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1 Introduction
This paper is devoted to the study of differential inclusions given in the form
£(t) € F(t,z(t)) forae. t€T:=1[0,1], z(0)==z0€ H, | (1.1)

where H is a Hilbert space, and where F': T'x H = H is a set-valued mapping with nonempty
compact values (some results hold also with no compactness assumption; see Remark 4.4
for more discussions). It is well known that the differential inclusion description (1.1) is
important for its own sake and covers many other conventional and nonconventional models
involving dynamical systems in finite and infinite dimensions; see, e.g., [1, 2, 5, 12, 15, 17]
and the references therein. In particular, differential inclusions (1.1) extend control systems

(t) = f(t,z,u), uweU(t ), (1.2)

where the control region U(t, z) can depend on the state variable z, which is a challenging
issue in control theory and applications.

The primary purpose of this paper is to study discrete approzimations of differential
inclusions and certain dynamic optimization problems associated with them. These topics
have been addressed in many publications, mostly in finite-dimensional spaces; see, e.g.,
surveys {12, 15] and the recent book [17] with more references and discussions. The vast
majority of publications in these directions impose the classical Lipschitz continuity of the
mapping F in z, which seems to be restrictive for a number of applications.

In this paper we systematically replace the Lipschitz continuity by a certain modified one-
sided Lipschitzian (MOSL) property of F' in &, which is an essentially weaker assumption;
see more discussions below. Differential inclusions and their discrete approximations under
the more conventional one-sided Lipschitz (OSL) condition have been already studied by
the first two authors in papers {7, 8, 9, 10, 11] mostly devoted to qualitative theory of OSL
differential inclusions and the possibility to uniformly approximate solutions sets to OSL
inclusions (1.1) by corresponding solution sets to their discretized counterparts.

The scope and results of this paper are fully different from the previous developments.
Our main efforts are to establish the strong approzimation (in the WlP-norm as p > 1)
of feasible trajectories for MