom ¢ Ndom ) ¥ > dom ¢ N dom v, ¥(dom ¢ N dom )
and
-1
¥(dom ¢ Ndom ) ¥, dom v Ndom v LN ¢(dom ¢ N dom )

(i.e. the overlap maps for ¢ and 1)) are both C*. (By convention, if dom ¢ and
dom 1) are disjoint, we consider ¢ and 1 as being smoothly related.)

p(dom ¢ Ndom ) ¥ (dom ¢ N dom 1))

dom ¢ Ndomy

An atlas for M is a smooth atlas if all pairs of charts in that atlas are smoothly
related.

If A and B are smooth atlases for M, A is smoothly equivalent to B if every
chart in A is smoothly related to every chart in B.

The relation “is smoothly related to” on charts is clearly reflexive and symmetric.
Note, however, that it is not transitive. (A trivial example is given by two charts
w1 and s which are not smoothly related, and a chart 2 such that dom ¢y is
disjoint from both dom ¢ and dom 3. Then ¢, is smoothly related to ¢9 and @2
is smoothly related to 3, but (1 is not smoothly related to 3.) However we have
the following weaker transitivity.

Lemma 4.2. Let M be a topological manifold and suppose A, B are smooth atlases
for M such that A is smoothly equivalent to B. Suppose ¢ is a manifold chart for
M which is smoothly related to each member of A. Then ¢ is smoothly related to
each member of B.
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Proof. Let ¢ € B. {¢(dom ¢ Ndom ) Ndom 8) | § € A} is an open cover of
¢(dom ¢ N dom 9) and {¢(dom ¢ Ndom 1» Ndom #) | 6 € A} is an open cover
of ¢¥(dom ¢ Ndom ). Thus, by Proposition 3.21(b) (Local Property), to prove
that the overlap maps 1o~ and py~! are C®, it suffices to show that for each
6 € A, the restrictions of these overlap maps to @(dom ¢ N dom % N dom #) and
¥ (dom ¢ Ndom 1 Ndom 0), respectively, are C*°. We have the diagram

¢(dom ¢ Ndom 3 Ndom 6)

: o (dom o N dom 4 N dom §) .

-1

L

-1
6(dom ¢ N dom % N dom 0) ve

B~ @f~

with both the outside triangle and inside triangle commuting. 8 ~! and @8~ are

both C* since ¢ is smoothly related to every member of A. 16~ and #1)~! are both
C* since A is smoothly equivalent to B. Thus @i ~! and ¥p~! are compositions
of C*° maps and hence are C*°. [

Proposition 4.3. The relation “smooth equivalence” on the class of all smooth
atlases for a given topological manifold is an equivalence relation.

Proof. The reflexive and symmetric properties are immediate. Suppose A, B, and
C are smooth atlases for M such that A is smoothly equivalent to B and B is
smoothly equivalent to C. Suppose ¢ € A. Then since A is smoothly equivalent to
B, ¢ is smoothly related to each member of . Since B is smoothly equivalent to
C, it follows from Lemma 4.2 that ¢ is smoothly related to each member of C. [

Definition 4.4. A smooth structure S on a topological n-manifold M is a smooth
equivalence class of smooth atlases for M. The pair (M, S) is then called a smooth
n-manifold. Any smooth atlas for M which represents S is called an S-admissible
atlas. Any manifold chart for M which is a member of an S-admissible atlas is
called an S-admissible chart.

Not all topological manifolds admit smooth structures. The first example, due
to M. Kervaire [A manifold which does not admit any differentiable structure,
Comment. Math. Helv. 34 (1960), 257-270] was of a compact topological 10-
manifold admitting no smooth structure. The non-existence of a smooth structure
on the Kervaire example was proved using methods of algebraic topology.

Frequently, a particular smooth structure on a topological manifold M will be
understood, and we will abuse notation and talk about the “smooth manifold A”
rather than the “smooth manifold (M,S)”. This is analogous to using the same
notation to denote both a topological space and its underlying set.

Example 4.5. If U is an open subset of a finite-dimensional real vector space, the

atlas consisting of the single chart 1y is clearly smooth. The smooth structure on

U represented by this atlas will be called the standard smooth structure on U. If a
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smooth structure on such a U is not specified, the standard smooth structure will
be understood. '

Example 4.6. For n > 1, the atlas for S™ given in Example 2.4 is smooth. In fact
the overlap maps

o~ (") et (eT) T RP =0 R -0

are given by ¢~ (¢*) ™" (y) = ¢* (¢7) 7 (y) = ||yl "2y, which is C*. The smooth
structure on S™ represented by this smooth atlas is called the standard smooth
structure on S™.

It is not hard to show (see the exercises for §4) that the atlas for S™ given in
Example 2.3 is smooth, and that it represents the standard smooth structure on
Sm,

Example 4.7. For n > 1, it follows from Example 2.5 that P*(R) has an atlas
{61,...,0n41} where 0; : V; — E™ is given by

Z; ~
91([{1}1, ceay xn—{-l]) = -|w—1|($1, BN /7 P 7wn+1)-

?

We proceed to check that the above atlas is smooth.

For i # j,
{ye E™|y; #0} if 7 < 1,
{ye E™|y;_1 #0} ifj >

One checks that for i # j, 6;0;" : 6;(V; N V;) — 0;(V; N'V;) is given by

osvinv;) ={

Yy ~ ip e
ﬁ'(yl""7yj7"'ayi—la I_Hy”27y’£7"')yn) lfj <1,
- J
9.70% 1(y) = yj_.l

|y 1|(y17"'ayi—ls 1"”y”2)yi7'"a:/y\j—lv"'ayn) 1f.7>7'1
=

which is C*°. The smooth structure on P™(R) represented by the above smooth
atlas is called the standard smooth structure on P™*(R).

Example 4.8. Let h: R — R be any homeomorphism. Then the one element set
{h} is a smooth atlas for R. If h is not C™, e.g. if

h(z) {a: if x <0,
xTrT) =
2z ifxz >0,

then {h} is not smoothly equivalent to {1g} since the overlap map hlg' =h: R —
R is not C*°.
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Proposition 4.9. Let (M,S) be a smooth manifold. Then:

(a) Any two S-admissible charts are smoothly related.

(b) If A and B are atlases for M such that A C B and B is S-admissible, then
A is S-admissible. '

(c) If A and B are smooth atlases for M such that A C B and A is S-admissible,
then B is S-admissible.

(d) If ¢ is an S-admissible chart and U is open in dom ¢, then the restriction
0 :U — @(U) is an S-admissible chart.

(e) If v is a manifold chart for M and A an S-admissible atlas, then @ is an
S-admissible chart if and only if ¢ is smoothly related to each member of A.

(f) If A is an S-admissible atlas and C is any set of S-admissible charts, then
AUC is an S-admissible atlas.

Proof of (a). Suppose ¢ and 1 are S-admissible. Then there exist S-admissible
atlases A and B such that ¢ € A and 1 € B. Since .4 and B are both S-admissible,
A is smoothly equivalent to B. Thus every chart in A4 is smoothly related to every
chart in B. In particular, ¢ is smoothly related to .
Proofs of (b) and (c) Let A and B be as in either (b) or (c). In either case, since B
is a smooth atlas, it follows trivially that A is a smooth atlas and that each chart
in A is smoothly related to each chart in B. Thus A is smoothly equivalent to B.
Thus if one of these atlases is S-admissible, so is the other.
Proof of (d). Say ¢ belongs to the S-admissible atlas A. Let ¢’ : U — ¢(U) denote
the restriction of ¢. Certainly, ¢’ is a chart for M, and so AU {¢'} is an atlas
for M. For any 1 € A, smoothness of ¢~ and ¢ ~! and the Local Property
(Proposition 3.21(a)) yield smoothness of the respective restrictions ¢'¢y~! and
Yo't Tt follows that AU {¢'} is a smooth atlas for M. Thus, since A C AU{¢'},
it follows from part (c) that AU{¢'} is S-admissible, and hence each of its members
(in particular ¢') is an S-admissible chart.
Proof of (e). Suppose ¢ is S-admissible. Then there exists an S-admissible atlas
B for M such that ¢ € B. Since A and B are both S-admissible, B is smoothly
related to A, and so every chart of B is smoothly related to every chart of 4. In
particular, ¢ is smoothly related to each member of A.

Conversely, suppose ¢ is smoothly related to each member of A. Then AU {p}
is a smooth atlas for M which contains A, and hence is S-admissible by part (c).
It follows that ¢ is S-admissible.
Proof of (f). Since AU C consists of S-admissible charts, it follows from part (a)
that any two charts in A U C are smoothly related, and so .4 UC is a smooth atlas
for M. Since A C AUC and A is S-admissible, it follows from part (c) that AUC
is an S-admissible atlas. [

It follows from Proposition 4.9(f) that if (M, S) is a smooth n-manifold, the set
of all S-admissible charts having codomains contained in a fixed n-dimensional real
vector space V is an S-admissible atlas, the unique maximal S-admissible atlas
with charts having codomains contained in V.

We next consider products of smooth manifolds. Recall from Proposition 2.6
that if M is a topological m~-manifold with atlas A and N is a topological n-
manifold with atlas B, then M X N is a topological (m + n)-manifold with atlas
{pxv¢|pe A e B}. We denote this atlas on M x N by A X B.
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Proposition 4.10. Let (M,S) and (N,T) be smooth manifolds. Suppose A and
B are S- and T -admissible atlases, respectively. Then A x B is a smooth atlas for
M x N, and the smooth structure on M x N determined by A x B depends only on
the smooth structures S and T .

Proof. If ¢1,p2 € A and ¥1,¢9 € B, note that

(o1 % 1) (dom (1 x r)Ndom (2 x )
= p1(dom 3 Ndom g) X 11 (dom 31 N dom 3)

and that the overlap map

(02 X %2)(p1 X $1) ™" : 1 (dom o1 N dom g) X 91 (dom 1 N dom 1h5)
— a(dom ¢ N'dom 3) X ¥y (dom 11 Ndom 2q)

is equal to (pa7?) x (2107!). Since pap;* and eyt are both C™, so is their
product. It follows that the atlas A x B is smooth.

If A’ and B’ are other atlases which are S- and T —adm1851ble respectively, then
whenever ¢ € A, ¢’ € A, 9 € B, and ¢’ € B, the overlap maps ¢'p~! and ¢’}
are both C*®. Thus, since (¢’ X ¥')(p X 1p)‘1 = (¢'v71) x ('), it follows
that the overlap map (¢’ X ¥')(p x 1)~ is C*. It follows that A x B is smoothly
equivalent to A’ x B/. [

We denote the smooth structure on M x N arising from Proposition 4.10 by
SxT.

Proposition 4.11. Let (M,S) be a smooth n-manifold. Suppose A is an S-
admissible atlas and U is an open subset of M. Let

AU ={p: UNdom ¢ — (U Ndom ¢) | p € A}

Then A|U is a smooth n-manifold atlas on U, and the smooth structure on U
represented by A|U depends only on S.

Proof. Since each ¢ € A is a homeomorphism from an open set in M onto an open
set in some real n~-dimensional vector space X, and U is open in M, each restriction
of such a ¢ to U Ndom ¢ is a homeomorphism from an open set in U onto an open
set in X. Since {dom ¢ | ¢ € A} is an open cover of M, {U Ndom ¢ | ¢ € A} is
an open cover of U. Thus A|U is a topological n-manifold atlas for U. If ¢, € A,
the overlap map

Yot (U Ndom ¢ Ndom 9) — (U Ndom ¢ Ndom 1)
is the restriction of the overlap map

Yt i p(dom ¢ N dom ) — (dom o N dom ).
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Since the latter map is C°, it follows from the Local Property that the former map
is C*°. Thus A|U is a smooth atlas for U. If A’ is another S-admissible atlas, and
if o€ A, ¢ € A, the overlap map

@' o™t p(UNdom ¢ Ndom ¢') — (U Ndom N dom ¢)

is the restriction of the overlap map

¢'o™1: p(dom ¢ Ndom ') — ¢'(dom ¢ Ndom ¢').
The latter map is C™ since A and A’ are smoothly equivalent. Thus, by the
Local Property, the former map is C*°. Similarly, the restriction of ¢/ 1 to

¢'(UNdom pNdom ¢) is C*. Thus A|U is smoothly equivalent to A'|U. O

We write S|U for the smooth structure on U arising from Proposition 4.11 and
call it the restriction of S to U. We leave the proof of the following proposition as
an exercise.

Proposition 4.12. Let (M,S) and (N,T) be smooth manifolds. Suppose U and
V are open in M with U C V, and suppose W is open in N. Then:

(a) (SIV)|U =S|U.

(b) (S x TH|(U x W) = (S|U) x (T|W).

(c) Every S|U-admissible chart is S-admissible. [

In many parts of mathematics, the objects of interest are sets with special struc-
ture and one studies special functions between these objects which have special
properties with respect to these structures. For example, in group theory the ob-
jects are groups and the special functions are group homomorphisms; in general
topology, the objects are topological spaces and the special functions are contin-
uous functions. Our present objects of study are smooth manifolds, and we now
proceed to describe the special functions between these which we will study.

Definition 4.13. Let (M,S) and (N, 7T) be smooth manifolds and f: M — N a
function. We say f is smooth with respect to S and T if f is continuous and for
each S-admissible chart ¢ and 7-admissible chart v, the composition

vfo b go(dom 0N f~1(dom ?,b)) — codom 1)

is C°°. If smooth structures on M and N are understood from context, we will
simply say f is smooth if it is smooth with respect to the understood structures.

The assumption that f is continuous in Definition 4.13 is needed to ensure that
f~Y(dom %) is open in M, and hence that the domain of the above restriction of
?¥fp~! is an open subset of a finite-dimensional real vector space. (Recall, from
Chapter 3, that the domain of a C*° function must be open in the containing vector
space.)

If M and N are open subsets of finite-dimensional real vector spaces and f : M —
N is a function, we have the notion of f being C° in the sense of Definition 3.1,
and the notion of f being smooth with respect to the standard smooth structures
in the sense of Definition 4.13. We observe next that these two notions agree.
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Proposition 4.14. Let M and N be open subsets of finite-dimensional real vector
spaces and f : M — N a function. Then [ is smooth with respect to the standard
smooth structures on M and N, respectively, if and only if f is C°.

Proof. Suppose f is smooth with respect to the standard smooth structures. Then
since 15, and 1y are admissible charts for these respective structures, the compo-
sition (1n)f(1a)7 1 is C*, ie. fis C°.

Conversely, suppose f is C°°. Then f is certainly continuous. Suppose ¢ and )
are charts for M and N, respectively, which are smoothly related to 15 and 1y,
respectively. Then 1pr¢~! and 915" are both C°°, i.e. ™! and 9 are both C,
By proposition 3.12, the composition 9 fo~! is C*°. Thus f is smooth. [

Thus the concept of “smooth function” between general smooth manifolds is
a generalization of the concept of “C° function” between open subsets of finite-
dimensional real vector spaces. In practice, one of these two terms is often used
for both situations. However, since the former is defined in terms of the latter, it
is perhaps clearer to use different terminologies for the two situations (as we have
done here).

The next result shows that to check smoothness of a map, it is only necessary
to test it with “enough” pairs of admissible charts.

Proposition 4.15. Let (M,S) and (N,T) be smooth manifolds and f : M — N
a continuous function. Then the following are equivalent:

(1) f is smooth with respect to S and T .

(2) For some S-admissible atlas A for M and some T -admissible atlas B for N,
the composition ’

Wit go(dom © N f~(dom zp)) — codom

is C* for all p € A and all ¢ € B.

(3) For each x € M, there exist S-admissible and T -admissible charts g for M
and g for N, respectively, such that © € dom ., f(dom ;) C dom 1,, and the
composition

Yo foz! : codom p, — codom 1h,

is C'°.

Proof. The implication (1) = (2) is trivial.

Suppose (2) and let x € M. Since {dom ¢ | ¢ € A} covers M, we can choose
a chart ¢ € A such that € dom ¢. Similarly, we can choose a chart ¥ € B
such that f(z) € dom ¢. By continuity of f, f~!(dom %)) is open in M. Writing
U = dom ¢ N f~!(dom %), U is an open neighborhood of z in dom ¢, and f(U) C
dom %. By Proposition 4.9(d), the restriction of ¢ to U is an S-admissible chart
for M. Taking ¢, to be the above restriction and v, = 1, it follows from the fact
that ¥ fp~! is C*® and the Local Property that 1, fp;! is C*, completing the
proof that (2) = (3).

Assume (3), and suppose ¢ and % are arbitrary S- and 7-admissible charts,
respectively. To show that ¥ fo~! : <p(dom o N f~1(dom 1/})) — codom % is C*°,
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it suffices, by the Local Property, to check that each y € cp(dom ¢ N f~}(dom zp))

has an open neighborhood Uy in <p(dom @ Nf~1(dom ¢)) such that the restriction

of Y fo~1 to Uy is C*°. Given such a y, write z = ¢~ (y). By (3) there exist S- and
T -admissible charts ¢, and g, respectively, such that € dom ¢, f(dom ¢,) C
dom 1, and the composition ¢, fp;! : codom ¢, — codom 1, is C. Take

Uy = <p<d0m ¢ Ndom ¢, N f~'(dom 1/1))

Since z € dom ¢ N f~*(dom ¢) and z € dom ¢, it follows that y € Uy. By conti-
nuity of f, f~!(dom %) is open in M, and hence dom ¢ Ndom @, N f~!(dom %)
is open in M (and hence open in dom ¢). Since ¢ : dom ¢ — codom g is
a homeomorphism, it follows that N, is open in codom ¢, and hence open in

<p(dom @ N f~(dom w)) Since f(dom ¢;) C dom 1, it follows that

(Yot @) (82 (dom ¢ Ndom g, 1 £~ (dom ¢)) ) € o f (dom g 1 f7(dom 0))
C Yz (dom 1, N dom 7).

The restriction of 1 fo =1 to U, is the composition (%17 1)(%sfe; 1) (wep~!) where
the maps in this last composition have domains and codomains restricted as follows:

pa ! p(dom ¢ Ndom @, N 7 (dom ¢)) —
¢g(dom ¢ N dom @, N ™! (dom ¥)),

wmf(p;l Oy (dom @ Ndom p, N f_l(dom zp)) — g (dom ¢ N dom v,),

Yo 2 by (dom 4 N dom ;) — codom .

The first of these is a restriction of an overlap map for ¢ and ¢, which is C* since
v and @, are both S-admissible. The second of these is C* by condition (3). The
third of these is a restriction of an overlap map for the v, and 1, which is C°° since
¥, and 7 are both 7-admissible. Thus, the composition of these maps is C* by
Proposition 3.12. [

Example 4.16. Suppose (M,S) and (N,7) are smooth manifolds. Let m; :
M XN — M and wy : M X N — N denote the respective projections. We claim
7y is smooth with respect to § X 7 and S, and 7y is smooth with respect to S x T
and 7. For if (z,y) € M X N, choose any S- and T-admissible charts ¢, and t,,
respectively, such that x € dom ¢, and y € dom %,. Then ¢, X 9, isan S x 7-
admissible chart with (z,y) € dom (5 X 1y) and m1(dom (¢ X ) = dom .
The composition @, (P X pr)“l is the projection on the first factor

(codom ;) x (codom 1)) — codom ¢,

which is C*°. Thus 7 satisfies condition (3) of Proposition 4.15 and hence, by the
latter, is smooth. Similarly, 7o is smooth.

We leave the proof of the following as an exercise.
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Proposition 4.17. Let (M,S), (N,T), and (Q,U) be smooth manifolds, and f :
Q — M X N a function. Then f is smooth with respect to U and S X T if and only
if mif : Q — M is smooth with respect to U and S, and maf : Q — N is smooth
with respect tolUd and T. U

Proposition 4.18. Suppose (M, S) is a smooth manifold. Then:

(a) 1pr : M — M is smooth with respect to S and S.

(b) If (N, T) and (Q,U) are smooth manifolds, f : M — N is smooth with respect
to S and T, and g : N — Q is smooth with respect to T and U, then gf : M — Q
is smooth with respect to S and U.

Proof. 1) is certainly continuous. If ¢ and v are S-admissible charts, they are
smoothly related and hence =1 is C®, i.e. ¥l ~! is C°, proving (a).

If f and g are as in (b), certainly g f is continuous. Let z € M. By the continuity
of f and g and Proposition 4.9(d), it is possible to choose charts ¢y, 15, 0, Which are
S-, T-, U-admissible, respectively, such that x € dom ¢,, f(dom ¢,) C dom 1,
and g(dom 4);) C dom ;. From the smoothness of f and g, ¥, fo; !, 0,997 are
both C*. By Proposition 3.12, their composition 6,9 fp, ! is C°°. Thus gf satisfies

condition (3) of Proposition 4.15, and so, by the latter, is smooth. [

We have the following extension of the first two parts of the Local Property
(Proposition 3.21(a)(b)):

Proposition 4.19. Let (M,S) and (N,T) be smooth manifolds and f : M — N
a function.

(a) Suppose U and V are open in M and N, respectively, and that f(U) C V.
If f is smooth with respect to S and T, then the restriction f: U — V is smooth
with respect to S|U and T|V.

(b) Suppose O is an open cover of M such that for each U € O, the restriction
of f to U is smooth with respect to S|U and T. Then f is smooth with respect to
S and 7.

Proof. Suppose U and V satisfy the hypotheses of part (a), and that f is smooth
with respect to S and 7. Then if ¢ and 9 are S- and 7T-admissible charts, respec-
tively, the composition

Yfot: go(dom ©N £~ (dom ¢)> — codom 1)

is C*°. By Proposition 3.21(a), the composition

it (p(U Adom N f~1(V N dom w)) — (VN dom 9)

is C°°. Thus, since the restrictions to U and V, respectively, of all S- and 7-

admissible charts, respectively, constitute S|U- and 7 |V-admissible atlases, respec-

tively, it follows that f : U — V satisfies condition (2) of Proposition 4.15, and

hence, by the latter, is smooth with respect to S|U and 7|V, proving part (a).
Let O satisfy the hypotheses of part (b). Since the restriction of f to each

member of O is continuous, f is continuous. Let 2 € M and choose a U, € O such

that € U,. By the smoothness of the restriction f : U, — N with respect to S|U,
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and 7, it follows, from the equivalence of conditions (1) and (3) of Proposition 4.15,
that there exist S|U,- and T-admissible charts ¢, and 1, respectively, such that
z € dom ¢, f(dom ¢;) C dom v, and 1, fe;! : codom ¢, — codom 3, is
C*. By Proposition 4.12(c), ¢, is S-admissible. Thus f satisfies condition (3) of
Proposition 4.15 and hence, by the latter, is smooth. [

Definition 4.20. Let (M, S) and (N, T) be smooth manifolds. A diffeomorphism
from (M, S) to (N, 7) is a homeomorphism f : M — N such that f is smooth with
respect to S and 7', and f~! is smooth with respect to 7 and S. (M, S) is said to
be diffeomorphic to (N, T) if a diffeomorphism from (M, S) to (N, T) exists.

We will sometimes say “f : M — N is a diffeomorphism with respect to S and
T 7 if f is a diffeomorphism from (M, S) to (N, 7).

Let (M,S) and (IV,T) be smooth manifolds, U open in M, V open in N, and
f:U — V a function. We will sometimes abbreviate the statement “f is smooth
with respect to S|U and T|V” by “f is smooth with respect to S and T ”. Similarly,
we will sometimes abbreviate the statement “f is a diffeomorphism with respect to
S|U and T|V” by “f is a diffeomorphism with respect to S and T”. This should
cause no confusion.

The following proposition is immediate:

Proposition 4.21. Let (M,S), (N,T), and (Q,U) be smooth manifolds. Then:

(a) 1p7 : M — M is a diffeomorphism with respect to S and S.

(b) If f : M — N s a diffeomorphism with respect to S and T, then f~*: N —
M is a diffeomorphism with respect to 7 and S.

(c¢) If f : M — N is a diffeomorphism with respect to S and T, and g: N — Q
s a diffeomorphism with respect to T andU, then gf : M — Q is a diffeomorphism
with respect to S and U. [

It follows that the relation “is diffeomorphic to” is an equivalence relation on
the class of smooth manifolds. This is the fundamental equivalence relation of
differential topology. Diffeomorhism plays the role in differential topology that
homeomorphism plays in general topology.

Example 4.22. Let h : R — R be any homeomorphism which is not C°°. Let
Sgr denote the standard smooth structure on R, and 7, the smooth structure on R
determined by the smooth atlas {h} as in Example 4.8. There, we observed that Sg
and 7;, were different smooth structures on R. However, since 1l hh~! = 1g which
is C*°, h satisfies condition (2) of Proposition 4.15 with A4 = {h} and B = {1r}
and so, by Proposition 4.15, h is smooth with respect to 73 and Sgr. Similarly, since
hh~11g! = 1g which is O, h~! satisfies condition (2) of Proposition 4.15 with
A= {1r} and B = {h} and so, by Proposition 4.15, h~! is smooth with respect to
Sr and 7. It follows that h is a diffeomorphism with respect to 7, and Sg.

Similarly, given any smooth manifold (M, S) and a homeomorphism h: M — M
which is not smooth with respect to S and S one can construct a smooth structure
T on M which is strictly different from S, but such that A is a diffeomorphism from
(M, T) to (M,S). Such different smooth structures are not particularly interesting,
The real interest is in smooth structures S and 7 on a given topological manifold
M such that (M,S8) and (M, T) are not diffeomorphic. Prior to the 1950’s, no
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example of a topological manifold admitting non-diffeomorphic smooth structures
was known and, indeed, although it had not been proved that this phenomenon was
impossible, it was widely guessed that it was. The first example of this phenomenon
was due to J. Milnor (On manifolds homeomorphic to the 7-sphere, Ann. of Math.
64 (1956), 399-405)who proved that S7 admits 28 distinct diffeomorphic classes of
smooth structures. Later, work of J. Milnor and M. Kervaire ( Groups of homotopy
spheres. 1., Ann. of Math. 77 (1963), 504-537) classified the diffeomorphism
classes of smooth structures on all S™ for n > 5.

It had been known for some time before the 1980’s that R™ admits a unique
smooth structure up to diffeomorphism, with the possible exception of the case
n = 4. In the early 1980’s, the mathematical world was astounded by work of
S. Donaldson (Self-dual connections and the topology of 4-manifolds, Bull. Amer.
Math. Soc. 8 (1983), 81-83) which showed that R* admits uncountably many
diffeomorphically distinct smooth structures.

Proposition 4.23. Let (M,S) be a smooth manifold and ¢ a chart for M. Then
@ is S-admissible if and only if ¢ is a diffeomorphism with respect to S and the
standard smooth structure on codom ¢.

Proof. Write S, for the standard smooth structure on codom ¢. Then {lcodom ¢}
is an S,-admissible atlas for codom .

Suppose ¢ is S-admissible. Then {p} is an (S|dom ¢)-admissible atlas for
dom ¢. Since (lcodom (p)tpgo_l = lcodom ¢, a0d leodom o 18 C°°, it follows that
¢ satisfles condition (2) of Proposition 4.15 with A = {¢} and B = {lcodom ¢}
Thus by Proposition 4.15, ¢ is smooth with respect to S and S,,. Similarly, since
0™ (Leodom o) " = Leodom o, it follows that ¢~ is smooth with respect to S, and
S. Thus ¢ is a diffeomorphism with respect to S and S,.

Conversely, suppose ¢ is a diffeomorphism with respect to S and S,,. Let 1 be
an arbitrary S-admissible chart. By the above, ¢ is a diffeomorphism with respect
to S and Sy, where Sy denotes the standard smooth structure on codom 7. Thus,
% is smooth with respect to S and Sy, and 9~ is smooth with respect to S and
S. By Proposition 4.19(a), the restriction

0™t p(dom ¢ Ndom ) — dom ¢ N dom ¥
is smooth with respect to S, and S, and the restriction
¥ : dom ¢ Ndom ¥ — (dom ¢ N dom 1)

is smooth with respect to S and Sy. By Proposition 4.18(b), it follows that the
composition of these is smooth with respect to the standard smooth structures.
Thus, by Proposition 4.14, o=t : p(dom ¢ N dom 3) — (dom ¢ N dom %) is
C®. Similarly, @y~ : ¥(dom ¢ N dom ) — (dom ¢ N dom %) is C*°. Thus ¢
is smoothly related to every S-admissible chart. Thus, by Proposition 4.9(e), ¢ is
S-admissible. O

Proposition 4.24. Let M be a topological n-manifold and U an open cover of M.
Suppose S and T are smooth structures on M such that for all U € U, S|U = T|U.
Then S =T.
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Proof. Let ¢ and v be S-admissible and 7-admissible charts, respectively. We
must show that ¢ and 1 are smoothly related.

For U € U, let py and 9y denote the restrictions of ¢ and %, respectively,
to dom ¢ N U and dom 9 N U, respectively. Thus ¢y is S|U-admissible and ¢y
is T|U-admissible. Since S|U = T|U, it follows that ¢y and ¥y are smoothly
related. Thus the restriction of ¢~ to ¢(dom ¢ Ndom ¥ N U) is C*. Since
{p(dom pNdom ¥ NU) | U € U} is an open cover of p(dom ¢ Ndom 1), it follows
from the Local Property that 1o~! is C®. Similarly, gy~ is C*, proving that ¢
and v are smoothly related. [l

Definition 4.25. Let M be a topological n-manifold and U a collection of open
subsets of M. Suppose, for each U € U, we are given a smooth structure Sy on U.
We say the collection { Sy | U € U} is compatible if whenever U,V € U, we have
Sy|lUnNV=8y|UNV.

Theorem 4.26. Let M be a topological n-manifold, and U an open cover of M.
Suppose, for each U € U, we are given a smooth structure Sy on U. Suppose the
collection {Sy | U € U} is compatible. Then there exists a unique smooth structure
S on M such that for each U €U, S|U = Sy.

Proof. The uniqueness is immediate from Theorem 4.24.

For each U € U, choose an Sy-admissible atlas Ay for U, and let A = U Ap.

UeUd
Since each U € U{ is open in M, the members of each Ay are charts for M. Since

U is a cover of M, the domains of the charts in A cover M, and so A is an atlas
for M. We proceed to show that A is a smooth atlas for M, and that the smooth
structure S which it represents satisfies S|U = Sy for all U € U.

Suppose U,V € U and ¢ € Ay, ¥ € Ay. Write ¢’ and ¢’ for the restrictions
of ¢ and 1, respectively, to dom ¢ Ndom 1. Since dom ¢ Ndom ¥y CUNV, ¢ is
Sy|U N V-admissible and 9’ is Sy|U N V-admissible. Since, by the compatibility
hypothesis, Sy|U NV = Sy|U NV, it follows that ¢’ and ¢’ are both Sy|U N V-
admissible, and hence are smoothly related. It follows that ¢ and ¢ are smoothly
related, and so A is a smooth atlas for M.

Let S denote the smooth structure on M which is represented by A. For each
U € U, S|U is represented by A|U where A|U is as in Proposition 4.11, while
Sy is represented by Ay. From the construction of A and A|U, Ay C A|U. By
Proposition 4.9(c), A|U is Sy-admissible. Thus A|U is both S|U-admissible and
Sy-admissible. It follows that S|U = Sy, completing the proof. O

The proof of the following is routine, and left as an exercise.

Proposition 4.27. Let (M,S) be a smooth manifold, X a topological space, and
f X — M a homeomorphism. For each chart ¢ for M, let f*¢ denote the
composition

f‘l(dom (p) —f> dom ¢ LA codom ¢ .

(a) Let A be an S-admissible atlas for M. Write f*A = {f*¢ | ¢ € A}. Then
f*A is a smooth atlas for X whose smooth equivalence class depends only on S.
Let f*S denote the smooth equivalence class of f*A.

(b) f is a diffeomorphism with respect to f*S and S. U
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We next consider fiber bundles with smoothness conditions. Recall the basic
definitions without smoothness given in Definition 2.8. Also, to make the terminol-
ogy less cumbersome, if (M, S) is a smooth manifold and U,V are open in M and
f: U — V is a function, we will abbreviate “f is smooth with respect to S and S”
to “f is smooth with respect to §”, and we will abbreviate “f is a diffeomorphism
with respect to S and S” to “f is a diffeomorphism with respect to S”.

Definition 4.28. Suppose (F,Sr) and (B, Sp) are smooth m- and n-manifolds,
respectively, and let ¢ = (F, E, B, p) be a fiber bundle. Let ¢ : p~*(Uy,) — U, X F
and 9 : p71(Uy) — Uy X F be charts for &. We say ¢ and ¢ are Sp—Sp-related if
the compositions

Uy NU) x F —2— p (U, N Uy) > (U,NUy) x F and
-1
U, NUy) x F Y p=L(U, NUy) 2~ (U, N Uy) x F

are smooth with respect to Sg x Sp. (Equivalently, if ¢y~ and 1o~ are diffeo-
morphisms with respect to Sp x Sr.)

An atlas A for £ is said to be Sp—Sr—smooth if whenever ¢, € A, then ¢ and
¢ are Sg—Sp-related.

If A and B are Sgp—Sp—smooth atlases for £, we say A and B are Sp—-Sp—
equivalent if for all ¢ € A and ¥ € B, v and 9 are Sp-Sp-related.

Proposition 4.29. Let ¢ = (F, E, B,p) be a fiber bundle. Suppose Sp and Sp are
smooth structures on B and F, respectively. Then the relation Sp-Sr—equivalence
on the set of all Sp—-Sg—smooth atlases for £ is an equivalence relation.

Proof. For the purpose of this proof, write = for “is Sp—Sp—equivalent to”. It is
immediate that = is reflexive and symmetric.

Suppose A, B, and C are Sp—Sp—smooth atlases for £ with 4 = B and B = C.
Let ¢ € A and 9 € C. The overlap maps 1o~ and pp~! on (U, NUy) X F are
homeomorphisms (any chart for £ is a homeomorphism). Thus, to prove that these
overlap maps are diffeomorphisms with respect to Sg X Sg, it remains only to prove
that they are smooth with respect to Sg X Sp.

{({UgNU,NUy) x F'| 8 € B} is an open cover of (U, NUy) x F. By the Local
Property, it suffices to prove that the restrictions of the above overlap maps to each
(Us NU, NUy) x F, 8 € B, are smooth with respect to Sp X Sp. Let 6 € B. Then
the restriction of i~ to (Us NU, NUy) X F is the composition

-1 -1
Us N U, NUy) x F 22 (Up N U, NUy) x F 22 Uy NU, N Uy) x F.

The above 61! is smooth with respect to Sg X S since B = C, while the above
©f~! is smooth with respect to Sg X Sr since A = B. Thus their composition,
o1 restricted to (Up NU, NUy) X F, is smooth with respect to Sg X S, and
similarly for yp~1. O
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Definition 4.30. Let £ = (F, E, B,p) be a fiber bundle and suppose Sp and Sg
are smooth structures on F' and B, respectively. An Sp~Sp—smooth structure for
£ is an Sp—Sr—equivalence class S of Sgp—~Sp—smooth atlases for &.
An Sp-Sp—smooth atlas for £ which represents S will be said to be S-admissible.
A chart for £ which belongs to an S-admissible Sp—Sr—smooth atlas for £ will
be said to be S-admissible.

Definition 4.31. A smooth fiber bundle is a quintuple ((F, Sr), E,(B,SgB),p, S)
satisfying:

(i) (F, E, B,p) is a fiber bundle.

(i) (F,Sr) and (B, Sp) are smooth manifolds.

(iii) S is an Sp—Sp—smooth structure for (F, E, B, p).

If £ = ((F, Sr), B, (B,Sg),p,S) is a smooth fiber bundle, write § = (F, E, B, p)
for its underlying fiber bundle.

The following proposition is analogous to Proposition 4.9. The proof is left as
an exercise.

Proposition 4.32. Let £ = ((F, Sr), E, (B,SB),p,S) be a smooth fiber bundle.
Then:

(a) Any two S-admissible charts are Sg-Sp-related. _

(b) If A and B are atlases for & such that A C B and B is S-admissible, then A
is S-admissible. -

(c) If A and B are Sp-Sp—smooth atlases for £ such that A C B and A is
S-admissible, then B is S-admissible. -

(d) If ¢ is an S-admissible chart for £ and U is open in U,, then the restriction
0 :p Y (U) = U x F is an S-admissible chart.

(e) If ¢ is a chart for £ and A an S-admissible atlas, then ¢ is S-admissible if
and only if @ is Sp-Sr—related to each member of A.

(f) If A is an S-admissible atlas and C any set of S-admissible charts, then AUC
is an S-admissible atlas.

Note that the data for a smooth fiber bundle does not include a smooth structure
for the total space. However, we will soon see that one is implied which blends in
well with the structure.

Suppose ¢ = (F,E,B,p) is a fiber bundle and that Sp and Sr are smooth
structures on F and B, respectively. Suppose ¢ : p~1(U,) — U, X F is a chart
for £&. Using the construction of Proposition 4.27, we obtain a smooth structure

©*((SB|Uyp) x Sr) on p~1(U,).

Lemma 4.33. Let £ = (F,E,B,p) be a fiber bundle. Suppose Sg and Sp are
smooth structures on B and F, respectively. Suppose ¢ and ¢ are Sp-Sp-related
charts for €. Then the smooth structures ¢*((Sp|U,) x Sr) |p~ (U, N Uy) and
¥*((SB|Uy) x Sr) |p~ (U, NUy) on the manifold p~2(U, N Uy) are the same.

Proof. Let 6 be a @*((Sp |Uy) xSr) | p~*(UpNUy)-admissible chart. Since ¢ and 4
play symmetric roles, it suffices to show that 8 is ¥* ((Sg | Uyp) X Sr) | p~ (UpNUy)-
admissible.
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By the construction given in Proposition 4.27, 6 is expressible as a¢p for some
(S5 |U,) x Sp)|p~! (U, N Uy)-admissible chart a. Thus § = a(py ™)y with do-
mains and codomains suitably restricted. By Proposition 4.9(d) and the construc-
tion given in Proposition 4.27, we will be done if we show a(py™!) is Sg x Sp-
admissible. '

By Proposition 4.23, « is a diffeomorphism with respect to Sp X Sr and the
standard smooth structure on the codomain. Since ¢ and ¥ are Sp—Sr-related,
o~ is a diffeomorphism with respect to Sg x Sp. Thus the composition arp™!
is a diffeomorphism with respect to Sp X Sg and the standard smooth structure
on the codomain. Thus by Proposition 4.23 and Proposition 4.9(d), apy™! is
Sp X Sp-admissible. 0O

Theorem 4.34. Let ¢ = ((F,Sp), E, (B, SB),p,S) be a smooth fiber bundle. Then
there exists a unique smooth structure Sg for E such that for each S-admissible

chart @ for €, Sg|p~ (Uy) = ¢*((Sp|Uy) x SF).

Proof. For convenience, if 7 is a smooth structure for E and ¢ an S-admissible
chart for ¢, let P(7, ) denote the condition “T |p~1(U,) = ¢*((Ss|Uy) x Sr)”.

Let A be an S-admissible atlas for £. Then {p~'(U,) | ¢ € A} is an open cover
of E. By Lemma 4.33, {¢*((Ss|U,) x Sr) | ¢ € A} is compatible. Thus, by
Theorem 4.26, there exists a unique smooth structure 74 on F such that condi-
tion P(74,¢) holds for all ¢ € A. Thus if there existed a smooth structure Sg
on E satisfying P(Sg, ¢) for all S-admissible charts ¢, it follows from the above
uniqueness of 74 that Sg = T4. Uniqueness of Sg follows.

For existence of Sg, choose any S-admissible atlas A for £ and take Sg = 74. It
remains to show that for any S-admissible chart 9 for £, condition P(74,) holds.
Given such a 9, let B = AU {¢}. By Proposition 4.32(f), B is an S-admissible
atlas for £. The resulting smooth structure 7 satisfies condition P(73, ) for all
@ € B, i.e. for ¢ and all ¢ € A. By the uniqueness for 74 above, it follows that
T4 = Tg, and so P(T4,) holds. O

Example 4.35. In Example 2.11 a fiber bundle ¢ = (I/0I,K,I/8I,p) was con-
structed, where K is the Klein bottle. An atlas consisting of exactly 2 charts was
given. We now proceed to impose a smooth structure on &.

We have a homeomorphism h : I/0I — S! given by h([t]) = (cos 2nt,sin 2t).
Let S denote the standard smooth structure on S' (Example 4.6). Using Propo-
sition 4.27, we obtain a smooth structure h*S on I/8I. Thus the base space and
fiber of ¢ are now equipped with smooth structures.

The atlas in Example 2.11 depended on a choice of 2 distinct real numbers ¢; <
c2 € (0,1). Let U; = I/0I — {[c;]}, i = 1,2. The charts ¢; : p~Y(U;) — U; x I/01
and their inverses v : U; X I/0I — p~1(U;) are given by

[t]) if 0 <s<g,
[1—-t]) ife; <s<1,

ae)={

[s,t] if0<s< Ci,
[$,1—1t] ife;<s< 1,
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It can be checked that the overlap maps

o105 0207+ (I/0I) = {e1, ca} — (I/01) — {c1, e}

are given by

([s], [t]) if0<s<ae,
erp5 (s, [t]) = w207 ([, [t]) = § (s}, [1—1]) ifer <s<ea
([s], [t]) if cp <s <1

Writing ¢ : I — I/8I for the quotient map, and setting V' = q([O,cl) U (c2,1]),
W = g((c1,¢2)), V and W are disjoint open subsets of I/0I, and dom 15" =
dom a7t = V x (I/OI)U W x (I/8I). The restriction of each overlap map
to V' x (I/8I) is the identity map, which is smooth regardless of which smooth
structure is put on I/8I. The proof of smoothness of the overlap maps will be
complete if we show that the map f : I/0I — I/dI given by f([t]) = [1 —t] is
smooth with respect to h*S. Define g : S* — S* by g(z,y) = (z, —y). Then the
diagram

1/8I 2~ g1

i l

commutes. We leave it as an exercise to check that g is smooth with respect to
S (e.g. using the stereographic projection charts). By Proposition 4.27, h is a
diffeomorphism with respect to h*S and S. Thus, since f = h~'gh, it follows that
f is smooth with respect to h*S. Thus {1, ps2} is an h*S-h*S-smooth atlas for
€, which determines a smooth structure for £. Thus, by Theorem 4.34, the Klein
bottle K receives a smooth structure.

- The final topic of this section deals with smooth structures on connected sums
and related matters. Recall Lemmas 2.16 and 2.18.

Theorem 4.36. Let (M,S) and (N,T) be smooth n-manifolds, n > 1. Suppose A
is open in M, B is open in N, and h: A — B is a diffeomorphism with respect to
S and T. Suppose M and N are unpinched by h. Let ¢ : MIIN — M Uy N denote
the quotient map. Then:

(a) The maps ipr : (M x {1}) = M and iy : g(N x {2}) —» N given by
iv(g(z,1)) =z and iy (¢(9,2)) =y are homeomorphisms.

(b) There ezists a unique smooth structure U on M Up N which satisfies
U|g(M x {1}) = 3,8 and U | g(N x {2}) = iy7T.

Proof. By Lemma, 2.16(b), the map ¢(M x {1}) — M x {1} sending g¢(z,1) to
(z,1) is a homeomorphism. ¢/ is the composition of the above with the projection
on the first factor M x {1} — M, which is a homeomorphism. Thus iy is a
homeomorphism, and similarly for iy.
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It follows from Lemmas 2.16 and 2.18 that M Uy N is a topological n-manifold,
and that {g(M x {1}),q(N x {2})} is an open cover of M U, N. By Theorem 4.26,
we will be done if we show that {4},S,i37 } is compatible.

We have (M x {1)Ng(N x {2}) = q(Ax{1}) = a(Bx{(2}). Any i3, T | ¢(Bx{2})-
admissible chart is a composition

iy (dom ) 2 dom ¢ ——> codom ¢

where ¢ is 7-admissible with dom ¢ C ¢(B x {2}). Since ¢(a,1) = g(h(a),2) for
all a € A, the diagram

g(Ax{1}) 2> 4

¢(Bx{2}) .— B

commutes. Thus @iy = @hiy. Since h is a diffeomorphism with respect to S
and 7, and ¢ is a diffeomorphism with respect to 7 and the standard smooth
structure on codom ¢, it follows that ¢h is a diffeomorphism with respect to S
and the standard smooth structure on codom ¢. Thus @hips is i3,S | g(A x {1})-
admissible. Similarly, using A~! in place of h, every i%,S|g(A x {1})-admissible
chart is i3, 7 | ¢(B x {2})-admissible. Thus i},S|q(Ax{1}) =57 |¢(Bx{2}). O

Example 4.37. Recall the connected sum construction of Example 2.20. Suppose
(M,S) and (N,7) are non-empty smooth manifolds, n > 1. We can choose S-
admissible and 7T-admissible charts ¢ : dom ¢ — E™ and ¢ : dom ¢ — E™,
respectively. Say ¢o(P) = 0 = ¥(Q). Let A = cp‘l(EZ}),l/z)) C M-{P}, B=
p~t (E(%,l/z)) C N —{Q}. Recall that M # N is (M — {P}) U (N — {Q}) where
h is the composition

1

A~ By 1oy 5 By o) —> B

Here ¢; and 7, are the restrictions of ¢ and 1, respectively, and ;5 is given by

x
ayya(z) = (3 — ||$||)m-
a diffeomorphism with respect to the standard smooth structure on R™. ¢, is a
diffeomorphismwith respect to S and the standard smooth structure on R™. 3!
is a diffeomorphism with respect to the standard smooth structure on R™ and 7.
Thus h is a diffeomorphism with respect to S and 7.

By Theorem 4.36, M # N has a smooth structure U such that U | (M —{P}) =
S|(M —{P}) and U | (N - {Q}) =T | (N - {@}).

ay/p is C°° , and equal to its own inverse, and hence is
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Exercises for §4

1. Prove that for n > 1, the atlas for S™ given in Example 2.3 is smooth and that
it represents the standard smooth structure (Example 4.6) on S™.

2. Prove Proposition 4.12.
3. Prove Proposition 4.17.

4. Under the notation and hypotheses of Theorem 4.34, prove that p: £ — B is
smooth with respect to Sg and Sp.

5. Show that the orthogonal group O(n) (see Exercise 7 of §2) admits a smooth
structure.

6. Let (M,S), (N,T), and (Q,U) be smooth manifolds. Suppose f: M — N is a
diffeomorphism with respect to S and 7, and that g : N — @ is a function. Prove
that ¢ is smooth with respect to 7 and U/ if and only if gf : M — @ is smooth
with respect to S and Y.

7. Let (M1,81), (M2, 83), (N1,7T7), and (Ng,73) be smooth manifolds. Suppose,
fori = 1,2, f; : M; — N; is smooth with respect to S; and 7;. Prove that
fi X fo 1 My X My — Ny X Ny is smooth with respect to §; X S; and 7; X Ts.

8. Let (M,S) and (N,7) be smooth manifolds. Let f : M — N be a constant
map. Prove that f is smooth with respect to S and 7.

9. Let V and W be finite-dimensional real vector spaces. Let Sy and Sy denote
the standard smooth structures on V' and W, respectively. Prove that Sy x Sy is
the standard smooth structure on V- x W.

10. Prove Proposition 4.27.
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5. TANGENT SPACES AND TANGENT MAPS

Given a smooth n-manifold (M, S) and a point © € M, we will construct below a
real n-dimensional vector space T, (M, S), the tangent space to M at x with respect
to S, which can be thought of as the best flat approximation to M near z. If M is an
open subset of a real n-dimensional vector space V', and S is the standard smooth
structure on M, T,,(M, S) will be canonically identified with V. If (N, T) is another
smooth manifold and f : M — N a smooth map with respect to S and 7, we will
construct an R-linear transformation Ty f : T (M, S) — Ty(5) (N, T) which reduces
to the derivative Df(z) in case M and N are open subsets of finite-dimensional
real vector spaces. T, f can be thought of as the best linear approximation to f
near .

Definition 5.1. Let (M,S) be a smooth manifold and z € M. Suppose f and g
are real-valued functions with dom f and dom g open neighborhoods of z in M,
such that f and g are smooth with respect to & and the standard smooth structure
on R. We say f and g have the same germ at x, denoted f ~, g, if there exists a
neighborhood U of z in M such that f(y) = g(y) for all y € U.

It is immediate that ~, is an equivalence relation on the set of all real-valued
functions defined on open neighborhoods of x in M, which are smooth with respect
to S and the standard smooth structure on R.

Definition 5.2. For (M,S8), =, and f as above, the ~y-equivalence class of f is
called the germ of f at x, and denoted [f],. We denote by G,(M, S) the set of all
germs at x of smooth real-valued functions defined in neighborhoods of z.

Note that if f and g are real-valued functions defined in neighborhoods of z, and

r € R, we can define f + g :dom fNdomg — R, f-¢g:dom fNdom g — R,
and rf : dom f — R by (f + g)(z) = f(z) + g(z) and (f - g)(z) = f(z)g(z) for all
z € dom fNdom g, and (rf)(z) =rf(z) for all z € dom f.
Lemma 5.3. Suppose (M,S) is a smooth manifold and x € M. Let f and g be
real-valued functions defined in neighborhoods of x in M, which are smooth with
respect to S and the standard smooth structure on R. Letr € R. Then f+g, f-g,
and rf are all smooth with respect to S and the standard smooth structure on R.

Proof. Write Sgr for the standard smooth structure on R. Let A : M — M x M,
a:RxR - R,and p: RXxR — R be given by A(y) = (y,y) for all y € M,
and a(r,s) = r+s, pu(r,s) = rs for all (r,s) € R x R. Note that f + g is the
composition

dom fﬂdomg% (dom f Ndom g) x (dom fﬁdomg)%RxR~a—>R,
f + g is the composition

domfﬂdomg—%(domfﬂdom g)x(domfﬂdomg)%RxR——LR,

and rf is the composition

domf—A—>(dom f) x (dom f)%RxR—“>R,
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where c is the constant map with value r. For i = 1, 2, m;A = 17 which is smooth
with respect to S and §. Thus, by Proposition 4.17, A is smooth with respect to S
and § X S. By Exercise 7 of §4, f X g is smooth with respect to S X S and Sy X Sr.

It is an easy exercise to check that any constant map is smooth with respect to
any given smooth structures, and so c is smooth with respect to S and Sr. Thus,
by Exercise 7 of §4, ¢ x f is smooth with respect to S X S and Sr x Sr. By
Exercise 9 of §4, Sgp X Sr is the standard smooth structure on R x R. « and u
are clearly smooth with respect to the standard smooth structures. The result now
follows easily from Propositions 4.19(a) and 4.18(b). O

If (M,S), z, f, g, and r are as in Lemma 5.3, it is immediate that [f + g], and
[f - 9]z depend only on [f]; and [g]s, and that [rf], depends only on 7 and [f],.
Thus we can define operations of addition, multiplication, and scalar multiplication
by reals on G;(M,S) by the rules [f]z + 9]l = [f + 9]z, [f)elg)le = [f - 9]z, and
7[f]z = [rf]z- The proof of the following is easy:

Proposition 5.4. Let (M,S) be a smooth manifold and x € M. Then Gz(M,S)
is an algebra over R under the above operations. U

Note that if f ~; g, then f(z) = g(z).

Definition 5.5. Let (M, S) be a smooth manifold and z € M. A tangent vector
v to (M,S) at z is a derivation v : Gz(M,S) — R, i.e.

(i) v is an R-linear transformation;

(ii) for all {fa, [gla € Go(M, S), v ([flalgle) = v ([f]z) 9(2) + F(z)v ([9]z)-

The tangent space to (M,S) at z, denoted T, (M, S), is the set of all tangent
vectors to (M, S) at z.

Example 5.6. Let V be a finite-dimensional vector space and M be an open subset
of V. Let S denote the standard smooth structure on M. Let x € M. Forv € V,
define 0, (v) : G4 (M,S) — R by 0,(v)([f]z) = Df(z)(v). The latter is well-defined,
for if f ~; g, then f and g agree on a neighborhood of z and so Df(z) = Dg(z).
6. (v) is easily checked to be R-linear. By the Product Rule (Theorem 3.22), for
any [fle, [9le € Gz(M, S), we have

05 (v)([f1zlge)

[l
>

L ()((f - 9le) = D(f - 9) (@)(0)
9(z)D () + f(z)Dg(z) ) (v)
()62 (0)([)a) + £ ()82 (0)([g]e)

and so 0;(v) € T,,(M,S). We thus obtain a function 8, : V — T, (M, S).

In case V = R", 0,(v)([f]z) is simply the directional derivative of f at = in the
direction of v. (Here, we do not restrict v to being a unit vector as is sometimes
done in calculus.) The idea here is that each vector v € V gives rise to a directional
derivative 6, (v) defined on germs at z. We will see shortly that, as a consequence of
Taylor’s Theorem, 8, is bijective, i.e. there is a one-to-one correspondence between
vectors in V' and derivations of the algebra of germs at a point in the case of open
subsets of V. The derivation concept makes sense in the abstract case, and we
adopt it as our definition of tangent vector in general.
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For a general smooth manifold (M,S) and = € M, it is easily checked that
if v, w € T,(M,S) and r € R, then v+ w and rv, defined by (v + w) ([flz) =
v ([fle) + w ([f]z) and (rv) ([f]z) = rv ([f]z), are in T,,(M, S). We easily obtain:

Proposition 5.7. If (M,S) is a smooth manifold and x € M, then T,,(M,S) is a
real vector space under the above operations. [

It is not yet obvious that Ty, (M, S) is finite-dimensional over R. We will see below
that if (M, S) is a smooth n-manifold, then T, (M, S) is actually n-dimensional over
R.

Let (M,S) and (N,7) be smooth manifolds and f : M — N a smooth map
with respect to S and 7. Let x € M. Given [g]f(5) € Gf)(N,T) we can form
the composition gf : f~!(dom g) — R, which is smooth with respect to S and the
standard smooth structure on R. Note that if g ~ (4 h, then gf ~; hf.

Proposition 5.8. Suppose (M,S) and (N, T) are smooth manifolds and f: M —
N is smooth with respect to S andT. Letx € M andv € T,(M,S). Define T, f(v) :

Gy (N, T) = R by Tuf(v) ([9)5w)) = v ([9f]e). Then Tof(v) € Ty (N, T), and
Tof : To(M,S) — Tty (N, T) is an R-linear transformation.

Proof. If [g1)f(z), [92]7(z) € Gf(w)(IV, T), then

T f (v) ([91) o) [92) £ () = T f (@) ([91 - 92l p(2)) = v ([(91 - 92) fle)
= v ([(91f) - (92)]e) = v ([(91.))a[(92/)]2)
= v ([(91)]z) 92(f(2)) + g1 (f (2))v ([(92/)]<)
= Tof(v) ((91) ) 92(f (2)) + 01 (f(2)) T f (v) ([92) ()

and so T f(v) satisfies Condition (ii) of Definition 5.5. The check of Condition (i)
is similar and shorter. The check that T, f is R-linear is left as an exercise. U

T.f is called the tangent map of f at x. It is sometimes called the differential
of f at x.

Proposition 5.9. Let (M,S), (N,T), and (Q,U) be smooth manifolds. Suppose
f:M — N and g: N — @Q are smooth with respect to S and T, and T and U,
respectively. Let x € M. Then

(a) TmlM = 1Tw(M,S)'
(b) Tw(gf) = Tf(w)(g)Tw(f)'

Proof. For any v € Ty(M,S8) and [hl, € Gz(M,S), Tplay(v) ([hle) = v ([hly]z) =
v ([h],) and so T;;1p(v) = v, proving (a).
Let [hl(g5)(@) € Glon() (@ U). Then

To(9f) () ((Blgp)(2)) = v ([hgf]z) = To(f) () ([hg]s(w))
= Ty)(9) T (f) (v) ((Bg)()) »

proving (b). O
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Corollary 5.10. Let (M,S) and (N,T) be smooth manifolds and suppose f :
M — N is a diffeomorphism with respect to S and T. Then for each x € M,
Tof : To(M,S) — Ty (N, T) is an R-isomorphism.

Proof. By hypothesis, f~' : N — M exists and is smooth with respect to 7
and S. Since f~!f = 1j; and ff~! = 1y, it follows from Proposition 5.9 that
Tty (fT(f) = 1n,u,s) and To(f)Ti)(F71) = 1oy, v,y The result now
follows. [J

Proposition 5.11. (Local Property for Tangent Spaces) (a) Let (M,S) be a
smooth manifold. Suppose U is open in M and x € U. Let i :U — M denote the
inclusion map. Then Typi: T,(U,S|U) — T,(M,S) is an R-isomorphism.

(b) Suppose (N, T) is another smooth manifold and f, g: M — N are smooth

with respect to S and T. Suppose x € M is such that f and g agree on some open
neighborhood of x in M. Then T, f = T,g.

Proof. Since i = 137|}¥ (see the notational comment following Definition 2.8), it
follows from Proposition 4.19(a) that ¢ is smooth with respect to S and S. Note
that the function Ggi : G4z(M,S) — G4 (U,S|U) given by Gi([flz) = [fi]: is a
bijection.

For any v in the kernel of Ty@ we have, for all [f], € Gz(M,S), 0 = Ti(v) ([f]z) =
v ([fi]e) = v(G4i([fls)). Thus, since Gyi is surjective, it follows that v = 0. Thus
T,t is injective.

Let v € T,(M,S). Since G i is bijective, we can form the composition w =
v(Ggi)™! 1 Go(U,S|U) — R. One checks easily that w is a derivation and that
Tyi(w) = v, establishing the surjectivity of Tpi. Thus part (a) is proved. :

Let U be an open neighborhood of  in M on which f and g agree, and let
1 : U — M denote the inclusion map. Then fi =gi:U — N. Thus

T fTyi = T, (f7)
(by Proposition 5.9(b))

= T(g1)

= TpgT st
(by Proposition 5.9(b)).

Thus, since T} is an isomorphism by part (a), T, f = Tpg. O
Recall the 6, of Example 5.6.

Proposition 5.12. Let V and W be real finite-dimensional vector spaces. Let M
and N be open subsets of V. and W, respectively, and let S and T denote their

respective standard smooth structures. Suppose f: M — N is smooth with respect
to S and T. Then for each x € M, the diagram

Df(z
v f(=) W

8= l ll’#(m)

commutes.
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Proof. Let v € V. For each [g];() € Gy (N, T),

(Ta:f)erc(’v)([g]f(m)) = Ow(v)([gf]w) = D(gf)(ac)('v)

= Dg(f(z))Df(z)(v)
(by the Chain Rule, Theorem 3.20)

=05@)Df (@) () (9] 5())- T

Theorem 5.13. Let V' be a real finite-dimensional vector space and M an open
subset of V. Suppose x € M, and let S denote the standard smooth structure on
M. Then 8, :V — T,(M,S) is an R-isomorphism.

Proof. We first consider the case V' = R"™. The R-linearity of 8, is easily checked.
Let ey,...,e, be the standard basis for R®". For 1 < i < n and any [f], €
Gz (M,S), 05(e)([flz) = Df(z)(e;) = Dif(z). Thusif m; : M —- R, 1 <
4 < n, denotes projection on the j* coordinate, 85(e;)([7j]s) = Dimj(z) = 8.
Thus if v = (a1,...,a,) lies in the kernel of 6, we have 0 = 8,(v)([m;]z) =
S aifs(e)([mile) = Yoiq @ifi; = aj for 1 < j < n and so v = 0, establishing
the injectivity of 6,.

To prove surjectivity of €, it remains only to check that the 6,(e;), 1 < i < m,
span T,(M,S) over R. Let v € T,(M,S) be arbitrary. Given [f], € Gz(M,S),
choose any convex open neighborhood U of z in dom f. By the First Taylor The-
orem (Theorem 3.5), there exist smooth real-valued functions g1, ..., g, on U such
that g;(z) = D;f(z) for 1 <i<n,and for all y € U,

= £(&)+ Y sl

ie.
“c'*_zgz _C’L

where ¢ is the constant function with value f(z) and ¢; is the constant function
with value z; for 1 < i <n. Thus

n

v((fle) = v((do) + Y v(lgilo) (mi(2) ~ @2) +Zgz (@)v([mi — cila)-

i=1

Since v([c] ) =
gi(z) = Dif ()

0 (see Exercise 1 in the Exercises for §5), m;(z) — z; = 0, and
= 0z(ei)([f]+), we obtain

v([flz) = (Z v([m: = Cz']m)t%:(ei)> ([f]e)
i=1

and so v = Y, v([m; — ¢i]s)0z(e;), completing the proof in case V = R™.
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For the general case, choose any R-isomorphism « : V — R"™. Let 7 denote the
standard smooth structure on a(M). By Proposition 5.12, the diagram

Da(x
v (z) R"

Tm(M, S) —ﬂ? a(z) (C}:(M), T)

commutes. Since « is a diffeomorphism, T« is an R-isomorphism by Corollary 5.10.
Since « is an R-linear transformation, Da(z) = «, which is an R-isomorphism.
fu(z) is an R-isomorphism from the R™ case. It now follows that 6, is an R-
isomorphism. [l

The upshot of Theorem 5.13 and Proposition 5.12 is that in the case of open
subsets of real finite-dimensional vector spaces with the standard smooth struc-
tures, tangent spaces are canonically identified with the containing vector spaces
and under this identification, the tangent map of a smooth map at a point is the
derivative of that smooth map at that point.

Corollary 5.14. Let (M,S) be a smooth n-manifold. Then for each x € M,
T:(M,S) is n-dimensional over R.

Proof. Choose any S-admissible chart ¢ with 2 € dom ¢. Say codom ¢ C V
where V is a real n-dimensional vector space. By Proposition 5.11, T,(M, S) is R-
isomorphic to T (dom ¢, S|dom ). Let 7 denote the standard smooth structure
on codom . By Proposition 4.23, ¢ : dom ¢ — codom ¢ is a diffeomorphism
with respect to § and 7. Thus, by Corollary 5.10, Ty : T,(dom ¢, Sldom ¢) —
Tp(z)(codom ¢, T) is an R-isomorphism. By Theorem 5.13, T (s)(codom ¢, T) is
R-isomorphic to V, and hence n-dimensional over R. [

One consequence of Corollary 5.14 is that non-empty smooth manifolds of differ-
ent dimensions cannot be diffeomorphic. The corresponding statement for topolog-
ical manifolds and homeomorphisms is true, but requires some algebraic topology
to prove.

Theorem 5.15. (Inverse Function Theorem) Let (M, S) and (N, T) be smooth
n-manifolds and f : M — N a smooth map with respect to S and T. Suppose for
some x € M the tangent map T, f : To(M,S) — Ty (N, T) is an R-isomorphism.
Then there exist open neighborhoods U of z in M and V of f(z) in N such that
f(UO)=V and f:U — V is a diffeomorphism with respect to S and T.

Proof. We can choose S- and 7-admissible charts ¢ and 1, respectively, with
codomains in R™ such that x € dom ¢ and f(dom ¢) C dom v¢. We have the
commutative diagram

M < dom ¢ —Z> codom ¢
fl | |
N 5 dom — codom %
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where 4, j are the inclusion maps, f’ the restriction of f, and g = ¥ f'¢~!. Thus
by Proposition 5.9(b) the diagram

T, (M) <= T (dom ¢) EELLEN (z)(codom ¢)

Ta:fl/ szf/ lTW(m)g

Tf(fv) (N) <— f(@) (dom Y) —s ¢(f(w))(codom )

Tf( T()

commutes where, for notational simplicity, we have suppressed the smooth struc-
tures which are understood from context. By the Local Property for Tangent Spaces
(Proposition 5.11), T4 and Ty(;)j are R-isomorphisms. Since ¢ and 1 are diffeo-
morphisms, it follows from Corollary 5.10 that T and T'y(;)% are R-isomorphisms.
Thus, since T f is an R-isomorphism by hypothesis, T;,(;)g is an R-isomorphism.
It now follows, by Proposition 5.12 and Theorem 5.13, that Dg(gp(a:)) is an R-
isomorphism. Thus, by the Inverse Function Theorem (Theorem 3.4), there exist
open neighborhoods A of ¢(z) in codom ¢ and B of 9 (f(x)) in codom 1 such that
g maps A diffeomorphically onto B. Take U = ¢~ 1(A), V =¢~1(B). O

Exercises for §5

1. Let (M, S) be a smooth manifold, z € M, and v € T,,(M, S).

(a) If ¢ is a constant real-valued function defined in a neighborhood of z, prove
that ¢ is smooth and that v([c];) =0

(b) Prove that for all positive integers n and all [f], € G(M,S), v([f]?) =
n(f(@)" o(([fla)
2. Suppose (M,S) and (N, T) are smooth manifolds and z € M, y € N. Let
m :MXN — M and 7y : M X N — N denote the respective projections. Let
iyt M — M x N and j, : N = M x N be given by iy(a) = (a,9), jz(b) = (z,b).
Prove that i, and j, are smooth, and that the functions

o T(m,y)(M X N,SxT)— Tm(M,S) @Ty(N,T),
B To(M,8)® Ty(N,T) — Ty (M x N, 8 x T)

given by a(v) = (T(m,y)ﬂ'l(v),T(m,y)m(v)), Blu,w) = Tyiy(u) + Tyjs(w) are R-
isomorphisms, inverse to one-another.
3. Let f: 5% — R3 be given by f(=,y,2) = (2% — y?, 2zy, 2).

(a) Show that f is smooth with respect to the standard smooth structures on
S? and R3.

(b) Show that T{y,, .)f has rank 2 for all (z,y,2) € S2, except for (0,0,1) and
(0,0,-1).

(c) Determine the ranks of T(g0,1)f and T(g,0,—1)f-
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6. SUBMANIFOLDS, REGULAR VALUES, IMMERSIONS AND SUBMERSIONS

Definition 6.1. Let (M, S) be a smooth n-manifold and X C M. An S-admissible
k-chart for (M, X), 0 < k < n, is an S-admissible chart ¢ for M such that codom ¢
is an open subset of V, @ W, where V,, and W, are real vector spaces of dimensions
k and n — k, respectively, and ¢(X N dom ¢) = V,, N codom .

An S-admissible k-atlas for (M, X) is a set A of S-admissible k-charts for (M, X)

such that X C | dom .
peA

If ¢ is an S-admissible k-chart for (M, X), write px : XNdom ¢ — V,,Ncodom ¢
for the restriction of ¢. Note that X N dom ¢ is open in X, V,, N codom ¢ is open
in V,,, and that ¢x is a homeomorphism. Thus if .4 is an S-admissible k-atlas for
(M, X), it follows that {px | ¢ € A} is a k-manifold atlas for X, which we denote
by Ax.

Lemma 6.2. Let (M,S) be a smooth n-manifold and X C M. Suppose ¢ and
are S-admissible k-charts for (M, X). Then ox and VYx are smoothly related.

Proof. We have the commutative diagram

-1 .
Vi, N p(dom ¢ N dom 1) bxex Vyp N h(dom ¢ N dom ¢) ——V,

N | t

¢(dom ¢ Ndom ) ————F> ¥(dom ¢ Ndom 1) — Vy ® Wy
©

where 7, is projection on the first summand, i; : Vi, — V,, ® W, is inclusion on the
first summand, and 4, j are inclusion maps. j is smooth, being an inclusion map of
an open subset. Since ¢ and v are smoothly related, 1o ~! is smooth. i; and 7 are
R-linear transformations, and hence are smooth. Hence, by commutativity of the
above diagram, i)x cp)_(l is smooth. Since ¢ is an inclusion map of an open subset,
it follows from the Local Property (Proposition 3.21(a)) that ¥x %" is smooth.

Similarly, ¢ sz;(l is smooth. [

Corollary 6.3. Let (M,S) be a smooth n-manifold, X C M, and suppose an S-
admissible k-atlas A for (M, X) exists. Then Ax is a smooth atlas for X, and the

smooth structure on X determined by Ax depends only on S, and not on the choice
of S-admissible k-atlas A. [

Write S| X for the smooth structure on X arising from Corollary 6.3. In view of
Corollary 6.3, we make the following definition:

Definition 6.4. Let (M,S) be a smooth n-manifold and suppose X C M is
such that there exists an S-admissible k-atlas for (M, X). We call the resulting
smooth k-manifold (X, 8|X) a k-dimensional smooth submanifold of (M, S). More
briefly, if S is understood from context, we say that X is a k-dimensional smooth
submanifold of M.

Example 6.5. Let (M,S) be a smooth n-manifold and suppose U is open in
M. Let ¢ be any S-admissible chart with dom ¢ C U, and write V|, for the real
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n-dimensional vector space containing codom ¢. Take W, = 0 and thus V,, =
Vi, ® W,,. Then ¢ is an S-admissible n-chart for (M,U), and py = ¢. It follows
that U is an n-dimensional smooth submanifold of M and that our new usage of
the notation S|U coincides with the old usage (i.e. that following Proposition 4.11).

Example 6.6. By convention, the unique map R® — R is smooth. It follows
that every 0-manifold admits a unique smooth structure.

Let (M,S) be a smooth n-manifold and X a discrete subset of M. For each
z € X we can choose an S-admissible chart ¢, such that X Ndom ¢, = {z}
and g (z) = 0. Write W, for the real n-dimensional vector space which contains
codom ¢, and take V, = 0. Then V, & W, = W,, and it follows easily that ¢,
is an S-admissible 0-chart for (M, X), and that {¢, | z € X} is an S-admissible
0-atlas for (M, X). Thus for each discrete subset of M, is a 0-dimensional smooth
submanifold of M.

Example 6.7. Let X be a real n-dimensional vector space and Y a k-dimensional
R-linear subspace of X. Let S be the standard smooth structure on X. We can
choose an (n — k)-dimensional subspace Z of X such that X =Y @ Z. Note that
{1x} is an S-admissible k-atlas for (X,Y’), and so Y is a k-dimensional smooth
submanifold of X.

Example 6.8. Let S denote the standard smooth structure on R**!, n > 0. We
claim that S™ is an n-dimensional smooth submanifold of R™+1.

Let Y = {w € R"! | (zpq1 + 1)%2 > 22 + .-+ + 32}, Y is open in R™"1, being
the inverse image of (0,c0) under the continuous map R™*! — R which sends z
to (zpa1 +1)2 — 22 — -+ — 22, Geometrically, Y is the interior of the upper solid
cone of half-vertex angle w/4 with vertex at (0,...,0,—1) and symmetric about
the z,,1-axis. We will construct an S-admissible n-atlas A for (R"*!, ™) whose
charts all have Y as codomain. We can write R = R*" @ R, and each ¢ € A
will have V,, = R™ and W, = R.

For1<i<n+1llet W ={zeR" |z >0}, W, ={z € R"™ | z; <0}.
The W;* and W, are all open in R™"! and their union is R"** — {0}, which
contains S”. Define 6; : W;f —Y and 0] : W, - Y by

05 (z) = (21, iy, Bny, 2] = 1)

where || || denotes the standard Euclidean norm on R™*!. Define pi : Y — W,
and p; : Y — W by

o () = <¢<1++>———>

Pz_(x) = (xla"-)xi—la_\/(1+mn+1)2—x%_""—m%)wi)"'amn> .

Clearly the 0;", 0, pi, and p; are all smooth, and it is easily checked that 0;, pi

2 ! 7 )
are inverses of one another, as are 0, , p;". Thus the 9;" and §;” are S-admissible
charts for R"*!. Note that the last coordinates of Qf(w) are 0 if and only if
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z € 8" Hence the 6 are S-admissible n-charts for (R™*, $™) and constitute
an S-admissible n-atlas A for (R™*! S§™). Thus S™ is an n-dimensional smooth
submanifold of R**!. Note that the atlas Ag» for S™ is precisely the atlas of
Example 2.3. Thus S|S™ is the standard smooth structure on S™.

Lemma 6.9. Let (M,S) be a smooth manifold and X a k-dimensional smooth
submanifold of M. Let x € X and suppose ¢ is an (S| X)-admissible chart for X
with x € dom . Then there exists an S-admissible k-chart ¢ for (M, X} such that
x € dom )y and Yx agrees with ¢ on some neighborhood of x in X.

Proof. Let 8 be any S-admissible k-chart for (M, X) with € dom . By taking
restrictions of ¢ and 6, we can suppose, without loss of generality, that dom ¢ =
dom fx. Let V be the real k-dimensional vector space which contains codom .
Since ¢ and Ox are smoothly related, the overlap map (,00;(1 : codom fx — codom ¢
is a diffeomorphism. Thus (p8%") X 1w, : (codom fx) x Wy — (codom ¢) x Wj
is a diffeomorphism onto an open subset of V' x Wjy. Take ¥ to be the composition
((goﬁ;(l) X 1W6)0, restricted to 671 ((codom 8) N ((codom fx) x Wg)). O

Proposition 6.10. Let (M,S) be a smooth manifold, X o k-dimensional smooth
submanifold of M, and Y an l-dimensional smooth submanifold of X. ThenY is
an l-dimensional smooth submanifold of M, and S|Y = (S|X)|Y.

Proof. Note that if ¢ is an S-admissible k-chart for (M, X) such that 1x is an
(S|X)-admissible I-chart for (X,Y"), we would have Vy = Vi, @ Wy, 9 would be
an S-admissible I-chart for (M,Y’), and (1 x ), = ¢y. Thus it suffices to show that
for each y € Y, there exists an S-admissible k-chart ¢ for (M, X) with y € dom
such that ¢¥x is an (S|X)-admissible i-chart for (X,Y).

Let y € Y and choose an arbitrary (S|X)-admissible I-chart ¢ for (X,Y) with
y € dom . By Lemma 6.9, there exists an S-admissible k-chart ¢ for (M, X) such
that 1 x agrees with ¢ on a neighborhood of y in X. By restricting ¢ and ¥ we
can suppose, without loss of generality, that ¥vx = . [J

Theorem 6.11. Let (M,S) be a smooth manifold and X a k-dimensional smooth
submanifold of M. Leti: X — M denote the inclusion map. Then i is smooth with
respect to S|X and S and for each x € X, the tangent map Tyi : T(X,S|X) —
Tx(M,S) is injective.

Proof. To prove that 4 is smooth it suffices, by Proposition 4.15, to show that when-
ever ¢ is an S-admissible k-chart for (M, X), the composition pip%" : codom px —
codom ¢ is smooth. The latter is a restriction of the inclusion on the first sum-
mand j : V, — V,, ® W, which is smooth since j is an R-linear transformation.
Thus, by the Local Property (Proposition 3.21(a)), goicp}l is smooth, establishing
the smoothness of i.

Let z € X and choose an S-admissible k-chart ¢ for (M, X) such that z € dom .

By restricting ¢ we can suppose codom ¢ = (codom px) x U where U is open in
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W,. We have the commutative diagram of inclusion maps

dom px 7, dom ©®

z-xi lm

X—— M
which yields, by Proposition 5.9(b), the commutative diagram

T(dom x, 8 |dom px) 2 Ty (dom i, § | dom )

Tmixl lTwiM

To(X, S| X) T, (M, S).

Tyt

By the Local Property for Tangent Spaces (Proposition 5.11), Tpix and Tyipr are
R-isomorphisms. Thus it remains only to prove T’ is injective.
We have the commutative diagram

dom ¢x dom ¢

S A

codom @px

where 7 : (codom @x) x U — codom ¢x is projection on the first factor. = is
smooth, being the restriction of the R-linear transformation 7 : V,, ® W, — V.
Thus, by Proposition 5.9, the diagram

Ty(dom wx,S|dom ¢x) i z(dom ¢, S| dom ¢)

x\ %

<p(:,,) codom gox,T)

commutes where 7 is the standard smooth structure on codom @x. Since px is
a diffeomorphism, it follows from Corollary 5.10 that T,px is an R-isomorphism.
Hence, by commutative of the last diagram above, Ty, (7¢)T,¢’ is an R-isomorphism.
It follows that T4’ is injective. 0O

Recall that for topological spaces, if X is a subspace of Y and g : Z — X is
a function where Z is a topological space, then g is continuous if and only if the
composition ¢g : Z — Y is continuous where 7 : X — Y is the inclusion map. We
next establish the analogue of this for smooth submanifolds and smooth maps.
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Theorem 6.12. Let (M, S) be a smooth manifold and X a k-dimensional smooth
submanifold of M. Leti: X — M denote the inclusion map. Let (N,T) be a
smooth manifold and g : N — X a function. Then g is smooth with respect to T
and S|X if and only if ig : N — M is smooth with respect to T and S.

Proof. By Theorem 6.11, ¢ is smooth with respect to S|X and S. Thus if g is
smooth with respect to 7 and S|X, it follows from Proposition 4.18(b) that ig is
smooth with respect to 7 and S.

Conversely, suppose ig is smooth with respect to 7 and S. Then, in particular,
tg is continuous and so g is continuous. By Proposition 4.15, it remains only to
show that for each y € N there exist 7- and (S|X)-admissible charts ¢ and 1,
respectively, such that y € dom ¢, g(dom ¢) C dom ¥, and 9gep~! : codom ¢ —
codom 1 is smooth. We can choose an S-admissible k-chart 6 for (M, X) such
that g(y) € dom 6 and codom 6 = (codom 0x) x U for some open subset U of
Wy. Take 1) = 0x. Since g~!(dom v) is an open neighborhood of y in N, we
can choose a 7-admissible chart ¢ such that y € dom ¢ and g(dom ) C dom 2.
Then gyt = mhigp~! where 7 : (codom ¢) x U — codom 1 is projection on
the first factor. Since m, 8, ig and ¢! are all smooth, so is their composition by
Proposition 4.18(b). O

We leave the proof of the following as an exercise.

Proposition 6.13. Let (M,S) and (N, T) be smooth n-manifolds and f : M — N
a diffeomorphism with respect to S and T. Suppose X is a smooth k-dimensional
submanifold of M. Then f(X) is a smooth k-dimensional submanifold of N. [

Definition 6.14. Let (M,S) and (N,7) be smooth manifolds. An immersion of
(M,S) into (N,T) is a map f: M — N which is smooth with respect to S and T
such that for each x € M, T f : T,(M, S) — Tz (N, T) is injective.

Example 6.15. It is immediate from Theorem 6.11 that if (X,S | X) is a smooth
submanifold of the smooth manifold (M, S), then the inclusion map ¢ : X — M is
an immersion of (X,S|X) into (M, S).

Example 6.16. Let f : R — R?2 be given by f(z) = (2%, — z%). f is clearly
smooth with respect to S and 7 where the latter are the standard smooth struc-
tures. By Proposition 5.12 and Theorem 5.13 we can canonically identify the tan-
gent map T} f with the derivative Df(z) : R — R2. The latter is

2x
1 — 322

which has rank 1 for all real . Thus f is an immersion of (R,S) into (R%, 7).

Note that in the above example, f(—1) = f(1) and so f-is not globally injec-
tive. However, we will see later that every immersion is locally injective. This,

as well as the following Proposition, will require the Inverse Function Theorem
(Theorem 5.15).

Proposition 6.17. Let (M,S) and (N, T) be smooth n-manifolds and f : M — N
an immersion with respect to S and T which is bijective. Then f is a diffeomor-
phism.
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Proof. The only question is the smoothness of f~!. By Proposition 4.19(b) it
suffices to check this locally.

Let y € N. By the Inverse Function Theorem (Theorem 5.15), there exist
open neighborhoods U of f~!(y) in M and V of y in N such that the restriction
f : U — V is a diffeomorphism with respect to S and 7. In particular, f~':V — U
is smooth with respect to 7 and S. O

Lemma 6.18. LetU, V and W be finite-dimensional real vector spaces and suppose
A, B and C are open subsets of U,V and W, respectively. Suppose f : A — W
and g : B — W are smooth maps with respect to the standard smooth structures
such that for all (a,b) € A x B, f(a)+g(b) € C. Let h: Ax B — C be given by
h(a,b) = f(a) + g(b). Then h is smooth and Dh(a,b)(u,v) = Df(a)(u)+ Dg(b)(v)
for all (a,b) € A X B and all (u,v) e U X V.

Proof. Smoothness of h follows easily from an examination of the coordinate func-
tions of h in terms of those of f and g. Fix (a,b) € AxB and define T : UxV — W
by T'(u,v) = Df(a)(u)+Dg(b)(v). Then T is R-linear. By Theorem 3.18 it suffices
to show that for some neighborhood N of (a,b) in A x B and some choice of norms

|- lloxv and || - |lw for U x V and W, respectively, there exists a positive constant
C such that

1h(u,v) = h(a,b) = T((u,v) = (a,5))lw < Cll(w,v) = (a; b)[Frv
for all (u,v) € N. Choose arbitrary norms | - ||, || - ||lv, and || - ||w for U, V, and
W, respectively and define || - ||yxv by ||(u,v)|luxv = max {||ullv, ||[v]lv}. Then
| - luxv is a norm on U x V.
By Theorem 3.17, there exist neighborhoods Ny of a € A, Ny of b € B and
positive constants C7 and C5 such that
| f(w) — fla) = Df(a)(u—a)|lw < Ci|ju—al|? for all u € Ny,
lg(v) — g(b) — Dg(b)(v = b)llw < Collv=blf§, for all v € N.
Take N = N; X Ny. Then for all (u,v) € N,
”h(u’ ’U) - h’(a'a b) - T((’LL, U) - (a', b))”W
= [IF(u) +g(v) = f(a) — g(b) = T(u —a,v - b)||lw
= ||f(uw) + g(v) = F(a) — g(b) = Df(u — a) — Dg(b)(v — b)|w
< |f(w) - f(a) = Df(a)(u - a)llw + llg(v) — g(b) — Dg(v — b)||w
< Cillu—al[f + Callv — b}, < (C1 + Co) max {|lu - allf;, llv - by}
= (C1+ Co)ll(u = a,v = b)llfry = (C1 + Co) | (w,v) = (a,B)l[Try O

Theorem 6.19. Let (M, S) be a smooth m-manifold, (N, T) a smooth n-manifold,
and suppose f : M — N is smooth with respect to S and T. Suppose xg € M is
such that Ty, f is injective. Then there exists an open neighborhood A of zy in M
such that:

(a) The restriction f to A is an immersion with respect to S and T.

(b) f is injective on A.

(c) f(A) is an m-dimensional smooth submanifold of N with respect to T .
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Proof. We first treat the special case when M and N are open subsets of real vec-
tor spaces U and W, respectively, with the standard smooth structures, and that
f(zo) = 0 € W. By Proposition 5.12 and Theorem 5.13, Df(zo) : U — W is
injective, and so we can write W = D f(z)(U) & V for some (n — m)-dimensional
R-linear subspace V of W. Define h : M x V — W by h(z,v) = f(z) + 1y (v).
By Lemma 6.18, Dh(xo,0)(u,v) = Df(zo)(u) + D1y (0)(v). By Example 3.19,
D1y (0) = 1y, and so Dh(zo,0)(u,v) = Df(zo)(u) + v for all (u,v) in U x V.
Thus since W = Df(xo)(U) @V, it follows that Dh(zo,0) is onto, and hence is an
R-isomorphism since both U x V and W are n-dimensional over R. By Proposi-
tion 5.12 and Theorem 5.13, it follows that T{, 0)h is an R-isomorphism and hence,
by the Inverse Function Theorem (Theorem 5.15), h maps some neighborhood of
(20, 0) in U x V diffeomorphically onto some neighborhood of 0 in W. By restricting
to smaller neighborhoods we can suppose there exist open neighborhoods A of xg
inU, Bof0in V, and C of 0 in W such that AC M, C C N, and h maps A x B
diffeomorphically onto C.

Let i9 : A - A x B and m; : Ax B — A be given by ig(a) = (a,0) and
m1(a,b) = a. By Proposition 4.17, 1o is smooth, and by Example 4.16, 7 is smooth.
We have the commutative diagram

A
7N
0

Since i and h are injective, f is injective on A, proving (b).
By Proposition 5.9(b), for all @ € A the diagram

T.(4)

Tala lT zk
a0

<~ Taon(AX B
Ta(A) T(a,0)m1 ( ’0)( ) T(a,0yh

To(C)
commutes, where we have omitted notation for the understood standard smooth
structures. By Proposition 5.9(a), Tgla = 11,4, and so from commutativity of
the left-hand triangle, T,iq is injective for all a € A. Since h is a diffeomorphism
from A x B to C, T(q0yh is an R-isomorphism for all a € A. It follows, from
commutativity of the right-hand triangle, that Ty, f is injective for all @ € A, proving
(a).

Note that h~! is an admissible chart for N with domain C, codomain A x B,
and that

R H(f(A)Ndom A1) = A7H(f(A)) = A x {0} = (U x {0}) N (A x B)
= (U x {0}) N codom A~*
and so h™! is an admissible m-chart for (N, f(A)) whose domain contains f(A).

Part (c) follows.
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We now consider the general case. We can choose S- and 7 -admissible charts ¢
and 1, respectively, such that zo € dom ¢ and f(dom ¢) C dom 7. Without loss
of generality we can suppose ¥(f(xo)) = 0. Let g denote the composition

-1
codom ¢ ¥ - dom ©» . dom Y, codom 7.

Write 2o = (o). Then g(20) = 0. The diagrams

(%) codom ¢ —2— codom 1

T

dom ¢ —F dom ©

T
() T, (codom ¢) 8 4(z0) (codom 2p)

Tzow‘ll ng(zo)’l/’_1

T, (dom ) T Tt (o) (dom 1)
zg

both commute, where in (%) the omitted smooth structures are the evident ones.
Since ¢! and ¢! are diffcomorphisms, it follows that the vertical maps in (xx)
are R-isomorphisms. Thus, since Ty, f is injective by hypothesis, it follows from
(xx) that T,,g is injective. Thus, by the special case proved above, it follows that
there exists an open neighborhood A’ of 2y in codom ¢ such that:

(a’) The restriction of g to A’ is an immersion with respect to the standard
smooth structures.

(b") g is injective on A’.

(¢) g(4’) is an m-dimensional smooth submanifold of codom ).

Take A = p~1(A’). By () and the fact that =1 and ¢~ are bijective, part (b)
follows. By Proposition 6.13 and the fact that ¢! is a diffeomorphism, part (c)
follows.

Let a € A and write o/ = ¢(a) € A’. We have the commutative diagram

Ta/ (AI) —'1-1g—l—‘-q—> g(a/)(codom ’l,b)

Ta/vfll ng(a')ﬂ’_l

To(A) 77 Tt (a)(dom ).
The vertical maps are R-isomorphisms since ¢! and 9! are diffeomorphisms.
Thus, since T,g is injective, it follows that T, f is injective, completing the proof
of part (a). O

Example 6.20. A smooth injective map can fail to be an immersion. For example,
let f: R — R be given by f(z) = z3. Then f is smooth and injective, but
Df(0) = (0) and so f is not an immersion.
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Theorem 6.21. Let (M,S) be a compact smooth m-manifold, (N,T) a smooth
n-manifold, and f : M — N an injective immersion with respect to S and 7. Then
f(M) is an m-dimensional smooth submanifold of N with respect to T .

Proof. Let x € M. By Theorem 6.19 there exists an open neighborhood A, of z in
M such that f(A;) is an m-dimensional smooth submanifold of N with respect to
7. Choose a T-admissible m-chart ¢, for (N, f(A4;)) with f(z) € dom ¢;. Then
there exist real vector spaces V,,, and W, of dimensions m and n—m, respectively,
such that codom ¢, C V,,, ® W, and ¢, (f(A,)Ndom @) = V,,, Ncodom @g. @,
need not be a 7-admissible m-chart for (N, f(M)) since it is possible that for some
y € M — Az, f(y) € dom ¢y but @, (f(y)) ¢ V. We fix this as follows: M — A,
is compact, and so f(M — A;) is closed in N. Take ¢., to be the restriction of ¢,
to dom ¢, — f(M — A;). Then z € dom ¢!, and ¢, is a T-admissible m~chart for
(N, f(M)). Thus {¢}, | z € M} is a T-admissible m-atlas for (N, f(M)). O

If the compactness hypothesis in Theorem 6.21 is dropped, the conclusion can
fail. For example, the restriction of the immersion in Example 6.16 to (—o0,1) is
an injective immersion whose image is not a manifold. Much more complicated
phenomena are possible. For example, let « be any irrational real number and let
f iR — 81 x 8 be given by f(t) = (¢*™%, 2°™*) where we regard S* as the space
of complex numbers of absolute value 1. It can be shown that f is an injective
immersion whose image is dense in S x S?.

We next consider analogues of some of the above considerations for the case when
the tangent map is surjective. We have the following analogue of Lemma 6.18.

Lemma 6.22. Let U,V, and W be finite-dimensional real vector spaces, and sup-
pose A, B, and C are open subsets of U,V , and W, respectively. Suppose f: A — B
and g : A — C are smooth maps with respect to the standard smooth structures. Let
h: A — BxC be given by h(a) = (f(a),g(a)) for alla € A. Then h is smooth, and
foralla € A, Dh(a) : U — V x W is given by Dh(a)(u) = (Df(a)(u), Dg(a)(u)).

Proof. Smoothness of h follows from Proposition 4.17. Choose norms || - ||u, || - ||v,
and || - ||w for U, V, and W, respectively, and let || - ||y xw be the norm on V. x W
given by ||(v, w)||lvxw = max (||v||v, |w|lw). Fix a € A. By Theorem 3.17 there
exists a neighborhood N of a in A and a positive constant C such that for allu € N,

1 () = f(a) = Df(a)(u~ a)lly < Cllu—allf
llg(w) — g(a) — Dg(a)(u — a)llw < Cllu— alF.

Define T: U — V x W by T(u) = (Df(a)(u), Dg(a)(u)) for all w € U. Then T is
R-linear and for all u € N,

[(u)=h(a) — T(u— a)|lvxw
= [I(f(w), 9(w)) — (f(a), 9(a)) — (Df(a)(u— a), Dg(a)(u — a))|lvxw
= [|(f(«) - f(a) = Df(a)(u — a), g(u) - g(a) — Dg(a)(u — a))|lvxw
= max {||f(u) — f(a) — Df(a)(u - a)llv, lg(v) — g(a) — Dg(a)(v — a)|lw}
< Cllu—allg.
By Theorem 3.18, T'= Dh(a). O

and
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Lemma 6.23. Let (M,S) be a smooth m-manifold, (N, T) a smooth n-manifold,
and f : M — N a smooth map with respect to S and T. Suppose for some xo € M
the tangent map Ty, f : Tio(M,S) — Tp(go)(N,T) is surjective. Then there exist
an open neighborhood X of xo in M, an open neighborhood Y of f(zo) in N such
that f(X) CY, an open subset Q of some (m — n)-dimensional real vector space,
and a diffeomorphism h : X — Y x Q with respect to S and T xU (where U denotes
the standard smooth structure on Q) such that the diagram

x h
N
Y

Y x@Q

commutes.

Proof. We first treat the special case in which M is an open subset of a real m-
dimensional vector space U, and N an open subset of a real n-dimensional vector
space V (with the standard smooth structures). By Proposition 5.12 and Theo-
rem 5.13, Df(xq) : U — V is surjective. Let K denote the kernel of D f(zo). Then
we can write U = J @& K for some R-linear subspace J of U. Let m3 : U — K
denote projection on the second factor, and let A : M — V x K be given by
h(z) = (f(z),m2(z)). By Lemma 6.22, h is smooth and for all z € M and v € U,
Dh(z)(u) = (Df(z)(u), Dme(z)(u)). By Example 3.9, Dma(z) = m for all 2, and
so Dh(z)(u) = (Df(z)(u), m2(u)) for all z € M, u € U. We proceed to show that
Dh(zo) is an R-isomorphism. Note that U and V x K are both m-dimensional over
R, and so it suffices to show that Dh(zp) is injective.

Suppose u lies in the kernel of Dh(zg). Then D f(zo)(u) = 0 and 7a(u) = 0. But
then u € K (since D f(zo)(u) = 0), and so ma(u) = u, and so u = 0. Thus Dh(z)
is injective, and hence an R-isomorphism.

By the Inverse Function Theorem (Theorem 5.15) there exists an open neigh-
borhood X' of zg in M and an open neighborhood Z of (f(:vo), 7r2(a:0)) inVxK
such that A maps X' diffeomorphically onto Z. We can choose a product neigh-
borhood Y x Q of (f(zo), m2(20)) in N x K such that ¥ X @ C Z. Then taking
X =X'nh~Y(Y x Q), the restriction h: X — Y x @ fulfills the requirements.

For the general case, choose S- and 7 -admissible charts ¢ and 1, respectively,
such that zy € dom ¢ and f(dom ¢) C dom 9. Let g : codom ¢ — codom ¢
denote the composition

-1
codom ¢ —? + dom © . dom 2 codom 1.

Since Ty, f is onto, and ¢~ ! and 9 are diffeomorphisms, it follows that Dg(¢(zg))

is onto. By the special case treated above, there exist open neighborhoods X’ of

(o) in codom ¢, Y of g(¢(z0)) in codom ), and an open subset @ of some m—n-

dimensional real vector space and a diffeomorphism b’ : X’ — Y’ x Q such that the
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diagram

X! M .y xQ
i\\ /%{
Y/
commutes. Take X = ¢~ 1(X'), Y = ¢~1(Y’), and h to be the composition

—1

My Q—""% .y xqQ O

X —2=Xx'

Corollary 6.24. Let (M, S) be a smooth m-manifold, (N,T) a smooth n-manifold,
and f : M — N a smooth map with respect to S and T. Suppose for some x € M
the tangent map Ty f : Ty(M,S) — Tz (N, T) is surjective. Then there erists an
open neighborhood of f(x) in N which is contained in the image of f.

Proof. Let X, Y, @, and h be the open sets and diffeomorphism which exist by
Lemma 6.23. Then the diagram

X h
A
Y

commutes. Since 1A is onto, it follows that Y is contained in the image of f. O

Y xQ

Definition 6.25. Let (M,S) and (N, 7T) be smooth manifolds and f: M — N a
smooth map with respect to S and 7. A point y € f(M) is called a regular value
of f with respect to S and T if for each z € f~1(y), Ty, f is surjective.

[ is said to be a submersion with respect to S and T if each point in f(M) is a
regular value of f (or, equivalently, T, f is surjective for all z € M).

Example 6.26. Let (M,S) and (N, 7) be arbitrary smooth manifolds and 7 :
M x N — M projection on the first factor. Then 7 is a submersion with respect
to S x 7 and S. For, by Example 4.16, m; is smooth with respect to S x 7 and
S. Suppose (zg,y0) € M x N. Define 0 : M — M x N by o(z) = (z,%0). It
follows from Propositions 4.17 and 4.18(a) and Exercise 9 of §4 that o is smooth
with respect to S and S X 7. Note that 0 = 1ps. Thus, by Proposition 5.9,
Ly, (M,5) = T(zo,y0)T1T2o0 and so T(g, )1 is surjective.
Similarly, 7o : M X N — N is a submersion of with respect to S x 7 and 7.

The following is an immediate corollary of Corollary 6.24.

Corollary 6.27. Let (M,S) and (N,T) be smooth manifolds and f : M — N
submersion with respect to S and T. Then f is locally surjective, i.e. each point in
the image of f has a neighborhood in N which is contained in the image of f. O
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Theorem 6.28. Let (M,S) be a smooth m-manifold, (N, T) a smooth n-manifold,
and f : M — N a smooth map with respect to S and T. Let y be a regular value
of f with respect to S and T. Then f~1(y) is an (m — n)-dimensional smooth
submanifold of (M, S).

Proof. We must show that for each z € f~1(y), there exists an S-admissible (m—n)-
chart ¢ for (M, f~1(y)) with z € dom ¢.

Let + € f~(y). Since y is a regular value of f with respect to S and 7,
Tpf : To(M,8) — T,(N, T) is surjective. Let X, Y, Q, K, and h denote the sets and
diffeomorphism which arise from Lemma 6.23. By taking smaller neighborhoods if
necessary, we can suppose that Y = dom ) for some 7-admissible chart 1. We can
choose 9 such that ¥(y) = 0. Let ¢ be the composition

X——@»YXQw—lp—&(codomw)xQ.

Then ¢ is an S-admissible chart for M with € dom ¢. We will be done if we check
that ¢ is an S-admissible (m — n)-chart for (M, f~*(y)). It remains only to check

that <p(f“1(y) N X> = ({0} x K) Ncodom ¢. Note that ({0} x K) N codom ¢ =

{0} x Q. Since m h(z) = f(z) for all z € X it follows that h(f‘l(y)ﬁX> = {y} xQ,
from which the desired conclusion follows easily. [J

Example 6.29 Let f : R"*! — R be given by f(z) =z3+---+22,,. Then
Df(:l)) = (2.’131 2:62 voe 2{En+1.)

If x # 0, Df(z) has rank 1, and hence is surjective. It follows from Proposition 5.12
and Theorem 5.13 that T, f is surjective for z # 0, and hence every positive real
is a regular value of f. Thus, for each » > 0, f~(r) is an n-dimensional smooth
submanifold of R™*!. In particular, this gives an alternate proof that S™ is an
n-dimensional smooth submanifold of R™*!. (Compare with Example 6.8.)

Example 6.30. For 1 < ¢ < n, the real Stiefel manifold V;(R"™) is the set of
all n-rowed, g-columned real matrices A satisfying A*A = I, where A* denotes
the transpose of A and I, is the ¢ X ¢ identity matrix. The above condition on A
says that each column of A has Euclidean norm 1 (look at the diagonal entries of
A*A), and that distinct columns of A are orthogonal with respect to the standard
Euclidean inner product on R™ (look at the off-diagonal entries of A*A). Thus
V,(R™) can be viewed as the set of all orthonormal g-frames of vectors in R". Note
that V,,(R™) = O(n), the orthogonal group, if we identify matrices with the linear
transformations they represent with respect to the standard bases (see Exercise 7
of §2). At the other extreme, V;(R") = S™! if we identify n x 1 matrices with
points in R"™.

Write M, q(R) for the set of all real n-rowed, g-columned matrices, a vector
space of dimension ng over R. We will show that V,(R"™) is an <nq —q(g+1)/ 2)-

dimensional smooth submanifold of M, ,(R). Write Sym(q) for the set of all ¢ x ¢
symmetric real matrices, a vector space of dimension ¢g(g + 1)/2 over R. Define
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[ My 4(R) — Sym(q) by f(X) = X*X. Clearly, f is smooth with respect to the
standard smooth structures, and V,(R") = f~*(I,). Thus our above assertion will
follow from Theorem 6.28 if we show that I, is a regular value of f.

I, is certainly in the image of f, e.g.

I
()
On—q,q !

where 0p,_gq,4 is the (n — ¢) X g O-matrix. We claim that for each A € M, ((R),
Df(A) : My q(R) — Sym(q) is given by Df(A)(X) = A*X + X*A for all X €
M, 4(R). (Compare with Exercise 2 of §3.) For if we let a : My 4(R) — Sym(q)
be given by a(X) = A*X + X*A for all X € M, 4(R), then « is R-linear, and

FX) = f(A)—a(X — A) =X*X — A*"A— A*(X — A) — (X — A)*A
= (X — A*X — A).

Let || [|a and || ||s denote the sup norms on M, 4(R) and Sym(q), respectively, i.e
the norm of a matrix is the maximum of the absolute values of its entries. For all
B, C € M, 4(R), it is easily checked that ||B*C||s < n||B||m||C| /s It follows that

1£(X) — f(4) — a(X — A)lls < nl| X — A3,

for all X € M, 4(R). Thus, by Theorem 3.16, Df(A) = a.
We next check that for A € f~1(1;), Df(A) is surjective. For such an A we have
A*A =1, Let B € Sym(q) be arbitrary. Then AB/2 € M, ,(R) and we have

Df(A)(AB/2) = A*(AB/2)+ (AB/2)*A = (A*A)B/2 + (B*A*[2)A
= B/2+ B*/2 (since A*A = 1I,)
=B (since B is symmetric)
proving that Df(A) is surjective for A € f~1(I,). Thus, from Proposition 5.12 and

Theorem 5.13, T4 f is surjective for each A € f~1(I,), completing the proof that
I, is a regular value of f.
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Exercises for §6

1. Let (M, S) be a smooth m-manifold, (N, 7) a smooth n-manifold, and f: M —
N a smooth map with respect to S and 7. Let G(f) denote the graph of f, i.e.
G(f) = {(z,f(z)) | € M} C M x N. Prove that G(f) is an m-dimensional
smooth submanifold of (M x N, S x 7).

2. Let w: S™ — P"(R) be the quotient map of Example 2.5. Prove that 7 is both
an immersion and a submersion with respect to the standard smooth structures
(Examples 4.6 and 4.7).

3. Let ((F,Sr), E,(B,Sg),p,S) be a smooth fiber bundle. Prove that p: E — B
is a submersion with respect to Sg and Sg.

4. Let f: P2(R) — R® be given by f([z,v,2]) = (z%,9?, 2y, 2,y2). Prove that f
is an immersion with respect to the standard smooth structures.

5. Let A= {(z,y,2,t) € R* | 22 —y? + 2% = 1 and zy — »t = 2}. Prove that A is
a 2-dimensional smooth submanifold of R*.

6. Let (M,S) and (N,7T) be smooth manifolds. Suppose X is a k-dimensional
smooth submanifold of (M,S) and Y an Il-dimensional smooth submanifold of

(N,T). Prove that X x Y is a (k + l)-dimensional smooth submanifold of (M x
N,S xT).

7. Prove Proposition 6.13.
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7. TANGENT SPACES TO SMOOTH SUBMANIFOLDS OF EUCLIDEAN SPACE

If M is a smooth submanifold of R"™, there is a more intuitive notion of the
tangent space to M at a point z in M than the one given in §5, namely the totality
of velocity vectors to smooth curves in M at xz. In this section we canonically
identify the two notions.

Definition 7.1. Let M be a smooth submanifold of R™ and x € M. A smooth
curve o at « in M is a smooth map « : (—~6,d) — M for some § > 0 such that
a(0) = z. The velocity vector of o at x, denoted vel (), is D(ia)(0)(1) € R™ where
i: M — R" is the inclusion map.

Note that if a1, ..., a, are the coordinate functions of ic, then
a1(0)
D(ia)(0) = oz%( ?
4 (0)
and so vel () = (c}(0), @4(0), ..., o, (0)), which is the usual calculus notion of the

velocity vector to a smooth curve in Euclidean space at a point. Let V(M) denote
the set of all velocity vectors to smooth curves in M at . We wish to canonically
identify V(M) with T,,(M) (which we will write instead of T,,(M,S|M) where S
is the standard smooth structure on R™).

Lemma 7.2. Let M be a smooth submanifold of R™ and x € M. Suppose o and
B are smooth curves at © in M. Then:

(a) If a and [ agree on some neighborhood of 0, then vel(a) = vel ().

(b) If (=6,8) C (dom a) N (dom B), then vel(a) = vel(B) if and only if Toa =
Toﬂ : T()((—(S, (5)) — Tm(M)

Proof. Let i : M — R™ denote the inclusion. If o and @ agree on some neighbor-
hood of 0, then by the Local Property (Proposition 3.21(c)), D(ia)(0) = D(i8)(0)
and it follows that vel (o) = vel (8), proving part (a).

Suppose (—§,6) C (dom «) N (dom B). By part (a) we can suppose dom ¢ =
dom 8 = (—6,0) for purposes of obtaining vel (o) and vel(8). By the Chain
Rule (Theorem 3.3), vel (@) = D(ie)(0)(1) = Di(z)Da(0)(1). Similarly, vel (8) =
Di(z)DB(0)(1). It follows from Theorem 6.11, Proposition 5.12, and Theorem 5.13
that Di(x) is injective. Thus, vel (a) = vel (8) if and only if Da(0)(1) = DB(0)(1),
i.e. if and only if Da(0) = DB(0). By Proposition 5.12 and Theorem 5.13, the
latter condition holds if and only if Toa = Tp/3, proving part (b). O

If a: (—6,8) — M is a smooth curve at z in M and 0 < §’ < 4, the diagram

(~6',6") d (—8,3)

A

M
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commutes where j is the inclusion and o’ the restriction of a. Thus, from Propo-
sitions 5.9 and 5.12, the diagram

R —2> Ty ((—4', 6)

Dj(0) Toj T (M)

R ——To((~4,9))

commutes. Since j is a restriction of 1g, it follows from the Local Property (Propo-
sition 3.21(c)) and Example 3.9 that Dj(0) = 1gr. Thus we obtain a well-defined
function e, : Vo (M) — T (M) by the rule ep,q(vel (@) = Toa(6o(1)). We wish
to show that €p,, is a bijection. Note that we have not yet proved that V(M) is
an R-linear subspace of R™. There does not seem to be an obvious operation on
curves at ¢ in M which induces addition of velocity vectors.

Lemma 7.3. Let M be a smooth submanifold of R™ andz € M. Leti: M — R"
denote the inclusion map. Then the diagram

T, (M) == T, (R™)

= Tem

commutes where j is the inclusion.

Proof. Let o : (—6,8) — M be a smooth curve at = in M. From Proposition 5.12
we have the commutative diagram

To((~5,8)) 282 T, (R™)

GOT Tew

R D(ia)(0) R™.

By Proposition 5.9(b), To (i) = TpiTpc. Thus

0 (vel () = 0, (D(z‘a)(o) (1)) = Ty (icr) (6o(1))
= Ty (Toa(Hg(l))) = Twi(sM,a, (Vel (a))) O
If M is a smooth submanifold of R™, N a smooth submanifold of R", f : M — N

a smooth map, and o a smooth curve at z in M, then fa is a smooth curve at f(z)
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in N. We claim that if o and 3 are curves at z in M such that vel (o) = vel (),
then vel (fa) = vel(fB). For by Lemma 7.2 we can suppose dom o = dom [
and Toa = TpB. By Proposition 5.9(b), To(fa) = (T f)(Toa) = (Tuf)(Tof) =
To(fB) and hence vel (fa) = vel (fB) by Lemma 7.2(b), establishing the above
claim. Thus we obtain a well-defined function V, f : Vz(M) — V() (V) by the rule

Vo f (vel (@) = vel (fa).

Proposition 7.4. Suppose M is a smooth submanifold of R™, N a smooth sub-
manifold of R™, and f : M — N a smooth map. Then for each x € M the diagram

commautes.

Proof. Let a: (—6,0) — M be a smooth curve at z in M. Then

EN.f(a) (Vx £ (vel (a))) = e f(a) (vel (Fa)) = To(f) (60(1))
= Tof (Toa(60(1))) = Tof (enta (vel (@) ). 0

Proposition 7.5. Let M, N, and @ be smooth submanifolds of R™, R™, and R4,
respectively, and x € M. Then:

(a) Veln = 1y, ().
(b) If f: M —» N and ¢g: N — @ are smooth maps, then

Ve(gf) = (Viwg) (Vaf).

Proof. For each smooth curve o at = in M we have V1 (vel () = vel (1 MO) =
vel (a), proving part (a), and

Va(gf) (vel (o)) = vel (gfa) = Viyg(vel (for))
= Vi@y9 (Ve (vel ()

proving part (b). O

Corollary 7.6. Let M and N be smooth submanifolds of R™ and R", respectively.
Suppose f : M — N is a diffeomorphism. Then for each x € M, Vo f : Vo(M) —
Vi) (V) is a bijection.

Proof. By Proposition 7.5, ly, () = Valy = Vo(f71f) = Vi) (f~1)Vaf and
similarly 1y, v = Vi@ (f")Vef. O

68



Lemma 7.7. Let M be a smooth submanifold of R™ and U an open subset of M.
Let j: U — M denote the inclusion map. Then for each x € U, Vy(U) = Vy(M)
and Vyj : Vu(U) — Vy(M) is the identity map.

Proof. Let i : M — R™ denote the inclusion. If « is a smooth curve at z in U,
then Vyj(vel (o)) = vel (jo) = D(45)(0)(1). Since ij : U — R™ is the inclusion,
D(ija)(0)(1) = vel (@), and so Vj(vel (a)) = vel (o) for all smooth curves a at
in U. Thus V,(U) C V(M) and V5 is the inclusion. It remains only to check that
V.j is onto.

Let o be a smooth curve at z in M. Since U is open in M, there exists a
& > 0 such that (—6,6) C dom « and a((—4,6)) C U. Let 8 : (—6,6) — U be
the restriction of a. Since o and jf agree on a neighborhood of 0, it follows from
Lemma 7.2(a) that vel (o) = vel (j8). Since vel (j8) = V,j(vel(B)), the proof is
complete. [

Proposition 7.8. Let M be an open subset of R™. Then for eachxz € M, Vo,(M) =
R™ and ey g = 05 2 V(M) — Tp(M). In particular €y o is an R-isomorphism.

Proof. If v € R", let @ : (—=1,1) — R™ be given by a(t) = z + tv. Then o is a
smooth curve at z in R™, and vel (¢) = v, proving that V;(R"™) = R™. Since, by
Lemma 7.7, V(M) = V4(R"), we have V(M) = R".

By Lemma 7.3, (Tgi)em,e = 6, : R — T, (R™) where i : M — R™ denotes the
inclusion. By Proposition 5.12, the diagram

commutes. Since Di(z) = lg» by Proposition 3.21(c) and Example 3.19, it follows
that (T39)0; = 6, : R™ — T,(R"™). Thus, (Tyi)ems = (Tpi)f;. Since Tyi is
injective by Theorem 6.11, the result now follows. [

Theorem 7.9. Let M be a k-dimensional smooth submanifold of R™. Then for
each z € M, Vyu(M) is a k-dimensional R-linear subspace of R"™ and epry :
V(M) — Tp(M) is an R-isomorphism.

Proof. Let x € M. Choose a diffeomorphism ¢ from an open neighborhood of z in
M to an open set in R¥. By Proposition 7.4 the diagram

Ve (M) DL Vz(dom ¢) Ve o(x) (codom ¢)

EM,ml lsdom 7% lscodom w,p(x)

T(M) ~r7 T (dom ¢) T o(z)(codom )

commutes where j : dom ¢ — M is the inclusion map. By Lemma 7.7, V,j is
the identity map. T,j is a bijection by Proposition 5.11. V,¢ is a bijection by
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Corollary 7.6. Ty is a bijection by Corollary 5.10. €codom ¢,e(x) 18 @ bijection by
Proposition 7.8. Thus, by commutativity of the above diagram, it follows that eas o
is a bijection.

It now follows from Lemma 7.3 that

V(M) = 07 ((Tui) (T (21))

where 1 : M — R" is the inclusion. Since 6, is an R-isomorphism (by Theo-
rem 5.13), T, is an injective R-homomorphism (by Theorem 6.11), and T,,(M) is a
real k-dimensional vector space, it follows that V(M) is a k-dimensional R-linear
subspace of R™ and that £z, is R-linear. [J

The upshot of Theorem 7.9 and Proposition 7.4 is that for smooth submanifolds
of Euclidean spaces, the tangent space T(M) is canonically identified with the
space V(M) of velocity vectors to smooth curves at = in M, and the tangent map
T.f of a smooth map f between two such is identified with the map V. f which
sends the velocity vector of a smooth curve at x to the velocity vector of that curve
composed with f at f(z).

Example 7.10. We have seen (Example 6.8) that S™ is an n-dimensional smooth
submanifold of R"*1. Let z € S™ and o a smooth curve at = in S™. Then for
all t € dom a, Y17 ;(t)? = 1. Thus, taking derivatives and evaluating at 0, we
obtain 7" @;(0)/;(0) = 0, which says that vel () is orthogonal to & with respect
to the standard Euclidean inner product on R™*1. Thus V,(S™) is contained in
z1, the orthogonal complement of z in R**!. Since both V,(S™) and z are n-
dimensional R-linear subspaces of R™+1, it follows that V,(S™) = z*. Thus, by

Theorem 7.9, T;(S™) is canonically identified with £+ for each z € S™.
Exercises for §7

1. Suppose M is a smooth submanifold of R™ and N a smooth submanifold of
R™. Then by Exercise 6 of §6, M x N is a smooth submanifold of R™ x R", which
we identify with R™*" in the obvious way. Prove that for each (z,y) € M x N,
Viay) (M X N) = V(M) x V,(N).
2. For 0 < k < n, the Grassmannian space Gi(R") is the set of all k-dimensional
R-linear subspaces of R™. We topologize Gi(R") as follows: Let Injg(R*, R™)
denote the set of all injective R-linear transformations from R* to R™, topologized
as a subspace of the finite-dimensional real vector space HomR(Rk, R™). Let q:
Injr(R*, R™) — Gk(R™) be the function given by g(A) = A(R*) for each A €
Injr (R*, R™). Give Gx(R") the quotient topology relative to g, i.e. a subset U of
Gr(R™) is open in Gx(R™) if and only if ¢~1(U) is open in Injg (R*, R™).

Let M be a k-dimensional smooth submanifold of R™. Define gas : M — Gr(R")
by gm(z) = V(M) for each z € M. Prove that gps is continuous.
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8. VECTOR BUNDLES AND THE TANGENT BUNDLE

Definition 8.1. A vector bundle ¢ is a fiber bundle (F, F, B, p) such that

(i) F is a real finite-dimensional vector space.

(ii) For each z € B, p~1(z) is equipped with the structure of a real finite-
dimensional vector space.

(iii) There exists an atlas A for { such that for each ¢ € A and z € U,, the
restriction ¢ : p~(z) — {z} x F is an R-isomorphism, where {z} x F' is given the
obvious vector space structure. Such an A is called a linear atlas for £&. Any chart
@ for £ satisfying the above condition is called a linear chart for &.

A vector bundle for which the fiber is n-dimensional over R is called an n-plane
bundle. A 1-plane bundle is sometimes called a line bundle.

Example 8.2. Let X be any topological space and V any finite-dimensional real
vector space. Then the product bundle (V, X x V, X, ;) is a vector bundle with
linear atlas {1xxv }, where for each z € X, n7'(z) = {z} x V is given the obvious
real vector space structure.

Example 8.3. We show that the canonical line bundle over P"(R) (Example 2.10)
is a line bundle in the sense of Definition 8.1. Using the notation of Example 2.10,
for each [z] € P*(R), p;1([z]) = {[z,7] | r € R}. We must first put a real vector
space structure on the fiber p,;!([z]). Define addition and scalar multiplication by
the rules [z, 1] + [z, 2] = [z, 71+ o] and s[z,r] = [z, sr] for all 1, r2, and s in R.
It is straightforward to check that these operations are well-defined, that p;; 1([:1:])
is a real 1-dimensional vector space under the above operations, and that the A,
of Example 2.10 is a linear atlas for (R, L, P"(R),pp)-

Example 8.4. We show that the fiber bundle (R™, T'(S™), S™, p) of Exercise 8 of §2
is an n-plane bundle. For each z € S", p~!(z) = z*, the orthogonal complement
of £ in R™1 with respect to the standard Euclidean inner product. z<t is an
n-dimensional R-linear subspace of R™**!, and we choose this real vector space
structure as the required real vector space structure on the fiber p~(z).

For1<i<n+1letU; ={z € S" |z #0}. Then {Uy,...,U,} is an open
cover of S™. Define 0; : p~(U;) — U; x R™ by

Hz(w,y) = (ZI), (yh cee a,y\i) o 'ayn-l-l))-

6; is clearly continuous, the diagram

p~H(Us)

commutes, and each fiber restriction 6; : p~1(z) — {z} x R™ is R-linear. Thus,
if we show that each 6; is a homeomorphism, it will follow that {61,...,0,+1} is
a linear atlas for (R"™,T'(S™),S™,p). We accomplish the latter task by explicitly
finding the inverse of §; and observing that it is continuous.
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For 1 <i<n+1letn:U; x R" — p~1(U;) be given by

ni(z, z) = (:1:, (21, .y 2im1, ai(z, 2), 2, - ..,zn))

where «; : U; x R™ — R is given by

n-1

i(z,2) = —x] E Y T Z TjZj-1.

j=it1

7; is clearly continuous, and one checks that 7; and 6; are inverses of one another.

Definition 8.5. Let & = (Vi,Eq, Bi,p1) and & = (Va, Ea, Ba,p2) be vector
bundles. A vector bundle homomorphism f : £&1 — &3 consists of a pair of continuous
maps fg : F1 — E5 and fg: By — By such that

(i) The diagram

El LEZ

By —— B,
fB
commutes.
(ii) From condition (i) it follows that for each z € Bj, fg maps p; ' (z) into
p5 ' (fB(z)). We require that the restriction fg : pri(z) — p3'(fe(z)) be R-
linear.

The proof of the following Proposition is immediate.

Proposition 8.6. (a) Let £ = (V, E, B,p) be a vector bundle. Then 1¢ : £ — ¢
given by 1¢p, = 1B, l¢ g = 1B is a vector bundle homomorphism.

(b) Suppose &;, i = 1,2, 3, are vector bundles and f : & — &, g : & — &
are vector bundle homomorphisms. Then gf : & — &3 given by (9f)g = 95fE,
(9f)B = 9B B, is a vector bundle homomorphism. [

We next consider smooth vector bundles. The fiber F' is always a real finite-
dimensional vector space and the smooth structure Sg on F' will always be the
standard smooth structure. Thus we modify the terminology of Definition 4.28 as
follows:

Definition 8.7. Let £ = (F, E, B, p) be a vector bundle and Sg a smooth structure
on B. If ¢ and ¢ are linear charts for £, we say ¢ and 1 are linearly Sp-related if
@ and Y are Sp—Sp-related in the sense of Definition 4.28.

A linear atlas A for £ is said to be linearly Sg-smooth if whenever ¢, € A,
then ¢ and v are linearly Sp-related.

If A and B are linearly Sp-smooth atlases for £, we say A and B are linearly
Sp-equivalent if for all ¢ € A and ¢ € B, ¢ and v are linearly Sp-related.

The following is immediate from Proposition 4.29:
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Proposition 8.8. Let £ = (F, E, B,p) be a vector bundle and Sg a smooth struc-
ture for B. Then the relation linear Sp-equivalence on the set of all linear Sp-
smooth atlases for £ is an equivalence relation. [

Definition 8.9. Let £ = (F,E, B,p) be a vector bundle and suppose Sp is a
smooth structure structure on B. A linear Sg-smooth structure S for € is a linear
Sp-equivalence class of linear Sg-smooth atlases for &.

A linear Sp-smooth atlas for £ which represents a linear Sp-smooth structure §
for ¢ will be said to be S-admissible. ‘

A linear chart for £ which belongs to an S-admissible linear Sp-smooth atlas for
& will be said to be S-admissible.

Definition 8.10. A smooth vector bundle is a quintuple (F, E,(B,Sg),p, S) sat-
isfying;:

(i) (F, E, B,p) is a vector bundle.

(ii) (B, SB) is a smooth manifold.

(iii) S is a linear Sp-smooth structure for (F, E.B,p).

If ¢ = (F,E,(B,Sg),p,S) is a smooth vector bundle, write { = (F, E, B, p) for
its underlying vector bundle. N

The following Proposition is the specialization of Proposition 4.32 to smooth
vector bundles.

Proposition 8.11. Let& = (F, E,(B,SB),p, S) be a smooth vector bundle. Then:

(a) Any two S-admissible charts are linearly Sg-related.

(b) If A and B are linear atlases for & such that A C B and B is S-admissible,
then A is S-admissible. B

(c) If A and B are linearly Sp—smooth atlases for £ such that A C B and A is
S-admissible, then B is S-admissible. B

(d) If ¢ is a linear S-admissible chart for £ and U is open in U,, then the
restriction ¢ : p~1(U) — U x F is a linear S-admissible chart.

(e) If ¢ is a linear chart for £ and A a linear S-admissible atlas, then ¢ is
S-admissible if and only if ¢ is linearly Sg-related to each member of A.

(f) If A is a linear S-admissible atlas and C any set of linear S-admissible charts,
then AUC is a linear S-admissible atlas. O

In particular, if (F, E,(B,SB),p, S) is a smooth vector bundle, it follows that
((F, Sr), E,(B,SB), D, S) is a smooth fiber bundle in the sense of Definition 4.31
(where Sp denotes the standard smooth structure on the vector space F). By
Theorem 4.34, there will exist a unique smooth structure Sg on E such that each

S-admissible linear chart ¢ : p~1(U,) — U, x F' is a diffeomorphism with respect
to Sg |p_1(U(p) and (SB l Uw) X Sp.

We leave as exercises the verification that the linear atlases in Examples 8.3 and
8.4 above are linearly smooth with respect to the standard smooth structures on
the base spaces.

Definition 8.12. Let & = (V;, E;, (B;,Sg,),pi,S;) be smooth vector bundles,

i = 1,2. A smooth vector bundle homomorphism f : & — & is a vector bundle

homomorphism from (V1, Ey, B1,p1) to (Va, Eq, B, ps) such that fp: By — Bz is
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smooth with respect to Sp, and Sp,, and fg : E; — E; is smooth with respect to
(SI)E and (82)E

The following analogue of Proposition 8.6 is immediate.

Proposition 8.13. (a) Let £ = (V, E, (B, Sg),p, S) be a smooth vector bundle.
Then 1¢ : § — £ given by le¢p = 1p, lgg = 1p is a smooth vector bundle homo-
morphism.

(b) Suppose &, i = 1,2, 3, are smooth vector bundles and f : & — &3, g
£o — &3 are smooth vector bundle homomorphisms. Then gf : & — &3 given by
(9f)E = 9efE, (9f)B = 9BSB is @ smooth vector bundle homomorphism. O

Given any m-manifold M, a chart for M with codomain an open subset of R™
will be called a Euclidean chart for M. If ¢ is any chart for M with codomain
an open subset of some m-dimensional real vector space V, and a:V — R™an
R-isomorphism, then the composition

dom ¢ —> codom ¢ —%> a(codom )

is a Euclidean chart for M having the same domain as ¢. Moreover, if S is a smooth
structure on M, it is easily seen that ¢ is S-admissible if and only if the Euclidean
chart ap is S-admissible.

It will sometimes be convenient to use a common real m-dimensional vector space
to contain the codomains of all charts we consider for m-manifolds, and R™ will
be convenient for that purpose. Given a smooth m-manifold (M,S), we will let
E(M,S) denote the set of all S-admissible Euclidean charts for M. £(M,S) is an
S-admissible atlas for M.

The main goal of this section is to construct for each smooth m-manifold (M, S)
a smooth m-plane bundle 7y s = (R™,T(M,S), (M, S),pM,g,g), the tangent
bundle of (M,S), and, if (N,7T) is another smooth manifold and f : M — N
a smooth map with respect to S and 7, a smooth vector bundle homomorphism
7f : TmMms — Tn,7. For x € M, the fiber p];,l,s(ac) will be the tangent space
T.(M,S); fp will be f; the restriction of 7 fg to p;/.,l’ s(x) will be the tangent map
Tof 1 To(M,S) — Ty (N, T).

As a set, T(M,S) is defined to be |J T(M,S), and pys : T(M,S) — M is

xeM
defined by par,s(v) =z if v € Tp(M, S). Thus pMS( ) = Tx(M,S). Our next task
is to put a suitable topology on T'(M, S).

Let ¢ € £(M,S). Thus codom ¢ is an open subset of R™. Write St,, for the
standard smooth structure on codom .

By the Local Property for Tangent Maps (Proposition 5.11), for each z € dom ¢,
the tangent map Typi, : Ty(dom ¢, S|dom ) — T5(M,S) is an R-isomorphism,
where i, : dom ¢ — M denotes the inclusion map. Taking disjoint unions,we get
a bijection of sets

(1) Tip: |J Te(domp,S|domy)— |J Tu(M,8)=pjis(dom ).
z€dom ¢ z€dom ¢
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Since ¢ : dom ¢ — codom ¢ is a diffeomorphism with respect to §|dom ¢ and
St,, for each z € dom ¢ the tangent map

Ty : Tp(dom ¢, S|dom @) — T z)(codom ¢, St,)

is an R-isomorphism and so, taking disjoint unions, we obtain a bijection of sets

(2) Ty : U T (dom ¢, S |dom ¢) U T (a) (codom ¢, Sty).
xz€dom ¢ z€dom ¢

Recall, from Example 5.6, the R-isomorphism 0,(;) : R™ — T, 4) (codom ¢, St,,)
for each = € dom ¢. Define

g(p(m) t{z} x R™ — Ty (g (codom ¢, St,)
by @Vw(m) (z,v) = Oy(z)(v). Taking disjoint unions, we get a bijection

3 0, dom ¢) x R™ — T, (z)(codom ¢, St,,).
@ w(z) ¥
rE€dom ¢

From the bijections in (1),(2), and (3) above, we get a bijection of sets
§=0"0(Tp)o (Ti)™" : pj}(dom ) — (dom ) x R™,

Give (dom ) x R™ the product topology. We give p;,[l s(dom ¢) the unique topol-
ogy for which @ is a homeomorphlsm Call this topology the @-local topology on

PM s(dom 90)

Proposition 8.14. Let (M,S) be a smooth m-manifold. Define TOP(M,S) to
be the collection of all subsets A of T(M,S) such that for every ¢ € E(M,S),
AN p;/fl, g(dom ) is open in the @-local topology. Then:

(a) TOP(M,S) is a topology on T(M,S).

(b) If ¢ € E(M,S) and U is open in dom ¢, then py; s(U) € TOP(M,S).

(c) For each ¢ € E(M,S), the subspace topology on p}\‘/}, s(dom ¢) induced by
TOP(M,S) is the @-local topology.
Proof. The proof of part (a) is immediate.

For any ¢ € £(M,S) and V C dom ¢, note that 1p(p s(V)) =9¢(V) xR™. If
V is open in dom 1, then @b( ) x R™ is open in (codom ¥) x R™ and so, since
¢ is a homeomorphism, py S(V) is open in the 1-local topology. In particular,
if U is open in dom ¢, then py; S(U N dom 1) is open in the 1-local topology,
ie. p]T/.,l’ sU)n pJT/Il’ s(w) is open in the 1-local topology. It follows that py, (U)
TOP(M,S). Part (b) follows.

Let ¢ € £(M,S). By part (b), ppj s(dom ) € TOP(M,S). If A € TOP(M,S),
then by definition of TOP(M,S), AN p;/.,l, g(dom ¢) is open in the ¢-local topology.
Part (c) follows. [

Unless otherwise stated, the topology on T(M,S) will be understood to be
TOP(M,S).
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Corollary 8.15. Let (M,S) be a smooth manifold. Then pys: T(M,S) — M is
continuous.

Proof. {dom ¢ | ¢ € E(M,S)} is a basis for the topology on M, and by Proposi-
tion 8.14(b), p;/fl,s(dom ®) is open in T'(M,S) for all p € E(M,S). O

Proposition 8.16. Let (M,S) be a smooth m-manifold. Then for each ¢ €
E(M,S):
(a) The diagram

p;,ll’ g(dom ¢) v (dom ¢) x R™
PM,S /
dom ¢

commutes.
(b) For each z € dom g, the restriction @ : Tp(M,S) — {z} x R™ is an R-
isomorphism.

Proof. Both parts follow from the fact that { is obtained by taking the disjoint
union over z € dom ¢ of the compositions

i)~ L 07,
Ta(M,8) =% T, (dom o, S|dom )~ Ty (codom g, Sty) —2 {g} x R™

and each map in this last composition is an R-isomorphism. [l

As a consequence of Proposition 8.14, Corollary 8.15, and Proposition 8.16,
(R™,T(M,S), M,pu,s) is an m-plane bundle with linear atlas {¢ | ¢ € £(M,S}.
To prove that this vector bundle is the underlying vector bundle of a smooth vector
bundle, it remains only to prove that any two charts in {¢ | ¢ € E(M,S} are
linearly S-related.

Lemma 8.17. Let (M,S) be a smooth m-manifold and suppose @, € E(M,S).
Let gy ¢ (dom pNdom ) xR™ — (dom ¢Ndom 3} xR™ be given by gy v (z,y) =
(z, D(¥o™")(0(z))(y)). Then the diagram

(dom ¢ Ndom %) x R™

Py1.s(dom @ N dom 1) o

/
—

(dom ¢ Ndom ¥) x R™

commutes.
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Proof. If U is open in M and z € U, T;(M,S) is canonically identified with

Tx(U,S|U) via the Local Property (Proposition 5.11) and with this identifica-
tion, the maps Tyi, and Tyiy appearing in the definitions of ¢ and 1 become
the identity maps. It follows that ¢ and % are given as follows: For u € pX,Il, s(®),

®(u) = (x,v) where v € R™ is the unique element such that 6, (v) = Tz¢(u), and

P(u) = (z,w) where w € R™ is the unique element such that Oy (z)(w) = Tpip(u).
Thus it remains only to show that for z,u, v as above,

Oy (D (W™ ((p(2)) (v)) = (Tth) (w).
By Proposition 5.12 we have the commutative diagram

R™ D(ype™ ") (#(z) R™

9<p(m>i l%(m)

Tp(z)(codom ¢ N codom ) —————— T,y (codom ¢ N codom ) .
Tcp(z) (’lP‘P_l)

Thus

0o (D (™) (#(2))(2)) = Tie) (™) (B (v)
= Tpiay (99 ) (Top) (w) = (L) (). O

Corollary 8.18. Let (M, S) be a smooth m-manifold. Then for any charts ¢, €
E(M,S), ¢ and ¢ are linearly S-related.

Proof. Since  and 1 are smoothly related, the overlap map e ~! is C*°. Thus all
partial derivatives of the coordinate functions of ¥¢p~! are C*, and so the 9y, Of

Lemma 8.17 is C°, i.e. {5@‘1 isC*. 0O

As a consequence of Proposition 8.14, Corollary 8.15, Proposition 8.16, and
Corollary 8.18, {¢ | v € E(M,S)} is a linear S-smooth atlas for the vector bun-

dle (R™,T(M,S),M,pm,s). Write S for its linear S-smooth equivalence class.
Summarizing,

Theorem 8.19. Let (M,S) be a smooth m-manifold. Then
(R™,T(M,S),(M,S),pu,s,S)

is a smooth m-plane bundle. [

Definition 8.20. Let (M,S) be a smooth m-manifold. The smooth m-plane
bundle of Theorem 8.19 is called the tangent bundle of (M, S), and denoted 7,s.

It follows from Theorem 4.34 that that there is a unique smooth structure
Tanpy,s on T(M,S) such that for each p € E(M,S),

@ pX,Il’S(dom @) — (dom ) x R™
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is a diffeomorphism with respect to T'any; s and S x St where St denotes the
standard smooth structure on R™. Thus (T(M , S),TanM,S) is a smooth 2m-
manifold.

Suppose (M, S) and (N,7T) are smooth m- and n-manifolds, respectively, and
that f: M — N is smooth with respect to S and 7. Let T'f : T(M,S — T'(N, T)
be the function obtained by assembling the tangent maps T, f for x € M, i.e. T'f
is the unique function such that for all x € M, the diagram

Tof
To(M,8) — Tj)(N, T)

| |

T(M,S) T(N,T)

commutes, where the vertical maps are the inclusion maps. Our next task is to
show that T'f is smooth with respect to T'any,s and Tany, 7.

Lemma 8.21. Let (M,S) and (N, T) be smooth m- and n-manifolds, respectively,
and f: M — N a smooth map with respect to S and T. Suppose ¢ € E(M,S) and
Y € E(N,T) are such that f(dom ¢) C dom 1. Then the diagram

p}T/fl,S (dom ) —— (dom ¢) x R™ 2% —= (codom ¢) x R™
Ty l Lo
p;,,lT(dom P) ——> 3 ——> (dom ) X R” (codom ) x R™

commutes, where 1, and 1, are the identity maps on R™ and R™, respectively,

and U,pp(y, 2) = (fe™ (y), D fe™)(y)(2)).
Proof. Let € dom ¢ and v € T(M,S). Then
('l,b X 1n)QZTf('U) = ("/) X 1n)"ZTzvf(v) = ('l/) X 111,)( (:I}) aqpf(m)Tf(a:)"anmf(v))

= (¥f(2), 055y Te (W) (0)) = (W (z), D& ) ()85 (v))
(by Proposition 5.12),

while
lf"Pa'§b (SO x lm)g(’l}) = lf"Pﬂ/) (‘p x 1 )(w 0(,0({1:) mgO(’U))

= lf,cp,d)((P X 1m) (:L', Dy(x) :-8-1(,0))
(by Proposition 5.12)

= U0 (¢(@), Dp(2)0;(v)
= (wfe™ e(a), D Fe™) (p(@) Dp(@)0; (v))

= (¥f(x), D) ()65 (v))
(by Theorem 3.20),

completing the proof. [



Theorem 8.22. Let (M,S) and (N,T) be smooth m- and n-manifolds, respec-
tively, and suppose that f : M — N is smooth with respect to S and T. Then
Tf:T(M,S)— T(N,T) is smooth with respect to Tanpr,s and Tany 7.

Proof. By Proposition 4.19(b) it suffices to show that whenever ¢ € &(M,S)
and ¢ € E(N,T) are such that f(dom ¢) C dom ®, then the restriction T'f :
p;,fl, s(dom @) — py'(dom 9) is smooth. Since the horizontal maps in the dia-
gram of Lemma, 8.21 are diffeomorphisms, it suffices, by Lemma 8.21 to check that
lf.op is C®. By smoothness of f, it follows that ¥ fp~! is C*°. Since partial
derivatives of C* functions are C®, D(¢fp~!) is C>°. It follows that Iy, is
c>. O

Summarizing Definition 8.20 through 8.22 we have:

Theorem 8.23. Let (M,S) and (N,T) be smooth m- and n-manifolds, respec-
tively, and suppose that f : M — N is smooth with respect to S and 7. Then
7f:mms — TnT given by (tflg =Tf:T(M,S) - T(N,T),(tf)e=f: M —> N
is a smooth vector bundle homomorphism. [J

As a consequence of Proposition 5.9 we have:

Proposition 8.24. Let (M,S), (N,T), and (Q,U) be smooth manifolds. Suppose
f:M — N,g: N — @ are smooth maps with respect to S and T, T and U,
respectively. Then:

(a) TlM = 17-M’S.

(b) 7(gf) = (rg)(7f). O

If f is a smooth map, then Theorem 8.22 yields that T f is smooth, and so we
can consider T(T'f). We proceed to obtain some information about latter.

Lemma 8.25. Suppose U is open in R™, and V open in R™. Let Sty and Sty
denote the standard smooth structures on U and V', respectively. Suppose f : U —V
is smooth with respect to Sty and Sty. Then:

(a) The diagram

UxR™ —L >V x R

4

T(U,Sty) T T(V,Stv)

commutes, where T f (z,y) = ( f(z),Df (m)(y)), and 1y, 1y are the diffeomorphisms
arising from 1y € E(U,Sty), lv € E(V,Sty), respectively, by the construction
preceding Proposition 8.14.

(b) For all (z,y) € U x R™,

221w = (" i)

for some n X m matriz x depending on x and y.
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Prdof. Part (a) follows immediately from Proposition 5.12 and the construction
preceding Proposition 8.14.
Writing f1,..., fn for the coordinate functions of f,

T\f(CL‘, y) = <f1($)’ crey fn(w)) Zz Difl(m)yia ) Zz szn(w)yz>

as a function of the 2m variables z1, ..., Zm,¥1,...,Ym. Part (b) now follows from
Definition 3.2. O

Theorem 8.26. Let (M,S) and (N,T) be smooth manifolds and suppose f :
M — N is smooth with respect to S and T. Suppose x € M 1is such that T, f :
T, (M,S) — Tpz)(N,T) has rank r. Then for all y € Ty(M,S), the rank of
Ty(Tf) 1 Ty (T(M, S),TanM,g) — Tryy) (T(N, T),TanN,f[) is > 2r.

Proof. We first treat the case when M and N are open in R™ and R", respectively,
with their standard smooth structures. By Proposition 5.12, the diagram

R PI@ o

Gwl iof(:v)

To(M, 8) <= Ty) (N, T)

commutes. Since, by Theorem 5.13, the vertical maps are R-isomorphisms, the
ranks of T, f and Df(z) are the same, and so Df(z) has rank .

We can write ﬂ}(y) (z, %) for some z € R™. Applying Lemma 8.25(a) with
(M,S) and (N T) replacing (U, Styy) and (V, Sty), respectively, it follows from the
fact that 1,7 and 1y are diffeomorphisms, that rank T y(Tf) = rank Ty, (T f). By
Lemma 8.25(b), the latter has rank > 2 rank D f(z), completing the proof of the
special case when M and N are open subsets of finite-dimensional vector spaces.

For the general case, choose ¢ € E(M,S) and ¢ € E(N,T) such that z € dom ¢
and f(dom ¢) C dom 3. Write S, for S |dom ¢ and Ty, for 7 |dom 1. Note that
T(dom ¢,S,) = p;,_,l, g(dom ¢) and hence, by continuity of par,s, T(dom ¢, S,) is
open in T'(M, S). Similarly, T'(dom %, Ty) is open in T(N,T). Write f; : dom ¢ —
dom v for the restriction of f. By the Local Property, T,f = T,f1 where we
identify T;;(dom ¢, S,) with T5(M,S) and Ty (dom +, Ty) with Ty (N, T) via
the maps induced by the inclusions 4, : dom ¢ — M and iy : dom ¢ — N. Thus
rank T, f = rank T, f1.

Since T(dom ©,S,) is open in T'(M,S) and T(dom %, 7y) is open in T(N,T),

Ty(Tf) = Ty(T f1). Thus it remains only to show that rank T, (T'f1) > 2 rank T f1.

Since ¢ : dom ¢ — codom ¢ and ¥ : dom 9 — codom ¥ are bijective, there
exists a unique function f5 : codom ¢ — codom ¢ such that the diagram

dom ¢ _n dom

wl lw
codom ¢ e codom
2
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commutes. Write St,, and Sty for the standard smooth structures on codom ¢ and
codom 1, respectively. Since ¢ and ¢ are diffeomorphisms and f; is smooth, it
follows that fy is smooth, and that the diagrams

Ty
Ty(dom @, S,) ——=L2 o T}, 1y (dom b, Ty)

Tm<pl lel(m)TP
T,

o(z)(codom ¢, St,) T—>fo2(p(w) (codom %, Sty) ,
() f2

T(dom ¢, S,) — 2 T(dom 1, Ty)

| I

T'(codom ¢, St,) e T(codom 1, Styy)
2

Since the vertical maps in the first diagram are R-isomorphisms, it follows that
rank T; f1 = rank Ty fo.
Applying T to the second diagram, we obtain

Tr s, ) (TP) 0 Ty(T f1) = Trrp(y)(Tf2) 0 Ty(T0)-

Since ¢ and ¢ are diffeomorphisms, Ty, ) (T%) and T, (T'p) are R-isomorphisms,
and so rank Ty (T'f1) = rank Ty (T f2).

By the special case above, rank Ty, (T f2) > 2 rank (T,(;) f2). The assertion
follows. [

Corollary 8.27. Let (M,S) and (N,T) be smooth manifolds, and suppose f :
M — N is an immersion with respect to S and T. Then Tf : T(M,S) — T(N,T)
is an immersion with respect to Tany,s and Tany,T.

Proof. Say M is a k-manifold. Then for all z € M, rank T, f = k. It fol-
lows from Theorem 8.26 that for all y € T(M,S), rank T,(T'f) > 2k. Since
dimg Ty (T'(M,S8)) = 2k for all y € T(M,S), we must have rank, T,(Tf) = 2k.
Thus, since T (M, k) is a 2k-manifold, T'f is an immersion. O

We next consider the interaction between smooth submanifolds and the tangent
bundle.

Lemma 8.28. Let (M,S) be a smooth m-manifold and ¢ € E(M,S). Then:
(a) The composition

pJT/Il,s(dOm ©) s (dom ¢) x R™ Rdatg (codom @) x R™

is a Tanp,s-admissible chart, where 1, denotes the identity map on R™.

(b) Let X be a k-dimensional smooth submanifold of (M,S), and write Y for
the image of Ti : T(X,S | X) — T(M,S) where i : X — M denotes the inclusion
map. Suppose p € E(M,S) is an S-admissible k-chart for (M,X). Then the
Tanp,s-admissible chart constructed in part (a) is a Tany,s-admissible 2k-chart
for (T'(M, S),Y).
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Proof. Since pX,Il’ s(dom ¢) is open in T(M, S), (codom ¢) x R™ is open in the real
2m-~dimensional vector space R™ x R™, and both ¢ and ¢ are diffeomorphisms,
part (a) is immediate.

Regard RF as a subspace of R™ in the standard way. We will restrict to S-
admissible k-charts ¢ for (M, X) satisfying ¢(X Ndom ¢) = R* N codom ¢. For
such a ¢, write px : X Ndom ¢ — R* N codom ¢ for the restriction of ¢. Recall
from §6 that {ox | ¢ € E(M,S)} is a smooth atlas for X which represents the
smooth structure S| X.

Let 1 : X — M denote the inclusion map. Applying Lemma 8.21 to 1, px, and
v, we get the commutative diagram

P}T3|X(d0m 0x) 2> (dom px) x R* pxx (codom px) x RF

Til lli,wxxcp

PX/.rl,s(dom ) — (dom ) x R™ i (codom ¢) x R™.

Write ¢ for the Tanps s-admissible chart arising from part (a). Then T% maps
p;(,13| x(dom ¢x) onto Y Ndom 4. R¥ x R is a 2k-dimensional R-linear subspace
of R™ x R™, and it is easily checked that /; ., is the restriction of the inclusion
map R* x R¥ — R™ x R™. Since codom ¢px = R™ N codom ¢, it follows from
commutativity of the above diagram that (Y Ndom 1) = (R* xR*)Ncodom . O

Theorem 8.29. Suppose X is a k-dimensional smooth submanifold of a smooth
m-manifold (M,S). Let i : X — M denote the inclusion map. Then T% :
T(X,S8|X) - T(M,S) maps T(X,S|X) diffeomorphically onto a 2k-dimensional
smooth submanifold of T(M,S) with respect to the smooth structures Tany s|x
and Tanpy,s.

Proof. Let Y denote the image of Ti. By Lemma 8.28(b), Y is a 2k-dimensional
smooth submanifold of ((T'(M,S),Tan,s). Since i is an immersion by Theo-
rem 6.11, it follows from Corollary 8.27 that 7% is an immersion. Since 7% maps
T(X,S|X) bijectively onto the smooth manifold Y, the result is now immediate
from Proposition 6.17. [J

We return now to some general notions concerning vector bundles.

Definition 8.30. Let £ and n be vector bundles with the same base space B. A
vector bundle homomorphism f : £ — 7 is called a vector bundle isomorphism from
£ tonif fp = 1p and fg is a homeomorphism. If a vector bundle isomorphism
from £ to n exists, we say £ is isomorphic to 7.

If £ and 1 are smooth vector bundles, a smooth vector bundle isomorphism from
€ to n is a vector bundle isomorphism f : £ — 7 such that fg is a diffeomorphism.
If a smooth vector bundle isomorphism from £ to 7 exists, we say £ is smoothly
isomorphic to 7.

The proof of the following is easy and left as an exercise.
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Proposition 8.31. (a) Let £ be a (smooth) vector bundle. Then 1¢ is a (smooth)
vector bundle isomorphism.

(b) Let f : & — 7 be a (smooth) vector bundle isomorphism. Then f~':n — &
given by (f~Y)p = 1p (where B is the base space of both n and &) and (f g =

(fe) isa (smooth) vector bundle isomorphism.
(c) The composition of two (smooth) vector bundle isomorphisms is a (smooth)
vector bundle isomorphism. [

Corollary 8.32. Let B be a topological space (smooth manifold). Then the relation
“is (smoothly) isomorphic to” is an equivalence relation on the class of all (smooth)
vector bundles with nase space B. [J

Definition 8.33. Let ¢ = (V, E, (M, Su),p,S) be a smooth vector bundle. A
smooth section o of { is a smooth map o : M — E such that po = 1. Write I'(¢)
for the set of all smooth sections of &.

Proposition 8.34. Let ¢ = (F,E,(M,Suy),p,S) be a smooth vector bundle. Let
01,02 € I'(€) and k € R. Define 01 +02 : M — E and koy : M — E by
(01 + 02)(z) = o1(x) + 02(x), (ko1)(z) = koi(z) for all z € M, where the + and
scalar multiplication on the right-hand sides are those in the fiber p~(z). Then
o1+ o2 and ko are both in I'(€).

Proof. The only question is the smoothness of o1 + o9 and ko;. It suffices to
check this locally. Since the Uy, as ¢ ranges over the linear S-admissible charts for
(F,E, M, p) form an open cover of M, and that each such ¢ is a diffeomorphism,
it suffices to check that for each such ¢, the compositions

(1) U, 2% -1 (u,) £~ U, x F
and
(2) Up =2 p=1(Uy) —2 Uy x F

are both smooth.
Using the fact that ¢ is R-linear on fibers, one checks that the composition in
(1) equals the composition

Uy —2> U, x Up 2225 p=1(U,) x p~HU,,) 22> (U, x F) x (U, x F)

p- lU‘P X add
T U, XxFXF—2 S U,xF

where A is the diagonal map, 7 is given by m((u1, f1), (ug, f2)) = (u1, f1, f2), and
add : F x F' — F'is given by add (f1, f2) = f1 + fo. Since all the maps in the
above composition are smooth, it follows that the composition in (1) is smooth,
and hence o1 + o5 is smooth.
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Similarly, the composition in (2) equals the composition

1
Up Lo g (U,) —2s Up x F— 2" L U, x F

where my : F' — F is given by my(u) = ku. All the maps in this composition are
smooth, and hence so is ko;. U

Proposition 8.35. Let £ be a smooth vector bundle. Then under the operations
of Proposition 8.34, T'(§) is a real vector space. O

Proof. Say ¢ = (F,E,(M,Sum),p,E). The only detail that needs checking is that
I'(¢) is non-empty. Define 0: M — E by 0(z) = 0, for all z € M where 0, is the 0-
element in the fiber p~!(z). Let ¢ be any linear S-admissible chart for (F, B, M, p).
Consider the composition

(1) U, —2> p~Y(U,) —2> U, x F,

We have m1¢0 = 1y, and map0 = constant map with value 0, both of which are
smooth. Hence the composition in (1) is smooth, and so 0 € I'(§). O

Except for the trivial cases where the base space or fiber is 0-dimensional, I'(¢)
is infinite-dimensional over R. For example, if £ is the product R-bundle over a
smooth manifold M, I'(€) can be identified with the real vector space of all smooth
real-valued functions defined on M.

Definition 8.36. A smooth vector bundle is trivial if it is smoothly isomorphic to
a product vector bundle.
A smooth manifold is parallelizable if its tangent bundle is trivial.

Proposition 8.37. Let{ = (F, E,(M,Sum),p,S) be a smooth n-plane bundle. The
following three conditions are equivalent:

(i) & is trivial.

(ii) & admits n smooth sections o1, .. ., oy such that for each x € M, the elements
o1(z),...,0n(z) are linearly independent in p~(z).

(iii) € admits a linear S-admissible atlas with exactly one chart.

Proof. Suppose (i) holds. We then have a fiber-preserving diffeomorphism f :
M x F — E such that for each z € M, the restriction f : {z} x F — p~(z)
is an R-isomorphism. Choose any R-basis vy,...,v, for F. For 1 < i < n let
7+ M — M x F be given by 7;(z) = (z,v;). Each 7; is clearly smooth. Define
o; = fri M — E for 1 <1 < n. Itis easily checked that the o; satisfy the
condition of (ii).

Suppose (ii) holds. Then for each z € M, 01(x),...,0n(x) is an R-basis for the
fiber p~1(z). Choose any R-basis vy,...,v, for F. Define ¢ : E — M x F as
follows: For each = € M, the restriction of ¢ to p~!(x) is the R-isomorphism onto
{z} x F which carries o;(z) to v; for 1 < i < n. Condition (iii) will follow if we
show that ¢ is a linear S-admissible chart for (F, E, M, p). Clearly, ¢ is bijective,
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the diagram

E L4 MxF

N A

M

commutes, and ¢ is an R-isomorphism on each fiber. Thus, to prove (iii), it re-
mains only to show that for each linear S-admissible chart v for (F, E, M, p), the
compositions

-1
Uy x F 2> p=Y(Uy) —2> Uy x F

and

-1
U¢ X FLp"l(Uq’b) ——-1/)—> U¢ x I

are smooth. (Since 9 is a diffeomorphism, smoothness, and hence continuity, of ¢
will be a consequence of the above.) Note that T1¢9~! = mpp~! = 1y, and so
it remains only to check smoothness of mepp~! and marpp~!

For 1 <i < nlet p; : F — R denote the i*" coordinate map with respect to

the basis v1,...,vp, i.e. p; (Z;.L:l tjvj) = t;. It suffices to check the smoothness of

pimaop~t and pymapp~t for 1 <i < m.
For all (z,v) € Uy x F and 1 < i < n we have

Piﬁz¢w_1($,v) = p1mapp! (w, zn: Pj(”)%’) = pimey (27‘: Pj(v)o'j(w)>
=1 i=1

(by the R-linearity of ¢! on fibers)

(by the R-linearity of v on fibers)

(
= pim2 <w, z“: p;(v) 2”: pr(m2tpo; (@)’Uk)

j=1 k=1

- ( S o3 ()ox(nato; (m))vk)

and so
n

pimatpp™! = (pjma) - (pimatpoymy).
=1
Since the p;my and p;meypo;m; are all smooth, the smoothness of pimoth™! follows

from the smoothness of the addition and multiplication maps R x R — R.
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Since o1(x), . ..,0n() is an R-basis for p~(z) for each z € Uy, we can write

n
(x,v;) Z aji(z)o;(x)
Jj=1

for 1 <4 < n for unique functions a;; : Uy — R. We check next that the aj; are
smooth.

Since ¢~! is an R-isomorphism on fibers, it follows that for each z € Uy,
Yz, v1),...,% Y (z,v,) is an R-basis for p~!(z). Thus there exist functions
bji : Uy — R such that

oi(z) =Y bu(@)p(z,v5),

j=1

and , )
(1,11(113) aln(a;) bll(w) bln(x)
an(@) .. () b (@) ... bon(z)

Thus, since the aj;(z) are rational functions of the bg;(x) with non-vanishing de-
nominators, it suffices to show that the b;; are all smooth.
We have

pjmathoi(x) = pimah (Z bri(z)y (=, Uk)) = pjmepyp ™! (w, Z bki(“’)“k)
k=1

k=1
(since 9~ is R-linear on fibers)

=p; (é bki(a;)vk) = bji()

and so b;; = p;matpo; which is smooth, establishing the smoothness of the aj;.
We have, for each (z,v) €e Uy x Fand 1 <i<n,

pimapp (2, v) = pimapyp ™! (CC, Z Pj(v)vg) = pmzw(z Pj(U)¢~1($,vj))
j=1 j=1

(since 1! is R-linear on fibers)

- pmso(z: e ,; oxs(@)on(s)
= pma(=30 Y m@asstan) =3 X meassen)

=1 k=1 J=1 k=1

= Z pi(v)a;;(z Z pima(z, v)aiim(z, v)
j=1

j=1
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and so

pimapp ™t = (pima) - (aigm),

which is smooth, completing the proof that condition (ii) implies condition (iii).

Suppose condition (iii) holds. Then there exists a linear S-admissible chart
w: E — M x F. It is immediate that ¢ is the map on total spaces for a smooth
vector bundle isomorphism from £ to the product bundle over M with fiber F.
Thus condition (i) holds. O

The proof of the following proposition is easy.

Proposition 8.38. Let f: & — n be a smooth vector bundle isomorphism. Then:

(a) If o is a smooth section of &, then fgo is a smooth section of .

(b) The function I'(§) — I'(n) which sends o to fro is a bijection.

(¢) If 01,...,0n € (), then for each x in the base space of &, o1(x),...,0n(T)
are linearly independent if and only if fro1(x),..., feo.(z) are linearly indepen-
dent. O

Definition 8.39. Let (M,S) be a smooth manifold. A smooth vector field on
(M, S) is a smooth section of the tangent bundle 7as,s.

Thus by Proposition 8.37, a smooth m-manifold (M, S) is parallelizable if and
only if (M, 8) admits m smooth vector fields which are linearly independent at each
point of M. Note that each open subset of a real finite-dimensional vector space is
parallelizable since, by Example 4.5 and Definition 8.20, its tangent bundle admits
an admissible atlas with exactly one chart.

It can be shown, using algebraic topology, that if n > 2 is even, every smooth
vector field on S™ must be 0 at some point of S™. If n is odd, S™ admits a
smooth vector field which is nowhere 0 (see Exercises for §8). Using some rather
heavy machinery from algebraic topology, it has been proved that for n > 1, 8™ is
parallelizable if and only if n =1,3, or 7.

Exercises for §8

1. Let (Fy, By, B1,p) and (Fa, Es, Ba,p2) be vector bundles. Show that (F) x
Fy, By X B9, By X Bg,p1 X p2) admits a vector bundle structure.

2. Let ¢ = (F,E, B,p) be an n-plane bundle and f : X — B a continuous map.
Define f*E = {(z,e) € X x E | f(z) = p(e)}. Define ¢: f*E — X by q(z,e) = z.
(a) Prove that f*¢ = (F, f*E, X, q) admits the structure of an n-plane bundle.
(b) Define f : f*E — E by f(z,e) = e. Prove that f and f constitute a vector
bundle homomorphism from f*¢ to &.

3. A Lie group is a smooth manifold (G, S) such that G is a topological group for
which the multiplication map G x G — G is smooth with respect to S x S and S,
and the inversion map G — G is smooth with respect to S and S. For example,
GL,(R) and O(n) are Lie groups under matrix multiplication; R" is a Lie group
under addition. ‘

Let (G,S) be a Lie group. For each g € G, let Ly : G — G be given by
Lg(z) = g=.
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(a) Prove that L, is a smooth map.

(b) Write e for the identity element of G. For each fixed v € T,(G,S) define
oy : G — T(G,S) by oy(g9) = TLg(v) for each g € G. Prove that o, is a smooth
vector field on (G, S). (The main point here is the smoothness of o,.)

(c) Prove that (G, S) is parallelizable.

4. (a) Show that if n > 1 is odd, S™ admits a nowhere-zero smooth vector field.

(b) Show that if n = 3 (mod 4), n > 3, then S™ admits 3 smooth vector fields
01, 02, 03 such that for all z € S™, 1(z), o2(z), o3(x) are linearly independent over
R. In particular, S2 is parallelizable.

5. The purpose of this problem is to illustrate the relation between smooth vec-
tor fields and differential equations. Recall the following theorem from ordinary
differential equations:

Existence Theorem. Let g1,...,g, be smooth real-valued functions defined on an
open subset U of R™, and let a € U. Then there exists a § > 0 and a smooth map
F={f1, -y fn) : (=6,0) = U such that for all t € (—0,6) and 1 <1i <,

fi®) =gi(f2t),..., fa(t)) and f;(0) = as.

Now let (M, S) be a smooth manifold and suppose o : M — T(M, S) is a smooth
vector field. A smooth map « : (a,b) — M, where (a, b) is an open interval, is called
an integral curve for o if for each t € (a,b), Tya(64(1)) = o(e(t)). Prove that for
each zo € M, there exists an integral curve o : (=, 8) — M for o (for some ¢ > 0)
such that a(0) = zo.

6. Prove that the atlas A,, of Example 8.3 is linearly smooth.

7. Prove that the atlas of Example 8.4 is linearly smooth.
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9. CATEGORIES AND FUNCTORS

Definition 9.1. A category C consists of:

(i) A class Ob (C) whose members are called the objects of C.

(ii) For each ordered pair (X,Y) of objects of C, a set C(X,Y) called the set of
morphisms in C from X toY. If « € C(X,Y), we call X the domain of o (denoted
dom «) and Y the codomain of o (denoted codom ). We also write o : X = Y
or X 2+Y to denote the statement that o € C(X,Y).

(iii) For each ordered triple (X,Y, Z) of objects of C, a function

C(X,Y) x C(Y, Z) — C(X, Z).

We denote the image of (o, §) under this function by Sa and call it the composition
of o and .

(iv) We require that whenever a € C(W, X), f € C(X,Y), and v € C(Y, Z),
then v(8a) = (v8)o.

(v) We require that for each object X of C there exist a morphism 1x € C(X, X)
with the property that alx = a whenever a € C(X,Y) and 1x8 = [ whenever
B € C(Y,X) for all objects Y of C.

Example 9.2. The category of sets, Set, is as follows: Ob (Set) consists of all sets.
If X,Y € Ob(Set), then Set(X,Y) is the set of all functions from X to Y. The
composition of morphisms is the usual composition of functions.

Example 9.3. The category of topological spaces, Top, is as follows: Ob (T'op)
consists of all topological spaces. If X, Y € Ob(T'op), then Top(X,Y) is the set
of all continuous maps from X to Y. The composition of morphisms is the usual
composition of functions.

A variant of this, important for homotopy theory, is the category of based or
pointed topological spaces Top,. Ob (Top,) consists of all ordered pairs (X,z¢)
where X is a topological space and zg € X. If (X, o), (Y,y0) € Ob(Top,), then
Top*((X, zo), (Y, yo)) is the set of all continuous maps f : X — Y such that
f(zo) = yo. The composition of morphisms is the usual composition of functions.

An important related example is the based homotopy category Hty.. The objects
of Hty, are the same as the objects of T'op.. However, Hty, ((X, o), (¥, yo)) does
not consist of functions . A morphism from (X, zg) to (Y, yo) is a based homotopy
class of morphisms in Top*((X, Zo), (Y, yo)). The composition of morphisms is
given by taking based homotopy classes of the usual composition of representative
maps.

Example 9.4. The category of smooth manifolds, Sm, is as follows: Ob(Sm)
consists of all smooth manifolds. If (M,S) and (N, T) are smooth manifolds, then
Sm((M,S),(N,T)) is the set of all maps f : M — N which are smooth with
respect to S and 7. The composition of morphisms is the usual composition of
functions.

Example 9.5. The category of groups Gr is as follows: Ob (Gr) consists of all

groups. If X, Y € Ob(Gr), then Gr(X,Y) is the set of all group homomorphisms

from X to Y. The composition of morphisms is the usual composition of functions.
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Example 9.6. The category of abelian groups Ab is as follows: Ob (Ab) consists of
all abelian groups. If X, Y € Ob (Ab), then Ab(X,Y) is the set of all group homo-
morphisms from X to Y. The composition of morphisms is the usual composition
of functions.

More generally, let R be a ring. We can form the category of left R-modules
R\Mod (respectively, the category of right R-modules Mod/R), where the objects
are left (respectively, right) R-modules and the morphisms are left (respectively,
right) R-homomorphisms. The composition of morphisms is the usual composition
of functions. If F is a field, write V.Sp = F\Mod, the category of vector spaces
over F'.

Example 9.7. The category of vector bundles Vect is as follows: Ob (Vect) con-
sists of all vector bundles. If £ and n are vector bundles, Vect({,n) consists of
all vector bundle homomorphisms from £ to 7 as defined in Definition 8.5. The
composition of morphisms is the composition of vector bundle homomorphisms as
given in Proposition 8.6(b).

We can also form the category of smooth vector bundles SmVect whose objects
are smooth vector bundles (Definition 8.10), whose morphisms are smooth vector
bundle homomorphisms (Definition 8.12) and with composition of morphisms as in
Proposition 8.13(b).

Commutative diagrams are frequently used to express equality of compositions
of morphisms.

Definition 9.8. Let C and D be categories. A covariant functor from C to D
consists of:

(i) A rule which assigns to each object X of C an object F'.X of D.

(ii) A rule which assigns to each morphism a : X — Y in C a morphism Fo :
FX —- FY in D.

(iii) We require that whenever a € C(X,Y) and 8 € C(Y, Z), then F(fBca) =
(FB)(Fa).

(iv) We require that for each object X in C, F(lx) = 1p(x).

We will sometimes write F' : C'— D to denote the statement that F' is a functor
(covariant as defined above, or contravariant as defined later) from C to D.

Example 9.9. Theorem 8.23 and Proposition 8.24 can be summarized by saying
that 7 is a covariant functor from the category of smooth manifolds to the category
of smooth vector bundles.

Example 9.10. The rule which assigns to each based topological space (X, xo)
its fundamental group w1 (X, zo) and to each based continuous map f : (X, zo) —
(Y,y0) the induced homomorphism 71 f = fi : m1(X, 2o) — 71(Y, yo) is a covariant
functor m; : Top, — Gr.

Example 9.11. If G is a group, let I'G denote the commutator subgroup of G. If
f: G — H is a group homomorphism, then f(I'G) C I'H and so, by restriction,
we get a group homomorphism I'f : I'G — ['H. It is easily seen that we obtain a
covariant functor I' : Gr — Gr.
Since I'G is normal in G, we can form the quotient group G/I'G, which is abelian
and which we now denote by AG. A group homomorphism f as above induces, on
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passing to quotients, a group homomorphism Af : AG — AH. It is easily checked
that we obtain a covariant functor A : Gr — Ab, the abelianization functor.

Example 9.12. For any category C' we have the identity functor 1¢ on C given
by 1¢X = X for all objects X of C and 1ga = « for all morphisms « in C.

Definition 9.13. Let C and D be categories. A contravariant functor from C to
D consists of:

(i) A rule which assigns to each object X of C an object F.X of D.

(ii) A rule which assigns to each morphism o : X — Y in C' a morphism Fo :
FY — FX in D (note the direction reversal).

(iif) We require that whenever o € C(X,Y) and 8 € C(Y, Z), then F(Ba) =
(Fo)(FB).

(iv) We require that for each object X in C, F(lx) = 1p(x).
Example 9.14. Let F be a field. The rule which assigns to each vector space
V over F' its dual space V* = Homp(V, F') and to each F-linear transformation
a:V — W its dual map o* : W* — V* is a contravariant functor from V S¢ to
V Sr. We leave the proof of the following proposition as an exercise.

Proposition 9.15. Let C, D, and E be categories and suppose F : C — D,
G : D — E are functors (of either type). Then GF' : C — E given by the rules
(GF)(X) = G(F(X)) for each X € Ob(C) and (GF)(a) = G(F(a)) for each o €
C(X,Y) is a functor. GF' is covariant if F' and G are either both covariant or both
contravariant, and contravariant if one is covariant and the other contravariant. [

Exercises for §9

1. Prove Proposition 9.15.

2. Let C and D be categories and F,G : C — D covariant functors. A natural
transformation T' from F to G is a rule which assigns to each object X of C a
morphism TX : FX — GX in D such that whenever e : X — Y is a morphism in
C, the diagram

rx -2% py

r| |ov

GX—G;?GY

commutes.

(a) Let K be a field and F : VSg — VSk the double dual functor, i.e.
FV = (V*)* for all vector spaces V over K, and Fa = (o*)* for all K-linear
transformations o. For each vector space V over K, define TV : V — (V*)* by
the rule (TV)(v)(A) = A(v) for all v € V and A € V*. Show that T is a natural
transformation from the identity functor 1y g, to F.

(b) For each group G, let TG : G — G/T'G denote the natural projection, where
the notation is as in Example 9.11. Let I : Ab — Gr denote the inclusion functor
from the category of abelian groups to the category of groups, i.e. IG = G for each
abelian group G and Ia = « for each homomorphism of abelian groups o. Show
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that T is a natural transformation from 1g, to A where A is the abelianization
functor.

3. Let C be a category. The opposite category to C, denoted C°P, is defined as
follows: Ob (C°P) = Ob (C); if X, Y € Ob(C°P), then C°P(X,Y) = C(Y,X). We
define a composition law - for C°P as follows: If o € C°P(X,Y) and 8 € C°P(Y, Z),
then 0. a = aff where the composition on the right-hand side is the composition
in the category C. For each X € Ob (C°P) define 1x € C°P(X,X) to be the same
as the 1x € C(X, X).

(a) Show that C°P is a category.

(b) Show that Op : C' — C°P given by the rules Op(X) = X for all X € Ob (X)
and Op(a) = « for all morphisms « in C is a contravariant functor from C to C°P.

(c) Show that (C°P)°P = C.

4. Let C and D be categories. Define C' x D as follows:
Ob (C x D) = Ob(C) x Ob (D);
if (X,Y), (X',Y') € Ob(C x D), then
(Cx D)((X,Y), (X', Y") =C(X,X") x D(Y,Y").
Define a composition law
(C x D)((U, V), (W, X)) x (C x D)((W, X), (¥, 2)) = (C x D)((U, V), (¥, 2))

by sending ((e, 8), (¢, 8')) to (¢/, 'B). For (X,Y) € Ob(C x D) define 1(x vy =
(1x,1y). Show that C x D is a category.

5. Let K be a field. Define F': VS}’{p x VS8g — V Sk as follows: For vector spaces
X and Y over K, F(X,Y) = Homg(X,Y). If o : X' - X and 8:Y — Y’ are
K-linear transformations, then

F(a,B) : Homg(X,Y) — Homg (X', Y")

is given by F(a, 8)(v) = Bya. Show that F' is a covariant functor.
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10. EXTERIOR ALGEBRA

This section deals with some multilinear algebra which will be needed in the
sequel. Throughout this section, all vector spaces and linear transformations are
assumed to be in the category V Sg of vector spaces over R.

Definition 10.1 Let V be a vector space and k a positive integer. Write V* for
the k-fold cartesian product

Vx..xV.
N e’
k
A function f : Vk — R is said to be k-linear if for each 1 < i < k and each fixed
(k — 1)-tuple (v1,...,vk—1) of vectors in V, the function V' — R which sends z to
f(v1,. ..y Vi1, 2,04 . . ., Ug—1) 18 a linear transformation.

Thus a 1-linear map V — R is simply a linear transformation from V to R.
However, if k > 1, a k-linear map is not a linear transformation. For example, if

f:V xV — R is 2-linear, it is not true (except for trivial cases) that f ((w, z) +
4,2)) = F(w,2) + f(y,2). In fact,

7((w,0) + ,2)) = flw+y,3+2) = flw,2+2) + g, 2 +2)
= f(w,z) + f(w,2) + f(y,2) + f(y,2)

using additivity of f in each variable separately. (Tensor products could be intro-
duced here to pass from k-linear maps to linear maps, but this will not be necessary
for what follows.)

For k > 1 let ¥}, denote the k** symmetric group, i.e. the group of permutations
of {1,...,k}. Recall that for each o € I the sign of o, denoted sgn (¢ ), is defined
to be 1 if o is expressible as a composition of an even number of transpositions,
and —1 if o is expressible as a composition of an odd number of transpositions.
Definition 10.2. A k-linear map f : V¥ — R is said to be alternating if for all
(v1,...,v5) € V¥ and all o € 3y,

F (Vo) s Vo)) = sgn (o) f(v1,. .., uk).

We will refer to such a map as an alternating k-linear map on V.

Example 10.3. Let V = R™ and regard the members of V as column vectors. For
(v1,...,v,) € V™, let

('01 ’Un)
denote the n X n matrix whose columns are vi,...,v,. Define f: V"™ — R by
f(vr,...,vp) =det (v1 ... vy).

Then f is an alternating n-linear map on V.

Example 10.4. Every R-linear map f : V — R is an alternating 1-linear map on
V.
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Example 10.5. Let f : V¥ — R be k-linear. Define Af : V¥ — R by

1
Af(vy,...,ux) = i Z sgn(a)f(va(l),...,vg(k)).
' 'JEZk

It is easy to check that Af is an alternating k-linear map.
1 . . :
The factor T is not essential to get an alternating map. However, by including
it we have the nice property that a k-linear map f is alternating if and only if

Af = f.
Definition 10.6. The set of all alternating k-linear maps V* — R is called the
k™ exterior power of V, and denoted A* (V).

Caution: There are a number of different notational conventions used in various
treatments of exterior algebra. In particular, the notation A*(V') means something
different in some treatments; what we have denoted by A*(V') is sometimes denoted
AF(V*) elsewhere. There are also different definitions of the wedge product (defined
below) in common use. It is usually straightforward to translate from one conven-
tion to another. Sometimes numerical constants have to be thrown in to get a
correct translation. This should be borne in mind when reading other sources. The
notation and conventions used here are consistent with those used in R. Abraham.,
J.E. Marsden & T. Ratiu, Manifolds, Tensor Analysis, and Applications.

Note that A*(V) is a real vector space under ordinary addition of real-valued
functions, and ordinary multiplication of real-valued functions by real constants.

Example 10.7. AY(V) = V*, the dual space of V.
Definition 10.8. A°(V) =R for all V.

Definition 10.8 fits in well with the above scheme. If we think of V' as the one
element set consisting of the unique O-tuple (), every function V0 — R is O-linear
and alternating, and we identify each such function with its image in R. We leave
the proof of the following proposition as an exercise.

Proposition 10.9. Let o : V — W be a real linear transformation. Let f €
A*(W). Then the composition

vk 2wk LR

where
a®(v1,... ) = (a(vy), ..., o(vk)),

lies in A*(V). Moreover, if we denote the above composition by A*(a)(f), the
function

AR (@) : AF(W) — AF(V)
is a real linear transformation. [

Note that when k = 0, a® = 1¢(); and so A%(a) = 1g for all linear transforma-
tions o.
We leave the proof of the following proposition as an exercise.
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Proposition 10.10. For each k > 0, the rule which assigns to each real vector
space V its k™ exterior power A¥(V) and to each real linear transformation o the
linear transformation A*() is a contravariant functor A* : VSg — V Sg.

A coincides with the dual space functor. ,

A" is the constant functor A°(V) =R for all V, A°(a) = 1g foralla. O

Note that if f : V/ — R is j-linear and ¢g : V¥ — R is k-linear, then f - g :
Vitk s R given by

(f ) g)('Ul, s ,Uj+k) = f('vla .. .,'Uj)g('vj+1, .. 'a,vj-i-k)

is (§ -+ k)-linear.
Definition 10.11. Let f € AJ(V), g € A¥(V) where j, k > 0. Define fAg €
AIFE(V) by

_ [tk

fAg= ST A(f - g).

f N g is called the wedge product of f and g.
Thus, if f € AJ(V) and g € A¥(V), then

1
(FAQ) (01, V) = o Y 580(0)f (o) Vo) 9 (o) - Vo leky)-

o€, 4k
For example, let f € A%2(V), g € AL(V). We have

S ={1,(12),(13),(23),(123), (132)}
and

sgn(l) =sgn(123)=sgn(132) =1,
sgn (1 2) =sgn(l3)sgn(23) =—1.

Thus

(f A g)(v1,v2,v3) = 2—,11-, (f('vl, v2)g(vs) — f(v2,v1)g(vs) — f(vs, v2)g(v1)

— f(v1,v3)g(v2) + f(v2,v3)g(v1) + f(vs, ’Ul)g(’vz)>

= %(f(’ul, ’Uz)g(’l):;) + f(’Ul, ’Uz)g(’l)3) + f('v2) ’1)3)9('01)

— f(o1,us)g(s) + f(v2,0)g(01) — £ (v1,v8)9(v2)
= f(v1,v2)9(v3) + f(ve,v3)g(v1) — f(v1,v3)g(v2).

Quite generally, the alternating character of f and g results in a reduction from

(4 +E)
jlk!
as a disappearance of the numerical factors, which motivates the reason for the
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numerical factors in Example 10.5 and Definition 10.11. We proceed to make this
precise.
A permutation o € 2j+k is called a (j, k)-shuffle if
oc()<o(2) < <o(fando(j+1)<o(j+2)< - <o(j+k).
Let Shuf (7, k) denote the set of (j, k)-shuffles. For example,
Shuf (2,1) = {1, (2 3), (1 2 3)}.
In general, Shuf (j, k) is in one-to-one correspondence with the set of j element
subsets of {1,...,7 + k} as follows: If S = {s1,...,8;} with 1 <51 <83 <+ <
s; < j+k, we associate with S the unique (4, k)-shuffle og satisfying os (i) = s; for
1<i<j.
Lemma 10.12. Let 0 : 3; X X — Xj4 be given as follows: For v € X, and
pE Y,
O(r, w)(@) = (i) if1<i<y,
Oru(G+i)=7+p@) fl<i<k
Then:
(a) sgn (6(r, 1)) = sgn (7)sgn (u). :
(b) Let ¢ : Shuf (4, k) X B; X Ly — Zj4i be given by p(o, 7, u) = 06(r, u). Then
© 18 a bijection.
Proof. Note that the sets {1,...,5}and {j+1,...,j+k} are both invariant under
6(r, 1), the restriction of 6(r, u) to {1 ..,J} is 7, and that the diagram

{1,...,k} —— {j+1,...,5+k}
ul le(wt)
{t,...;k} —— {i+1,...,5+k}

commutes. Thus if 7 is a product of r transpositions and p is a product of s
transpositions, it follows that 6(r, ) is a product of r + s transpositions, proving

part (a).
S N . : G+E)N .
ince the cardinalities of Shuf (j, k), ¥;, and Xy are, respectively, W, 7l
and k!, it follows that the cardinality of Shuf (j, k) x £; x L), equals the cardinality
of ¥;4+%. Thus, part (b) will follow if we show that ¢ is injective.

Suppose @(o1, 71, p1) = @(02, T2, t2). Then 01_102 = O(t1, p1)0(7, p2) L. Since
the sets {1,...,7} and {j +1,...,j + k} are both invariant under the 6(r;, y;) for
¢ =1, 2, it follows that these sets are also invariant under o log. We claim that
o1 1oy is order-preserving (and hence, the identity). For if not, there would either
exist p, ¢ such that 1 < p < ¢ < j with (07 02)(p) > (07 02)(q) or p, g such
that j +1 < p < ¢ < j + k with (o7 02)(p) > (07 02)(q). Suppose the first of
these occurred. Since o is order-preserving on {1, ..., 5} (since it is a (j, k)-shuffle)
it follows that o1 ((o7 *o2(p)) > o1((o7 02(q)), ie. o2(p) > 02(g), contradicting
the fact that o9 is order-preserving on {1,...,j}. Similarly, the second possibility
above is impossible. Thus o1 = o3, and hence (71, 1) = 0(72, po). Clearly, 6 is
injective, and so (11, p1) = (72, p2). O

96



Proposition 10.13. Let f € AJ(V), g € A¥(V). Then for all vy, ...,vj4k €V,

(f/\g)(vl" . "Uj'l'k) = Z sgn (a)f(va(l),' "7va(j))g(va(j+1)a o '7vd(j+k))-
o€&Shuf (4,k)

Proof. For notational convenience, abbreviate ('vp(l), ces ,vp(l)) by (’U|Zg))). Thus
we must show :

o(j o(i+k
(FAQ@L..vi) = . sen(0)f(l58)g(IZGTR).
o€Shuf (5,k)

Write S = Shuf (4, k) x X; x 2. We have

1 j j+k
(f /\g)(vl, s -,'Uj+k:) = .'7—"];7 Z sgn (P)f('”m?lg)g(”lzgil;)

PEX 4k
1 o0(T,u)(j ob(r,u)(j+k
TR > sen(o0(r,m)f (’Ulgag,ﬁg%)g (”[aegﬁgg%? )
(0,7)€S (by Lemma 10.12(b))
1 o7(j o(j k
=i > seu(o)sen(r)sen (W)l D) g (s In0)
(0,71 €S (by Lemma 10.12(a))
1 (g o(j+k
= 3" sen(o)sen(r)sen (1) sgn (NF (v173)sen () (0175 1H)

%!
S

1 o(i (i
R e
o, T, U4)E

1 . oj o(j+k
= . IWsen(0)f (lZ)e(lE)
o€Shuf (4,k)

<

(since f and g are alternating)

(since the cardinality of ¥; x Xy, is jlk!)

- sgn (0)F (W78 g @IgIE). O

o&Shuf (4,k)

Theorem 10.14. Let V be a real vector space. Suppose f € AH(V), g € AI(V),
h € A¥(V), and r € R. Then:

(8) fA(gAR)=(fAg)Ah.

(b) gnf=(=1)"fAg.

() Ifj=k, then fA(g+h)=fAg+ fAh.

(d) (rf)ng=FfA(rg)=r(fAg).

() INf=fAl=f wherel € A°(V)=R.

Proof. To prove part (a), define an (3, j, k)-shuffle to be a permutation ¢ € Xj4 ;4
such that

o(l)<o(2) < <o(i),

oi+1)<o(i+2)< - <o(i+7), and

oi+j+1)<o(i+j+2)< - <o(i+j+k).
97



Let Shuf (7, 7, k) denote the set of all (¢, j, k)-shuffles. We have bijections

o : Shuf (i, j + k) x Shuf (j, k) — Shuf (i, 4, k)

and
1 : Shuf (¢ + 7, k) x Shuf (4, 7) — Shuf (4, 7, k)
given by
e(r,w)(q) =7(q) if1<q<4,
o(r,w)(i+q) =7(i+w(g) f1<q<j+k,
and

Yo, w)(@)= pule) 1< q<i+y,
Yo, W)(Ei+i+q)=p(i+j+q if1<g<k

Note that sgn (¢(7,w)) = sgn (1) sgn (w) and sgn (Y(p, 1)) = sgn (p) sgn (). In the
summations below, o runs over Shuf (4, 4, k), 7 runs over Shuf (¢, j + k), w runs over
Shuf (j, k), p runs over Shuf (i + 7, k), and p runs over Shuf (¢, j). We employ the
abbreviated notation used in the proof of Proposition 10.13. For all v1,..., vy
we have, using Proposition 10.13,

(7 7o AR) (W) = 3 sen ()50 :é’;)))(gAh)(leEiii;“’“))

= Z sgn (1) f vIIE% DILC I LT il
-—Z sgn (o(7,w)) £ (v m%: z%é?» et T i A
- Z sgn (0)f v|§8))) Cleas T CTieEan)

= Z sgn (1(p, 1)) £ (0132200 9 (oI B m (ol o) D)

= Z sgn (p) (Z sgn (1) f (vlﬁﬁgi)))g(vl,’iﬁgﬁg)> B2 )
= z sgn (0)(f A 9) (UloGT ) (IS t)
= ((f A g) AR) (W] STITF),

proving part (a).

To prove part (b), let 7 be the (j,)-shuffle characterized by the property 7(q) =
i+qfor1 < ¢q < j(and thus 7(j+q) = g for 1 < g < ). Note that 7 is expressible as
the composition of 75 transpositions (successively, move each of j+1, 742, ..., j+i
to the left past 1, 2, ..., j). Thus sgn (1) = (=1)%. Note also that if o is an (i, j)-
shuffle, then o7 is a (4,1)-shuffle and that the map Shuf (¢, j) — Shuf(j,¢) which
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sends ¢ to or is a bijection. In the summations below, o runs over Shuf (%, j) and
p runs over Shuf (7, 7). We have

(9 A H)IT) ngn ORI CHARY
—ngn (o)g (WIZT) £ (wISrED)
= Z sgn (7) sgn (o)g(vli.’éiiii)f(v!iﬁi’))
=sn(r) 3 sen (v F@IZ)e(l76)

= (-1 )”(f/\g)(vlzf”),
proving part (b).
The proofs of parts (c) and (d) are easy exercises. ‘Part (e) is immediate from
the observationthat 1- f=f-1=f. O

Write A(V) = @ A¥(V). Theorem 10.14 can be summarized by the statement,
k

that A(V) is a graded algebra over R with unit, and is commutative (in the graded
sense). A(V) is called the exterior algebra or Grassmann algebra on V*.

As a consequence of the graded commutativity property (Theorem 10.14(b)) it
follows that if k is odd, then for all f € A*(V), fAf=—fAfandso fAf=0.
For k even, f A f is generally not 0.

The proof of the following proposition is easy and left as an exercise.

Proposition 10.15. Leta:V — W be an R-linear tmnsformatz‘on. Then for all
feN (W) and g e N(W), A (a)(f Ag) = A(a)(f) AN (a)(g). O

Propositions 10.15 and 10.9, together with the remark following the latter, can be
paraphrased by saying that the A®(a) constitute a homomorphism of commutative
graded algebras with unit over R. We can form the category CGAr of commutative
graded algebras with unit over R. Then Propositions 10.15 and 10.10 state that A
is a contravariant functor from V Sy to CGAR.

Lemma 10.16. Let k > 1 and suppose f € A*=1(V), g € AY(V). Then for all
V1,...,V% €V,

k
(.f /\g)(vla e .,'Uk) = Z (—l)k_if(vl’ S ’aia s ,’U]g)g(’l)i,)-
i=1

Proof. For 1 < i < k, let o; denote the (k — 1,1)-shuffle determined by o;(k) =
i. Then Shuf(k — 1,1) = {o1,...,0%}. Note that o; is a composition of k — ¢
transpositions (move k to the left past 4,4+ 1,...,k —1) and so sgn (o;) = (—1)k—*
for each ¢. Thus, by Proposition 10.13,

(fAg)(vi,...,v) = ZSgn(m (Vos(1)s + - -3 Voru(k—1)) 9 (Vors () )

)k zf Ul, ﬁ’i)"'avk)g(v’i)‘ O
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Theorem 10.17. Let k > 1 and suppose fi,...,fr € AY(V). Then for all
V1,...,0 €V,

(A A1 o) = Y san(0) fi(veq) - fr(vom).
cEX
Proof. Proceed by induction on k. The result is trivial for k¥ = 1. Suppose k > 1
and that the result holds for f; A--- A fx—1. By Lemma 10.16,
k

(¥) (A Afe) 1, ok) = D (DR (AA - Afoca) (V1,5 By o) ().

i=1
For1 <i<klet X; ={0 € Xy |o(k) =1} Then Xy is the disjoint union of the
X;. For 1 <4 < k we have bijections ¢; : ¥3_; — X; given by

7(5) if j <k-—1and 7(j) <1,
ei(r) =4{ 7()+1 if j <k—1and 7(j) >4,
i if j =k.
Thus, ¢;(7) is given by first moving 1,...,k — 1 via 7, and then moving k to the

left past 4,i+1,...,k — 1. Thus sgn (g;(7)) = (—1)*~*sgn (7).
For a fixed ¢ between 1 and k, let
{ v if1<j<i,
wj = o
’l)j_|_1 leS]Sk—l.
Then, by the inductive hypothesis,
(fl ARER /\fk—l)(vla" ')6’5)-- ')Uk) = (fl AREE /\fk——l)(wla" '7wk—1)

= Y sgn(n)fi(wr) - fro1(wr-1))

TELL 1

> sen()fi(ven) - o1 (e o-1)

TEL -1

and so
(D (A A A fom1) W1y, iy e, ) fr(02)
= > (=1 sgn (7)1 (Veyiryy)  +* Fom1 (Veu(ry o1y ) fi (03)

Ty
= e; 5g0 (£4(7)) f1 (Vs () *++ Fi=1 (Veu(r)e—1)) fi (Ves(ry ()
=2, _Sgn (@) f1 (o)) - fi(vorw)-

Thus, by (+), e

(fl/\"'/\J"'ic)(vl,---,vic)=;Y‘_,1 ;{ sgn (0) f1(vony) -+ - fr (Vo r))
= é_; Sgr; (@) f1(vo)) ** fr(Var)),

completing the induction. 0O
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Theorem 10.18. Suppose V is finite-dimensional over R, and { f1,...,fn} is an
R-basis of AL(V) = V*. Then for k >0,

{fil/\f12/\"-/\f7;k|1Si1<iz<"'<ikgn}

is an R-basis of A®(V).

Proof. Let {ey,...,en, } be the basis of V dual to { f1,...,fn }, 1.e. fi(e;) = d;; for
all 4, 5. Let
X={(01...,)|1<ia<ia< - <ig<n}

For I = (41,...,1x) € X, write fr = fiy A---Afi, and ef = (es,, ..., €5, ). It follows
from Theorem 10.17 that for I, J € X,

1 fI=J,
fﬂ”)z{o ;I#i

From the k-linearity and alternating properties, it follows that if g, h € A*(V), then
g =h if and only if g(er) = h{e;) for all I € X.

To prove that { fr | I € X} spans A¥(V), let g € A¥(V) and consider h =
D orex g(eI)fI. For each J € X we have h(eJ) =D rex g(e;)f;(ej) = g(eJ), and
s0 g =h. Thus { f; | I € X } spans A*(V).

To prove that { fr | I € X } is linearly independent, suppose r; € R are such
that ) ,cx rrfr=0. Let J€ X. Then 0=}, x rIfI(eJ) =ry. O

Corollary 10.19. Let V be n-dimensional over R. Then A¥(V) =0 fork > n
and for 0 < k < n, A¥(V) is (Z) -dimensional over R. In particular, A™(V) is
1-dimensional over R. L[]

Theorem 10.20. Suppose V is n-dimensional over R and let « : V — V be an
R-linear transformation. Then A™(a) : A™(V) — A™(V) is given by multiplication
by det(a).

Proof. Choose any basis {e1,...,e,} of V and let { f1,..., fn} be the basis of
V* dual to the above. By Theorem 10.18, A™(V) is 1-dimensional, spanned by
fiN--- A fn. By Propositions 10.15 and 10.10,

AMQ)(fi A+ A fa) = A @) (fr) A= A AN (@)(fn)
=a*(fi)) A ANt (fn).
Let A = (a;,;) be the matrix of a with respect to {e1,...,en }. Then the matrix of

a* with respect to { fi,...,fn} is the transpose of 4, and so o*(f;) = >, aiif;.
Thus

o (f A ANa*(fn) = (Z al,jfj) A A (Z an,jfj>

= Z 1,5y * Oy S0 N N f
Jtrendn
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Since f A f = 0 for all f € AL(V), it follows from graded commutativity of the
wedge product (Theorem 10.14(b)) that f;, A--+ A f;, = 0 unless (j1,...,Jn) is a
permutation of (1,...,n). Thus,

AYQ)(fi A Afa) = D 81,00 nomfe) A A fom).
oEL,

From Theorem 10.14(b) it follows that

oy N AN fomy =sgn(a)fi A+ A fn

and so

An(a)(fl ARER /\fn) = Z Sgn (0')(],1’0.(1) .. 'a'n,cr(n)fl AR /\fn
g€EX,

=det(a) fin---Afn. O

For each k > 0 and real vector spaces V and W we have a function
A* : Homg (V, W) — Homg (A*(W), A*(V))

which sends o to A¥(a). In general, A* is not a linear transformation (e.g. usually
det(a+p) # det(a)+det(B)). If V and W are both finite-dimensional over R, then
both Homg (V,W) and Hompg (A*(W), AF(V)) are finite-dimensional real vector
spaces, and hence have their standard smooth structures.

Theorem 10.21. If V and W are finite-dimensional real vector spaces, then for
each k > 0, the function

AF : Homg (V, W) — Homg (Ak(W)a AR(V))

is smooth with respect to the standard smooth structures.

Proof. Let {v1,...,vm } and {wy,...,w, } be R-bases for V and W, respectively,
and write { v},..., v}, } and {w?,...,w? } for the respective bases dual to these for
V* and W*. Let

X:{(Zl,a’[’k)llsl'fl<<7/k:§m}a
Y={(0Un,..ju)|1<i < <jrn}

For I = (i,...,1k) € X write vf = v}, A--- Av; and similarly define w} for
J €Y. Then by Theorem 10.18, {vj | I € X } and {w% | J € Y } are R-bases for
AF(V) and A*(W), respectively. Using the above bases on V and W we identify
Hompg (V, W) with the space of real n X m matrices. Similarly, using the above
bases on AF(W) and AF(V), Homg (A®(W), A¥(V)) is identified with the space of
real X x Y-matrices (i.e. the space of real-valued functions on X x Y).

Let o.: V — W be a real linear transformation with matrix (a;,), i.e. a(v;) =
> ajiwj. Let (Ar,s) be the matrix of AF(e), i.e. AF(a)(w}) = Yoy Ar,gv] for
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all J € Y. It suffices to show that the A; ; are smooth functions of the a;;. We
will see, in fact, that they are polynomial functions in the a; ;.
Let J = (j1,...,J%) € Y. We have, by Proposition 10.15,

W@ (u5) = (w5) Ao () = (3 aant ) Aveen (3 agnt )
i i
If I =(i1,...,%) € X, the contribution to the v} term in this last expression is

E : a'jl,’iau)via(l) ARRRRA ajk7ia(k)v’ia(k) = sgn (a)ajma(n Ajreriamy VI
oEY oEL

and 80 A1,y =} cx, 880(0)851,i,0 " ** Wiy ipqy» Which is a polynomial function in
the O O

It is interesting to note that the A; ; above is the determinant of the k x k
submatrix

Qj1,d0 Qjrge -0 Gy,
Qjayiv  Bgayia  + -+ Qjaig
Ajryir Bjryia oo Ajpyip

of (aj;)-
Exercises for §10

1. Let V be a real vector space and suppose fi,..., fr € V*.

(a) Prove that fi,..., fi are linearly independent over R if and only if fy A--- A
fe #0.

(b) Suppose fi,..., fr and g1,. .., g are two linearly independent k-tuples in V*,
Prove that the subspace of V* spanned by fi,..., fx is the same as the subspace
spanned by g1,...,9x if and only if f; A--+ A fi is a scalar multiple of g1 A+ - Agy.

2. Let V be a real vector space (not necessarily finite-dimensional over R), and o :
V — V an R-linear transformation. Suppose Ay, ..., A; are distinct real eigenvalues
of a. Prove that Aj )z - -+ A is an eigenvalue of A*(a).

3. Let V and W be finite-dimensional real vector spaces and o : V — W an R-
linear transformation. Prove that the rank of « is the largest positive integer k
such that AF(a) : AF(W) — A¥(V) is not the 0-map.
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11. EXTERIOR POWERS OF SMOOTH VECTOR BUNDLES

Definition 11.1. Let Q : VSr — VSgr be a contravariant functor (recall V. Sy
denotes the category of real vector spaces). @ is said to be a smooth contravariant
functor if QV is finite-dimensional over R whenever V is, and if V and W are
both finite-dimensional over R, the function @ : Homg (V, W) — Homg (QW, QV)
sending « to Qo is smooth with respect to the standard smooth structures.

Example 11.2. Tt follows from Theorem 10.21 that for each k£ > 0, A* is a smooth
contravariant functor.

Suppose @ : VSgr — VSR is a smooth contravariant functor and that
5 = (V) Ea (Ma SM)vp’ S)
is a smooth vector bundle. We wish to construct a new smooth vector bundle

Q¢ = (QV, QE, (M, Sm), g, Sa)

where, as a set, QE = ][ Q(p~'(z)) and pg : QF — M sends the points in
zEM
p~Y(z) to . Thus pél(m) = Q(p~*(z)). The idea is to construct linear charts

as follows: Let ¢ : p~1(U,) — U, x V be an S-admissible linear chart. For each
z € Uy, let ¢ : p~1(z) — V denote the composition

pHz) L {2} x V 2>V

Then each ¢, is an R-isomorphism, and hence Qp, : QV — Q(p“l(a:)) is an
R-isomorphism. Define ¢? : p5'(Uy) — Uy, x QV by ©%(y) = (z, Q)" (v))
whenever y € pél(x) = Q™ (z)).

Proposition 11.3. Let (M,S) be a smooth manifold and V, W finite-dimensional
real vector spaces. Suppose f: M xV — W is a function such that for each z € M,
the function fy : V. — W given by fy(v) = f(z,v) is an R-linear transformation.
Define ft : M — Homg (V, W) by f¥(z) = fo. Then f is smooth if and only if f*
is smooth.

Proof. Choose R-bases {v1,...,vm } and {wy,...,w, } for V and W, respectively.
For each z € M, let (a;,(x)) be the matrix of f, with respect to the above bases.

Thus forallz € M
f@,v) = fulv) = Z aj,i(z)w;.
J

The a;; : M — R are the coordinate functions of f# with respect to basis {&; ; }
where g ; : V — W is given by €; ;(vg) = d; sw;. Thus f¥is smooth if and only if
the a;; are all smooth.

Suppose f is smooth. For 1 < i < m, let ¢, : M — M x V be given by

ti(z) = (x,v;), and for 1 < i < nlet m; : W — R be given by = (Zq sqwq)= 8.
Then the ¢; and 7; are all smooth, and hence each =; fi; is smooth, i.e. each a;; is

smooth. Thus f* is smooth.
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Suppose, conversely, f! is smooth. Note that f is the composition

f
M x V2 Homg (V, W) x V =2

where eval : Homg(V,W) x V — W is given by eval (o,v) = a(v). The map
eval is smooth since its coordinate functions with respect to the wy are polynomial
functions in the coordinates with respect to the €; ; and wy. The smoothness of f
follows. [

Lemma 11.4. Let Q : VSr — VSr be a smooth contravariant functor, V, W
finite-dimensional real vector spaces, (M, Sps) a smooth manifold, and f : M XV —
W a smooth map such that for eachx € M, fu : V — W given by f,(v) = f(z,v) is
R-linear. Let g: M x QW — QV be given by g(z,y) = Qf:(y). Then g is smooth.

Proof. By Proposition 11.3, it suffices to show that g' : M — Homg (QW, QV) is
smooth. It is easily checked that g* is the composition

#
M L Homp (V, W) % Homg (QW, QV).

f* is smooth by Proposition 11.3, and Q is smooth by hypothesis. [

Lemma 11.5. Let Q : VSgr — VSr be a smooth contravariant functor and § =
(V,E, (M,Sm), p, 8) a smooth vector bundle. Let ¢ and i be linear S-admissible

charts. Then sz(goQ) “isa self-diffeomorphism of (U, NUy) x QV where p% and
¥»@ are as in the paragraph following Example 11.2.

Proof. Since the restrictions of ¢ and v to fibers are R-isomorphisms and @ is a
functor, it follows that the restrictions of % and 4@ to fibers are R-isomorphisms.
Thus 2 and 9% are both bijections, so it remains only to check the smoothness
of < (apQ)_l (the smoothness of (% (wQ)—l will then follow by symmetry).

Write U = U, N Uy. Since ¢ and 1 are linearly Sps-related charts, it fol-
lows that o™t : U xV — U x V is a diffeomorphism, mio~! = m, and
for each z € U, (mypp™)y : V — V (using the notation of Lemma 11.4) is
an R-isomorphism. Thus by Lemma 11.4, the map g : U X QV — QV given

by g(z,y) = Q((maw®™")z)(y) is smooth. Now (mapyp™')s = @ath;" and so

Q((m2p9p™1)e) = Qatz ) = QY3 1) Qs
We have

$2(p?) (@, y) = ¥2(Qea(v)) = (, (Qve) ' Qwa(y)) = (2, 9(z, 7))

and so both 7192 (¢¥) ' and moep® (¢9) ~! are smooth, completing the proof. [I

Theorem 11.6. Let Q) : VSr — VSR be a smooth contravariant functor and £ =
(V, E,(M,Su),p, S) be a smooth vector bundle. Let QE, pg : QE — M, and p%
for each linear S-admissible chart ¢ be as in the paragraph following Example 11.2.
Then:

(a) Let ']:SQ denote the set of all subsets A of QF such that ¢% (A ﬂpél (Uy)) is

open in U, X QV for each linear S-admissible chart p. Then ’Z:SQ s a topology on

QE.
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(b) Using the topology T, SQ on QFE, pg : QF — M s continuous.
(c) Using the topology 'Z:,;Q on QE, ¢? is a homeomorphism for each linear S-
admissible chart.

(d) The set of all o2, as o runs over the linear S-admissible charts, is a linearly
Su-smooth atlas for (QV,QE, M, pg).

Proof. Part (a) is immediate.

Suppose U is open in M. For each admissible ¢, ©% (pél(U )N pél(ULp)) =
(UNU,) x QV, which is open in U, x QV. Thus pél(U) is open in QFE, proving
part (b).

Let ¢ be a linear S-admissible chart. Clearly, ¢ is a bijection and an open
map. Thus it remains only to prove that ¢@ is continuous to establish part (c).
Let X be open in U, x QV. For each linear S-admissible chart 1,

(¥9) 70 N5t Uy) = (¢2) 7 (X 0 (U, NTy) x QV))
and so

$9 ((soQ)_l(X) ﬂpél(U¢)) =9 (p%) 7" (X N (U, N Uy) X QV)).

Since, by Lemma 11.5, 4@ (((pQ)_l is a self-homeomorphism (in fact, a diffeomor-
phism) of (U, NUy) x QV, and X N ((U, NUy) x QV) is open in (U, NUy) X QV,
it follows that 1 (p@) ™" (X N ((Uy NU) X QV)) is open in (U, NUy) x QV, and

hence open in Uy x QV, proving part (c).
Part (d) is an immediate consequence of Lemma 11.5. O

Corollary 11.7. Let Q : VSr — V.Sr be a smooth contravariant functor, and £ =
(V,E,(M,Sm),p,8) a smooth vector bundle. Then Q¢ = (QV,QE, (M, Su), So)
is a smooth vector bundle where Sq is the smooth equivalence class of the linear
Sp-smooth atlas { 9 | ¢ S-admissible}. O

In particular, for each smooth vector bundle £ and k > 0 we obtain a smooth
vector bundle A¥¢, the k! exterior power of €.

Proposition 11.8. Suppose C is a finite-dimensional real vector space and Q) the
constant contravariant functor with value C, i.e. QV = C for all real vector spaces
V and Qo = 1¢ for all R-linear maps . Then:

(a) Q is a continuous contravariant functor.

(b) If ¢ = (V, E, (M, S, p, S) is a smooth vector bundle, then Q€ is the product
bundle with fiber C' and the identity map on M x C is a linearly Sq-admissible
chart.

Proof. For all finite-dimensional real vector spaces V and W, @ : Homg(V, W) —
Hompg (C, C) is the constant map with value 1¢, which is smooth.
For ¢ as above, QE = [] Q(p~'(z)) = ][ C = M x C (the index coordinate
zeEM seM

for the disjoint union is needed here) and for each linearly S-admissible chart ¢,
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pél(Uw) = U, x C and % is the identity map on U, x C. It follows that the
identity map lyxco : QF — M x C is a diffeomorphism where QF is given the
smooth structure arising from Sg and M x C the product smooth structure. [

In particular, for any smooth vector bundle £, A%¢ is the product bundle with
fiber R.

Exercises for §11

1. f @ : VSr — VSR is a covariant functor, we can define what it means for @
to be smooth. Just make the obvious modifications in Definition 11.1. State and
prove analogues of Lemmas 11.4 and 11.5, Theorem 11.6, and Corollary 11.7 for
smooth covariant functors.

2. Show that if @ : VSg — VSgr is a smooth covariant functor, then if £ =
(V,X,(M,S8),p,D) and n = (W,Y,(N,T),q,&) are smooth vector bundles and
f + & — n a smooth homomorphism of vector bundles, then there is a smooth
homomorphism of vector bundles Qf : Q¢ — @Qn (where the latter vector bundles
are as constructed in Problem 1) such that Qfp = fp and for each z € M, the

restriction Qfg : pél(x) = Q(p~*(z)) — qél (fB(2)) = Q(q_l(fB(m))) is Qfy
where fp : p7l(z) — ¢} (fB(z)) is the restriction of fp. Show that with these
constructions, @) yields a covariant functor from the category of smooth vector
bundles to itself.

(The latter fails for smooth contravariant functors @ since there is no reasonable
way to define @ on morphisms.)
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12. DIFFERENTIAL FORMS

As remarked at the end of Problem 2 of §11, a smooth contravariant functor
Q : VSr — V. Sr does not yield a contravariant functor from the category of
smooth vector bundles SmV ect to itself since there is no reasonable way to specify
) on the morphisms of SmVect. However, @ does behave well with respect to
smooth sections and smooth vector bundle homomorphisms, as we shall see next.

Theorem 12.1. Let¢ = (V, X, (M,S),p,D) andn = (W,Y,(N,T),q,E) be smooth
vector bundles and f : £ — 1 a smooth vector bundle homomorphism. For each x €
M let fo:p~H(z) — g1 (fB(x)) denote the restriction of fr. Let Q : VSr — VSr
be a smooth contravariant functor. Let o : N — QY be a smooth section of Qn.
Define f*o : M — QX by (f*o)(z) = (Qfm)(a(fg(w))>. Then f*o is a smooth
section of QE.

Proof. Clearly, pf*oc = 17, so the only question is the smoothness of f*o. It
suffices to check this locally. Thus it suffices to check that whenever ¢ is a linear
D-admissible chart and ¢ an linear £-admissible chart such that fg(U,) C Uy,
then the restriction f*o: U, — pél(UV,) is smooth. Since ¢ is a diffeomorphism,
it suffices to show that for ¢ and 1 as above, the composition

U e 1 @%
4 > pQ (U¢)—>U¢XQV

is smooth. Since w19 f*o = 1y, which is smooth, it remains only to check smooth-
ness of my® f*o.

T fee~t + U, x V. — W is smooth and is R-linear on fibers. Thus, by
Lemma 11.4, the map g : U, x QW — QV given by g(z,z) = Q((m29fre™")e)(2)
is smooth. We will be done if we show that m0®? f*o is equal to the composition

lu,%Xf ly, X
U¢—A+U¢XU¢—gi-—B>U¢XU¢'LG‘>UwXQél(UdJ)

1 Q m
Up XY U, x Uy X QW 1X1low U, x QW g Qv

since all maps in this composition are smooth.
For each = € U, we have

(r20°°0)(@) = 2o (1) (o (1(0))) ) =2 (2. (@65 )(@1) (o 15(e))
= Qv (o(f5()))
while

g(7r1 X lQW) (1Utp X ’(/)Q) (1U¢ X 0') (1(]‘? ngB)A(w) = g(7r1 X lqw) (:I), TPQOfB(m))
1



= g(m x 1gw) (“”fB(””)’Q(w?;(w)) ("(fB(””))>>

- (2,007 (o(7ate)
= Q(mrtfee ™)) (QW7Aw) ) (o (f5(2))
= Q(¥fp@) fos ) QW] ) (0 (fB(w)))
= QW7 bsa e0) (o (@) ) = QUwsM (0 (f5(2)) ),

completing the proof. 0O

f*o is sometimes called the section induced from o by for the pull-back of o via
f.

Theorem 12.2. Let @ : VSr — V. Sgr be a smooth contravariant functor. Then
the rules which assign to each smooth vector bundle & the space of smooth sections
I(Q¢), and to each smooth vector bundle homomorphism f : & — n the function
f*:T(Qn) — T'(QE), constitute a contravariant functor from SmVect to VSg.

Proof. We must check the following:

(i) If f: & — n is a smooth vector bundle homomorphism, then f* : I'(Qn) —
['(Q€) is R-linear.

(i) If f:€& — nand g :n — p are smooth vector bundle homomorphisms, then
(9f)" = f*g" : T(Qp) — T(QS).

(i) 17 = Ir(qe)-

Let f : £ — n be a smooth vector bundle homomorphism. Suppose o, 7 € I'(@Qn)
and k € R. Then for each x in the base space of £,

7*(0 +k)(@) = (Qf) (o + k7)(f3(2))) = Qfe (o (f3(2) + b7 (f(2)) )

= Qfs((f5(2)) + k@12 (7(f5(2)))
(since Qfy is R-linear)
= fro(z) + kf*r(z) = (f*o + kf*T)(z)
and so f*(c + kr) = f*o + kf*r, proving (i).

Suppose f : € — n and g : n — p are smooth vector bundle homomorphisms.
For each o € I'(Qp) and z in the base space of £ we have

(9/)"(©)(@) = Q((91)2) ((9/)8(=)) = Qg7 ) (a (0 (fB<m>)))

= QUIQo1000) (o (2 72(2) ) = @) (670 (01
- @

and so (9f)*(0) = f*g*c, proving (ii).
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For any smooth vector bundle £ with projection p and any o € T'(Q€) we have,
for each z in the base space of ¢,

(1¢0)(z) = Q((Le)2) (0((15)3(96))) = Q(lp-l(w)> (o(z)) =o(x)

*

and so 1{o = o, proving (iii). O

Definition 12.3. Let (M,S) be a smooth manifold and k& > 0. A smooth section
of AFry s is called a k-form on (M,S). The real vector space of all k-forms on
(M, S) is denoted Q*(M,S). A differential form on (M, S) is a k-form on (M, S)
for some k > 0.

If (M,S) and (N,T) are smooth manifolds and f : M — N is smooth with
respect to § and 7 (sometimes expressed by writing f : (M,S) — (N,7T) is
smooth), the tangent bundle functor 7 yields a smooth vector bundle homomor-
phism 7f : 7pm,s — Tn,7. If 0 is a k-form on (N, T), we obtain, from Theorem 12.1,
a k-form (7f)*o on (M,S). We abbreviate (7f)*c by f*o.

Composing the covariant functor 7 : Sm — SmVect with the contravariant
functor "A* : SmVect — V.Sg of Theorem 12.2 (with @ = A*), we obtain:

Corollary 12.4. For each k > 0, the rules which assign to each smooth manifold
(M, S) its vector space of k-forms QF(M,S), and to each smooth map f : (M,S) —
(N, T) the R-linear transformation f* : Q¥(N,T) — QF(M,S), constitute a con-
travariant functor from the category of smooth manifolds Sm to the category of real
vector spaces VSgr. U

We next proceed to show that the wedge product operation, performed fiberwise,
gives rise to a wedge product operation on the smooth sections of the exterior powers
of a smooth vector bundle, in particular on differential forms.

Theorem 12.5. Let £ = (V,E, (M, S),p,E) be a smooth vector bundle. Let i, 7>
0 and suppose 0 € T'(A%€), 7 € T(AE). Then o AT : M — AHE given by
(0 AT)(z) = o(z) A7(x) for all x € M is in T'(AHIE).

Proof. The only question is the smoothness of o A7. It suffices to check this locally.
Thus it suffices to check that for each linear £-admissible chart ¢, the restriction
of o AT to Uy, is smooth.

For any k > 0 write py for the projection map of the vector bundle A¥¢, and
¢ instead of ¢™" for the linear AFV-bundle chart for A*¢ as constructed in §11.
Since the map A : A*V x AV — AV given by A(a,b) = a A b is R-bilinear, its
coordinate functions with respect to any choice of bases are homogeneous quadratic
polynomials in the coordinates, and hence A is a smooth map. The result will now
follow if we check that the restriction of o A 7 to U, is the composition

U,AmxafﬂLg%%pwfw)ww Uy x A'V x U, x AV
1U<,,><A"5V><""2 (pitiy=1

—~———JIXNVXNV———JIxN”V~——emﬂW)

since all maps in this composition are smooth.
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Any z € U, is sent, by the above composition, to

(497 1y, % ) (ly,nsv % 1) (6 (0(2)), @9 (7(2)) )

= (QDH_j)_l(lUgo X /\) (1U¢XAiV X 71'2) (.’L‘, (Azgom)—l (U(x)),l', (Aj(pm)_l (T(IE)))

(by definition of ¢*)
= (") 1y, x A) (2, (Kpa) ™ (0(2)), (M) 7 (r(a)) )
= ()7 [z, () ™ (o @) A (W) (r(2)))

= (A%p,) (Wa) 7 (0(2)) A (Mopa) " (7(2))
(by definition of ¢*)

= (Mo) (Npa) " (0(@)) A (M pa) (Meps) ™" (r(a))
(by Proposition 10.15)
=o(z) A7(z) = (6 AT)(2). O

The following is immediate from Theorem 10.14 and Proposition 10.15:

Proposition 12.6. Let £ be a smooth vector bundle. Suppose o € T'(A¥), 1 €
L(AE), p € T(AR¢), and c € R. Then:

(@) s AN (TAp)=(c AT)Ap.

(®)y rAo=(-1)¥cAT.

() Ifj=k,theno AN(T+p) =0 AT+0Ap.

(d) (co) AT =0NA(cT)=clo AT).

() 1ANoc =0 A1l=0c where 1l € I'(A%) is the section given by 1(z) = (z,1) for
each x in the base space of €.

(f) Suppose n is another smooth vector bundle and f : 1 — & 1s a smooth vector
bundle homomorphism. Then f*(c AT) = f*(o) A f*(r). O

Corollary 12.7. Let (M,S) be a smooth manifold. Suppose o € QY(M,S), T €
QI(M,S), p€ Q¥(M,S), and c € R. Then:

(@) oA (T Ap)= (0 AT)A p.

(b) TAo = (-1)¥ AT.

() Ifj=k,theno AN(t+p)=0cAT+0Ap.

(d) (co)AT=0NA(er)=clo AT).

() 1ANoc =0 Al =0 where 1 € Q°(M,S) is the 0-form given by 1(z) = (z,1)
for each x € M.

(f) Suppose (N, T) is another smooth manifold and f : N — M is a smooth map
with respect to T and S. Then f*(c A1) = f*(o) A f*(7). O

Proposition 12.8. Let f: (M,S) — (N, T) be a smooth map and o a k-form on
(N, T). Let z € M and vy,...,v; € Tp(M,S). Then

(f*O')(.T)(’Ul, V) = 0(f($)) (wa(vl), . )Tac.f(vk))
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Proof. From the definition of f*o (following Definition 12.3) we have
(f'0)(@) = AT f) (o (f(2))).
From the definition of the R-homomorphism A*(T, f) (Proposition 10.9),

AR(T, f) (0(f(m))>(v1, o) = o (F(2)) (T f (v1), - .,wa(vk)). O

Note that for any smooth vector bundle £ with base space M, a smooth section
of A% is a smooth map M — M x R which sends z to (z, o(z)) whereo: M — R
is smooth. Thus I'(A%¢) can be identified with the real vector space of smooth
real-valued maps on M. In particular, Q°(M, S) is identified with C*°(M,S), the
R-algebra of smooth real-valued maps on M.

We can also view the identification of Q°(M,S) with C®°(M, S) as follows: As-

sociate to o € Q°(M, S) the real-valued function on M which sends z to o () (())

where () is the unique 0-tuple of elements of T,,(M,S) (see the remarks following
Definition 10.8).

Proposition 12.9. Let (M,S) be a smooth manifold. Identify Q°(M,S) with
C>®(M,S) by the rule which assigns to each o € Q°(M,S) the real-valued func-
tion which sends x to o(x)(). Then:

(a) If o € QO(M,S) = C°(M,S) and 7 € Q(M,S), then for all z € M,
(e AT)(z) = o(z)T().

() If f : (N,T) — (M,S) is a smooth map, then for any o € Q°(M,S) =
C*(M,S), the pull-back f*o € QO(N,T) = C®(N,T) is the composition of :
N — R.

Proof. Let x € M. By definition (see Theorem 12.5), (o A7)(z) = o(z) A7(z). By
Definition 10.11, o(z) A 7(z) = A(o(z) - 7(z)). Note that for any i-tuple vy, ...,v;
in T, (M, S),

(0(z) - (@) (v1, . ., v5) = o(2)()7(@) (v1, . ., v3)-
Since o(z) is O-linear and 7(z) is alternating, it follows easily that o(z) - 7() is
alternating and hence A(o(z) - 7(z)) = o(x) - 7(z). Thus

( () A 7( ))(vl, ,0;) = o(z)O)r(z) (v, ..., v;)
(

and so o(z) A 7(z) = o(z)()7(z), proving part (a).
If f: (N, 7) —» (M,S) is smooth and y € N, then by Proposition 12.8,

(F*o)(y)() = CT(f (1))(), yielding part (b). O

We next look at differential forms for open subsets of Euclidean spaces. The
reason for calling these gadgets “differential forms” will become apparent from this
case. The standard smooth structures are assumed throughout, and we suppress
notation for these.

If U is an open subset of R™, the standard smooth structure on U is represented
by the one-chart atlas {1y} and consequently the tangent bundle of U admits a one-
chart admissible atlas {1y} (see the material preceding Proposition 8.14). Thus 1 :
T(U) — U x R™ is given by 1y (v) = (z,051(v)) for v € T,(U) where 6, is defined
in Example 5.6. The following is an immediate consequence of Proposition 5.12.
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Proposition 12.10. Let U be open in R™, V open in R™, and f:U—-V a
smooth map. Define Tf : U x R™ — V x R™ by Tf(=z,y) = (f(z), Df(z)(y)).
Then the diagram

T(U) —2 = T(V)

UXRm—"::—>VXRn
Tf

commutes. [
__Thus, the tangent map T'f is identified with T f via the diffeomorphisms 1y and
1y. .

Fori>0let 1y : AT(U) — U x A*(R™) denote the chart for A7y arising from
1y by the construction in §11. Thus i\(}l is a diffeomorphism which is R-linear on

fibers. Note that each i-form ¢ on U has the form o(z) = (i\;)ul (z,5(z)) for a
unique smooth map ¢ : U — Ai(Rm), and conversely any such smooth ¢ yields an
i-form by the above formula.

Notation 12.11. Let ey,..., e, denote the standard basis of R™, and ej,..., e},
the basis dual to this for (R™)* = A1(R™). Let U be open in R™. For 1 < i < m,

—_—1
we denote by dz; the 1-form on U given by dz;(z) = (1y ) 1(:1:, ef).
If I = (41,...,4%) where 1 < i; < m for each 7, let e} denote e, N+ Nej €

ik
A*(R™) and dzy the k-form given by dz;(z) = (f&k)_l(x, er).
Lemma 12.12. Let U be open in R™ and I = (i1,...,1;) where 1 < i; <m for
each j. Then dxy = dzyy A+ Adzy, € QF(U).
Proof. Recall that (f[;k)_l is given by (i\&k)—l(m,y) = AF(1y)s(y). Thus,
dz(z) = Ak(i\[})w(efl A Nej)

=A'(10)e(ef) A AN (10)a(ef,)
(by Proposition 10.15)

=dzi, () A+ Adzg, (3) = (dzgy, Ao Aday ) (z). O

Proposition 12.13. For 1 < k < m let X, denote the set of all sequences
I={(i1,...,1x) such that 1 <4y < -+ <1 <m. Let U be open in R™. Then each
k-form on U can be expressed uniquely in the form

Z frdzy

IeXm,k:

where the fr € C°(U).

Proof. This follows immediately from the fact that {e} | I € X, r } is an R-basis
for A¥(R™) (by Theorem 10.18) and so every smooth map & : U — AF¥(R™) can
be expressed uniquely in the form o(z) = ) ;¢ Xom fr(z)ey for z € U where the
fr: U — R are smooth. 0O
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Theorem 12.14. Suppose U is open in R™, V open in R"™, and f : U — V is
smooth. Then for 1 <i<n,

f*(dzs) = | D;fidz;
7j=1

where f; is the i*? coordinate function of f.

Proof. Let z € U. By Proposition 12.10 the diagram

Te
To(U) ==L Ty (V)

m . >Rn
R Df(=) R

commutes, and the vertical maps are R-isomorphisms. Write oy = f*(dz;), 092 =
Y je1 Djfidz;. It suffices to check that for 1 < ¢ <m,

o1(2) (10)7 1 (eg)) = o2(z) (1) (eg))-

We have "

o1(2)((10); (&) = f*(da)(2) ((10)7 ™ (eq))

(by Proposition 12.8)
= dwl(f(w)) ((E);(;)Df(w)(eq))

(by commutativity of the above diagram)

= (V)7 (f@), &) (V) DS @) e0)
(by definition of dz;)

= AN (1v) ()) (D) ((1v) 7y D.f () (e4)) .
(by definition of 1y ")

= ¢ ((f\;)f(w)(i;);(lm)Df(w)(eq))
(since A! is the dual space functor)

& (DF(@)(eg)) = (Z Dyfi(a)es) = Dafi(o),
while.

(@) () e0) = (X i) doe) ) (T)z )
=



D, fi(@) (o) @, ed) (10)3 (o))

j=1 (by definition of dz;)
=Y Difi@A (W)e) () ()it (e))
j=1 (by definition of 1y )

D; fi(=)(e5)((10)e(10)5 (eq))
(since Al is the dual space functor)

Djfi(m)e;'(eq) = D, fi(z). O

.
Il
o

I ]
NERNSE

<.
Il
fa

Thus, for smooth maps between open subsets of Euclidean spaces, Proposi-
tion 12.9(b) and Theorem 12.14 tell us how to pull back O-forms and 1-forms. Thus,
since pull-backs preserve wedge products (Corollary 12.7(f)), Propositions 12.9(a)
and 12.13 and Lemma 12.12 enable us to pull back arbitrary differential forms in
the case of smooth maps between open subsets of Euclidean space.

The Local Property for Tangent Spaces (Proposition 5.11) yields the following:

Proposition 12.15. Suppose (M,S) and (N,T) are smooth manifolds, x € M
and f,g: (M,S) — (N, T) smooth maps which agree in some neighborhood of z in
M. Then for each k-form o on (N, T), (f*o)(z) = (9*0)(z).

Proof. Say U is an open neighborhood of z in M on which f and g agree. Let
1 : U — M denote the inclusion. Then fi = gi.
It suffices to show that whenever v1,...,v; € Tp(M,S), then

(fro)(@)(vr,. .., vk) = (9% o) () (01, . . ., k).

By Proposition 5.11, Tyi : To(U,S|U) — T,(M,S) is an R-isomorphism and so
each v; can be written T;i(w;) for some w; € T,,(U, S|U). Thus

(f*o)(@)(v1,...,v) = (f*o) (@) (Tei(wr), . . o Toi(wg))

= U(f(x)) ((Ta:.f)(TmZ) (w1), ..., (Tef)(Ti) (wk))
(by Proposition 12.8)

= o((f8)(@) (Ta(F)(wn), . ., Tu(f3) (ws)
(by Proposition 5.9(b)).

Similarly, (¢*0)(z)(v1, ..., vk) = o((99)(x)) (Tu(g8)(wr), .. ., Tu(gé)(ws)). The re-
sult now follows since fi = gi. O
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Exercises for §12

1.(a) Let V be a finite-dimensional real vector space. Prove that for each k > 0,
the function
fiA*(V)xVF SR

given by f(a,v1,...,vk) = a(vy,...,vg) is smooth. _
(b) Let o be a k-form on the smooth manifold (M, S) and suppose

Vi) ...,V ¢ M — T(M,S)
are smooth vector fields. Define f : M — R by

f(@) =o(@)(v1(2),...,v(z)).

Prove that f is smooth.

2. Write z; : R* — R for the i*" coordinate function, i.e. z;(t1,...,ts,) = t;. Let
f:R3 — R2? be given by f(z,y,2) = (zy?,z +2%). Calculate f*(z112 Adz1 Adzs).
Express your answer in the form a Adze Adzs + B Adxy Adxs+vAdzy Adxy where
a, 8,7 : R® — R are smooth.
3. Let f: R — S! be given by f(t) = (cost,sint) and let 4 : S — R? denote the
inclusion map.

(a) Show that f is an immersion. A

(b) Write z,y instead of z1, zo. Let w = ¢*(y A dz — z A dy). Show that for each
z€ 8Y w(z) #£0.

(c) Let 0 = i*(y Adz +x A dy). Find all z € §* for which o(z) = 0.
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13. EXTERIOR DIFFERENTIATION, EEXACT AND
CLosED FOrRMS, AND DE RHAM COHOMOLOGY

- For each smooth manifold (M,S) and each k > 0 we will define a function
d: QF(M,S) — QF+1(M,S) called the exterior derivative. In contrast to wedge
products and pull-backs of smooth sections, which exist for exterior powers of ar-
bitrary smooth vector bundles (not just tangent bundles), exterior differentiation
is special to differential forms. We will first define d in the case of open subsets of
Euclidean space and establish properties of d in this case. We will then extend the
definition and properties to the general case by means of charts.

Definition 13.1. Suppose U is open in R™. If f € QO(U) = C°(U) the exterior
derivative of f, denoted df, is defined by

m
df = Dif Adaz;.
=1

fw=Yrex,, f1Ader € QF(U), the exterior derivative of w, denoted dw, is
defined by
do= Y dff Ndzy € QD).
IeXmk

Example 13.2. For 1 <1 <mlet z; : U — R denote the i*? coordinate map (as
is commonly done in calculus). Then

m m
d:l?i = Z Dja:,- d:IJj = Z (5¢j dxj - d.’B@'
j=1 j=1

where the extreme left d is the exterior derivative operator and the other dzy are as
defined in Notation 12.11. Thus Notation 12.11 is consistent with Definition 13.1 if
we use z; to denote the i*P coordinate map. If, say, t1,. .., ¢, were used to denote
the coordinate maps in some example, then dty,...,dt, would be used in place of
dzi,...,dz, in Notation 12.11.

Proposition 13.3. Let U be open in R™. Then for each k > 0, d : QF({U) —
QF+L(U) 4s an R-linear transformation. -

Proof. The result is immediate from the R-linearity of the operators D; and the
R-bilinearity of A. [J

Lemma 13.4. Let U be open in R™, k >0, and I = (i1,...,1x) where1 <i; <m
for 1 < j < k. (We do not assume I € Xy, here. If k = 0, then I is the

empty sequence and we make the convention that dry = 1 € QO(U).) Then for all
f € Q%U), d(f ANdzr) = df Adzy.

Proof. The result is trivial if the 4, are not distinct, for it then follows from
Lemma 12.12 and Corollary 12.7(b) that der = 0 and so both sides are 0. The
result is also trivial if k& = 0 since 1 € Q9(U) is an identity element for the wedge
product (Corollary 12.7(e)).
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Suppose k > 0 and the i; are distinct. Let o € X be the permutation such
that J = (%(1), e ,ia(k)) € X k. By Lemma 12.12 and Corollary 12.7(b), dz; =
sgn (o) dzy and so

d(f Adzr) = d(f Asgn(o)dzs) =sgn (o) d(f Adzy)
(by Proposition 13.3)
=sgn (o) df ANdxy
(by Definition 13.1)
=df Asgn (o) dxy = df Adzx. O
Lemma 13.5. Let U be open in R™ and I = (i1,...,1x) where k > 1 and 1 <
i; < m for each j. Then d(dzr) = 0.
Proof. dzy = 1Adzr and so by Lemma 13.4, d(dz;) = d(1)Adz; = 0Adzr =0. O

Proposition 138.6. Let U be open in R™. Letw € QYU) and p € I (U), i, j > 0.
Then '
d(w A p) = (dw) A p+ (—1)'w A (dp).

Proof. Since both sides are R-bilinear in w and p, it suffices to prove the result
when w = f Adzy and p = g Adzy where f, g € Q°(U) = C®°(U) and I € X, 4,
J e X’m,j- Then

wAp=fAderANgAhdzy=fAgAdey ANdzy = (fAg) ANdzry

where I.J is the sequence obtained by juxtaposing I and J. (Note that ¢ and dx;
commute since ¢ is a 0-form.) Thus,

d(wAp) =d((f Ag) Adzrs) =d(f Ag) Adzrs (by Lemma 13.4)
m
= Di(f Ag) Adzy, Adary (by Definition 13.1)
k=1 )

-

((Dkf) Ag+ fA (Dkg)> ANdxy Ndxry

>
Il
i

(by the product rule since for 0-forms, A is ordinary multiplication of real-valued
functions)

Tz I

m
(Dxf) Ag Adzy Adar Adzg+ Y f A (Dyg) Adzk Ader Aday
k=1

m
(Dif) Aday Adzyr Ag ANday+ > (=1)'f Adzr A (Drg) Adak Adzy
k=1

(by graded commutativity (Corollary 12.7(b)); g and Dyg are 0-forms, dzj, a 1-form,
and dzy an i-form)

=df Ndzr AgAdzy+ (=1)'f Adzy Adg Adx g
= (dw)Ap+ (=1)'wA (dp). O
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Proposition 13.7. Let U be open in R™. Then for all k > 0 and all w € Q*¥(U),
d(dw) = 0.

Proof. By R-linearity of d it suffices to treat the case w = f Adzy where f € Q°(U)
and [ is a sequence of length k. We have

d(d(f Adzr)) = d((df) Adaxr))
(by Lemma 13.4)
= d(df) A dzy — d(dzy)
(by Proposition 13.6)
= d(df) A dzy
(by Lemma 13.5)

and so it remains only to show d(df) = 0 for all f € QO(U).
We have

d(df) = d(i Dif A dmi> =" d(Dif) Adz;
i=1 g=1

(by Definition 13.1, Proposition 13.3, and Lemma 13.4)

m

i > D;Dif /\da:j> A da;

i=1 “j=1

m
DiDif Nui Adai+ Y. (DyDif Aday Adwi + DiDyf Aday Aday ).

i=1 1<i<j<m

Since dz; A dz; = 0 and dx; A de; = —dz; A dx; for all 4, j by Corollary 12.7(b),

and D;D;f = D;D; f by Advanced Calculus, the result follows. 0O

Remark 13.8. The R-isomorphism ¢ : R™ — (R™)* determined by ¢(e;) = €} for
each 1 yields, for each open subset U of R™, a smooth vector bundle isomorphism
w : Ty — Aty with map of total spaces (1y) ,, the composition

—~ ~ 1,
1y Xi (1U ) !

TU) —=2> U x R™ -2 U x (R™)* —2% ALT(U).

Thus, ¢y induces an R-isomorphism ¥y : T'(ry) — QY(U), i.e. from smooth vector
fields on U to 1-forms on U. (For general smooth manifolds (M, S), construction of
such an isomorphism ['(737,s) — Q* (M, S) requires an additional piece of structure
on M called a Riemannian metric.)

Note also that for 1 <i < m, A*(R™) and A™~*(R™) have the same dimension
over R. In fact we choose an explicit isomorphism, traditionally denoted

% Ai(Rm) — Am"i(Rm),

called the Hodge *-operator, as follows: For each I € X, ; let I' € X, m—; denote
the increasing sequence complementary to I and let sgn (I) denote the sign of the
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(¢, m — i)-shuffle which sends 1,...,% to the respective entries of I. Then * is the
R-isomorphism determined by *(e}) = sgn (I)e}, for each I € X,,, ;. It is easily
checked that the composition

Az(Rm) _* . Am——i(Rm) _*s Az(Rm)

is multiplication by (—1)¥m—2),
For example, in case m = 3 we have

xl= el NejAes, x(e] Nes ANez) = 1,
xe] = ej A ej, x(ey Ne3) = €],
*ey =—ej Aeg, *(e] N eg) = —e3,
xey = e] Aej, x(e] Ney) = e

More generally the Hodge *-operator can be defined on the exterior powers of any
oriented finite-dimensional real inner product space V; replace the e} by the duals
of any orthonormal basis in the given orientation of V. The resulting *-operator
can be shown to depend only on the inner product and orientation of V', and not
on the choice of orthonormal basis.

For U open in R™, the Hodge *-operator as defined above yields R-isomorphisms

%1 QYU) — Q™ YU)
as follows: If w € QY(U), then %w is the composition

1U><* f{]m_l)_‘

—~ 1
U —> AT(U) —2 U x A(R™) 225 7 x Am—i®m) L) Am-i(p),

This composition is smooth since * : A*(R™) — A™=H(R™) is R-linear, and so
certainly smooth.
We can form the composition

1

Co(U) = QO(U) —m OL(U) ~Z> T(my).

One can check that this composition sends any smooth real-valued f on U to grad f,
the gradient of f.
In case m = 3, we can form the composition

-1

I'(1y) v, OL(U) - Q2 (U) —— QY(U) S, T'(my).

One can check that this composition sends any smooth vector field o on U to curl o,
the curl of o.
For general m we can form the composition

D) —> Q(U) =" Q1) —1> Q7 () —> Q0(V) = C=(0).
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One can check that this composition sends any smooth vector field ¢ on U to div o,
the divergence of o.
Thus, in case m = 3, for any f € C=°(U),

curl (grad f) = U5' « d Uy (U51d(f)) = Uyt + d(df) =0

by Proposition 13.7.
For any o € I'(1y),

div (curlo) = *d * Uy (V5" * d* (0)) = #d * xd Uy (o) = *d(d(¥y (o)) =

by Proposition 13.7. Thus the fact that the composition of any two maps in the
sequence
d

V) — QHU) —*> Q3(U) — Q3(U)
is 0 yields the classical vector analysis facts that curl (grad f) = 0 and div (curl¢) =
0 for any smooth real-valued f and any smooth vector field o on an open subset of

R3. Conversely, it is easily checked that the latter implies dd = 0 for open subsets
of R3.

Proposition 13.9. Let U be open in R™, V open in R™, and f : U — V a smooth
map. Then for all k > 0 the diagram

Ok (V) _4d. QFk+1 (V)
f*l/ lf*
QM U) —=> QM (U)

commutes.

Proof. We first consider the case k = 0. Let g € Q°(V) = C*®(V). We have
fra(g) = f* (Z Dig A dwi> (by Definition 13.1)

—Zf* i9 /\f*d.'E@)
=1 (by Corollary 12.7(f))

= En: ((Dig)f) A <zm: (Djfi) A d%’)

i=1 j=1
(by Proposition 12.9(b) and Theorem 12.14)

=3 <Z ((ng) f) D; f,,-) Ndz; = (D;(gf)) A da;
j=1 Vi=1 =1
! ’ (by the Chain Rule)

= d(gf) = d(f*g),
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the latter by Definition 13.1 and Proposition 12.9(b), establishing the result for
k=0.

We next show that whenever 1 < i <nand I € X, ;, then d(f*(da;;)) = 0. For
the case ¢ = 1, writing «; for the 4 coordinate function on U, 1 < j < n, we have
by Example 13.2, f*(dz;) = d(f*z;) by the k = 0 case of the Proposition proved
above, and so d(f*(dz;)) = dd(f*z;) = 0 by Proposition 13.7. Now let i > 1 and
suppose inductively that d(f*(dzs)) =0 for all J € Xy ;—1. For I € X, ; we can
write do; = dz; A dzy for some (j) € X1 and J € Xy ;—1. Then

d(f*(d.’l}[)) = d(f*(dazj A d:):J)) = d(f* (d(BJ) A f*(dmj))
(by Corollary 12.7(f))
= d(f*(dzs)) A f*(dzs) = f*(dzz) A d(f* (de.))
(by Proposition 13.6)
=0
since both d(f*(dz;)) and d(f*(dzs)) are 0 by the induction hypothesis, completing
proof of the claim.
To complete the proof of the Proposition, since f* and d are R-linear it suffices

to prove that d(f*w) = f*(dw) whenever w = g A dz; for some g € Q°(V) and
I'e Xy k, k> 1. We have

d(f*w) = d(f*(g Adzr)) = d(£*(9) A f*(dzr))
(by Corollary 12.7(f))

=d(f*(9)) A f*(dzr) + f*(9) A d(f*(dzr))
(by Proposition 13.6)

= d(f*(9)) A f*(dzr)

(since d(f*(da:I)) = 0)
= f*(dg) A f*(dzr) ~ (by the k = 0 case)
= f*(dg A dzr) (by Corollary 12.7(f))
= f*(d(g A dz1)) (by Definition 13.1)
= f*(dw),

completing the proof. [

Our next task is to extend exterior differentiation to general smooth manifolds
by locally transferring the Euclidean space case by means of charts.

Lemma 13.10. Let (M, S) be an m-dimensional smooth manifold. Let ¢ and 1) be
S-admissible charts whose codomains are open subsets of R™. Then for any k-form
w on dom @ Ndom 1,

P d((¢™")'w) = ¢d((¥ ™) w).

Proof. By Theorem 12.2, (¥p~1)* = (o~ 1)*y* and (¢~1)* = (p*)~. Thus it
suffices to show that

(W ) *d((¥ ") w) = d((p™")*w)
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for all k-forms w on dom ¢ Ndom . The overlap map
Yo~ p(dom ¢ Ndom ) — )(dom ¢ N dom )

is a smooth map between open subsets of R™. Hence, by Proposition 13.9, the
diagram

O ((dom p Ndom 9)) 20 O(p(dom ¢ N dom 1))

| I
QF1 (yp(dom ¢ N dom 7)) W QF+1(p(dom ¢ N dom 7))
(p—l *

commutes. Thus for any k-form w on dom ¢ N dom ¥,

@) (W™ 'w) = d((We ) )W)
= d((Y " P )w)
(by Theorem 12.2)
=d((¢™)*w). O

Recall, from Proposition 5.11 and Theorem 8.29, that if (M, S) is a smooth man-
ifold, U open in M, and ¢ : U — M the inclusion map, then T% maps T'(U, S|U) dif-
feomorphically onto p;,fl, 5(U). We would now like to be able to identify A*T'(U, S|U)
with p; ' (U) where py, is the projection map for A*7y 5. Because of the fact that
A* does not yield a functor SmVect — SmVect, A*f does not have an immediate
meaning for smooth maps f. However, we shall see below that in the case of ¢ as
above, AFi does make sense and yields the desired diffeomorphism. The argument
works for general smooth contravariant functors.

Lemma 13.11. Let Q : VSgr — VSr be a smooth contravariant functor, (M, S)
a smooth m-manifold, and U an open subset of M. Leti : U — M denote the
inclusion map. Write pg for the projection map of the smooth vector bundle Qs s,
and Qi : pél (U) - QT'(U,S|U) for the function whose restriction to pél(m) for
in U is QTyi : QTx(M,S) — QT (U,S|U). Then Qi is a diffeomorphism.

Proof. By Proposition 5.11, Tyi : T, (U, S|U) — T (M, S) is an R~isomorphism for
each x € U. Thus, since @ is a functor, each Q7,7 is an R-isomorphism. It follows
easily that Qi is a bijection. Let q denote the projection map for Qrysy. To
complete the proof it suffices to check that for each S|U-admissible chart ¢ with
codomain an open subset of R™, the restriction Q7 : pél(dom @) — q~1(dom ¢) is
a diffeomorphism. Note that ip is an S-admissible chart and the diagram

Q1

pg' (dom ¢) g¢~*(dom )

% @Q

dom ¢ X QR™
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commutes where iZoQ and cEQ are the linear QR™-bundle charts for Q7y,s and
QTy,s|u derived from the charts ip and ¢, respectively, by the construction in §11.

Since izaQ and 39 are diffeomorphisms, the result follows. [

Lemma 13.12. Let (M,S) be a smooth manifold, U an open subset of M, and
iy : U — M the inclusion. Then:

(a) For any k-form w on (M, S), the restriction of w to U is (A*iy)tifw.

(b) If w and p are k-forms on (M,S), then w and p agree on U if and only if
iHw = i p.
Proof. By definition of ifw, ifw(z) = AF(Tuiy)(w(z)) for each z € U. Thus,
by definition of A*iy, (A*iy) ™ (iHw(z)) = (A (Tyiv)) ™ A*(Tyiv) (w(z)) = w(z),
proving part (a).

If if;w = i};p, then application of (A¥iy;)~! to both sides and part (a) yield that
the restrictions of w and p to U agree, proving part (b). [

Theorem 13.13. Let (M,S) be a smooth m-manifold and w a k-form on (M, S).
Define dw : M — AT (M,S) as follows: For each S-admissible chart ¢ with
codomain an open subset of R™ define the restriction of dw to dom ¢ to be

(Ak+1i¢)_1go*d((<p_1)*i:‘;w)

where i, : dom ¢ — M is the inclusion and A**Yi is as in Lemma 18.11 with
Q = APt Then dw is a (k + 1)-form on M. '

Proof. If ¢ and 1 are S-admissible charts whose codomains are open subsets of
R™, it follows from the Local Property for Tangent Spaces (Proposition 5.11(b))
that Tyi, = Tyiy for all z € dom ¢ N dom 9 and hence A¥+14, and AF*1iy agree
on fibers over points in dom ¢ N dom . By Proposition 12.15, {;w and iyW agree
on points of dom ¢ N dom . Thus by Lemma 13.10,

P d((p™ ) ipw) = rd((p™) iyw).

It follows that dw is well-defined.

Since each @*d((¢~1)*i5w) is smooth and, by Lemma 13.11, (A*1i,)~1 is
smooth, it follows that the restriction of dw to dom ¢ is smooth for each S-
admissible ¢ as above. Thus, by the Local Property, dw is smooth. Clearly,
(dw)(z) € A*1T,.(M, S) for each x € M, completing the proof. O

Corollary 13.14. Let (M,S) be a smooth m-manifold and w a k-form on (M, S).
Then for each S-admissible chart ¢ with codomain contained in R™,

i (dw) = (p*d((cp_l)*if;,w).
Conversely, if p is a (k + 1)-form on (M,S) such that
ipp = d((¢7")"iGw)
for a collection of S-admissible charts ¢ as above whose domains cover M, then

p = dw.
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Proof. By Lemma 13.12 and the definition of dw given by Theorem 13.13,

(AFH4,) 7168 (dw) = (AP i,) Lo d (o) ibw)
for all ¢ as above. Since each Ak+1i<p is a diffeomorphism by Lemma 13.11, it
follows that dw has the stated property.

Suppose p is a (k + 1)-form on (M, S) such that for a collection of ¢ as above
whose domains cover M,

ipp = @ (™) igw).

Thus %,p = i}, (dw) for all ¢ in a collection of charts whose domains cover M, and
and so, by Lemma 13.12(b), p and dw agree on all members of some open cover of
M. O

Theorem 13.15. Let (M,S) be a smooth m-manifold. Then:

(a) If M is an open subset of R™, then for each k > 0 the d : QF(M) — QF+1(M)
as given by Theorem 13.18 agrees with that given by Definition 13.1.

(b) Ifz € M, k >0, and w,p € Q*(M,S) are such that w and p agree in some
open neighborhood of x in M, then dw(z) = dp(x).

(c) For each k >0, d: QF (M, S) — QF*+1(M, S) is R-linear.

(d) If (N,T) is a smooth n-manifold and f : (M,8) — (N,T) a smooth map,
then for oll k > 0 the diagram

QF (N, T) —L— ok (M, 8)

! |

QF(N, T) —= Q1(M, 5)

commauites.
(e) For any w € QF(M, S), d(dw) = 0.
(f) If w € QY(M, S) and p € VI (M, S), then

d(w A p) = (dw) A p+ (=1)'w A (dp).

Proof. Part (a) follows immediately from Corollary 13.14 by use of the chart 1y;.

Let z, w, and p be as in part (b). We can choose an S-admissible chart ¢ with
codomain contained in R™ such that € dom ¢, and w and p agree agree on dom .
It then follows from Lemma 13.12(b) that i%w = i,p. Thus by Corollary 13.14,
i (dw) = iy,(dp). Thus, by Lemma 13.12(b), dw and dp agree on dom ¢, proving
part (b).

It suffices to check part (c) locally. For each S-admissible chart ¢ with codomain
contained in R™, note that 7y, (0™1)*, o*, and the d for open subsets of R™ are
all R-linear, and that (A**+1i,)~1, is fiberwise R-linear. Part (c) follows.

To prove part (d) it suffices to show (by Corollary 13.14) that whenever ¢ and
1 are S-admissible and 7 -admissible charts with codomains contained in R™ and
R", respectively, such that f(dom ¢) C dom 1, then for all k-forms w on (N, 7),

(1) i f*(dw) = ¢ d((p™") i f*w).
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Let g : dom ¢ — dom 1 denote the restriction of f. We have the commutative
diagram

i —1
(2) M <2 dom ¢ <2— codom ¢

T

N <——dom ¢ T codom 2.
iy -

By Proposition 13.9 the diagram

(3) Q (codom ) 222 9k (codom 1)

| |

QF+1(codom <p)( et <~—— Qk+1(codom 1)

commutes. Thus

*d((e 1) i *w) = @ d((Yge™ ") (¥~ )ww) (by (2))
= @*(1hge™ ) d((¥™) *iyw) (by (3))
= (Yge o) d((v ") iw) = g*Y*d((¥ ) Pw)
=g z¢(dw) (by Corollary 13.14)
= s f*(dw) (by (2))

which establishes (1), completing the proof of part (d).
For any w € Q%(M,S) and any S-admissible chart ¢ with codomain contained
in R™ we have

% (ddw) = p*d((p™1) it dw)

= p*dd((p~ V) i%w) (by part (d))
=0

by Proposition 13.7 since (go”l)*izw is a is a k-form on codom ¢, an open subset of
R™. Thus i%(0) = ¢*d((¢ '1)*z';';dw) for all ¢ as above, and so, by Corollary 13.14,
d(dw) = 0, proving part (e).

Let w and p be as in part (f), and ¢ any S-admissible chart with codomain
contained in R™. Then

i (dw A p)) = ¢*d((p™") i (w A p)) (by Corollary 13.14)
= 0" d((ipp™ ") (W A ) = ¥ d((ipp™ ) w A (ipp™")*p)
(by Corollary 12.7(f))
= " (d((i(pgo_l)*w) A (iw‘P—l)*P + (—1)i(i<p90_1)*w A d((":w‘P—l)*p))
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(by Proposition 13.6, since (i,¢~!)*w and (i,¢~')*p are differential forms on
codom ¢, an open subset of R™)

= ¢* ((icpso‘l)*dw A (™) o+ (1) (lpp ™) w A (isoso‘l)*dp)
(by part (d))

= ©*(ip™")* ((dw A p+ (=1)'w A (dp))
(by Corollary 12.7(f))

= (ipp™0)* ((dw A p+ (—1)'w A (dp))
= 3% ((dw) A p+ (=1)'w A (dp)).

Part (f) now follows from Corollary 13.14. O

Definition 13.16. Let (M,S) be a smooth manifold and k£ > 0. A k-form w on
(M, S) is said to be closed if dw = 0. If k > 0, w is said to be exact if w = dp for
some (k — 1)-form p on (M,S).

The set of all closed k-forms on (M, S) is denoted Z*¥(M, S). The set of all exact
k-forms on (M, S) is denoted B*(M,S). (By convention, B°(M,S) = 0.) Closed
forms are sometimes called de Rham cocycles. Exact forms are sometimes called
de Rham coboundaries.

Proposition 13.17. Let (M,S) be a smooth manifold. Then for each k > 0,
Z8(M,S) and B*(M,S) are R-linear subspaces of Q*(M,S) and B*(M,S) c
Z*(M,S).

Proof. Since Z*(M,S) and B¥(M, S) are the kernel and image, respectively, of the
appropriate R-linear transformation d, it follows that they are R-linear subspaces
of O*(M,S). Since d(dw) = 0 for all k-forms w by Theorem 13.15(e), every exact
form is closed, i.e. B¥(M,S) c Z*¥(M,S) for all k > 0. O

Example 13.18. Let U = R? — {0} and

—Y
W= ——— ANdT 4+ ———s Ady.
22+ 42 T gz
We leave it as an exercise (see Exercises for §13) to show that w is a closed 1-form
on U, but is not exact.

Definition 13.19. Let (M, S) be a smooth manifold. For k& > 0, the k" de Rham
cohomology group of (M, S), denoted H%,(M, S), is the quotient real vector space
Z8(M,S)/B*(M, S).

The H%,(M,S) are real vector spaces. The smooth structure S on M plays an
essential role in their definition. Thus, it may come as a surprise that the H¥, (M, S)
depend, up to isomorphism, only on the topology of M, and not on the smooth
structure S. This is by no means obvious. For M compact, the H L’fR(M ,S) actually
turn out to be finite-dimensional over R. In algebraic topology, singular cohomology
groups H*(X; R) with coefficients in R are defined for arbitrary topological spaces
X, which depend only on the topology of X (in fact, only on the homotopy type of
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X). There is an important result, known as the de Rham Theorem, which asserts
that for M compact, H¥,(M,S) = H*(M;R).

If w is a closed k-form on (M,S), we denote by [w] the de Rham cohomology
class of w, i.e. the image of w under the natural projection

Z*(M, S) — Z*(M,8)/B*(M, S) = Hip(M,S).

Proposition 13.20. Let (M,S) be a smooth m-manifold, and Comp(M) the set
of connected components of M. For each C € Comp(M) let xc : M — R denote
the characteristic function of C, i.e.

1 ifz € C,

xo(@) = { 0 ifegC.

Then {[xc] | C € Comp(M)} is an R-basis for Hip(M, S).

Proof. Since B°(M,S) = 0 we must show that {xc | C € Comp(M)} is an R-basis
for Z°(M,S). Note that {xc | C € Comp(M)} is an R-basis for the space of locally
constant real-valued functions on M. Thus we must show that if f € Q°(M,S) =
C*®(M,S), then df = 0 if and only if f is locally constant.

By Lemma 13.12, df = 0 if and only if for each S-admissible chart ¢ with
codomain contained in R™, if;(df) = 0. Since ¢ : dom ¢ — codom ¢ is a dif-
feomorphism, the latter holds if and only if (¢~*)*i%(df) = 0, i.e. if and only if
d((p™1)*i%f) =0, i.e. if and only if d(fi,e™') = 0. Since

d(fipe™) = Dj(fipe™") Ndaj,

Jj=1

the latter holds if and only if D;(fi,e™') = 0for 1 < j < m, i.e. if and only if
fiop~! is constant, i.e. if and only if f is constant on dom ¢. O

Thus, in particular, H35(M,S) depends only on the topology of M.

Proposition 13.21. Let (M,S) and (N, T) be smooth manifolds and f : (M,S) —
(N,T) a smooth map. Then:

(a) For each k > 0, f*(Z¥(N,T)) Cc Z*(M,S).

(b) For each k >0, f*(B*(N,T)) Cc B*(M,S).

Proof. Both parts are immediate from the fact that for any differential form w on
(N,T), d(f*w) = f*(dw) by Theorem 13.15(d). O

In view of Proposition 13.21 we can make the following definition:

Definition 13.22. Let f : (M,S) — (N, 7) be a smooth map. For each k > 0,

denote by H¥. f : HEL(N,T) — HE5(M,S) the R-homomorphism induced by f* :

Z¥(N,T) — Z*(M,S), i.e. for each closed k-form w on (N, T), HE, f([w]) = [f*w].
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Proposition 13.23. For each k > 0, the rules which assign to each smooth man-
ifold (M, S) its k*® de Rham cohomology group HX.(M,S) and to each smooth
map f : (M,S) — (N,T) the R-linear transformation H5,f : HEL(N,T) —
H:(M,S), constitute a contravariant functor HSp : Sm — V Sg.

- Proof. Suppose f : (M,8) — (N,T) and g : (N,7) — (Q,U) are smooth maps.
Then for any closed k-form w on (@Q,U) we have

Hip(af) (W) = [(9)* )] = [*(g*w)]
(by Corollary 12.4)

= Hbnf(g°w)) = Hinf (ing (),

and
Hiplg(Ww]) = [15w] = W]
by Corollary 12.4. O

We next show that the wedge product of forms induces a wedge product operation
on de Rham cohomology classes.

Lemma 13.24. Let (M,S) be a smooth manifold. Suppose w and p are closed i-
and j-forms, respectively, on (M, 8). Then w Ap is a closed (i+ j)-form on (M, S)
and the de Rham cohomology class [w A p] of w A p depends only on [w] and [p].

Proof. By Theorem 13.15(f), d(w A p) = (dw) A p+ (—1)%w A (dp) = 0 since dw = 0
and dp = 0, proving that w A p is a closed (i + j)-form. If [w'] = [w] and [¢] = [p],
then we can write w’ = w+ da and p’ = p+ dp for some (i — 1)- and (j — 1)-forms
« and f, respectively. (By convention, k-forms for negative k are all 0, so if ¢ or j
is 0, the corresponding « or £ is 0.) Then

VAP =wAp+wA(dB)+ (da) A p+ (da) A (dB)
=wAp+ (-1)'dwA B) +d(a A p) + d(a A (dB))

by Theorem 13.15(f) since dw, dp, and d(dB) are all 0. Thus W' Ap'] =[wAp]. O

In view of Lemma 13.24 we can make the following definition:

Definition 13.25. Let (M,S) be a smooth manifold and suppose a € Hipn(M,S),
be H,n(M,S). We define a Ab € HE (M, S) as follows: If a = [w] and b = [o]
where w and p are closed forms, then a Ab = [w A p).

The following is an immediate consequence of Corollary 12.7:

Theorem 13.26. Let (M,S) be a smooth manifold. Suppose a € Hin(M,S),
be H)p(M,S), and c € HS,(M, S) where i, 3§,k > 0. Then:

(a) aAn(bAc)=(aAb)Ac.

(b) aAb=(—1)¥bAa.

(c)Ifj=k, thenaA(b+c)=aAb+aAc.

(d) If r € R, then (ra) Ab=a A (rb) = r(a A b).

(e) If M # 0, then [IJAa = aA[l] = a where 1 € Q°(M,S) is the constant
function with value 1.
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() If f: (N, T) — (M,S) is a smooth map, then

HYf(anb) = Higfla) NHILf(b). O

Writing Hip(M,S) = @ HEp(M,S), Hig(M,S) is a graded algebra over R
k>0

(with unit if M # @), which is associative and commutative (in the graded sense).
H}p is a contravariant functor from the smooth category to the category of graded
algebras over R.

It turns out that the above graded ring structure on H}n(M,S) depends, up to
isomorphism, only on the topology of M, and not on the smooth structure S.

If V is a real m-dimensional vector space, then by Theorem 10.18, A*V = 0 if
k > m. Thus, for a smooth m- manifold (M, S), Q*(M,S).= 0 for k > m, and
hence H%,(M,S) = 0 for k > m. This, combined with Proposition 13.20, yields:

Corollary 13.27. Let P be a one point space. Then

R ifk =0,

Hi(P) & { 0 fk#£0. O

Exercises for §13

1. Verify the claims made in Example 13.18.

2. (a) Let (M, S) be a smooth manifold and w € Q?*(M,S). Prove that w A dw is
exact.
(b) Give an explicit example of a 1-form w such that w A dw is not closed.

3. A real cochain complex (C,§) consists of:

(i) A sequence {C* | k > 0} of real vector spaces. (For convenience we also set
Ck=0ifk<0.)

(ii) A sequence of R-homomorphisms & : C* — C*+1,

(iii) We require that for each k, the composition

Ck _{5_) Ck+1 ___‘?_) Ck+2

is the zero map.

Thus, if (M, S) is a smooth manifold, the de Rham complex (2(M,S), d) given
by Q(M,S)* = QF(M, S), with d being exterior differentiation, is an example of a
real cochain complex.

If (C,6) is a real cochain complex, define Z*(C, ) to be the kernel of § : C* —
C*k+1 and B¥(C, ) the image of § : C*~1 — C¥. Members of Z*(C, §) are called
k-cocycles of (C,d). Members of B*(C, §) are called k-coboundaries of (C, §).

It is immediate from the condition 6 = 0 that B*(C,8) C Z*(C,d) for all k,
and hence we can form the quotient Z*(C,§)/B*(C, §), which is denoted H*(C, 6)
and called the k*® cohomology group (or module, or vector space) of (C, d).
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If (C,6) and (D, ) are real cochain complexes, a real cochain map f : (C,6) —
(D, €) consists of a sequence of R-homomorphisms f* : C¥ — DF such that for
each k, the diagram

commutes.

For example, if f : (M,S8) — (N,7) is a smooth map, the R-homomorphisms
f*: QF(M,S) — QF(N,T) constitute a real cochain map from the de Rham com-
plex of (N,T) to the de Rham complex of (M, S).

(a) Show that by taking the real cochain complexes as objects and real cochain
maps as morphisms, we obtain a category CoChaing, the category of real cochain
complexes.

(b) Given a real cochain map f : (C,d) — (D,¢), show that for each k there is
a well-defined R-homomorphism H*f : H*(C, §) — H*(D,¢) given by H*f([2]) =
[£%(2)] for each z € Z*(C, §) where [2] denotes the coset of z modulo coboundaries.

(c) Show that for each k the rules which assign to each real cochain complex
(C,8) the real vector space H*(C,d), and to each real cochain map f the R-
homomorphism H* f, constitute a covariant functor H* : CoChaing, — V Sg.

4. Let (C,d) and (D,¢) be real cochain complexes and f,g : (C,8) — (D,¢) real
cochain maps. A cochain homotopy T from f to g consists of a sequence of R-
homomorphisms T* : C¥ — D¥~1 such that for each k,

eTk 4 ThH15 = gk _ gk . % - DF,

We say f is cochain homotopic to g (denoted f ~ g) if there exists a cochain
homotopy from f to g.

(a) Show that =~ is an equivalence relation on CoChain((C,6), (D,¢)).

(b) Prove that if f ~ g, then H*f = HFg for all k.
5. Let (M,S) be a smooth manifold and X a smooth submanifold of (M,S). X
is said to be a smooth retract of (M, S) if there exists a smooth map r: M — X
such that r(z) = z for all z € X. Such an r is called a smooth retraction of M

onto X. Prove that if r is a smooth retraction of M onto X, then for each k > 0,
Hbpr : HEp (X, S|X) — HEL(M, S) is injective.
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14. INTEGRATION OF FORMS AND STOKES’ THEOREM

In this section we take up the integration of differential forms over special kinds
of parametrized domains call smooth cubical chains. The integrals are oriented
integrals in that they depend on the orientation of the parametrization. The graded
commutativity of wedge products appropriately deals with changes of orientation.
We will prove a version of Stokes’ Theorem for these integrals, which may be viewed
as a generalization of the Fundamental Theorem of Calculus. We will then use
Stokes’ Theorem to prove that certain de Rham cohomology classes are non-zero.

I denotes the closed unit interval [0,1] and for k > 0, I* is the k-fold cartesian
product I x - -+ x I, contained in R*. By convention we take I° = R = {0}. Note

————’

k
that for k£ > 0, I* is not a manifold.

Definition 14.1. Let (M, S) be a smooth manifold and k£ > 0. A smooth k-cube
o in (M, S) is a function o : I®* — M which is the restriction of some smooth map
o : U — M where U is some open subset of R* which contains I*.

Since I° is open in RP (in fact, equals R?) every function o : I — M is a smooth
0-cube in M. We can identify the smooth 0-cubes in M with the points of M. Note
that if £ > 0, the image of a smooth k-cube need not be a k-dimensional set since
we are allowing arbitrary maps on I* which have smooth extensions (an extreme
case would be a constant k-cube). “Nice” smooth k-cubes, e.g. those which are
restrictions of immersions or embeddings of open neighborhoods of I* into M, are
of primary geometric interest, but for functorial reasons we are forced to include
singular and degenerate smooth k-cubes. For example, if f: (M,S) — (N,7T) is a
smooth map and ¢ is a smooth k-cube in (M,S), then fo is a smooth k-cube in
(N,T). However even if ¢ is “nice”, fo may be quite singular and degenerate.

If X is any set, we can form the real vector space RX on Xas follows: Elements
of RX are formal sums } . 7% where the 7, are real and all but finitely many
are 0. Addition and scalar multiplication in RX is defined in the obvious way, and
it is easy to check that RX is a real vector space with these operations. If o € X,
we identify zo with the element Zme x TzT Where

_{1 if x = xg,
o = 0 if z # xg.

X is then an R-basis for RX.

Definition 14.2. Let (M, S) be a smooth manifold and k£ > 0. Denote by Qx(M, S)
the real vector space on the set of all smooth k-cubes in (M,S). Members of
Qr(M,S) are called smooth cubical k-chains in (M,S), and Qg(M,S) the kth
cubical chain space of (M,S).

Smooth cubical k-chains are going to be the domains of integration of k-forms.
If B : I* — R is continuous, then the k-fold integral

BdVy
Ik
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exists in both the Riemann and Lebesgue senses, and the two agree. Moreover, by
Fubini’s Theorem,

1 1
/ ,dek::/ / /B(wl,-..,xk)dwa(l)'”dma(k)’
Tk 0 0

a k-fold iteration of single integrals, for any permutation o € Y. The latter can
be evaluated using the Fundamental Theorem of Calculus.

For the case k£ = 0 we interpret / BdVy to be 5(0).
Jo

Let o be a smooth k-cube in (M,S) and & a smooth extension of o to an open
neighborhood U of I* in R*. If w is a k-form on (M, S), then 5*w is a k-form on
U and hence, by Proposition 12.13, we can write 0*w = Bz, Adz1 A -+ Adzy for
a unique smooth real-valued map Gz, on U. If 3 : V — M is another smooth
extension of o, then & and & agree on (0, 1)* and so by Proposition 12.15, 5*w and
6*w agree on (0,1)*. Hence (5, and B, agree on (0,1)k. Thus, since (0,1)% is
dense in I*, it follows by continuity that Bz, and B5 ., agree on I k. Thus we can
unambiguously write o*w for the restriction to I* of 7*w for any smooth extension
o of 0, and 0*w = Bs, Adz1 A+ Adzy for a unique real-valued G5, on I k which
has a smooth extension to an open neighborhood of I* in RX.

Definition 14.3. Let (M,S) be a smooth manifold and o a smooth k-cube in
(M,S). Let w be a k-form on (M,S). We define / w to be

/ ﬁa,w de
I*

If c =31 | ro0; € Qu(M,S), where the o; are smooth k-cubes in (M, S) and

the r; € R, we define
q
Jo=3n] w
¢ i=1 L

Note that no measures or metrics on M are required to define / w.
C

Proposition 14.4. Let (M,S) be a smooth manifold and k > 0. Then the real-
valued function /w for w € QF(M,S) and ¢ € Qr(M,S) is R-bilinear in the
arguments w and .

Proof. R-linearity in c for fixed w is immediate.
Let o be a fixed smooth k-cube in (M,S), and ¢ any smooth extension of o.
Then for any w, i € Q¥(M,S) and r € R, it follows from Corollary 12.4 that

0" (w+rp) =c"w+rs*pu.
Hence

:Ba,w+r,u, = /Ba,w + T:Ba,p.-
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Thus

Jwrri = [ BrornsaVi= [ (Bow+r80) Vi

:/ ﬁa,dek'H"/ ﬂa,ude=/w—l—r/ 7
Ik Ik P o

and so / w is an R-linear function of w for any fixed smooth k-cube o in (M, S).
The R-linearity of / w in w for any fixed ¢ € Qx(M,S) now follows easily. O
[

Let f: (M,S) — (N,T) be a smooth map and ¢ a smooth k-cube in (M, S).
Note that if & is any smooth extension of o, then f& is a smooth extension of fo,
and so fo is a smooth k-cube in (N, 7). Since the set of smooth k-cubes on (M, S)
is an R-basis for Qx(M,S), we can make the following definition:

Definition 14.5. Let f : (M,S) — (N,7) be a smooth map. Then for each
k>0, fu: Qp(M,S) — Qi(N,T) is the unique R-homomorphism which sends any
smooth k-cube o in (M, S) to the smooth k-cube fo in (N, T).

The proof of the following proposition is easy and left as an exercise.

Proposition 14.6. For each k > 0 the rules which assign, to each smooth manifold
(M, S) the real vector space Qi(M,S), and to each smooth map f : (M,S) — (N, T)
the R-homomorphism f. : Qi(M,S) — Qr(N,T), constitute a covariant functor
from Sm to VSgr. O

Proposition 14.7. Let f : (M,S) — (N,T) be a smooth map. Then for all
c € Qr(M,S) and w € QF(N, T),

Jre=].e

Proof. Both sides are R-linear in ¢, and so it suffices to check the case ¢ = ¢ for ¢
a general smooth k-cube in (M, S).

Let o be any smooth extension of 0. Then fo is a smooth extension of f,o.
Since (fo)*w = 0* f*w by Corollary 12.4, it follows that S¢,4., = B0, f+w. Hence

/ w= | BpowdVi = / By fr dVi = / ffo. O
feo Ik Ik c

Definition 14.8. Let (M,S) be a smooth manifold and o a smooth k-cube in
(M,S), k> 1. For 1 < i<k define o},0% : I*1 — M by

Ué(tla . 'atk:——l) = U(th ooy bie1, 0,8, . ')tk—l)a
O‘i(tl, e 7tk—1) = O'(tl, Ce 7ti——1a 1,ti, e 7tk:—1)-

The ¢, =0,1,1 <4 <k are called the faces of 5.
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Note that if o is a smooth k-cube in (M,S), k > 1, then each face of ¢ is a
smooth (k — 1)-cube in (M,S). For let o : U — M be a smooth extension of o, U
open in R®. For ¢ = 0,1 and 1 <4 < k let ¢ : RF~! — R* be the map given by

Gi(te, e the1) = (b, oo tim1, 65ty e ooy R ).

The j¢ are smooth, and &% : (i) _l(U) — M is a smooth extension of o?.

Definition 14.9. Let (M,S) be a smooth manifold and k& > 1. The k*® cubi-
cal boundary map for (M,S) is the unique R-homomorphism 8 : Qx(M,S) —
Qr—-1(M, S) defined on smooth k-cubes o in (M, S) by

k

(o) = Z (—1)i(08 — 0’15).

i=1

Proposition 14.10. Let (M,S) be a smooth manifold. Then for k > 2 and all
c € Qr(M,S), 6(0c) =0.

Proof. Since 9 is R-linear, it suffices to treat the case ¢ = o, a smooth k-cube in
(M,S). An easy check shows that for 1 <j<i<k,e=0o0r1l,n=0o0r1,

o (02 = ()i,

Thus

=1 i=1
k k-1
=3 VY0 (17 (08 = (o8] = (oD + (D))
i=1 j=1
= (—1)" ((o8)§ - ()] = (@1 + (o))
1<i<j<k—1
+ Y U - (08 - (oD + (D]
1<j<i<k
=51+ 52
where
Si= Y (0" ((0h)h ~ (@8] - (D + (D)),
1<i<j<k-1
So= 3 (=0 ((oh)h ~ (b - (oD + (oD]).
1<j<i<k
By (1),

So= 3 (D@5 - (@i = (@D + (@Di).

1<j<i<k

Note that each term in this last summation occurs exactly once in the summation
S1 with the opposite sign. [l
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Proposition 14.11. Let f : (M,S) — (N,T) be a smooth map. Then for all
k > 1, the diagram

Qu(M,8) —L— (v, T)
al la
Qr-1(M, S) > Qr-1(N,T)
commutes.

Proof. Since all maps in the above diagram are R-homomorphisms, it is sufficient
to check that for each smooth k-cube ¢ in (M, S), 0(f«o) = f.(00).
Note that for 1 <3<k and e =0,1,

(f*a)i = fu (Ui)-
Thus,

>y (vh - oi)) _ 3y (£ul08) = £u(0D)

=1

(D ((£:0)h = (fu0)i) =8(fu0). O

M= =

Theorem 14.12. (Generalized Stokes’ Theorem) Let (M,S) be a smooth
manifold, k > 0, w € Q¥(M,S), and c € Qy11(M,S). Then

/dwz/ Ww.
c dc

Proof. Since both sides are R-linear in ¢, it suffices to treat the case ¢ = o, a
smooth (k + 1)-cube in (M, S). Let & be a smooth extension of o to an open set U
in R**!, By Proposition 12.13 we can write

k+1
Fw=Y PiAdsy A Adzi A Adgy
i=1

where the 1; are smooth real-valued functions on U. By Theorem 13.15(d) and
Definition 13.1 we have

k+1

7t (dw) = d(Fw) = Y dipi Adwy A+ Adzi A+ A dzgg
i=1
k+1 k+1 o
= z Z Djwi/\dmj/\dml/\~--/\dmi/\~~-/\dxk+1.
i=1 j=1
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By Corollary 12.7(b),

dz; Adzy A--

Thus

i.e.

Thus

-/\c?ii/\---/\d:ckﬂz{

0 if o,
(—1)i“1d.’131 A ANdxga if j = 1.

k+1
E*(dw) = (Z (_1)1:—1Di¢i> A d.’L’l A A d$k+1,

=1
k+1 '

Bodw =Y _ (1) Digh;.
i=1

k+1

/U dw = /pc+1 (; (_1)i~1Di¢i) V41

k+1

:Z(_

k+1

:Z(_

k+1

k+1
= Z (-
=1

k+1
= Z (-

:Z(_

1 1
1)i_1/ / D dzy -+ - dzg41
0 0

k+1

1 1
0 0

k+1 (by Fubini’s Theorem)
1 1
1)i~1/ / (1/1i(581, o Zim1, L @i, o Thegn)
0 k 0
— ¢i(w1, ey .Ti_l,O, Lidlye - ,l'k;—|-1)) dwl s J:I:L s d$k+1

(by the Fundamental Theorem of Calculus)
1 1
l)i/0 o ~/0 ('(ﬁi(xl, cey Zi—1,0, i1, . o Tht1)
k

— (@1, .. Ti—1, 1, Ty, - -.,$k+1)) dxy - dzi - - dTpqq

1 1
1)1/ / (wi(ylv'-'ayi—l’o’yi""’yk)
0 0
—
k

- wi(yla ey Yie1, 1ay7la .o ayk)) dyl te dyk

On the other hand,

k+1

foe= e ([ [ )

=1
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Thus we will be done if we show that for 1 <i<k+1 and e =0,1,
1 1
(1) / w:/ / V(Y- Yim1,6 Yis - > Yk) dy1 - -+ Ay
ol 0 0
k

Let j¢ : R® — R¥*1 be as in the paragraph preceding Definition 14.9. Then ?
is a smooth extension of o7, and

k+1
@78 (0) = (9 @) = (9" (3 g A dos -+ ATy h - N )

j=1
k—l_l . . T —— .
=) () () A (Ge)* (daa) A -+ - A (GE)*(dmz) A -+ A () (A1)
j=1
(by Corollary 12.7(f)).
Writing 41, . . .,yx for the coordinate functions on R* we have, by Theorem 12.14,
. dyq ifl1<g<i-—1,
(72)*(dzq) =) Ds(i8)qdys = § 0 if g =4,
s=1 dyq-1 ifi+1<qg<k+1,

and (j£)*(¢;) = ;4% by Proposition 12.9(b). Thus, the only possible non-zero con-
tribution to the above summation for (552)*(w) occurs when (j)*(dz;) is omitted,
i.e. when j =14. Thus,

(Gje)"(w) = thuje Adyr A -+ - Ay,

and 50 B, , = 1ijt. Thus

/ w:/ ;g dVi
ol Ik

1 1
:/ / wi(ylv'"ayi—lasayia"',yk)dyl"'dyk)
0 0
k

establishing (1). O

We will shortly use the Generalized Stokes’ Theorem to prove the non-triviality
of certain de Rham cohomology groups. In order to facilitate this we first make
some definitions.

Definition 14.13. Let (M,S) be a smooth manifold and k¥ > 0. We denote

the image of 8 : Qg+1(M,S) — Qr(M,S) by Bx(M,S), and the kernel of 9 :

Qr(M,S) — Qr-1(M,S) by Zr(M,S). (By convention, Q;(M,S) = 0ifi < 0
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and so Zo(M,S) = Qo(M, S).) Members of Zy(M,S) are called smooth cubical k-
cycles in (M, S), and members of Bi(M, S) are called smooth cubical k-boundaries
n (M, S).

It is immediate from Proposition 14.10 that Bx(M,S) C Zx(M,S) and so, in
analogy with our formation of de Rham cohomology groups, we can form the quo-
tient Zx (M, S)/By(M,S). The latter is called the k*" unnormalized real homology
group of (M,S) and denoted HY (M, S). These are related to, but not equal to,
the normalized homology groups usually used in algebraic topology. Later we will
describe the modification needed to obtain the normalized homology groups and
indicate the relation between the latter and the de Rham cohomology groups (the
de Rham Theorem). For the present we will simply use the terminology of cycles
and boundaries, along with the Generalized Stokes’ Theorem, to obtain information
about de Rham cohomology.

Corollary 14.14. Let (M,S) be a smooth manifold. Suppose w is a closed k-form
on (M,S) and ¢ a smooth cubical k-cycle in (M,S). Then:

(a) If w is exact, then / w=0.

c

(b) If ¢ is a smooth cubical k-boundary in (M,S), then / w=0.

C

Proof. If w is exact, then w = dp for some (k — 1)-form p on (M,S). By the
Generalized Stokes’ Theorem,

/wz/dpz/ p=0
¢ c dc

since dc = 0, proving part (a).
If ¢ € Bp(M,S), then ¢ = Oe for some e € Qx+1(M,S). By the Generalized

Stokes’ Theorem,
/ w= / w= / dw =0
c Oe e

since dw = 0, proving part (b). O
Corollary 14.15. Let (M,S) be a smooth manifold. Suppose w is a closed k-form
on (M,S) and ¢ a smooth cubical k-cycle in (M,S) such that / w#0. Then w is

not an ezxact form on (M,S) and c is not a smooth cubical k—b(c)undary in (M,S).
In particular, HY-(M,S) and HY(M,S) are both non-zero. O

Theorem 14.16. Suppose n > 1 and let

w31

=1

o Adzp A Adzy, € QLR — {0})

where ||z|| denotes the FEuclidean norm of x. Then w is a closed (n — 1)-form on
— {0} which is not ezact. In particular, Him' (R™ — {0}) # 0.
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Proof. w is clearly an (n — 1) form on R™ — {0}. We first check that w is closed.
By Definition 13.2,
’L 1 d(

Z <” ”n>/\dxj/\dm1/\ Az A Ady,.

dw

Il
M:

)/\dml/\---/\c?:;i/\---/\dmn

i
I

I
Mz

il

i 1

By Corollary 12.7(b),

— _17/—'1d /\.../\dn .f.:,,
diﬂj/\diﬁ/\'--/\dmi/\-~/\da:n:{( ) L1 z ifi=jy

ifi+#74,
and so

n T
dw = Di| == | Adzy A+ A dxy,.
=2 (i) Ao e

Thus, to show dw = 0, it remains only to check that

By Calculus, for 1 <4 < n we have |

o zi\ _ lel* = naf
\zll*) ~  Jlz[|**2

and so

o) -5 Lo
] &4

=1
el 0 N
- +2 +2 i =
|2[|™ o[ |7 +2

completing the check that dw = 0.
To show that w is not exact it suffices, by Corollary 14.15, to show that for some

smooth cubical (n — 1)-cycle ¢ in R™ — {0}, / w # 0.

c
Let o : I" — R™ be given by o(z) =z —(3,...,3). ¢ is a smooth n-cube in R™.
In fact, the function given by the same formula on all of R™ is a smooth extension
of 0. Note that for 1 <i < n and € = 0,1, ¢° has image contained in R™ — {0}.
Thus if we write f : R® — {0} — R™ for the inclusion map, we can write o = fr. ;

where the 7 ; are smooth (n — 1)-cubes in R™ — {0}. Explicitly,

_ 1 1 1 1 1
Te,i(xla-”axn—l) - (.’171 5y L1 — 5,6 5,8 T 5y oy Tp—1 — 5)
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Let "
C = Z (——l)i(To’i - 7'1,@') € Qn_l(Rn — {0})
i=1
Note that

n n
fol@) = (=1 (fro5 = fria) = Y (—1)*(0§ — 0}) = do.

=1 i=1
Thus, by Propositions 14.11 and 14.10, f.(dc) = 0(f«c) = 8(dc) = 0. Since f is
injective, it follows easily that fi : Qn—1(R™ — {0}) — Q,—1(R™) is injective since
distinct smooth (n — 1)- cubes are sent by f, to distinct smooth (n — 1)-cubes and
the latter are linearly independent over R. Thus 0c = 0, i.e. ¢ is a smooth cubical
(n — 1)-cycle in R™ — {0}. We will be done if we show / w # 0.

C

For1<i<nande=0,1,let 7. ; : R""! —» R™ — {0} be the map given by the
same formula as that for 7. ;. 7., is a smooth extension of 7. ;. For 1 < i <n let

g; : R — {0} — R be given by g;(z) = ||.§|Z|” Then by Corollary 12.7(f),
n . ———
To W = Z (—1)%1;:,1'(99') ATe(dza) A - ATE(dag) A e AT (dan).
j=1
We have, by Theorem 12.14,
n—1
?:’i(dxj) = Z Dk($5,¢)j Adxg.
k=1
Since L . o
Tj— 35 fl1<j<i—1,
Tei(T1,. Tno1) =4 €— % if j =1,
Tj-1— 3 ifi+1<j<n,
we obtain
1 ifl<j<i—1and k=47,
Dp(Tes); =< 1 ifi+l<j<nandk=j-1,
0 otherwise.
Hence
dx; if1<j<i—1,
Tei(dz;) =4 0 if j =1,
dxj_l 1fZ+1SjSTL

Thus the only possible non-zero contribution in the above summation for ?g‘,iw
occurs when 77 ,(dx;) is omitted, i.e. when j = ¢. Thus,

Tow = (=17 (gi) ANdzy A Adzpy.
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Since 77 ;(9:) = giTe,; by Proposition 12.9(b), it follows that

IB’ra,i,w = (_1)i_1gi7-s,ia

/ w= (_1)73—1/1 B 9iTe,i an—l-

) ( -«
7.=1 /
(—1)i! </ 9iT0,i AVp—1 —/ GiTi i an—l)
n-1 In—1
/zn . (giTl,i - giTO,i) dVp—-1.

and so

Thus

[

Il

5

For all z = (z1,...,%p_1) € I™1,
gi'rl,i(m) - giTo,i(ﬂv) = gi(21 — %, ey L1 — %, %,mz‘ - %a ey Tp—1 — %)
_gi(xl_%,'-'ami—l*%,_%,xi“%,-”amn—l - %)
1 1 1
= i — = >0
[mo,6(@) ™ [Ima(@)I™  ra(=) ™

since [|7o4(@)]| = lr.4(z)||. Thus /

Jn—1

(giTl,i — giTO,i> dVyp-1 >0for1 <i<mn
and so / w > 0, completing the proof. O
c

Theorem 14.16 will later be used, in conjunction with some additional results on
de Rham cohomology, to prove a purely topological result known as the Brouwer
Fixed-Point Theorem.

In the remainder of this section we look at the relation between the Generalized
Stokes’ Theorem and classical vector analysis results, including the classical Stokes’
Theorem.

Lemma 14.17. Let U and V' be open subsets of R™ and f : U — V a smooth map.
Then
[fdzi A+ ANdzy) =det (Df) Adzy A -+ Adzy,.

Proof. By Corollary 12.7(f) and Theorem 12.14,

[ dzy A Ndzy) = (Z D;fi A d:ltj> JARERWAN <Z Djfn A dl‘j).
Ji=1 J=1

By the same calculation as used in the proof of Theorem 10.20, the latter is
det (Df)Adzy A+ ANdxy,,. O
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Recall, by Remark 13.8, that if U is an open subset of R™, smooth vector fields on
U are in one-to-one correspondence with 1-forms on U. Explicitly, if F' is a smooth
vector field on U with component functions Fi,..., F,, i.e. the F; are smooth real-
valued functions on U and F(z) = f&ﬁl(x,zyzl Fi(x)ei), we assoclate with F’
the 1-form U(F) = Y7 | F; Adz;. F as above is classically written .., Fie; or,
in case n = 3, F1i + Fyj + F3k.

For U as above, a subset X of U is a k-patch if it is the image of a smooth
k-cube o in U such that o has a smooth extension & which is a diffeomorphism
onto a k-dimensional smooth submanifold of U. Call such a ¢ a parametrization of
the k-patch X. Two parametrizations o,7 of X determine the same orientation of
X if D(775) has positive determinant at all points of I*¥. An oriented k-patch X
in U is a k-patch in U with a choice of orientation class of parametrizations. Any
representative of the latter is called an orientation-preserving parametrization of
X.

In the special case of an n-patch X in U, there is a natural orientation, namely
the class of parametrizations o for which det (D&) > 0 at all points of I™.

Let f: U — R be smooth and X an n-patch in U. By the classical change of
variables formula for multiple integrals,

/ v, =/ (o) - |det (D5)| Vi,
X Im

where the dot denotes point-wise multiplication. If X is given the natural orien-
tation and o is orientation-preserving, then the absolute value bars in the above
formula can be dropped. It follows from Lemma 14.17, Corollary 12.7(f), and
Proposition 12.9 that

(fo)-det (Da)Adzy A+ ANdzy =0*(f Adzy A+ Adzy) = 5% (xf)

where * denotes the Hodge star operator. Thus,

Observation 14.18. Let U be open in R™, f : U — R a smooth map, X an
n-patch in U, and o : I — U a parametrization of X which preserves the natural

orientation of X. Then
/ fdv, = / xf. O
X g

1-patches and 2-patches will be called curve and surface patches, respectively.
If C is an oriented curve patch in U and F' a smooth vector field on U, the line

integral of the tangential component of I' along C, denoted / F - T ds (which we

C
will not define here) is studied in calculus and found to be computable as follows:
If ¢ is any orientation-preserving parametrization of C, then

LF-Tdsz/J(i(Fﬁ)-E{) av;

=1
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where 71, ..., 0, are the coordinate functions of & and the dot on the right denotes
point-wise multiplication. From Corollary 12.7(f) and Theorem 12.14,

n

& (¥(F)) =& (Z F; A dwi> =Y Fo A (dz:) = ) (FiG) - 5 A day.
=1 =1

=1
Thus

Observation 14.19. Let U be open in R™, C an oriented curve patch in U, and
F' o smooth vector field on U. Then for any orientation-preserving parametrization

o of C,
/C‘F-Tdsz/G\Il(F). 0

Now suppose U is open in R2, C an oriented curve patch in U, and F' a smooth
vector field on U. The line integral of the normal component of F' along C, denoted

/ F' - nds, is studied in calculus and found to be computable as follows: If ¢ is
C

any orientation-preserving parametrization of C, then

/ F-nds = / ((Fla) LG — (Fy5) -'&1) dv;.
C. I
From Corollary 12.7(f) and Theorem 12.14,

o* (*\I/(F)) = 5*(}71 A dIBQ — F2 A dml) = (Fﬁ) A 5*(d$2) - (FQ&) A 5*(d$1)
= ((F:5) - 5 — (F35) -3 ) Adas.

Thus

Observation 14.20. Let U be open in R?, C an oriented curve patch in U, and
F' o smooth vector field on U. Then for any orientation-preserving parametrization

o of C,
/CF-ndsz/a*\I!(F). O

Now suppose U is open in R® and & is a smooth oriented surface patch in U. Let
F' be a smooth vector field on U. The surface integral of the normal component of
I along S, denoted / F-ndS, is studied in calculus and is computable as follows:

S
If o is any orientation-preserving parametrization of S, then

[ Fmas= [ ((F5) J2a®) - (Fad) - 1(8) + (B:F) - ha(5)) v
S 12

where
Ly Dl’&@ Dlgj
J;,;(0) = det (ngi Dy, )
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From Corollary 12.7(f) and Theorem 12.14,

o*(+U(F)) =5* (*(F1 Ndzy + Fy Adzg + F3 A dx3))
= 0*(F1 Adzy ANdzg — Fo Adxy Adzs + F3 Adzy A dzsy)
= (F10) A *(dz2) A o*(dxs) — (Fpo) Ao*(dz1) AT*(dz3)
+ (F30) Ao*(dz1) A o*(dzs)

= ((Flg) ' Jz,g(a:) - (an) . Jl,g(a) + (F3a) . Jl,g(g)) A\ d.’L‘l A dajg.

Thus

Observation 14.21. Let U be open in R3, S an oriented surface patch in U, and
F' a smooth vector field on U. Then for any orientation-preserving parametrization

o of S,
/SF-ndS:/G*\II(F). O

Suppose U is open in R™ and let ¢ be a smooth k-cube in U which has a
smooth extension to a diffeomorphism onto a smooth k-dimensional submanifold
of U. Write X, for the image of . Thus X, is a k-patch in U, and we orient it by
choosing the orientation containing ¢. Define 0X, to be the union of the images
of the faces 0¢,1 < i<k, e=0,1. Thus 80X, = X, —U((O, 1)"’) 0X, is the union
of the (k — 1)-patches parametrized by the faces of 0. Write X7 . = o%(I*~1). We
orient X, 2.’5 as follows: the parametrization o? is orientation-preserving if % occurs
with coeflicient +1 in the expression for 0o, and orientation-reversing otherwise.
These are called the induced orientations on the X! .. The following is then a
consequence of Observations 14.19, 14.20, and 14.21:

Proposition 14.22. With notation as above, let F' be a smooth vector field on U.
Then:
(a) If k=2, then

/ F-Tds=/ U(F).
80Xy do
(b) If n =k =2, then

/ F-nds=/ *xW(F).
80X, do
(¢c) If n =k =3, then

/ F-ndS= [ s¥yF). O
80X, do

We proceed now to apply the Generalized Stokes’ Theorem (Theorem 14.12) to
each of the cases of Proposition 14.22.
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If n =3 and k = 2, then

/ F.-Tds= v
90X,

[we
L 4G (F)
/a (rd¥() = /a wlent F)(by Remark 13.8)

o)

(by Proposition 14.22(a))

(by Theorem 14.12)

= / curl /' - ndS
o (by Observation 14.21).

Thus we obtain the classical Stokes’ Theorem.
If kK =n =2, then

/ F-nds=/ « W (F)
X, 8 (by Proposition 14.22(b))

= [ dxU(F)
/0 (by Theorem 14.12)

:/ *(+d x U(F)) :-/ xU(div F)
o a (by Remark 13.8)

_ / div F dV,
Xo (by Observation 14.18).

Thus we obtain the classical Green’s Theorem.
If k =n =3, then

/ - F-ndS = *xW(F)
X, el (by Proposition 14.22(c))

:/ dx ¥(F)
o (by Theorem 14.12)
:/ «(xd  U(F)) :/ «U(div F)

(by Remark 13.8)

_ / div F Vs
Xo (by Observation 14.18).

Thus we obtain the classical Divergence Theorem.
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Exercises for §14

1. Let (M,S) be a smooth manifold, w € QP(M,S), p € Q4(M,S), and ¢ €
Qp+q+1(M, S). Prove the following integration by parts formula:

/c(dw)/\p:/acw/\p—(—l)p/cw/\(dp).

2. Let (M, S) be a smooth manifold. Suppose w is a k-form on M.
(a) Suppose / w = 0 for every smooth k-cube o in (M,S). Prove that w = 0.

(b) Prove that w is closed if and only if / w=0for all c € Qr+1(M,S).
Oc
3. Let o, 7 : I? — S2 be given as follows:

o(z,y) = (sinmy cos2mz, sinTy sin 2wz, cos 7y),

—~ L~

7(z,y) = (sinny, 0, coswy).

Let ¢ = 0 — 7 € Q2(S?).
(a) Prove that c is a smooth cubical 2-cycle in S2.
(b) Let i : $? — R3 denote the inclusion map. Let w = i*(zAdz Ady). Calculate

Ww.

(c) What can you conclude from (a) and (b) about H32,(S%)? Explain.
4. Let 0 : I? — S' x S! be given by

o(z,y) = ((cos 2wz, sin 2mz), (cos 2y, sin 2my)).

(a) Prove that ¢ is a smooth cubical 2-cycle in §* x S*.
(b) Let i : S — R? denote the inclusion map. Let w = i*(z A dy). Let
p = miw A T5w where 71,73 1 ST x §1 — S are the projections on the first and

second factors, respectively. Calculate / p.

o

(c) What can you conclude from (a) and (b) about H25(S! x S')? Explain.
5. Let o, 7: I — S* x S! be given by

o(z) = ((cos2mz,sin2rz), (0,1)),
7(z) = ((cos 2wz, sin 2rz), (0, —1)).

Prove that for every closed 1-form w on S x S,

[w=[w
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15. SM00TH HOMOTOPY INVARIANCE OF DE RHAM COHOMOLOGY

In this section we introduce a smooth version of homotopy between smooth maps
and prove that smoothly homotopic maps induce the very same homomorphisms
in de Rham cohomology. As a consequence, smooth manifolds of the same smooth
homotopy type have isomorphic de Rham cohomology groups. This will greatly
facilitate obtaining information about de Rham cohomology groups of certain man-
ifolds (in particular, R™ and S™). This cohomology information will then be used,
in conjunction with analytic and topological arguments, to deduce the purely topo-
logical Brouwer Fixed-Point Theorem.

Definition 15.1. Suppose f,g: (M,S) — (N,7T) are smooth maps. We say f is
smoothly homotopic to g (denoted f ~ g) if a smooth map h: M x R — N exists
such that h(z,0) = f(z) and h(z,1) = g(z) for all x € M. Such an h is called a
smooth homotopy from f to g. We write f ~ g to denote the statement “h is a
smooth homotopy from f to g”.

For topological homotopy, one uses I instead of R. This will not do for our
purposes since I is not a manifold. We could take the approach that we followed
earlier for smooth cubes and replace R by an open interval (depending on h) which
contains I. Our approach is equivalent to this since any open interval is diffeomor-
phic to R, and has the slight notational advantage that the homotopy parameter
space R is the same for all smooth homotopies.

Example 15.2. For an arbitrary smooth map f: M — R", let h: M x R - R"
be given by h(z,t) = (1 — t)f(z). Then h is a smooth homotopy from f to the
constant map with value 0.

We wish to show that the relation ~ on the set of smooth maps from (M, S)
to (N, 7T) is an equivalence relation. The usual topological homotopy argument for
this works fine for the reflexive and symmetric properties, but fails for the tran-
sitive property since the topological pasting construction used there could destroy
smoothness. The following lemma will allow us to replace the usual topological
pasting construction by a smooth pasting construction.

Lemma 15.3. Let a and b be real numbers with a < b. Then there exist smooth
maps agp: R — R and By : R — R such that:

(i) agp(z) =0ifz <aorz>b, and agp(z) >0 fora <z <b.

(i) Bap(z) =0 forz < a, Bap(z) =1 forz > b, and By p(z) is strictly increasing
fora <z <b.

Proof. Let f: R — R be given by

f(m):{o . itz <0,

e % if x > 0.

It is elementary to check that f is smooth everywhere (including 0) and that f(z) >
0 for = > 0. Take

agb(2) = f(z - a)f(b—z)
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and

X
/aM@ﬁ
b T
/amma

Proposition 15.4. Let (M,S) and (N,T) be smooth manifolds. Then ~ is an
equivalence relation on the set of all smooth maps from (M,S) to (N,T).

Proof. Let f: (M,S) — (N, T) be smooth. Let h: M xR — N be the composition

ﬁa,b(x) =

MxR=S ML N

Then f ~ f, and so = is reflexive.
Suppose f,g: (M,S) — (N, T) are smooth and f ~ g. Let n: R — R be given
by n(t) =1 —t. Then g =~ f where k is the composition

MxR 2% <R N

Thus ~ is symmetric.
Suppose f,g,h: (M,S) — (N,T) are smooth and f ~; g, g o h. Let ¢,9 :
M x R — N be the compositions

1mXxBo,1/3
—

M xR MxRLN

and
1mXB2/3,1
—_)

M xR MxRE N,

respectively. Then ¢ and ¢ are smooth. Note that ¢ and i agree on M X (%,% .

In fact, for 3 < ¢ < £, p(z,t) = j(z,1) = g(z), ¥(z,t) = k(z,0) = g(z). Thus we
have a well-defined map ¢ : M x R — N given by

(.1) { o(z,t) ift<%,

T =

7 P(z,t) ift> 3.

Since the restrictions of ¢ to the open sets M x (—00,2) and M x (3,00) are the
restrictions of ¢ and %, respectively, which are smooth, it follows from Proposi-
tion 4.19(b) that ¢ is smooth. Note that f ~, h, and so ~ is transitive. [

Proposition 15.5. Let f,g : (M,S) — (N,T) be smoothly homotopic maps.
Then:

(a) For any smooth map h: (Q,U) — (M, S), fh =~ gh.

(b) For any smooth map j : (N, T) — (Q,U), jf ~ jg.

Proof. Say f =~ g. Then k(h x 1gr) is a smooth homotopy from fh to gh, and jk
is a smooth homotopy from jf to jg. U
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Corollary 15.6. Let fi,fa : (M,8) — (N,7T) and g1,92 : (N,T) — (Q,U) be
smooth maps such that f1 ~ fo and g1 ~ go. Then g1f1 =~ g2 fa.

Proof. By Proposition 15.5, g1 f1 =~ g1fs and g1 f2 =~ ga2f2. The result now follows
from Proposition 15.4. [

Definition 15.7. A smooth map f: (M,S) — (N, T) is called a smooth homotopy
equivalence if there exists a smooth map ¢ : (N,7) — (M, S) such that fg ~ 1y
and gf ~ 1. In this case we say that g is a smooth homotopy inverse to f, and that
(M,S) and (N, T) are smoothly homotopy equivalent. We write (M, S) ~ (N, T)
to denote the statement that (M, S) and (N, T) are smoothly homotopy equivalent.

Proposition 15.8. =~ is an equivalence relation on the class of all smooth mani-
folds.

Proof. For any smooth manifold (M,S), 1) is a smooth homotopy equivalence
from (M, S) to itself, so ~ is reflexive.

Symmetry of ~ is immediate from the definition.

Suppose (M,S) ~ (N,T) and (N,T) ~ (Q,U). Say f: (M,S) — (N,T),
g: (N, T) — (Q,U) are smooth homotopy equivalences with respective smooth
homotopy inverses h and k. Thus gf =~ 1p, fg ~ 1y, kh ~ 1y, and hk =~ 1g.
Then, using Corollary 15.6 and Proposition 15.4,

(hf)(gk) = h(fg)k = hlyk = hk ~ 1¢

and similarly (gk)(hf) =~ 1p;. Thus hf is a smooth homotopy equivalence from
(M,S) to (N,T), and so = is transitive. O

Example 15.9. Every diffeomorphism is a smooth homotopy equivalence.

Example 15.10. For any m,n > 0, R™ is smoothly homotopy equivalent to R™.
For let f : R™ — R™ and g : R® — R™ be arbitrary smooth maps (e.g. constant
maps). By Example 15.2, both gf and 1gm are smoothly homotopic to the constant
map with value 0, and so gf =~ lgm. Similarly, fg ~ 1gr». In particular, R® ~ R?
for all n > 0.

Example 15.11. Suppose n > 0. Let i : S"~! — R™ — {0} denote the standard
inclusion, and let g : R™ — {0} — S™~! be given by g(z) = ﬂg—r Then g and 4
are smooth with respect to the standard smooth structures, and gi = 1gn-1. Let
h: (R” - {0}) x R — R" — {0} be given by

x

M@ = T e =1)

Then h is a smooth homotopy from 1g»_go} to ig. Thus ¢ and g are smooth
homotopy equivalences.

As stated earlier, we want show that smoothly homotopic maps induce the very
same homomorphisms in de Rham cohomology. The next lemma reduces this task
to verifying a special case.
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Lemma 15.12. Let (M,S) be a smooth manifold. Let ig,i1 : M — M X R be the
inclusions given by i;(z) = (z,7), j = 0,1. Suppose (M,S) has the property that

HEpio = HEpiy - HE(M xR, S x Sr) — HEg(M, S)

for all k > 0, where Sp denotes the standard smooth structure on R. Then for any
smooth manifold (N,T) and smooth maps f,g: (M,S) — (N,T) such that f ~ g,

HYnf = Hipg: Hip(N,T) — Hr (M, S)
for all k > 0.

Proof. Let h be a smooth homotopy from f to g. Then f = hip, g = hi; and so by
Proposition 13.23,

Hng = HgR(hiO) = Hc]chiOHchRh = H(IicRich’lth = HsR(hil) = HQRQ- U

Thus, to prove that smoothly homotopic maps induce the same de Rham co-
homology homomorphisms, it remains only to show that every smooth manifold
(M, S) satisfies the hypothesis of Lemma 15.12. We will make use of the re-
sult of Exercise 4 of §13 to show this, i.e. show that the cochain maps if,?] :
(M x R,8 x Sr) — Q*(M,S) are cochain homotopic.

The concept of cochain homotopy can be motivated by its dual concept, “chain
homotopy” which has a geometric motivation as follows: Suppose f,g: (M,S) —
(N, T) are smooth maps and h is a smooth homotopy from f to g. For each smooth
k-cube o in (M, S) let T*o : I*+1 — N be the composition

Pk TP xR 2% xRN

T*o is a smooth (k -+ 1)-cube in (N, T). Let T* : Qx(M,S) — Qr+1(N,T) be the
R-homomorphism extending the above construction. Writing f, gk : Qx(M,S) —
Qr(N,T) instead of f,,g, as earlier, it is straightforward to check that OT* +
Tk=19 = gy — fi for all k. Thus the T® constitute a “chain homotopy” from
the chain map f. to the chain map g.. “Chain homotopy” plays a role in the
category of chain complexes analogous to that of smooth homotopy in the category
Sm. Having motivated the concept of chain homotopy in the category of chain
complexes, cochain homotopy is motivated by the fact that it is the dual concept
for the category of cochain complexes.

We carry out the task of showing that all smooth manifolds satisfy the hypothesis
of Lemma 15.12 in two stages: We first show that in the case of open subsets of
Euclidean spaces, i§ and ¢ are “naturally” cochain homotopic. We next extend
this to the general case via charts.

Lemma 15.13. There is a construction which assigns to each open subset U of R™
a cochain homotopy TV : Q*(U x R) — Q*(U) from i} to i} such that if f : U —V
is a smooth map where U,V are open in R™, then the diagram

QH(V x R) —2— Qb-1(V)
(fXIR)*l lf*
U xR) —— (V)
:
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commutes for all k.

Proof. Write x1,...,x, for the coordinate functions in R™ and ¢ for the coordinate
function in R. For each k > 0 we have Q¥(U x R) = QE(U x R) ® Q¥ (U x R) where
QF(U x R) consists of all 33, fr Adxr where each f1: U x R — R is smooth,
and Q¥(U x R)) consists of all Z‘}GX ey 97 Ndzy Adt where each g5 : UXR — R
is smooth. If w € Q¥(U x R) we will erte w = wpy + w; where w; € Qk(U x R),
1=0,1. .

If g: UxR — R is smooth, define g : U — R by g(z) = / g(z,t) dt.

0
Then § is smooth. For k > 0 we define T : QF(U x R) — Q*~}(U) as follows:
If wis a k-form on U x R and w; = EJGXn,k—l gs N\ dzg A dt, then TkU(w) =
(=1 ' X ex, o, 97 Adzg. (Thus T (w) depends only on wi.) We also define
TY = 0.

Note that for any (k — 1)-tuple J of integers between 1 and n (not necessarily
an increasing (k — 1)-tuple), if g : U x R — R. is smooth, then TV (g Adzj A dt) =
(=1)k~1g A dz;. For if a repeat occurs in J, both sides are 0; if a repeat does not
occur, the permutation required to bring the entries of J into increasing order must
be applied to both sides.

We proceed to calculate dTy (w) + Ty, ;d(w). If f : U xR — R is a smooth map
we will write D, f instead of D, f for the partial derivative with respect to ¢ to
emphasize the special role played here by the last coordinate. Say

Y findwr+ Y gsAdzsAdt

IeX'n,,k: JEX'n,,k:-l

where the fr,95: U x R — R are smooth. Then

dTf (w) = (-1)F Y~ dgs;Aday

JEXn,k—l
and so
(1) dTY (w) = Y Z Dg; Ada; A dx .
JEXnk 1 i=1
We have

> dfiAder+ ) dgyAdzyAdt

I€Xp 1 JeXn,k—1
n

= Y ((Z Difr /\d:m) + Dy f1 /\dt) Adzy
IeXnk i=1

n
+ Y DigyAdw; Aday Adt
JeXnk—1 i=1
152



since in the second summation, D;gs A dit Adxjy A dt =0 for all J. Thus

(dw)1= Y. DefrAdtAdzr+ > ZDZgJ/\da:z/\de/\dt
IeXn,k JeXn,k—1 i=1

n
= Z (—1)thfI ANdzp Adt+ Z Z D;gj ANdz; Ndx g N dt.

TeXn i JeXnk—1 i=1
Thus
T (dw) = (—1)* Z (—=1)¥Dyf; A day
IeXn,k
+(-DF Y ZngJAdszde
JeXn,k—1 i=1
= Z Dif; Adzp + (—1)* Z Z D;g; ANdz; Adzy.
I€eXnk JeXn,k—1 i=1

By the Fundamental Theorem of Calculus we have, for each I € X, x,

Dify(x) = / Dufr(,8) dt = fr(w, 1) — f1(=,0)
= (fri1 — frio) ().

We have, for each J € X, p—; and 1 <13 < n,

Digs (@) = /01 Digy(z,8) dt = Dy (/01 a7z, 1) dt) = Di7,(2).

Thus
Tiha(dw) = > (frix — frio) Adzy
IEXn k

(2)

Z Z D;g; Ndz; Ndzy.

JeXnk 1 1=1

Thus, by (1) and (2),
(3) AT (w) + T d(w) = Z (fria — frio) Adzy.

IGXn,k

We next calculate ¢} (w)—ig(w). Since i;(x1,...,2n) = (Z1,...,%n, J) forj =0,1,

it follows that 4} (dx;) = dx; for 1 <i < nand 43(dt) = d(j) = 0. Thus, for I € X ¢
we have 1% (da;I) dzy, and so

’L;((-U)zz;( Z fI/\dZEI>+i;< Z gJ/\d:IZJ/\dt>
IGX‘n,k JEXn‘k_l '
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= Z (z';fff)/\i;'f(dxz)+i;< Z gJ/\dJJJ)/\i;(dt)

IeXn i JEXn k-1
= Y frij Adap.
IEX'n.,k
Thus ‘
(4) i(w) —igw) = > (frir— frio) Adar.

IEXn,k:

From (3) and (4), it follows that TY is a cochain homotopy from ¥ to 4%.

Now suppose f : U — V is smooth where U and V are open in R™. Let
7y :UXR — U and 7y : V x R — V denote the projections on the first factor,
We claim

(5) mgr(dz;) = dx; for 1 < i <m,
(6) my(dz;) = dz; for 1 < i < n,
(7) (f x 1r)*(dz;) = 7f; f*(dz;) for 1 <4 < n,
(8) (f x 1gr)*(dt) = dt, and
9) (f x 1r)* carries QF(V x R) into Q¥ (U x R).
(5) and (6) are immediate since my(z1,...,%n,t) = (21,...,%,) and similarly
for my .

From (6) and commutativity of the diagram

UxR 22, vy xR

wul lwv

v — — Vv

f
we obtain, for 1 <4 < n,
(f X 1r)*(dz;) = (f x 1r)* 7y (dws) = n(y f* (ds),

establishing (7).

(8) is immediate since (f X 1g)(z1,...,Zpn,t) = (f(a:l, . ..,:L‘n,t),t).

To prove (9) it suffices to check that for each smooth 4 : V x R — R and
I € Xnk, (f X Ir)*(h Adzr) € QE(U x R). By (7) we have

(F x 1r)*(h Adar) = h(F x 1r) A (F x 1r)*(dz1) = h(f x 1r) A7 F* (dar).
Since f*(dz;) = 35, (Djfs) Adz; for 1 <4 < m, it follows from (5) that

nt f*(dws) =Y (Djfi)my A da;
j=1
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from which it follows easily that (f X 1r)*(hAdzr) has the form 3 Jex,, Jondzg
where the f; : U X R — R are smooth, proving (9).

It remains only to show
(10) FTY (W) = TY (F x 1r)*(w) for all w € QF(V x R).
Since TV and 7)Y are 0 on Q&(U x R) and QF(V x R), respectively, it follows from
(9) that both f*TY (w) and TV (f x 1gr)*(w) are 0 for w € QF(V x R). Thus it
remains only to show that (10) holds for all w € Q¥(V x R). It is sufficient to treat
the case w = g Adzy A dt where g: V x R — R is smooth and J € X, k1.

We have f*TY (w) = (=1)*=1f*(G Adzs) = (=1)*"1gf A f*(dzs). Thus if we
write

(11) f*ldzy) = Z fr Adzg

IeXn k-1
where each f; : U — R is smooth, then
(12) FTY W)= (-1DF1 > gf Afr Adar.
IeXn k-1
On the other hand,
(f x Ir)*(w) = g(f x Ir) A (f X 1r)*(dzs) A (f X 1r)*(dt)
=g(f x 1g) Al f*(dzs) N dt
(by (7) and (8))

=g(fX1R)/\7T2<]< Z fj/\dic_r>/\dt

IeXn k1 (by (11))
= Z g(f X 1r) A frmy A (dar) A dt
IeXn k-1
= Z g(f X lR) A f]ﬂ'U Adzxy /\ dt (by (5))
IeXp k-1

Hence

TV (f x 1r)* (W) = (-1)F1 > g(f x1r) A frmy Ader.

Iexn,k—l
Thus, by (12) the proof will be complete if we check that for all I € X, 1,

gf N fr =g(f x 1r) A frmu.

For all x € U we have

/1 <g(f X lR) A f[?TU) (Ji,t) dt

[ st@onea=([ o a)ne
?

))fI( ) = (@f A f1)(=),

9(f X Ir) A frmy ()

completing the proof. [J
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Corollary 15.14. There is a construction which assigns to each smooth manifold
M which is diffeomorphic to an open subset of R™, a cochain homotopy TM
(M xR) — Q*(M) from i§ to i such that if f : M — N is a smooth map where
N is diffeomorphic to an open subset of R™, then the diagram

N
QF(N x R) —*— QF=1(N)

(th)*l |

QF(M x R) —— QF-1(M)
TM

k

commutes for all k.

Proof. Choose any diffeomorphism a : M — U where U is open in R". Since aX1g
is a diffeomorphism, (o x 1r)* : Q¥(U x R) — Q¥(M x R) is an R-isomorphism
for all k. Define TM : Q¥(M x R) — Q*~1(M) to be the composition

(ax1g)* !
—_—

|92 *
Ok (M x R) QU x R) =& QF—1(U) 25 Qb1 (31)

where T,gj is provided by Lemma 15.13. Write ¥ : M — M xR and i U - UxR
to distinguish the inclusions ¢ and 4; for the spaces M and U. For ¢ = 0,1 the
diagram

M
M — s MxR

(1) al lale

U————;—»UxR

€

commutes. We then have, for all &,

dTM + TM d = do* T (o x 1r)*F + &* T (o x 1g)*~*d

o*dT{ (o x 1g)* "1 4+ o* T jd(a x 1g)* !
(by Theorem 13.15(d))

= a*(dTY + T d) (e x 1g)**
= o* (i{* - z’g*)(a x 1g)* !

(by Lemma 15.13)
= o (a* M — o) (by (1))
_ sMx M %
=t T

and so TM is a cochain homotopy from i{)"f *to z{w *. (We could, at this point, verify
that the above T™ is independent of the choice of o, but we will not explicitly need
this to complete the proof.)
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Choose any diffeomorphism G : N — V where V is open in R", and construct
TN as above using 3. Since Bfa~! : U — V is a smooth map between open subsets
of R™, it follows from Lemma 15.13 that for each k, the diagram

A4
QF(V x R) —*—s QF-1(V)
(2) ((8seyx1x)" | |@ra=
QH(U x R) —— QF1(U)
T

k

commutes. Thus

f*TéV — f*IB*T]};/(IB % 1R)*—1 — a*a*_lf*ﬁ*T]y(ﬂ X 1R)*—-1
=" (Bfo )Ty (87" x 1r)*
= o*TY ((Bfa™) x 1r)" (87" X 1r)* (by (2))
=a*TY ((B7'8fa™) x 1r)" = &*TY ((f x Ir)(a™* x 1R))"
=o'TY (ax Ir)* " Mf x Ir)* =T} (f x 1r)*. O

Theorem 15.15. Let (M,S) and (N,T) be smooth manifolds. Suppose f,g :
(M,S) — (N,T) are smooth maps which are smoothly homotopic. Then for all
k>0,

Hipf = Hirg : Hip(N, T) — Hip(M, S).

Proof. Let i¥,iM : M — M x R denote the inclusions given by i¥(z) = (z,e),
e = 0,1. From Lemma 15.12 and Exercise 4 of §13 it suffices to show that the
cochain maps 537 *,i1M* : Q*(M xR) — Q*(M) are cochain homotopic. Our strategy
is to use Corollary 15.14 to construct such cochain homotopies locally, and to show
that these local constructions are compatible on overlaps.

Say M is n-dimensional and let O be the collection of all open subsets of M which
are diffeomorphic to open subsets of R™. For each U € O let TV : Q*(U x R) —
*(U) denote the cochain homotopy from i§ * to i{* provided by Corollary 15.14,
and let jy : U — M denote the inclusion. For k& > 0 let pg : A¥(M,S) — M denote
the projection. For k > 1 and w € QF(M x R) let S{ (w) : U — p;1,(U) denote
the composition

Ty ((jUXIR)*w) (AF 1y

)7
——— L)

U AFH )
where AF~1jy; is the diffeomorphism of Lemmas 13.11 and 13.12. Then SY (w) is
smooth, and pk_ng(w) = ly. Thus, if we show that whenever U,V € O then
SY(w) and SY (w) agree on U NV, we would have a (k — 1)-form TM (w) on M
whose restriction to each U € O is SY (w). To show this, it suffices to check that
whenever W is open in U, then S}V (w) is the restriction of SY (w) to W (for then
the restrictions of SY (w) and SY (w) to U NV would both be SY"V (w)).
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Let ¢ : W — U denote the inclusion. Then jw = jyi. By Corollary 15.14, the
diagram

QU xR) —%— QL)

(1) x1n)° | |#
QF(W x R) ——— QF1(W)
TW

commutes. Thus
SY (w) = (A* i)~ lTk (Gw x 1r)*w)
= (A*( JUZ)) (((JU x 1r)(i x 1r))" )
AR5 ) THARL) T (6 x 1r)* (ju % 1R)*w)
AR L) THAR ) T T (G X 1r)*w) (by (1)).

Note that (A*~19)=1*TY ((ju X 1r)*w) is the restriction of T ((ju X lr)*w) to W
by Lemma 13.12(a). Thus S} (w) is the restriction of (A*~jy) 1T ((ju x 1r)*w)
to W, i.e. the restriction of SY(w) to W. Hence we have a well-defined (k — 1)-
form TM(w) on M whose restriction to U is SY (w) for each U € O and each
w € QF(M x R).

Since 7Y and (ju x 1r)* are R-linear and A*¥~1jy; is fiberwise R-linear for each
U € 0, it follows that TX : QF(M x R) — QF~1(M) is R-linear for each .

It remains only to check that dTM + TMd = iM* — i}* By Lemma 13.12(b) it
suffices to check that for all U € O and all k,

(2) j(?(dle+Tl£1d) :.7'5(’51 —Z(I)VI*)

where the right-hand side is restricted to k-forms.
From commutativity of

=
= (

U Jv, M

U « M
ZS J’ lllle

UxR — MxR

JuXl1gr

for e = 0,1 we have
(3) g (" = ig") = (i7" = i) (o x 1r)".

Recall that for p € QF(M,S) and = € U, (j{p)(z) = (A*Tyju) (p(z)), and that
AFjy denotes the map whose restriction to the fiber over x is A*Tyjy. It follows
that for each w € QF(M x R) and z € U,

6T (W)() = §i (A*ju) T (o * 1R)* (W)) (@)
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= (AF ' Toiv) (A Toiv) 7 TF (Gu % 1r)* (@) (2)
=T¢ ((ju x 1r)*())(z)

and so
(4) JoTY = T¢ (ju x 1r)*
for all k. Thus

3 (AT + Ti%ad) = dig T + 5 Tl sd
(by Theorem 13.15(d))
= dTy (ju % 1r)* + T 1 (ju % 1r)*d
(by (4))
= (dTy + T¢-1d) (ju % 1n)*
(by Theorem 13.15(d))
= (i7" =g ") (v x 1g)”
(by Corollary 15.14)

and so we are done by (2) and (3). O

Corollary 15.16. If f: (M,S) — (N,T) is a smooth homotopy equivalence, then
HE.f : HE (N, T) — HE,(M,S) is an isomorphism for all k.

Proof. Let g : (N, T) — (M, S) be a smooth homotopy inverse to f. Since gf ~ 1,
it follows from Theorem 15.16 that H¥.(gf) = H5s(1p). Thus, since HYp is a
contravariant functor, (H¥,f)(H5sg9) = 1k (m,s)- Similarly, (Hkog)(HELf) =
lgk v,7)- Thus H ke f and H¥.g are inverses of one another. [

Corollary 15.17. For alln >0, H¥;(R™) =0 for k> 0, and Hz(R") 2 R.

Proof. By Example 15.10, R™ is smoothly homotopy equivalent to R°. The asser-
tion now follows from Corollaries 15.16 and 13.27. [J

Corollary 15.18. Supposen > 0 and leti: S*1 — R™—{0} denote the inclusion
map. Then for each k, HSpi : HE,(R™ — {0}) — HEL(S™Y) is an isomorphism.
In particular, H751(S™1) 0.

Proof. This follows immediately from Corollary 15.16, Example 15.11, and Theo-
rem 14.16. O

Theorem 15.19. (Brouwer Fixed-Point Theorem) For n > 1 let D™ denote
the closed unit disk in R™, i.e. D™ = {z € R™ | ||z|| = 1} where || || denotes the
standard Fuclidean norm. Suppose f : D™ — D™ is continuous. Then there ezxists
at least one © € D™ such that f(z) = z.

Proof. We proceed by contradiction. Suppose f : D™ — D™ were a continuous
map such that f(z) # z for each z € D™. Define r : D™ — S"~1 as follows: Given
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x € D", r(x) is the intersection of S"~! with the ray which begins at f(z) and
passes through x. Explicitly, if we write

- (o= @)+ (e (e~ @) + e~ F@IPQ - |2
ERNOIE

where - denotes the standard Euclidean inner product in R", then

Az) =

r(z) = (14 Mz))z — A(z) f(z).

Note that r(z) =z if z € S"~! (for z- (z — f(z)) > 0if ||z|| = 1). If n = 1 we have
a contradiction since D! is connected, r is onto, but S is not connected.

Suppose n > 1. 7 extends to a continuous map g : [-2,2]" — S™~! by defining
9(z) = ”—Z“ if || z|| > 1. By the Stone-Weierstrass Theorem, the coordinate functions
of g can be uniformly approximated by polynomial functions in n variables. Thus
there exists a polynomial map P : [—2,2]" — R" such that |[P(z) — g(z)| < 3 for
all z € [—2,2]". Since ||g(z)| =1 for each z € [—2,2]™ we must have P(z) # 0 for
each z € [—2,2]™. By restriction we obtain a smooth map @ : (—2,2)" — R"™ — {0}
with the property that ||Q(z) — z|| <  for all z € S (since g(z) = = for all
x € S"1). In particular, for each z € S”~!, the entire line segment joining  and
Q(z) is contained in R™ — {0}.

Let i: S»1 — R™ — {0} and j : "1 — (—2,2)" denote the inclusion maps.
Define h: S~ ! x R — R™ — {0} by

Wz, t) = o (t)z + (1 — Bo,1(t)) Q(z).

h is a smooth homotopy from @j to 2. Thus, by Theorem 15.15, Hggl(Qj) =
Hjz'. By Corollary 15.18, Hjz'i # 0, and so Hjz'(Qj) # 0. Since H77*
is a contravariant functor, Hj;'(Q7) = (Hj5"5)(H}7'Q), and so we must have
H7=15 # 0. Since (—2,2) is diffeomorphic to R (e.g. the map (—2,2) — R which
sends ¢ to tan(rt/4) is a diffeomorphism), it follows that (—2,2)™ is diffeomorphic to
R" and hence, by Corollary 15.17, H}7 " ((—2,2)") = 0 (since n > 1). Thus Hjz'j :
Hiz'((-2,2)") — Hiz'(S™1) is the 0-homomorphism, a contradiction. [

Exercises for §15

1. Let f: 8™ — S™ be given by f(z) = —z for all z € S™.

(a) Prove that if n is even, then f is not smoothly homotopic to the identity
map on S™.

(b) If n is odd, find an explicit smooth homotopy from f to 1gn.
2. Let (M, S) be a smooth manifold such that H%,(M,S) # 0 for at least one k > 0.
Let f: M x M — M x M be given by f(z,y) = (y,z) for all (z,y) € M x M.
Prove that f is not smoothly homotopic to the identity map on M x M.
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16. PARACOMPACTNESS, SMOOTH PARTITIONS
OoF UNITY, AND PIECING OF LOCAL SECTIONS

This section is concerned with some technicalities concerning the construction of
smooth sections of smooth vector bundles by suitably piecing together local sections
with certain desirable properties. This material will be subsequently used to study
orientations of manifolds and Riemannian metrics on manifolds. It will sometimes
be necessary to restrict ourselves to paracompact manifolds for these constructions.

Recall that a topological space is paracompact if it is Hausdorff and every open
covering of X has a locally finite open refinement which covers X (i.e. given any
open cover O of X, there exists an open cover U of X such that each member of If is
contained in a member of O, and each point of x has an open neighborhood which
meets only finitely many members of If). Every metric space is paracompact, and
every compact Hausdorff space is paracompact. If X is Hausdorff and is a finite
union of open subspaces each of which is paracompact, then X is paracompact. The
class of paracompact manifolds thus includes all compact manifolds (more generally,
all manifolds admitting a finite atlas), and all submanifolds of Euclidean space.
Practically all manifolds of mathematical or physical importance are paracompact.
Recall that every paracompact space is normal.

Definition 16.1. Let X be a topological space and f: X — R a continuous map.
The support of f, denoted supp f, is the closure in X of f~!(R — {0}).
Definition 16.2. Let (M,S) be a smooth manifold and O a locally finite open
cover of M. A smooth partition of unity on (M,S) subordinate to O is a collection
{fa] A€ O} of smooth real-valued functions on M such that:

(i) supp fa C A for all A € O.

(ii) fa(z)>0forall Ac O andall z € M.

(iii) For each © € M, Y 4. fa(x) = 1. (Note: This last sum is finite since, by
the local finiteness of O, x lies in the supports of only finitely many of the fa.)

Lemma 16.3. Let (M,S) be a smooth n-manifold, U open in M, anda € U. Then
there exists a smooth map f: M — R such that:

(i) suppf C U.

(ii) f(z) >0 for all z € M.

(iil) f(a) > 0.
Proof. Let B={y € R" | |ly| <1} and B = {y € R" | |ly|| < 3} where || |
denotes the standard Euclidean norm on R™. There exists an open neighborhood

N of a contained in U and a diffeomorphism g : N — B with g(a) = 0. Define
f:M — Rby

f(@) = { Boa(1—4lg(@)|?)  ifzeN,

0 otherwise

where [p,1 is as in Lemma 15.3. The restriction of f to IV is smooth, and f is

identically 0 on M — g~*(3B). Since %E is compact and g is a homeomorphism,
g Y(3B) is compact and hence M — g~1(3B) is open in M. Therefore, since

M=UuU (M - g_l(%ﬁ)) it follows, by the Local Property, that f is smooth. Note
that f(a) =1, suppf =g~ (3B)CU, and f(z) >0forallz e M. O
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Lemma 16.4. Let (M,S) be a smooth manifold, U open in M, and K a compact
subset of U. Then there exists a smooth map f: M — R such that:

(i)supp f C U.

(ii) f(z) >0 for allz € M.

(iii) f(a) >0 for alla € K.

Proof. By Lemma, 16.3, for each a € K there exists a smooth function f, : M — R
such that supp f, C U, fu(x) > 0 for all x € M, and f,(a) > 0. Thus K C

U f21((0,00)). Since each f;1((0,00)) is open in M, it follows from the com-
a€EK

pactness of K that there exist finitely many points a1,...,a, in K such that
K C £:1(0,00)) U+ -+ U £71((0, 00)).

Define f : M — R by f(z) =3 _;_; fa;(z). Then f is smooth. Note that f(z) > 0
T
for all z € M since each f,,(z) > 0, and supp f = |J supp fo, CU. If x € K, then

i=1
z € f.1((0,00)) for at least one ¢ and for such 4, fo,(z) > 0, whence f(z) >0. O
Theorem 16.5. Let (M,S) be a smooth manifold which is normal (e.g. if M is
paracompact). Let O be a locally finite open cover of M by sets whose closures in
M are compact. Then there exists a smooth partition of unity on M subordinate to

0.

Proof. By the Shrinking Lemma there exists an open cover {Us | A€ O} of M
such that U4 C A for each A € ©. For each A € O, U, is compact since A is
compact. By Lemma 16.4 there exists, for each A € O, a smooth map f4 : M - R
such that

(1) supp fa C A,
(2) fa(z) >0 for all x € M, and
(3) fa(a) >0forall a € Ug.

Define f: M — R by f(z) =3 4.0 fa(z). By the local finiteness of O and (1),
each x € M is contained in only finitely many of the supp f4 and so this last sum
is finite for each z. Moreover, given x € M, there exists an open neighborhood N,
of  in M which meets only finitely many members of O, say A1, ..., A.. Then for
ally € Ny, f(y) =iy fa;(y), a finite sum of smooth real-valued functions, and
hence the restriction of f to IV, is smooth. By the Local Property, f is smooth.
Note also that since {Us | A € O} covers M, it follows from (2) and (3) that
f(z) >0 for all z € M. For each A € O define g4 : M — R by

_ Jal@)
94 = ey

Each g4 is smooth and suppgs = supp fa C A. {ga | A € O} is the required
smooth partition of unity on (M, S) subordinate to O. O

Let £ be a smooth vector bundle. Recall, from Proposition 8.34, that I'(§) is a
real vector space under fiberwise sum and scalar multiplication. We also observed,
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in Proposition 12.9(b), that for each smooth manifold (M, S), Q¥(M, S) is a module
over C*®°(M,S) via fiberwise multiplication. We could have observed earlier (and
will now formally observe) that in general, I'(¢) is a module over C*°(M, ) via,
fiberwise multiplication.

Proposition 16.6. Let & = (F, E,(M,Sum),p, S) be a smooth vector bundle, o €
I'(¢), and f € C°(M,Sun). Define f-o: M — E by (f-o)(z) = f(z)o(x) for each
z € M. Then f-o€T(£).

Proof. The only question is the smoothness of f - . It suffices to check that for
each S-admissible linear chart ¢, the composition

U, L% p'(U,) H U, x F
is smooth. One checks that this composition equals the composition

U, & U, xU, 25 R xp~ 1 (U,) 25 R x U, x F

(1) scal
Tx1r, U, ><R><F——x——-—>U x F

where 7 : R x U, — U, x R interchanges factors and scal : R x F' — F is the
scalar multiplication map scal (r,v) = rv. Since all maps in (1) are smooth, the
Proposition follows. [J

Note that if ¢ = (F, E, (M, Sum), p, 8) is a smooth vector bundle and A is open
in M, we obtain a smooth vector bundle {|A = (F, p Y (A), (A, Su|A), pa, SA), the
restriction of ¢ to A, where ps : p~1(A) — A is the restriction of p, and the Sy-
admissible linear charts are all S-admissible ¢ : p~1(U,) — U, X F with U, C A.

Lemma 16.7. Let £ = (F,E, (M,8m),p,S) be a smooth vector bundle. Let A
be open in M and suppose o € T'({|A). Let f : M — R be a smooth map with
supp f C A. Define f-0: M — E by

R A A

where 0y is the zero element of the fiber p~1(z). Then f -0 € T(£).

Proof. The only question is the smoothness of f - o. The restriction of f - o to
A is smooth by Proposition 16.6. The restriction of f - ¢ to M — supp f is the
zero-section in ['(¢|(M — supp f), which is smooth. Since { A, M —supp f } is an
open cover of M, the smoothness of f - o follows. [

Theorem 16.8. (Piecing Theorem) Let & = (F, E, (M, Su), p, S) be a smooth
vector bundle. Let O be a locally finite open cover of M, and {fa | A€ O} a
smooth partition of unity subordinate to O. Suppose we are given, for each A € O,
a smooth section o4 € I'(§|A). Define o : M — E by

o(z) =) (fa-0a)(@).
A€O
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Then o € T'(€).

Proof. Note, by the local finiteness of O and the hypothesis on the supports of the
fa, that for each £ € M, only finitely many of the fa(z) can be non-zero, and
so the summation for o(z) is finite. The only question is the smoothness of . It
suffices to check this locally. Each x € M has an open neighborhood N, in M
which meets only finitely many members of O, say A;,..., A,. The restriction of
o to N, is then

> (FalNo) - (04, /(Nz 0 As))

=1

which is smooth by Lemma 16.7 and Theorem 8.34. [

Exercises for §16

1. Let (M,S) be a paracompact smooth manifold. Suppose X C U where X is
closed in M and U is open in M. Prove that there exists a smooth map f: M — R
such that: '

(i) supp f C U.

(ii) f(z) > 0 for all x € M.

(iii) f(z) >0 forallz € C.
2. Let (M, S) be a smooth paracompact manifold and £ = (F, E,(M,Sum),p, S) a
smooth vector bundle. Suppose for some open cover O of M (not necessarily locally
finite), there exists a family of smooth sections { 04 € I'(§|4) | A € O} such that:

(i) For each A € O, g4(x) # 0, for each = € A.

(ii) Whenever A,B € O and z € AN B, c4(z) is a positive real multiple of
oB().
Prove that £ admits a smooth section which is nowhere 0.

164



17. ORIENTATIONS

Let V' be a real n-dimensional vector space, 0 < n < oo. The intuitive idea

of an orientation of V is as follows: If (vy,...,v,) and (wy,...,w,) are ordered
bases of V', we say (v1,...,vy) is similarly oriented to (wi,...,w,) if one can pass
continuously, through ordered bases, from (vy,...,v,) to (wi,...,w,). (This can

be made precise.) One sees easily that “is similarly oriented to” is an equivalence
relation on the set of all ordered bases of V, and one defines an orientation of
V to be an equivalence class of ordered bases of V with respect to the above
equivalence relation. It will be technically convenient to give a different, though
equivalent, definition of orientation below. We will use the fact that R — {0} has
two components, from which it will follow that each V' as above has exactly two
orientations. Recall, from Corollary 10.19, that A™(V) is 1-dimensional over V,
and hence A™(V') — {0} has exactly two components.

Definition 17.1. Let V be a real n-dimensional vector space, 0 < n < co. An
orientation O of V' is a choice of component of A™(V) — {0}.

If O is an orientation of V, an ordered basis (f1,..., fn) of V* is an O-basis of
V*if fiA---Afn € O. An ordered basis (vq,...,v,) of V is an O-basis of V' if the
dual basis (vf,...,v}) is an O-basis of V*.

An oriented real vector space is a pair (V,0) where V is a non-zero finite-
dimensional vector space and O is an orientation of V.

Thus each n-dimensional real vector space, 0 < n < oo, admits exactly two
orientations. Each non-zero element oo € A"(V) determines an orientation of V,
namely the component of o in A?(V') — {0}.

Proposition 17.2. Let (V,O) be an oriented real n-dimensional vector space. Let
(V1y.-yUn) and (f1,..., frn) be O-bases of V and V*, respectively. Let (w1, ...,wy)
and (91, ..., gn) be arbitrary bases of V and V*, respectively. Then:

(i) (w1, ..., wy) is an O-basis for V if and only if the determinant of the R-linear
transformation V — V which sends v; to w; for 1 < i < n is positive.

(i) (g1,-- ., 9n) i an O-basis for V* if and only if the determinant of the R-linear
transformation V* — V* which sends f; to g; for 1 <i <n is positive.

Proof. Let f : V — V denote the R-linear transformation of (i). By Theorem 10.20,
A™f: AM(V) — A™(V) is given by multiplication by det (f). Since

(A"F)(wi A-- Awp) =vf A=+ Awg,

it follows that
vy A Aup =det (flwg A Aw.

Since vi A--- Avk € O, it follows that wi A--- Aw} € O if and only if det (f) > 0,
proving part (i).

Let g : V* — V* denote the R-linear transformation of part (ii). Let (f5,..., f})
and (g7,...,9;) be the ordered bases of V whose dual bases are (fi,..., f,) and
(91,.-.,9n), respectively. Then (fy,..., fr) is an O-basis of V, and (g7,...,9})
will be an O-basis of V if and only if (g1,...,9,) is an O-basis of V*.

Let f : V — V be the R-linear transformation which sends f* to g, 1 <¢ < n.
Then (f~!)* = g and so det (g) = det (f~*) = (det (f))—l. Thus det (g) > 0 if and
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only if det (f) > 0. By part (i), det (f) > 0 if and only if (g7,...,g}) is an O-basis
of V. Part (ii) now follows. O

Definition 17.3. Let (M, S) be a smooth n-manifold, n > 0. An orientation form
on (M, S) is an n-form w on (M,S) such that w(z) # 0 for all z € M. (M,S) is
said to be orientable if an orientation form on (M, S) exists.

If w is an orientation form on (M, S), then for each z € M, w(z) is a non-zero
element of A™(T(M,S)) , and hence determines an orientation of T,,(M,S). Thus
an orientation form on (M, S) yields simultaneous orientations of all the tangent
spaces T;,(M,S) in a “coherent manner”. We will see below that not all smooth
manifolds are orientable.

Example 17.4. Let U be an open subset of R™, n > 0. Then dz1 A+ Adz, is an
orientation form on U. For recall, by Notation 12.11, forz € U and 4,5 € {1,...,n},

—~—

dai(@)(To " (2,6;)) = (T )Mz, e) (To (@) = AYT)aled) (T0)5 ()
= &1 ((T0)e(T0)5 (7)) = €} (e5) = 8i5.

Thus by Theorem 10.17,

(dzy A+ - Adzy)(z) (i};“l(m, 1)y -, T(}_l(:n, en))

= dml(x)(f&_l(w,el)) s dzp () (f[;__l(x, en)) =1

and so (dzi A -+ Adzy,)(z) #0.

Example 17.5. By Exercise 3(b) of §12, the form ¢* (yAdz—z Ady) is an orientation
form on S* where i : S — R2 denotes the inclusion map.

Proposition 17.6. Suppose (M,S) and (N,T) are smooth n-manifolds and f :
(M,S) — (N,T) an immersion. Suppose w is an orientation form on (N,T).
Then f*w is an orientation form on (M,S). '

Proof. Let @ € M. Then w(f(z)) # 0 and so there exist v1,...,v, € Ty(z) (N, T)
such that w(f(z))(v1,...,vs) # 0. Since f is an immersion and both M and N are
n-dimensional, the tangent map T f : Tp(M,S) — Ty(5) (N, 7T) is an isomorphism.
Thus for 1 <4 < n we have v; = Ty f(u;) for some u; € T;,(M,S). We then have

Frw(z)(u, ..., up) = A™(T:f) (w(f(m)))(ul, cey Up)
= w(f(fl?)) (Ta:f(ul)v “ee aTmf(un)) = w(f(w))(vla ey Un) #0

and hence f*w(z) # 0 foreach z € M. O

Corollary 17.7. Let (M,S) be an orientable smooth manifold and U an open
subset of M. Then (U,S|U) is orientable.

Proof. The inclusion map ¢ : U — M is an immersion by Theorem 6.11. O
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Theorem 17.8. Let (M,S) be a smooth n-manifold, n > 0. If (M, S) is orientable,
there exists an S-admissible atlas A C E(M,S) such that whenever ¢, € A,
det D(1pp~1)(z) > 0 for all x € p(dom ¢ N dom ).

If M is paracompact, the converse holds.

Proof. Suppose w is an orientation form on (M,S). Suppose ¢ € £(M,S) has
a connected codomain. Let i, : dom ¢ — M denote the inclusion map. By
Proposition 17.6, ij,w is an orientation form on dom ¢ and (cp‘l)*i;‘,w an orientation
form on codom ¢. We can write ((p—l)*z';w = g, Adzy, where I = (1,2,...,n),
for a unique smooth map g, : codom ¢ — R. Since (g, A dz;)(z) is non-zero for
each £ € codom ¢ we must have g,(z) # 0 for all € codom ¢. Thus, by the
connectedness of codom ¢, it follows that either g,(z) > 0 for all = € codom ¢ (in
which case we will say ¢ is orientation-preserving) or g,(x) < 0 for all € codom ¢
(in which case we will say ¢ is orientation-reversing). The proof in the first direction
will be complete if we establish the following two statements:

(i) Whenever ¢,9 € £(M,S) have connected codomains, then for all z €

p(dom ¢ Ndom %), D(pyp~")(z) > 0.

(ii) M admits an S-admissible atlas consisting of orientation-preserving charts
whose codomains are connected open subsets of R”.

Let ¢ and 9 be as in (i). We have the commutative diagram

. -1 , v
M «*— dom ¢ «f— codom ¢ «*— p(dom ¢ N dom 1))

| o

M +—— dom ¢ «—— codom ¢ «—— (dom ¢ N dom 7))
Do Pl J

where j, and j, are the inclusion maps. Thus
(1 ple™ Vi = (g™ g (0 i
Since
Il ) igw = G (gp Adar) = gedy A dar
and
W™ ) () igw = (Y~ 1) 55 (9w A dar)
= (Y™ 1)*(gydyp N dar)
= gyt~ " A (e~ 1)* (dar)
= gyjue” ' Adet D(yp ™) Adar,

the last equality following from Lemma 14.17, it follows from (1) that for all z €
w(dom ¢ Ndom 1),

@) 90(2) = 99 (¥(¢7"(2)) ) det D) (a).
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Since g, (x) > 0 and gy (@b((p_l(w)» > 0, it follows from (2) that D(p~!)(z) > 0,
proving (i).

To prove (ii), note first that an S-admissible atlas whose codomains are connected
open subsets of R™ exists. It suffices to show that each orientation-reversing chart
in such an atlas can be replaced by an orientation-preserving one having the same
domain.

Suppose ¢ is an S-admissible orientation-reversing chart with codomain a con-
nected open subset of R™. Choose any R-linear transformation L : R* — R"
having negative determinant and let p = L~'y. Then % is an S-admisible chart
having the same domain as ¢. Thus iz = i, and we have

@) = ((L77) ™) i = L (o™i
= L*(g, Adz1) = gL A L*(dz1) = goL Adet L A dzy,

the last equality by Lemma 14.17. Thus

g5(2) = (det L)g, (L(z)) > 0

for all z € codom @, completing the proof of (ii) and the proof in the first direction.

Now suppose M is paracompact and that A C £(M,S) is an S-admissible atlas
such that whenever ¢,9 € A, det D(vp™1)(z) > 0 for all z € p(dom ¢ N dom ).
We make use of the result of Exercise 2 of §16. Thus it suffices to show that there
exists a family { o, € I'(A"(7a,s)|dom @) | ¢ € A} such that for each ¢ € A and
y € dom ¢, o,(y) # 0y, and that whenever ¢, € A and y € dom ¢ N dom 9,
0,(y) is a positive real multiple of oy (y).

Let p : A"T(M,S) — M denote the projection map for A"mps. Let I =
(1,2,...,n) as above. For ¢ € A let w, = ¢*(dzr) € Q"(dom ). Let i, :
dom ¢ — M denote the inclusion and take o, to be the composition (A™%,) tw,
where A"i, : p~!(dom ¢) — A"T(dom ¢) is as in Lemma 13.11. Since each
¢ : dom ¢ — codom ¢ is a diffecomorphism (and hence an immersion), it fol-
lows from Proposition 17.6 and Example 17.4 that each w, is an orientation form
on (dom ¢, S|dom ¢). Since each A™i, is a fiber-preserving diffeomorphism whose
restrictions to fibers are R-isomorphisms, it follows that o, € I'(A™(7as,s)|dom )
and that o, (y) is non-zero whenever ¢ € A and y € dom ¢.

Suppose ,9 € A and let ¢ : dom ¢ Ndom ¢ — M denote the inclusion. By
Proposition 5.11, Ty : Ty(dom ¢ N dom ) — T,(M) is an R-isomorphism for
each y € dom ¢ Ndom 4, and so A™(Tyi) : A"Ty(M) — A™Ty(dom ¢ N dom 1))
is an R-~isomorphism for each such y. Consequently we will be done if we show
that A™(Tyi)(0,(y)) and A™(T,i)(oy(y)) are positive real multiples of one another
whenever y € dom ¢ N dom .

Let k, : dom ¢ Ndom 9 — dom ¢ and ky : dom ¢ N dom % — dom ) denote
the inclusion maps. Then i,k, = iyky = ¢ and so

A”(Tyi) (Ucp (y)) = An((Tyicp)(Tykw)) (Uw(y))
= A™M(Ty k) A™ (Tyiy) (Tyip) " wo (v)

= AM(Tyko)we(y) = (Kowe) () = (Kse*(dz1)) (%)
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and similarly A™(Tyi)(oy(y)) = (k:‘paﬁ*(dm))(y). Thus it remains only to show
that (kj*(der))(y) and (kj¢* (de 1))(y) are positive real multiples of one another
whenever ¢, % € A and y € dom ¢ N dom .

Writing X = dom ¢ N dom 9 we have the commutative diagram

“dom ¢ e x =, x dom %

N

codom ¢ «———— p(X) —— P(X) — codom ¢
Jo P! J

where ¢’ and 1)’ are the respective restrictions of ¢ and 1. Thus

k™ (der) = ($')"55(dwr) = (") (der)
= (@) (W™ (dar) = (¢')* (det (b ™) A dzr)
(by Lemma 14.17)
= (det (Yo ™1)) ¢’ A (¢)*(dzr) = (det (™)) ¢ A (¢')" 35 (der)
= (det (™))" Akpp*(dzr)

and so

(k5 0* (dzr)) (y) = det (Yo (0(y)) (ko™ (dz1)) ().
Since det (9 ~1)(¢(y)) > 0 by hypothesis, we are done. [J

Corollary 17.9. Let (M,S) be a smooth n-manifold, n > 0, which admits a
* two chart S-admissible atlas { ¢, } with codomains open subsets of R™ such that
dom ¢ Ndom v is connected. Then (M,S) is orientable.

Proof. dom ¢ and dom  are both paracompact, being homeomorphic to subsets of
R™. Thus M, being a finite union of open paracompact subspaces, is paracompact.

Since dom ¢ N dom ¢ is connected, det D(1¢ ") is either strictly positive or
strictly negative on ¢(dom ¢ Ndom ). If strictly positive, the result follows from
Theorem 17.8. If strictly negative, replace ¢ by % as in the proof of Theorem 17.8.
Then { 3, } is an S-admissible atlas satisfying the hypothesis of Theorem 17.8. O

Corollary 17.10. Forn > 2, S™, with its standard smooth structure, is orientable.

Proof. The atlas given in Example 4.6 consisting of the stereographic projection
charts satisfies the hypotheses of Corollary 17.9. [l

Theorem 17.11. Let (M, S) be a smooth n-manifold, n > 0, which admits an S-
admissible atlas with exactly two charts @, whose codomains are connected open
subsets of R™ such that

det D(vp~1) : p(dom ¢ Ndom ¥) — R
assumes both positive and negative values (and thus p(dom wNdom 1) is necessarily

disconnected). Then (M,S) is not orientable.
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Proof. We proceed by contradiction. Suppose w is an orientation form on (M, S).
With g, and gy as in the proof of Theorem 17.8, the same argument given there
yields that g, and gy do not change sign on codom ¢ and codom 1%, respectively,
and that formula (2) in the above proof holds for all z € ¢(dom ¢ N dom ).
Since. det D(p~!) does change sign on p(dom ¢ N dom %)), formula (2) yields a
contradiction. [

Theorem 17.12. Suppose n > 0. Then P"(R) is orientable if n is odd, and non-
orientable if n is even. Moreover, if n is even, the open subset { [z] € P*"(R) | 1 #
0 or x5 # 0} s non-orientable.

Proof. We start with the smooth atlas for P"*(R) given in Example 4.7. The charts
01,...,0ph41 of that atlas all have E™, the open unit ball in R™, as codomain and
so these codomains are all connected. For 1 <i <n+1 let ¢; : V; — E™ be given
by @; = (—1)i;. Then {¢1,...,¢ns1} is also an admissible atlas for P*(R) with
respect to the standard smooth structure on P*(R). It follows from Example 4.7
that for 1 < j < i < n+ 1, the overlap map <pj<pi_1 has {y € E" | y; # 0} as its
domain and is given by

Yj
90.7'(101 ( ) ( )H-J' J| (yla ’yja S Yi-1, V1 — ”y” yYiy . 7yn)

Thus, for 1<j<i<n+landallye{ye E"|y; #0},

oy [l 00
D(pje; )(y) = (—1)’+’|—3ﬁ x A
J 0 0 Ilnoiy1

where A is the (¢ — j) X (¢ — j) matrix given by

0 1 o ... 0
0 0 1 . 0
A= o
0 0 o ... 1
aj Qg1 aj+2 R ¢ 7 . |

where ar = —yi/+/1 ~ ||y]|? for § < k <i— 1. It follows that for all 7, 7,y as above

det Dlgsei o) = (1" (1) e 4

_ (i) (M) (Zpyeiet -y
e () e 1—||y||2)

(—1)(n+1)(i+j)y;?+‘1

|ly; 1™ /1= |lyl}?

If n is odd, it follows that det D(p;¢0; ')(y) > 0 whenever 1 < j <i <n+1 and
all y € dom (p;;"). For 1<j<i<n+1andallyedom (goigoj_l),

D(pip; ") (y) = ( (W{l)(wﬁl(y)))_l
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and so it follows that det D(p;p; (y) > 0 whenever 1 < j <4< n+1 and all

y € dom (i;; ). Since D(p;0; *)(y) = I, which has determinant 1, it now follows
from Theorem 17.8 that P™(R) is orientable if n > 1 is odd.

If n > 2is even, y;""l is positive if y; is positive, and negative if y; is negative. It
follows, from the formula above, that whenever 1 < § < i < n+1, det D(p;¢; ")(y)
assumes both positive and negative values. It now follows, from Theorem 17.11,
that the open subset V; U V; is non-orientable for 1 < j < ¢ < n + 1, and hence

P™(R) is non-orientable by Corollary 17.7. [

Note that P2(R) — {[0,0,1]} = V; UV, and hence is non-orientable. Topologi-
cally, P2(R) — {[0,0,1] } is an open Mdbius strip.

Theorem 17.13. Let (M,S) be a smooth n-manifold, n > 0, with M paracompact.
Then (T(M,S),Tanm,s) is orientable.

Proof. We leave it as an exercise to show that the total space of any smooth vector
bundle with a paracompact base space is paracompact. In particular, T(M,S) is
paracompact. Let p denote the projection map for 7pss. It follows from Theo-
rem 8.19 that whenever ¢ € £(M,S), the map

% : p~!(dom ¢) — codom p x R™

given by
B(0) = (2 (P(©)), 8 Totwy#(®) )

is a Tanp,s-admissible chart. If ¢, € £(M,S), it follows from Proposition 5.12
that the overlap map

P31 : p(dom ¢ N dom ¥) x R™ — ¢(dom ¢ Ndom %) x R"™

is given by B
g (z,y) = (Y (), D~ (@) (y))

and so

~ _ [ Dy )(z) 0
D(@ )(%?D-( D(W’l)(m))

*

from which it follows that

det. DFF)(z,v) = (det Dy ™)(x)) > 0.

The result now follows from Theorem 17.8. ‘ |

We next associate with each smooth manifold (M, S) of positive dimension a two-
sheeted covering space over M called the orientation covering of (M, S). The fiber
over each « in M will consist of the two orientations of the tangent space T (M, S).
We will see that (M, S) is orientable if and only if its orientation covering admits a
section. It will then be possible to use theorems on covering spaces to deduce facts
about existence or non-existence of orientations for particular smooth manifolds.
We now proceed to the definitions.

Let (M,S) be an n-manifold, n > 0. Give £(M,S) the discrete topology. Let
X(M,S) ={(z,0) € M x E(M,S) | z € dom ¢}, topologized as a subspace of
M x E(M,S). Define a relation ~ on X(M,S) by (z,¢) ~ (y,v) if and only if
z =y and det D(p~1) (p(z)) > 0. :
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Lemma 17.14. ~ is an equivalence relation on X (M, S).

Proof. For any (z,) € X(M,S),
det D(pp ™) (p(z)) = det I, = 1

and so ~ is reflexive.
Suppose (z, @) ~ (z,%). By the chain rule,

D(pp~") (¥(2)) D(o™ ") (p(z)) = I

and thus det D(v¢p~1)(p(z)) and det D(pyp~?)(1(z)) have the same sign. Hence
~ is symmetric.
Suppose (z,¢) ~ (z,¥) and (z,9) ~ (z,0). By the chain rule,

D0~ (p(x)) = DY) ($(2)) D) ((2))

and so
det D(6p ™) (¢p(x)) = det D(%™") (sh(=)) det D(p™ ") ((x)).

Thus, since det D(69~)(4(z)) and det D(1o1)(¢(z)) are both positive, so is
det D(9¢~")(i0(x)), proving transitivity. O
For (z,¢) € X(M,S) write [z, ¢] for the ~-equivalence class of (z, ¢).

Definition 17.15. Let (M,S) be a smooth n-manifold, n > 0. The orientation
space of (M, S) is the quotient space X (M, S)/ ~ and denoted O(M,S). The map
p: O(M,S) — M given by p[z, | = z is called the orientation covering of (M, S).

We proceed to show that the orientatien covering of a smooth manifold is indeed
a covering map.

Lemma 17.16. Let (M,S) be a smooth n-manifold, n > 0. For ¢ € E(M,S) let
s, 1 dom ¢ — O(M,S) be given by s,(x) = [z,p]. Then s, is continuous.

Proof. s, is the composition

dom o L X (M,8) L O(M,S)
where f is given by f(x) = (z,¢) and q is the quotient map. f is clearly continuous
and hence s, is. U

Theorem 17.17. Let (M,S) be a smooth n-manifold, n > 0. Then:
(a) The orientation covering p: O(M,S) — M is a covering map.
(b) For each x € M, p~'(z) contains exactly two points.

(c) For each p € E(M,S), dom ¢ is evenly covered by p. .

Proof. We have the commutative diagram
X(M,S) —— 0(M,S)
| !
M —— M
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where m1(z,¢) = « for all (z,¢p) € X(M,S). Since m; is continuous and ¢ is a
quotient map, it follows that p is continuous. p is clearly onto. Choose any R-
linear transformation L : R™ — R™ such that det L = —1 and for ¢ € £(M,S) let
@ = L™ty as in the proof of Theorem 17.8. Then § € £(M,S), dom @ = dom ¢,
and for all ¥ € £(M,S) and y € dom ¢ Ndom v,

(1) det D(1hp™") (¢ (y)) = —det D(¥F™')($(y)), and
(2) det D(&p ™) (¢(y)) = —1.

For ¢ € E(M,S) let Vy, = { [y, ¢] | y € dom ¢} C O(M,S). We will be done if we
show that for each ¢ € O(M, S):

(i) V,, is open in O(M, S).

(ii) p~*(dom @) =V, U V3.

(iif) V, NV = 0.

(iv) p maps each of V,, and Vz homeomorphically onto dom ¢.

We have

q_l(V(P) = {(y,%) | y € dom ¢ Ndom 9 and det D(zbcp‘l)(cp(y)) >0}

Let (y,v) € ¢~ (V,) and write U for the component of dom ¢ Ndom ¢ which con-
tains y. Then U is open in M. Since det D(¢o~ 1) : ¢(U) — R is continuous, never
0, positive at ¢(y), and ¢(U) is connected, it follows that det D(ypo ™ (¢(2)) > 0
for all z € U. Hence (y,%) € U x {¢} € ¢7}(V,,). Since £(M,S) has the discrete
topology, U x { ¢} is open in M x £(M, S), and hence in X (M, S). Thus ¢~*(V,,)
is open in X (M, S). Since q is a quotient map, (i) now follows.

Trivially, V,, UV C p~!(dom ¢). Suppose [y,9] € p~(dom ¢). Then y €
dom ¢ Ndom . By (1), one of det D(vp~1)(p(y)), det D(¥&1)(H(y)) must be
positive and so either (y,¢) ~ (y,¢) or (y,%) ~ (y,d), i.e. either [y,9] € V,, or
[y’ '(»b] € V(ﬁ, proving (ll)

For each y € dom ¢, (y, ) » (y, ) by (2) and so (iii) follows.

Note that s,(dom ¢) = V, where s, is as in Lemma 17.16. Thus, by restriction
of the codomain, we obtain a continuous map s, : dom ¢ — V,,. It is immediate
the the compositions

dom ¢ iV(p 2, dom ©p,

V, Ldom ¢ =%V,

are the respective identity maps, proving (iv). O

Theorem 17.18. Let (M, S) be a smooth manifold, n > 0. If (M, S) is orientable,
then the orientation covering p : O(M,S8) — M admits a section. The converse
holds if M is paracompact.

Proof. Suppose (M, S) is orientable. By Theorem 17.8 M admits an S-admissible

atlas A such that for all ¢, 9 € A and z € dom pNdom %, det D(vp~1) (¢(z)) > 0.

Define s : M — O(M,S) as follows: If z € M, choose any ¢ € A such that

z € dom ¢ and define s(z) = [z,¢]. s is well-defined for if ¢ is another chart
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in A with z € dom 9, (z,¢) ~ (z,9) since det D(ypp')(p(z)) > 0. Clearly,
ps = 1p7, so it remains only to check the continuity of s. It suffices to check that
for each ¢ € A, the restrictions of s to dom ¢ is continuous. The latter restriction
is precisely s,,, which is continuous by Lemma, 17.16.

Conversely, suppose M is paracompact and that a section s : M — O(M,S)
exists. Take

A={pe&(M,S)|dom ¢ is connected and s(z) = [z, ¢| for some z € dom ¢ }.

Then A is an S-admissible atlas for (M,S). By Theorem 17.8 we will be done if
we show that for all ,% € A and z € dom ¢ N dom %, det D(yp~*) (p(z)) > 0.

We first prove that for each ¢ € A the restriction of s to dom ¢ is s, as given in
Lemma, 17.16. By definition of A there exists an z € dom ¢ such that s(z) = [z, ¢].
By definition of s, we also have s,(z) = [z,¢]. Thus s|dom ¢ and s, are lifts to
O(M,S) of the inclusion map i : dom ¢ — M which agree at the point z. Since
dom ¢ is connected, it follows from the Uniqueness of Liftings Property for covering
spaces that s and s, agree at all points of dom ¢.

Now let ¢,9 € A and z € dom ¢ N dom 9. Then by the above, s(z) =
so(x) = sy(z), ie. [z,¢] = [z,9]. Thus (z,¢) ~ (z,v) and so by definition of
~, det D(vp~1) (p(z)) > 0. O

Corollary 17.19. Let (M,S) be a smooth n-manifold, n > 0, such that M is
paracompact and simply connected. Then (M,S) is orientable.

Proof. Since M is simply connected and locally pathwise connected (every topo-
logical manifold is locally pathwise connected) it follows from the General Lifting
Theorem for Covering Spaces that every covering map F — M admits a section.
In particular the orientation covering admits a section. [

We give one more example of a general class of smooth manifolds which are
automatically orientable, namely complex analytic manifolds. Every vector space V'
over the complex numbers C has an underlying real vector space structure obtained
simply by restricting the scalars to R. If V is n-dimensional over C, then V is 2n-
dimensional over R.

Definition 17.20. Let M be a topological 2n-manifold. A complex analytic atlas
for M is a manifold atlas A for M consisting of charts whose codomains are open
subsets of C™ such that whenever ,1 € A, the overlap map ¥p~! is complex
analytic.

Two complex analytic atlases A and B for M are analytically equivalent if when-
ever ¢ € A and ¢ € B, the overlap maps ¥ ~! and ¢y ~! are complex analytic.

The same proofs given for smoothly equivalent atlases yield that the relation
analytically equivalent to is an equivalence relation on the set of all complex analytic
atlases for M.

Definition 17.21. A complex analytic manifold is a pair (M,C) consisting of a
topological manifold M and an analytic equivalence class C of complex analytic
atlases for M.

Every complex analytic map, regarded as a map betwween open sets in the

underlying real vector spaces, is smooth and hence any complex analytic manifold
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has an underlying smooth structure. The converse for 2n-manifolds is far from true;
most 2n-manifolds do not admit any complex analytic structure. For example, S27
for n > 1 does not admit a complex analytic structure except for the case n = 1
and possibly n = 3 (to the best of my knowledge the case of S¢ has not yet been
settled).

Much of the smooth theory has a complex analytic analogue. A notable exception
is partitions of unity. Complex analytic partitions of unity do not exist, except in
trivial cases. Complex analytic sections of complex analytic vector bundles are
much more scarse than smooth sections.

Example 17.22. A slight variant of the stereographic projection charts (Ex-
ample 2.4) yields a complex analytic atlas for S2. Let U = S? — {(0,0,1) },
V =5%—-{(0,0,—-1)}, and define ¢ : U — C, 4 : V — C by

p(a,b,c) = (1 - c)—l(a' + bi),
Y(a,b,c) = (1+c) " (a — bi).

One can check that both ¢ and 1 are homeomorphisms and that both overlap maps
C—-{0} > C—{0} send z to 27}, which is complex analytic.
Example 17.23. For n > 0, complex projective n-space P"(C) is the quotient
space obtained from C"*! —{0} by identifying each (w1, ..., wp41) € C*1—{0}
~with (zw1, ..., 2wp+1) whenever z € C—{0}. We will show that P*(C) admits the
structure of a complex analytic manifold of complex dimension n (real dimension
2n.)

We write [wy, . .., wp41] for the image of (wy, ..., w,y1) under the quotient map
q: C" — {0} — P*(C). We first check that P*(C) is Hausdorff. Let f :
P™(C) — Homg(C™, C™*+1) be given by

z121 Z1%Z2 ... Z1Zp+l
1 Z921 Z22o v ZoZp+
f([Zl, . .,zz+1]) = ”inﬂ—l"z‘
Zj
En+1 Z1 7n+lz2 s En+12"'n,-+—1

where Z denotes the complex conjugate of z. f is well-defined since for each z €
C—{0}, (21,-++y2n41) €C™! —{0},and k,1 € {1,...,n+ 1},
ZZp22 . ZZZ 2] . Ze2
vl EA 1D Srarg EI LD sl EA1CE

f is continuous since the composition fq is clearly continuous. Note that for each
z = [21,..:, 2nt1] € P*(C), at least one row of the matrix f(x) is non-zero and each
such row is a non-zero complex multiple of (z1,...,2541). Thus z is recoverable
from f(z),i.e. f isinjective. Since Homg(C™ !, C"*!) is Hausdorff, it follows that
P™(C) is Hausdorff.

For1 <j<n+1lletV; ={[w,...,wnt1] € PY(C) | wj # 0}. It is easily
checked that {Vi,...,Vu41} is an open cover of P*(C). For 1 < j < n+1 let
@; : V; = C" and ¢; : C™ — V; be given by

Soj(['wla--'awn+1] :w‘;—l(wl,"wwja-' "wn-l-l),

¢j(21,- . 'azn) = [21,. o )zj—b]-azja . '-azn]~
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It is straightforward to check that ¢; and ¢; are both continuous and inverses of
one another. Thus { ¢1,...,®n4+1 } 1S a real 2n-manifold atlas for M. The overlap
maps are easily checked to be as follows:

-1 ~ o

-1 27 (2155 Zjse oy Zo=1, 1, 2y - o5 Zn) if j < k,
0ion (21, 2n) = - " -

2y (2150 261 L2y oy Bty 20) G >R

which are complex analytic on their domains. Thus P"(C) admits a complex
analytic structure.

If V is a complex vector space let p : Homg(V,V) — Homg(V,V) be the
function which assigns to each complex linear transformation V' — V its under-
lying real linear transformation. It is immediate that p is a homomorphism of
algebras over R. If B = (by,...,b,) is an ordered C-basis of V, define p(B) =
(b1,1b1, b, iba, ..., by,iby). p(B) is an ordered R-basis of V. If 2 = a + bi where a

and b are real, define
o(z)= (% 7
b a)’

More generally, if

211 .-+ Rln
A=
Znl v+ Znn
where the z;; € C, define
p(z11) ... p(21n)
=1+
p(zn1) .- p(2an)

We leave the proof of the following lemma as an exercise.

Lemma 17.23. LetV be a complez finite-dimensional vector space and f : V —V
a complex linear transformation. Let B be any ordered basis of V and A the matriz
of f relative to B. Then the matriz of p(f) relative to p(B) is p(A). O

If V is a complex finite-dimensional vector space we have the two determinant

functions

detc : Homc(V, V) —-C
and

detg : Homg(V,V) — R.
Lemma 17.24. Let V be a complex finite-dimensional vector space. Then for each
f € Hom¢(V, V),

detr (p(f)) = Idetc (/).
Proof. Since C is algebraically closed, we can choose an ordered C-basis B of V
such that the matrix A of f relative to B is triangular. Then detc(f) = 21+ -2,

where the z; are the diagonal entries of A. By Lemma 17.23, the matrix of p(f)
relative to p(B) is p(A) from which it follows that

detr (p(f)) = detr (p(21)) - - - detr (p(2n))-
The result now follows since detr (p(2)) = |2|* forall z€e C. O
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Corollary 17.25. For any n xn matriz A with complex entries, detp(A) > 0. O

Theorem 17.26. Let (M,C) be a complex analytic manifold of real dimension 2n,
n > 0, with M paracompact. Let S be the smooth structure on M determined by C.
Then (M, S) is orientable. : .

Proof. Let Abe an S-admissible complex analytic atlas. By Theorem 17.8 it suffices
to show that for all ¢,9 € A and z € (dom ¢ Ndom 1), det D(p~1)(z) > 0.
p~! is a complex analytic function between open sets in C™. Using real co-
ordinates we can write Yo~ = (uy,v1,...,Un,v,) Where the ug, vy are smooth
real-valued functions of the real variables x1,v1,...,Zn, yn and satisfy the Cauchy-

Riemann equations
Ou k Ov k ou k ov k

dz; Oy;' Oy; Oz
for1<k<n,1<j5<n. Wehave

All s Aln
D(spp™) = oo
Anl s Ann
h
where % %
Ox; Oy,
Ays = i Yj
Ouvr Ouy
8CEj 8yj
By the Cauchy-Riemann equations,
Oug _Ouk
0x; Ox;
Ay = J J
Ouvy,  Ouk
8xj 6:17j

Thus, for each z € p(dom pNdom %), D(1hp~1)(x) lies in the image of p and hence
has non-negative determinant by Corollary 17.25. Since 1o~ is a diffeomorphism,
the latter determinant can never be 0 and hence must be strictly positive. [

The last topic of this section is the Poincaré Duality Theorem for de Rham
cohomology. The proof will not be given.

Definition 17.27. Let (M, S) be a smooth n-manifold, n > 0, and suppose w is an
orientation form on (M, S). A smooth n-cube o in (M, S) is said to be w-preserving
if o*w = gy Adxy A+ - Adx, Where g, : I™ — R has a smooth extension to an open
subset of R™ and g,(x) > 0 for all € I"™.

An w-fundamental cycle C on (M,S) is a smooth cubical n-cycle of the form
C = 3.1, 0; where each o; is w-preserving.

For (M,S) and w as above, it is known that an w-fundamental cycle for (M, S)
exists if and only if M is compact. This is not easy to prove, and we will not
attempt a proof here. The idea, for compact M, is to “tile” the manifold by cubes
which intersect in faces. The proof of the following proposition, however, is easy.
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Proposition 17.28. Let (M,S) be a smooth n-manifold, n > 0. Suppose (M,S)
has an orientation form w and that an w-fundamental cycle C on (M,S) ezists.
Then H}p(M,S) # 0. In fact, [w] # 0.

Proof. Since every n-form on a smooth n-manifold is closed, w is closed. Thus we
will be done if we show that w is not exact.
Write C = Y], 0; where each o; is w-preserving. We have

q q
/w:Z/ w:Z/ 9o; AV, > 0
¢ i=1 Yo i=1 JI"

(23

since each g, is strictly positive on I", If w = da for some (n — 1)-form « on
(M, S) we would have, by the Generalized Stokes’ Theorem (Theorem 14.12)

/szfcdaz/aca:/oa=0

since C is a cycle, a contradiction. [

If (M,S) is a smooth n-manifold and X an arbitrary smooth cubical n-cycle
on (M,S), then whenever a € Q(M,S) and 8 € Q"~¢(M,S) are closed forms,

we obtain the real number / a A B. The latter depends only on the de Rham

X
cohomology classes of these closed forms, for if y and v are ( — 1)- and (n—14i —1)-
forms, respectively, then

(a+dup) AN(B+dv)=aAB+duABEaAv+uAdy)

and
/d(,u/\,@:l:a/\u+u/\d1/)=/ (uANBLaAv+puAdr)=0
X 0X

since 0X = 0. We thus obtain a well-defined R-bilinear map

Dx : Hip(M,S) x Hi5Y(M,S) —» R

given by D (o], [8]) = /X o AP,

Theorem 17.29. (Poincaré Duality Theorem) Suppose (M,S) is a compact
smooth orientable n-manifold, n > 0, and w an orientation form on (M,S). Then:
(a) The Hr(M,S) are all finite-dimensional over R.
(b) An w-fundamental cycle C on (M,S) exists.
(¢) For each i, the map D¢ : H (M, S) X Hggi(M, S) — R is a dual pairing,
i.e. its adjoints
e: Hip(M,S) — Homg (H7 (M, S),R)

and
n: Hyz"(M,8) — Homgr (Hj(M,S),R)
178



given by &(a)(b) = n(b)(a) = D¢c(a,b) are R-isomorphisms.

Exercises for §17

1. Let (M, S) and (N, T) be orientable smooth manifolds. Prove that (M xN,SxT)
is orientable.

2. Let w be the orientation form on S' of Example 17.5. Find an explicit w-
fundamental cycle on S*.

3. Let (M, S) and (N, T) be smooth manifolds of dimensions m and n, respectively.
Suppose f : M — N is smooth with respect to S and 7, and that there exists an
m-form w on (N, 7) such that f*w is an orientation form on (M, S). Prove that f
must -be an immersion.

4. Let (M,S) be a paracompact connected smooth manifold whose fundamental
group is finite of odd order. Prove that (M, S) must be orientable.
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18. RIEMANNIAN METRICS

Recall that if V is a real vector space, an inner product g on V is an R-bilinear
map g : V xV — R which is symmetric (i.e. g(v,u) = g(u,v) for all u,v € V), and
positive-definite (i.e. g(v,v) > 0 for all non-zero v € V). The standard dot product
in R™ is the motivating example. Roughly speaking, a Riemannian metric on a
smooth vector bundle is a simultaneous choice of inner products on the fibers such
that these inner products “vary smoothly” from fiber to fiber. A Riemannian metric
on the tangent bundle of a smooth manifold (M, S) is called a Riemannian metric
on (M,S8) and a Riemannian manifold is a pair consisting of a smooth manifold
and a Riemannian metric on it. Riemannian manifolds are the principal objects of
study in Differential Geometry.

The objects of this section are two-fold:

(1) To show that every smooth vector bundle with a paracompact base space
admits a Riemannian metric.

(2) To show that for smooth manifolds (M, S), the following three conditions are
equivalent:

(i) (M,S) admits a Riemannian metric.

(ii) M is paracompact.

(ili) M is metrizable.

If V is a real vector space we write S(V') for the real vector space of all symmetric
R-bilinear maps V x V. — R. We write P(V) for the set of positive-definite
elements in S(V), i.e. the set of inner products on V. If f : V' — W is an R-linear
transformation, we write S(f) : S(W) — S(V) for the function which sends any
symmetric R-bilinear map o : W x W — R to the composition

vxV L wexw SR,

In terms of elements, S(f)(c)(v1,v2) = a(f(v1), f(v2)). S(F) is easily seen to be
R-linear. Moreover, if f is injective, S(f) carries P(W) into P(V).

Proposition 18.1. S is a smooth contravariant functor from VSr to VSr.

Proof. Tt is an easy exercise to verify that S : VSg — VSgr is a contravariant
functor.

Let V be a finite-dimensional real vector space with R-basis B = {v1,...,vn, }.
Fori,j € {1,...,m} let s(v;,v;) : V x V — R be given by

m m
8(vi, vj) <Z Ak Vk, Z bk’Uk) = a;b; + a;b;.
k=1 k=1

One checks easily that s(v;,v;) € S(V) and that S(B) = {s(vs,v;) |1 <i <5 <
m } is an R-basis for S(V).

Suppose W is another finite-dimensional real vector space with R-basis C =
{wi,...,w, }, and let f: V — W be R-linear. To show that S is a smooth functor
it suffices to check that the entries of the matrix of S(f) with respect to the bases
S(B) and S(C) are smooth functions of the matrix entries of f with respect to B
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and C. The latter are, in fact, homogeneous quadratic polynomial functions; it is
straightforward to check that if

n
flw) =) amwp, 1<i<m,

k=1
then -
S(F)(s(wi,wy)) = Y AZs(vpm), 1<i<j<n,
1<k<LI<m
where

ij aipa + ajrag  if k<l
Ay = o .
Qik Gk if k=1 O

Thus given any smooth vector bundle £ = (V, E,(M,Su),p, S) we obtain, by
the construction of §11 and Corollary 11.7, a smooth vector bundle

S() = (S(V), SE, (M, Su), ps, Ss)-

For each z € M the fiber over z in S(£) is S (p"l(m)), the réal vector space of all
symmetric real-valued R-bilinear maps on the fiber over z in &.

Definition 18.2. Let £ = (V,E, (M, 8un),p,S) be a smooth vector bundle. A
Riemannian metric on £ is a smooth section g of S(§) such that for each z € M,
g(z) € P(p~*(z)), i.e. g(x) is an inner product on the fiber over z in £.

A Riemannian metric g on (M,S), where (M,S) is a smooth manifold, is a
Riemannian metric on the tangent bundle of (M, S). In this case the triple (M, S, g)
is called a Riemannian manifold. :

Definition 18.3. Let V be a real vector space. A convex cone in V is a non-empty
subset C' of V such that whenever vy, ..., v, is a finite collection in C and ry,...,7,
are non-negative real numbers which are not all 0, then Y 7 | rv; € C.

Example 18.4. Let V' be any real vector space and vy, ..., v, any R-linearly inde-
pendent collection in V. Let C be the set of all non-trivial real linear combinations
of the v; with non-negative coefficients. Then C is a convex cone in V.

Example 18.5. For any real vector space V, P(V) is a convex cone in S(V).

Proposition 18.6. Let { = (V,E,(M,Sum),p,S) be a smooth vector bundle with
M paracompact. Suppose we are given, for eachx € M, a convex cone Cy, C p~*(z).
Suppose for some open cover O of M (not necessarily locally finite) there exists a
family of smooth sections {4 € T'(§|A) | A € O} such that for all A € O and
z € A, oa(z) € Cp. Then £ admits a smooth section o such that o(z) € C, for
eachx € M.

Proof. 1t is trivial that any open refinement of O satisfies the stated properties

of O. Since any open cover of a topological manifold has an open refinement

whose members have compact closure in the manifold, we can suppose, without

loss of generality, that each member of O has compact closure in M. Since M is

paracompact, we can further assume, without loss of generality, that O is locally
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finite. By Theorem 16.5, there exists a smooth partition of unity { fa | A € O}
subordinate to O. By the Piecing Theorem (Theorem 16.8), o : M — E given by

o(z) =Y (fa-0a)(2)

A€O

is a smooth section of £&. If x € M and A4,..., A, are the members of O which
contain z, then

O'(il:) = Z fAi(w)JAi (:I))
i=1

Since the o4, (z) are all in Cy, and the f,(z) are all non-negative and not all 0, it
follows that o(z) € C, since C,, is a convex cone. [

Exercise 2 of §16 follows from Proposition 18.6 by taking C, to be the set of all
positive real multiples of 0 4(z) whenever z € A € O.

Theorem 18.7. Every smooth vector bundle with a paracompact base space admits
a Riemannian metric. In particular, every paracompact smooth manifold admits a
Riemannian metric.

Proof. Let € = (V, E,(M,Su),p, S) be a smooth vector bundle with M paracom-
pact. For each & € M, take C; = P(p~*(z)). Let A be any S-admissible linear
V-bundle atlas for £&. Recall, from Corollary 11.7, that each ¢ € A yields an -
Ss-admissible linear S(V)-bundle chart ¢ whose inverse

(™)™ Up x S(V) = 15" (Usp)
is given by (¢°) " (z,a) = S(pz)(a) where ¢, : p~!(z) — V is the composition
p i) B {z}xV BV

Choose any o € P(V) and define, for each ¢ € A, 0, : U, — pg'(U,) by o,(z) =
(¢%) " (z,a) for each z € U,. Each o, is a smooth section of S(¢)|U,. Since,
for each 2 € Uy, ¢, is an R-isomorphism, it follows that S(p,)(cr) € P(p~!(z)),
ie. o,(z) € P(p~'(z)) for each z € U,. The result now follows by applying
Proposition 18.6 to the open cover {U, | ¢ € A} and the family of local sections
{0 |peA}. O

We have thus fulfilled the first aim of this section. The remainder is concerned
with the second aim.

Proposition 18.8. Let £ = (V,E, (M, Sum),p, 8) be a smooth vector bundle and
v €T(5(¢)). Define f: E—R by f(v) = v(p(v))(v,v). Then f is smooth.

Proof. It suffices to check that for each S-admissible linear V-bundle chart ¢, the
restriction of f to p~*(U,) is smooth.

Choose any R-basis {v1,...,v, } of V. For ¢ as above, z € Uy, and v € p~*(U,,)
we can write

o) = (5 ¥ eslestnn)),

1<i<j<n
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where the ¢;; : U, — R and ay : p~1(U,) — R are smooth by the smoothness of
¢~ and ¢, respectively. Then for z € U,, and v € p~1(z),

S(‘Pw)—l(’)'(x)): Z Cij(w)s('vi’vj)

a(v) = Y a(v)oy

k=1

where ¢, : p~!(z) — V is the fiber isomorphism arising from ¢. Then

f) =7(p®)) (v, v)
= (5(pa)S(02) ™) (Y(p)) ) (#2200 (), 05 00 ()
= 5(¢pa) 1<’Y )
)

PPy (P:c ‘Pw‘P:—c_lﬂow(”))

(
(90 (v), ¢ v))

= S(pe) ™ (o

=(X wb@)stm) (3 sty awm)
1<i<i<n k=1 =

= > 2c;(p(v))ai(v)a;(v)
1<i<jsn

which is smooth. [0

Definition 18.9. Let (M,S,g) be a Riemannian manifold. For x € M and and
v € T,(M,S), the g-norm of v, denoted |[v| 4, is the non-negative real number

g(:I})(’U, v)'

As a corollary of Proposition 18.8 we have

Corollary 18.10. Let (M,S,g) be a Riemannian manifold. Then the function
T(M,S8) — R which sends v to ||v||2 is smooth. [

Definition 18.11. Let (M,S) be a smooth manifold and z,y € M. A 1-chain
from z to y in (M, S) is a smooth cubical 1-chain in (M, S) of the form >;_; o;
where the o; are smooth 1-cubes in (M, S) such that '

0'1(0) =,
0i(1) =0441(0) for1<i<r—1,
(1) =v.
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Proposition 18.12. Let (M, S) be a smooth n-manifold with M connected. Then
for all x,y € M, there exists a 1-chain from x to y in (M,S).

Proof. The proof is a smooth variant of the standard proof that any connected and
locally path-connected space is path-connected. Fix z in M and let S be the set
of all z € M such that a l-chain from z to z in (M,S) exists. We must show
that S = M. This will follow from the connectedness of M if we show that S is
non-empty and both open and closed in M.

Let o : I — M be the constant map with value z. Then o is a 1-chain in (M, S)
from z to z and so z € S. Thus S # 0.

To show that S is both open and closed in M it suffices to show that for each
y € S, there exists an open neighborhood N of y in M such that N C S. Suppose
y € §. Choose any S-admissible chart ¢ such that y € dom ¢ and codom ¢ = E™,
the open unit ball in R™. Since every neighborhood of y in M meets S, there exists
a point w € SNdom ¢. Let C be any 1-chain in (M, S) from z to u. Let z € dom ¢
be arbitrary. Define ¢ : I — B™ by

a(t) = (1 - t)p(u) +te(2).
If 5 : R — R" is given by the same formula as the one above for o, then 7 is
continuous and so ~!(E") is an open neighborhood of I in R and restriction of
G yields a smooth extension ¢ : ~}(E™) — E™ of 0. Let 7 : I — M be the
composition '

IS E Y domyp-s M
where 1 is the inclusion map. Then 7 is a 1-chain in (M, S) from u to 2, and C' 47

is a 1-chain in (M, S) from z to z. Thus z € S. Thus dom ¢ C S, completing the
proof. (I

Recall, as a special case of Theorem 8.19, that if (a,b) is an open interval, then
the identity map on (a, b), regarded as an admissible manifold chart for the standard
smooth structure on (a, b), yields a tangent bundle chart

1/(:1,) : T((a,b)) — (a,b) x R.
We thus obtain a smooth vector field u : (a,b) — T'((a,b)) given by u(t) =

— —1
1(a,b) (t, 1) = Ot(l).

Ifa<d <V <bandi: (a/,b) — (a,b) denotes the inclusion, it follows from
Proposition 5.12 and the fact that Di(¢t) = 1g for all t € (a/,b), that the diagram

R e R
. R
T((@,¥)) —— Ti((@,1)
commutes. It follows that the diagram
T((@,¥)) —— T((a,b))
(Jb’) — (jw
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commutes. Thus if (M,S) is a smooth manifold, ¢ : I — M a smooth 1-cube
in (M,S), and & : (a,b) — M a smooth extension of &, the restriction of the
composition

(a,b) % T((a,b)) =% T(M, S)

to (0,1) depends only on ¢ and not on the choice of smooth extension &. By
continuity of the above composition, it follows that the restriction of the above
composition to [0,1] depends only on o. For t € [0, 1] we will write o’(t) for the
image of ¢ under the above composition. If g is a Riemannian metric on (M,S),
it follows from Corollary 18.10 that the function I — R sending t to ||o’(t)|l, is
continuous. -

Definition 18.13. Let (M, S,g) be a Riemannian manifold and ¢ : I — M a
smooth 1-cube in (M,S). We define

1
@)= [ ol

We call l4(o) the g-length of .

More generally, if C = >_!_, 0, is a 1-chain in (M, S) between two points of M
where the o; are smooth 1-cubes in (M, S), we define the g-length of C, 14(C), to
be 320, lg(0).

Definition 18.14. Let (M, S, g) be a connected Riemannian manifold. For z,y €
M let C(z,y) denote the set of all 1-chains in (M, S) from z to y. The g-distance
from z to y, denoted dy(z,y), is defined to be

dy(@,) = inf{ dy(C) | C € C(m,p) .

We are aiming to prove that dg is a metric on M, and that the resulting metric
topology is the given topology on M.

We apply Theorem 12.1 to the smooth contravariant functor S. A smooth vector
bundle homomorphism f : £ — 7 induces a map of smooth sections f* : I'(S(n)) —
I'(S(¢)). In particular, if f : (N,7) — (M,S) is a smooth map, the map of
smooth vector bundles 7f : Ty 7 — Ta,s yields f* : F(S(TM,S)) — T'(S(tn1)).
Explicitly, if 0 : M — ST(M, S) is a smooth section of S(ry,7), then for z € N
and u,v € T;(N,T),

(f*o) (@) (w,v) = o (f(2)) (Tof(u), Tuf(v)).

In general, f*o will not be a Riemannian metric, even if ¢ is. However we have the
following proposition.

Proposition 18.15. Let (M,S,g) be a Riemannian manifold, (N,T) a smooth
manifold, and f : (N,T) — (M,S) an immersion. Then f*g is a Riemannian
metric on (N, T).

Proof. Let x € M and u a non-zero vector in T,;(N, 7). Then (f*g)(z)(u,u) =
9(f(2)) (Tof (u), Tp f (u)). Since f is an immersion, Ty f is injective and so Ty, f(u) #
0. Thus g(f(z)) (T f(u), T f(w)) > 0 since g(f(z)) is positive-definite. [
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Proposition 18.16. Let (M,S,g) be a Riemannian manifold, (N,T) a smooth
manifold, and f : (N,T) — (M,S) an immersion. Let z,y € N and C € C(z,y).
Then f,.C € C(f(z), f(y)) and Lyg(C) = 14(f:C).

Proof. It is immediate that f,C € C(f(z), f(y)). To prove the statement about
the lengths, it suffices to show that for each smooth 1-cube o in (N,7) and ¢ € I,

() @)l = llo’ (2)

Let o be any smooth extension of 0. Then fo is a smooth extension of f.o. For
tel,

2
f*g:

(f20)'(t) = Ty(f3) (u(t)) = (To0) /) (T20) (u(t)) = (To(e) ) (o' (1))
Thus,

I(£-0) @12 = 9 (£(o(8) ) (£:0)(®), (f0) )
= 9(/ (1) (TN (@' ®), T ) (@) )
= (9 e®) (@' ®),0'®) = lo' @I}, O

Lemma 18.17. Let (M,S, g) be a Riemannian manifold and o : I — M a smooth
1-cube in (M,S). Let A : R — R be given by A\(t) = At + B where both B and
A+ B are in I (and hence X(I) C I). Then oA : I — M is a smooth 1-cube in

(M,S) and
0 ZfA =0,
ly(oX) =< A [A+B
oo { Gl Ieela ko

Proof. Tt is elementary to prove that A has a fixed point zo in I (or alternatively,
for an over-kill proof, one can invoke the Brouwer Fixed-Point Theorem). Note
that for all £t € R,

|A() — zo| = |A(E) = Mxo)| = |At + B — (Azg + B)|
= |A|[t — @o| < |t — zo| '

since |A| < 1. It follows that every interval containing zo is mapped into itself by
A. In particular, if & : (a,b) — M is a smooth extension of ¢ where (a,b) is an
open interval containing I, A maps (a,b) to itself. o) : (a,b) — M is a smooth
extension of oA and so oA is a smooth 1-cube in (M, S). By Proposition 5.12, for
each t € (a,b) the diagram

R DA(t) R

0 l J/o)\(t)

T:((a0) —— T ((a,)
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commutes. Since DA(f) is multiplication by A, it follows that (T3\)(u(t)) =
Au(A(t)). Thus

(@A) (t) = T(GX) (u(t)) = Do) (@) (TeA) (u(t))
= Ty (%) (4u (A1) ) = 40’ (A(®))
and so ) .
ton) = [ 147 ()l e =141 [ o’ (0l
If A =0 we are done. If A # 0, the change of variable s = A(t) yields

)\(1) . 1 A A4-B ,
Lo =141 [ @l gds = [ I @)lpds. O
A(0) |Al /g

Lemma 18.18. Let (M,S,g) be a connected Riemannian manifold. Then for all
z, Y,z € M:

(a) dg(z,z) = 0.

(b) dg(z,y) = dg(y, @).

(C) dg(wv z) < dg(:c,y) + dg(y, z).

Proof. Let o be the constant smooth 1-cube with value . Then o € C(z,z).
Taking A : R — R to be the 0 map, we have o = o\. It follows from Lemma 18.17
that Iy(0) = lg(cA) = 0. Part (a) now follows.

If o is a smooth 1-cube in (M,S), let T : I — M denote the reverse of o,
ie. o(t) = o(1 —t) for all t € I. Then 7 is also a smooth-1-cube in (M,S). If
C=3"_,0,€C(xvy) defineC =3, Frit1. Then C € C(y,z). Since C = C,
the function sending C to C is a bijection from C(z,y) to C(y,z). Thus part (b)
will follow if we show that [,(C) = 14(C) for all C € C(z,y). It is sufficient to check
that I4(7) = l4(o) for all smooth 1-cubes o in (M, S).

Let 7: R — R be given by 7(t) =1 —t. Then & = o7. Thus, by Lemma 18.17,

0 1
ua=%wﬂ=—[ndeﬁ=A|W@Mﬁ=@wx

completing the proof of part (b).
If Cy € C(z,y) and Cs € C(y, 2), note that C; +Cy € C(x, z). Thus, for all such
Cl and Cg,
dg(cc, Z) < lg(Cl + 02) == lg(C’l) + lg(Cz).

Thus

dg(z,2) < inf{ly(C1) +14(C2) | C1 € C(x,y),Co G C(y,2)}
= dg(xa y) + dg(y7 Z),

proving part (c). O

Thus, to conclude that dy is a metric, it remains only to show that for z # y in
Ma dg(il?,y) > 0.
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Lemma 18.19. Let (M, S, g) be a Riemannian manifold and o : I — M a smooth
1-cube. Then for each a € I there exist smooth 1-cubes o1 and o2 in (M,S) such
that:

(i) o1 € C(0(0),0(a)) and o2 € C(o(a),o(1)).

(if) Lg(o1) +lg(o2) = lg(0).

(iii) o1(I) = ([0, a}) and o2(I) = o([a, 1]).

Proof. If a = 0, take o to be the constant 1-cube with value ¢(0) and og = 0. If
a =1, take o1 = 0 and oy to be the constant 1-cube with value o(1).

Suppose 0 < a < 1. Let 71,75 : R — R be given by 71(¢) = at, 72(t) = a+(1—a)t.
Take 01 = 071, 02 = o7y. It is immediate that condition (i) and (iii) are satisfied.
By Lemma 18.17,

%wo=4ﬂwwmﬁ,@wa=/ndmmw
and so

1
Mmﬂ@wa=4nwwma:uw. 0

IfC =3, 0;is al-chain in (M, S) where the o; are smooth 1-cubes in (M, S),
and z € M, we will say C passes through z if for some i between 1 and r and ¢ € I,
O’i(t) = Z.

Corollary 18.20. Let (M,S,g) be a Riemannian manifold, z,y € M, and C €
C(z,y). Suppose C passes through z. Then there exist C1 € C(z, 2), C2 € C(z,y)
such that 15(C1) + 14(Cs) = 14(C).

Proof. Say C = >_._, o; where the o; are smooth 1-cubes in (M,S), and z =
04(a). By Lemma 18.19, there exist smooth 1-cubes 71 € C(04(0),2) and m €

C(2,04(1)) such that lg(oq) = lg(11) + lg(72). Take C; = ;1=—11 g+ 71, Cy =
T + Z:=q+1 Tj. O

We next examine Riemannian metrics and their resulting length functions on
open subsets of R™. We identify S(R™) with vector space of real symmetric n X n
matrices as follows: If A is such a matrix, then for z,y € R™ (regarded as column
matrices), the symmetric R-bilinear map A : R™ x R® — R is given by A(z,y) =
z* Ay (matrix multiplication) where z* denotes the transpose of  and we identify
the 1 x 1 real matrices with R. It is well-known from linear algebra that the real
symmetric bilinear map A is positive-definite if and only if all the eigenvalues of
the matrix A are strictly positive. Let U be open in R™ and 1y : T({U) — U xR"
the linear R™bundle chart of Theorem 8.19 arising from the manifold chart 1.

Explicitly, f(}—l(x,v) = 0,(v) where 0, is as in Example 5.6. We thus obtain a

g ~S
linear S(R™)-bundle chart 1US : ST(U) — U x S(R") given by (1y )~ Y(z,a) =
S(6;1)(a). Clearly, the smooth sections of S(7) are in one-to-one correspondence

with the smooth maps f : U — S(R™); each such f yields the smooth section

gy + U — ST(U) given by g¢(z) = (1US)“1 (z, f(z)) = SO;H)(f(=)). g; will be
a Riemannian metric on U if and only if for all z € U, f(z) € P(R™), the set of
positive-definite symmetric R-bilinear maps on R™. We will say that such an f is
positive definite.
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Lemma 18.21. Let U be open in R™ and f : U — S(R™) a smooth map. Then
forallz € U andv,w € Tp(U), g;(z)(v, w) = 67 Lw)*f(z)05 ( ).

Proof. We have

g5(@) (v, w) = S0, 1) (f(2)) (v,w) = f(z) (65 (v), 65} (w))
=0, (v)* f(z)0; (w). O

Lemma 18.22. Let U be open in R"™ and f : U — S(R™) a positive-definite
smooth map. Let o : I — U be a smooth 1-cube, and o a smooth extension of o.

Then for allt € I,
llo’(¢ Z fi3 (5(8) ()55 (1)

where o1, ..., 0, are the component functions of & and fi; is the i7" matriz com-
ponent function of f fori,je{1,...,n}.

Proof. By Lemma, 18.21,
o' ()12 = 053, (' (8)" £ ()67 (' (1).
We have

070 (0/(0)) = 07 (1) (u()) = 6 (T30 1)
= D&(1)(1)
(by Proposition 5.12)

The result now follows.

Definition 18.23. Let U be open in R™. The standard Riemannian metric on
U is g, where e : U — S(R™) is the constant map with value I,. We write || ||,
instead of || ||g .

Thus, by Lemma 18.21, for € U and v,w € T,(U), g,(v,w) is the standard
Euclidean inner product of 6;!(v) and 6;!(w), and ||v|| is the standard Euclidean
norm of 6;(v).

Lemma 18.24. Let Ayax, Amin : P(R™) — R be given by

Amax(A) = sup { A(z,z) |z € S* 71},
Amin(A) = inf{ A(z,z) |z € S"71}.

Then Amax and Amin are continuous and strictly positive on P(R™).
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Proof. Since S™~* is compact and A(z, x) is a continuous function of z for fixed A €
P(R™), the above sup and inf exist and are, in fact, achieved at points of S*~!. We
first claim that Apax(A4) and Apin(A) are, respectively, the largest and the smallest
of the eigenvalues of A. Let (, ) and || || denote the standard Euclidean inner
product and norm, respectively. By the Spectral Theorem, R™ has an orthonormal
basis consisting of eigenvectors for the matrix A and, since A is positive-definite,
the eigenvalues of A are strictly positive. Let Aps and Ay, denote, respectively,
the maximum and minimum of these eigenvalues. Let = € S?~!. We can write
z =7 ._; &; where the z; are mutually orthogonal eigenvectors for A. Then Az =
>ieq Aix; where the \; are the corresponding eigenvalues of A. Then A(z,z) =
(Az,z) = >0, Ni|lz:]|2 Thus, since Y i, ||lz:]]2 = ||z||* = 1,

=3 Al < (Az2) < 3 Ml = Aar

=1 =1

Hence, A\, < Amin(4) and Amax(A) < Apr. On the other hand, if A is any eigenvalue
of A and £ € S™1 a corresponding eigenvector of A, A(z, ) = (Az,z) = (A\z,z) =
Allz]|2 = A and so every eigenvalue of A occurs as a value of A(z,z) for z € S™~1,
In particular, A, and Aps occur as values, and 80 Anin(A4) < A, Amax(4) = A,
establishing the above claim.

Let v : S(R™) — R be given by v(A) = sup{||Az|| | z € "'}, the operator
norm of A. v is a norm, in the sense of Definition 1.1, on the finite-dimensional real
vector space S(R™), and hence by Theorem 1.5 and Definition 1.7, the standard
topology on S(R™) coincides with the metric topology derived from the norm v. It
is then immediate that v is continuous. By a Spectral Theorem argument similar to
the one above (which we leave as an exercise), v(A4) is the maximum of the absolute
values of the eigenvalues of A. Thus, Apax is the restriction of v to P(R™), and
hence Apax is continuous.

Each matrix 4 in P(R") is invertible, A~! € P(R"™), and the eigenvalues of A~}
are the reciprocals of those of A. Thus

1

Amin(A) = m.

Continuity of Ay, now follows, [

Lemma 18.25. Let U be open in R™ and g an arbitrary Riemannian metric on
U. Then there exist continuous functions o, B : U — R, depending on g, such that:
(i) For allz € U, a(z) > 0 and B(z) > 0.
(ii) For allz € U and v € T,(U),

a(z)|vlle < lvlly < Ba)]v]le-

Proof. Say g = 95 where f : U — S(R") is smooth and positive-definite. For z € U
~and all non-zero v € T (U),

) )

ol = £2)(8270), 027 0) = I P (o) ( romiohn, o
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Thus
162 ()1 Amin (£ () < [J0ll <1105 (@)1 Amax (£(2))
and so

Amin (f(.’L‘)) ”'U“e < H'UHg < Amax(f(w)) HUHG

for all non-zero v € Ty(U). The above inequalities also hold trivially for v = 0.
The result now follows from Lemma 18.24 by taking a(z) = {/Amin(f(z)) and

B(z) = 1/ Amax (f(z)). O

Lemma 18.26. Let U be open in R", z,y € U, and C € C(z,y). Then l.(C) >
ly — z|| where || || is the standard Euclidean norm on R™.

Proof. We first treat the case C = o, a smooth 1-cube in U from z to y. It suffices
to show that for each € > 0, le(0) > |ly — z| —&.

Let such an ¢ be given. Let & be a smooth extension of o. It follows from
Lemma, 18.22 and Definition 18.13 that

(1) lo(0) = /0 1 VIR, (3 dt.

Let 6 > 0 be arbitrary. By uniform continuity of the o} we can choose a partition
O=ty <ty < <tg=1

of I such that for 1 < ¢ < nand 1 < j < ¢, whenever a,b € [t;_1,1;], then
|5{(b) — 7}(a)] < 8. By the Mean-Value Theorem, each &, assumes the value

oi(t;) — oilti—1)
tj — tj—l

at some points of the interval (t;_1,t;) for 1 < j < ¢ (usually different points in
(tj—1,t;) for different 4). Thus for 1 <i<nand 1< j<q,

t; —t;1 i

for all ¢t € [tj—1,t;]. Thus, by continuity of \/z2+ -+ + 22 in z1,...,2n, We can
choose § sufficiently small so that for 1 < j <qg,

VI F)° = \Jz (“i“v’) - "*tﬂ'—l))? _e

i=1 bty —tj-1

Thus

/t > E) de > (\lz (“i(tg:zi_(?”)) —e) (t; = tj-1)
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= \/E:;l (0ity) - Ui(tj—1)>2 —e(t; —tj-1)

= |lo(t;) — otj-0)ll —et; —tj-1)-

/ttjl L () dt

3

Thus, by (1),

M=

o,
i
il

M=

> (llo(t) = o(ts-)ll = <(t; = tj-1))

.
i
A

M=

lo(t;) — o)l —¢

2 Ia(tq) —a(to)ll —e=lly -zl -,

this last inequality by the triangle inequality for the norm || ||. This establishes the
lemma in the special case when C' consists of a single smooth 1-cube.

For the general case, let C = }_._, 0; € C(z,y) where the o; are smooth 1-cubes.
Write Py =2 = 01(0), P, =0;-1(1) =0;(0) for 1 <i <r—1, and P. =y = 0,(1).
Then, by the special case proven above,

T ™
1(C) =Y le(0:) 2 Y IIPi— Pisa|| 2 |2 — Pof| = lly — =],
=1 =1

again by the triangle inequality for || ||. O

Lemma 18.27. Let (M,S,g) be a connected Riemannian manifold, and z € M.
Then:

(a) Given any a > 0, there exists an open neighborhood N of x in M such that
for ally € N, dg(z,y) < a.

(b) Given any open neighborhood U of x in M, there exists a positive constant b
such that for ally € M — U, dy(z,y) > b.

Proof. Choose an S-admissible chart ¢ such that z € dom ¢, codom ¢ = E", the
open unit ball in R™, and ¢(z) = 0. For 0 < r < 1 write

={weR"||w|<r}
rD" ={weR"|||w| <r}, and
rS"l={weR"||w|=r}.

Let f be the composition
-1 .
E" X — dom ¢ 5 M.
f is an immersion and so, by Proposition 18.15, f*g is a Riemannian metric on E™.

Moreover, by Proposition 18.16, for each 1-chain C in B", I+¢(C) = l(£.C).
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It follows from Lemma 18.25 and the compactness of %Dn that there exists a
positive constant Bmax such that for all w € $D™ and all v € T (E™), |Jv[lfg <
Bmax||[v]|e. Thus, for any 1-chain C' comprised of smooth 1-cubes having images

1
contained in %D”, lp+g(C) < Pmaxle(C). Let r = min {g,zim—x} and N =
o Y(rE™). Suppose y € N. Let o : I — E™ be given by o(t) = te(y). Then o is
a smooth 1-cube from 0 to ¢(y) with image contained in D™, and so lf+4(0) <
Bmax le(0). Since ||6’(t)||e = |le(y)]] for all ¢ € I and any smooth extension ¢ of o,
it follows that

1
lo(0) = / o)l dt = o).

Thus a
| lf*g(a) < /Bma.x |l§0(y)|| < /Bmaxr < 5 <a

and thus [,(f.o) = lf+4(0) < a. Since fuo € C(z,y), it follows that dg(z,y) < a.
Thus part (a) is proved.

For part (b), we can suppose that the ¢ above is chosen so that dom ¢ C U.
Write V = ¢~(3E"), X = ¢~}(39™). Note that V and. M — V constitute a
separation of M — X. Thus, if y € M —V (in particular, if y € M —U), any 1-chain
C from z to y must pass through a point of X. If C = Y_;_, 0; where the o; are
smooth 1-cubes in M, let j be the smallest index for which o;(I) meets X. From
the compactness of X and I, and continuity of o, it follows that there is a smallest
to € I for which o;(tg) € X. Let z = 0;(to). It follows from Lemma 18.19 that there
exist 1-chains C; and Cs from z to z and z to y, respectively, in (M, S) such that
the images of the smooth 1-cubes comprising C; are all contained in ¢! (%D”), and
14(C) = 14(C1) +14(Cs). We can write Cy = f.C' for some 1-chain ¢’ in E™ from 0
to ¢(2) such that the images of the smooth 1-cubes comprising C’ are all contained
in %D”. By compactness of %D” and Lemma 18.25, there exists a positive constant
Qin Such that for all w € %D" and v € Ty (E™), |vllf+g = Omin |[v]le. It follows
that Lf«g(C") > Qminle(C’). By Proposition 18.26, l(C’) > ||¢(2) — 0|| = 3 since
¢(z) € 8™ 1. Thus

ZQ(C) Z lg(Cl) = lg(f*C') — lf*g(C/) 2 O51;1111

and so dg4(z,y) > al;in. Part (b) now follows with b = a’;in. O

Theorem 18.28. Let (M,S,g) be a connected Riemannian manifold. Then dg is
a metric on M, and the metric topology arising from dg coincides with the given
topology on M.

Proof. By Lemma, 18.18, to show that dg4 is a metric on M, it remains only to show
that whenever = and y are distinct points of M, then dg(z,y) > 0. Suppose = # y
in M. We can choose an open neighborhood U of z in M such that y ¢ U. By
Lemma, 18.27(b), there exist a positive constant b such that for all z € M - U,
dg(z,2z) > b. In particular, d4(z,y) > b > 0, completing the proof that d, is a
metric on M.
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In the remainder of the proof, by “open in M” we will mean open in the given
topology on M. For z € M and r > 0, write

By(e,r) = {y € M | dg(z,y) <7}.

We must show:

(i) If U is open in M and z € U, then there exists an 7 > 0 such that By(z,r) C
U.

(ii) For each x € M and r > 0, there exists an open neighborhood N of z in M
such that N C By(z,7).

Let U be open in M and = € U. By Lemma 18.27(b), there exists a positive
constant b such that dy(z,y) > b for ally € M — U. It follows that By(z,b) C U.
Condition (i) now follows.

Let £ € M and r > 0 be given. Applying Lemma 18.27(a) with a = r, there
exists an open neighborhood N of x in M such that for all y € N, dgy(z,y) <, i.e.
N C Bg(z,r). This completes the proof. O

Theorem 18.29. Let (M,S) be a smooth manifold. Then the following conditions
are equivalent:

(i) M is paracompact.

(ii) (M,S) admits a Riemannian metric.

(iii) M is metrizable.

Proof. (i) implies (ii) by Theorem 18.7.

Suppose (M,S) admits a Riemannian metric g. Let { M, | @ € J} be the
components of M. Each M, is open in M (an easily proved property of topological
manifolds) and so each M, is a smooth submanifold of M. Thus if i : My — M
denotes the inclusion, i}, g is a Riemannian metric on M,,. Thus, by Theorem 18.28,
each M, is metrizable. Thus, since the M, are open in M, it follows easily that M
is metrizable. Thus (ii) implies (iii).

The implication (iii) implies (i) follows from the general topological theorem that
every metric space is paracompact. [J
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19. THE DE RHAM THEOREM

In this final section we describe the connection between de Rham cohomology,
which is defined on the smooth category, and functors of algebraic topology which
are defined on the topological category. In particular we state, without proof, the
de Rham theorem which yields, as a consequence, the fact that the de Rham coho-
mology of a paracompact smooth manifold depends only on the homeomorphism
type (in fact, only on the homotopy type) of the manifold.

Definition 19.1. Let (M,S) be a smooth manifold and ¢ : I* — M a smooth
k-cube in (M, S), k > 1. o is said to be end-degenerate if o has a smooth extension
o such that &(ty,...,t) is independent of ;. We say o is end-essential if it is not
end-degenerate.

We define all smooth 0-cubes to be end-essential.

Proposition 19.2. Let o be an end-degenerate smooth k-cube in (M,S). Then
for any k-form w on (M, S), /w—O

Proof. Let & : U — M be a smooth extension of o where U = (a,b)* for some
open interval (a,b) containing I. Let V = (a,b)* ! CRF ' andlet 7: U — V, i :
V—-U,and7:V — M be given by 7(t1,...,t) = (t1,...,tk=1), t(t1,. .., tg—1) =
(t1,...,tk-1,0), and 7 = 7i. All these maps are smooth and the diagram

U—&———»M

wl |~

Ve M

commutes. Thus 6*(w) = #*7*(w). Since V is a smooth (k — 1)-manifold, it
follows that the k-form 7*(w) on V is 0, and hence ¢*(w) = 0. The assertion now
follows, [

For k > 1, let Di(M, S) denote the R-subspace of Qx(M,S) spanned by all the
end-degenerate smooth k-cubes in (M, S). We also define Dy(M,S) = 0.

Proposition 19.3. Let (M,S) be a smooth manifold. Then for all k > 0,

8(Dy(M, S)) C Dy_1(M, S).

Proof. Let o : I* — M be an end-degenerate smooth k-cube in (M, S). It is easily
checked that for ¢ = 0,1 and 1 <4 < k—1, 0! is end-degenerate and that of = o¥.

Thus
k—1

(o) = Z (=1%o —0%) € D1 (M,S). O

i=1
As a consequence of Proposition 19.3, d induces R-homomorphisms

0 Qk(M, S)/Dk(M, S) — Qk:—«l(Ma S)/Dk_1(M, S)
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such that the diagram

Qu(M,8)/Dp(M,8) —2— Qi_1(M,S)/Dy_1(M, S)

| !

Qr(M,S)/Dr(M,S) — Qr-1(M,S)/Dy_1(M, S)

commutes where the vertical maps are the natural projections. It follows immedi-
ately from Proposition 14.10 that for k£ > 2 the composition

Qu(M, S8)/Dy(M,S) 2 Q-1(M,8)/Di_1(M,8) 2 Qp_2(M, S)/Dy_5(M, )

is the 0-homomorphism.

Definition 19.4. Let (M,S) be a smooth manifold. For k > 0 the k** normal-
ized smooth cubical real chain space of (M,S) is Qr(M,S)/Dr(M,S) and denoted
C(M,S). The chain complex (C(M, S), 8) is called the normalized smooth cubical

real complex of (M, S). The k** homology group of this chain complex is called the
k™" real smooth homology group of (M, S) and denoted HZ™(M, S; R).

Note that a purely topological analogue of the chain complex (C’ (M,S), 8) can
be given. Let X be any topological space. For k > 0, a singular k-cube in X is a
continuous map o : I* — X. We denote by Qx(X;R) the real vector space on the
set of all singular k-cubes in X. Faces of singular k-cubes and boundary maps are
defined just as in the smooth case, and we obtain a chain complex (Q(X :R), 8),
the unnormalized real singular cubical complex of X. Note that if P is a one-point
space, there is a unique singular k-cube in P for each k > 0, and the boundary map
0 is the 0-homomorphism in each dimension. Thus the homology of the above chain
complex, the unnormalized real singular cubical homology of a point, is isomorphic
to R in each non-negative dimension. This is unsatisfactory from a geometric
point of view; it is desirable to have a non-trivial homology theory which reflects
geometric properties of spaces. In particular, if X is an n-manifold or a space
built out of cells of dimension < n, we want a non-trivial homology theory which
is trivial on such spaces in dimensions > n. This can be achieved by factoring out
end-degenerate singular k-cubes, i.e. singular k-cubes which are independent of the
last coordinate, for £ > 1. Just as in the smooth case, we define Dy(X;R) to be
the real subspace of Qr(X;R) spanned by the end-degenerate singular k-cubes in
X for k > 0, Do(X;R) =0, and define Cx(X;R) = Qr(X;R)/Dy(X;R). Just as
in the smooth case, 9 induces an R-homomorphism 8 : Cy(X;R) — Ci-1(X;R)
for all K > 1 and we obtain a chain complex (C(X s R), 8).

Definition 19.5. If X is a topological space, the chain complex (C’(X ;R),@)
described above is called the real normalized singular cubical complex of X. The

k*® homology group of this chain complex is called the k' singular homology group
of X with real coefficients, and denoted Hj(X;R).

Note that for a one-point space P, Cx(P;R) = 0 for k£ > 0 and Co(P;R) = R.
It follows that Hx(P;R) =0 for k # 0, Ho(P;R) = R.
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The Hi(X;R), as given in Definition 19.5, are the real singular homology groups
of interest in algebraic topology. A number of variants are possible, and are im-
portant. The first variant is to replace R by a different commutative ring R, and
the real vector space Qr(X; R) by the free R-module on the set of singular k-cubes
in X. We obtain, in this way, Hy(X;R), the k*® singular homology group with
coeflicients in R. Particular coefficient rings in addition to R that have proved im-
portant for algebraic topology are the rings of rational numbers, integers, integers
modulo a prime, and integers localized at a set of primes.

Another variant is to factor out by cubes which are independent of any one of the
variables instead of just the end-degenerate ones. The resulting homology theory
is isomorphic to the singular homology described above. Another variant is to use
singular simplices instead of singular cubes. This approach has the advantage that
it yields the “correct” homology groups without any normalization. The cubical
~approach, however, has the advantage of being more convenient for dealing with
homotopy properties of homology and for the study of the homology of product
spaces and, more generally, fiber bundles.

If (M, S) is a smooth manifold, we have inclusions Qx(M,S) C Qr(M;R) and
Dy(M,S8) C Dx(M;R) which are compatible with the boundary map, and hence
we obtain a chain map '

iMm (C(M,S),a) — (C(M;R),@)
which induces homomorphisms in homology
Hyiy : HY™(M,S;R) — Hi(M;R).

We omit the proof of the following theorem. Its proof is not particularly hard, but
does require some machinery.

Theorem 19.6. Let (M,S) be a smooth manifold. Then for all k > 0,
Hyiy s HO™(M, S; R) — Hy(M;R)

is an isomorphism. [

Let 7 : Qx(M,S) — Qr(M,8)/Dy(M,S) = Cr(M,S) denote the natural projec-
tion. If c € Qi (M, S), we will say c is a k-cycle modulo end-degeneracy for (M, S) if
7(c) is a k-cycle for the chain complex (C(M, S),d), and write [c] € H{™(M, S;R)
for the homology class of 7(c). Since 7 is onto, each member of HY™(M, S;R) is
representable in the form [c] for some k-cycle modulo end-degeneracy for (M, S).
The proof of the following lemma, is an easy algebraic exercise.

Lemma 19.7. Let (M,S) be a smooth manifold and k > 0. Then:

(a) If c € Qr(M, S), then c is a k-cycle modulo end-degeneracy for (M,S) if and
only if 0c € Dy_1(M, S).

(b) If ¢,c’ are k-cycles modulo end-degeneracy for (M, S), then [c] = [c] if and
only if there exist x € Qp4+1(M,S) andy € Di(M,S) such that ¢’ = c+0z+y. O
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Corollary 19.8. Let (M,S) be a smooth manifold, w a closed k-form on (M, S),

and ¢ a k-cycle modulo end-degeneracy. Then the real number | w depends only
C
on [w] € HEp(M,S) and [c] € HI™(M, S; R).

Proof. If [w'] = [w] and [¢/] = [¢], then we can write w’ = w + dp for some p €
QF~1(M,8) and ¢/ = c+ 0z +y for some & € Qx11(M,S) and y € Dy(M,S). Thus

/w’:/ (w =+ dp)
c! c+0z+y
=/w+/ w—l—/w—l—/dp-l—/ dp+/dp.
c ox y c ‘a{v y

Since y € Dy(M,S), it follows from Proposition 19.2 that / w = / dp = 0. By
y Y
the Generalized Stokes’ Theorem (Theorem 14.12),

/ w:/dw, / dp:/ddp, /dp‘:/ p-
dx T Ox T c Oc

The first two of these integrals are 0 since dw = ddp = 0. Since dc € Dy_1(M, S),
it follows from Proposition 19.2 that the third of the above integrals is 0. Thus

/w':/w. O

Corollary 19.8 thus yields a well-defined R-bilinear map
Int: Hi(M,S) x HS™(M,S;R) —» R

given by

Iut(lul, ) = [ v

c .

whenever w is a closed k-form on (M, S) and c is a k-cycle modulo end-degeneracy
for (M, S).

Theorem 19.9. (The de Rham Theorem) Let (M,S) be a smooth paracompact
manifold and suppose that H;(M;R) is finite-dimensional over R for all i. Then
forall k >0,

Int: HS:(M,S) x HS™(M,S;R) —» R

is a dual pairing. O

The hypothesis of Theorem 19.9 is satisfied by all compact smooth manifolds
as well as many non-compact ones. Since, by Theorem 19.6, H ,fm(M ,S;R) is
isomorphic to Hi(M;R), the de Rham Theorem yields an isomorphism

Hp(M,S) = Homg (Hi(M; R), R)
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for paracompact (M, S) whose real singular homology is finite-dimensional over R.
In particular, for such manifolds the de Rham cohomology groups are independent,
up to isomorphism, of the smooth structure. '

Singular cohomology groups H*(X;R) for topological spaces are also defined
in algebraic topology. For the case of real coefficients, H*(X;R) is isomorphic
to Homg (Hix(X;R),R). Thus the de Rham theorem yields that the de Rham
cohomology groups and the singular cohomology groups with real coefficients are
isomorphic for paracompact smooth manifolds with finite-dimensional real singular
homology. The machinery of algebraic topology is sufficiently well-developed so
that calculation of singular homology and cohomology is usually quite feasible.
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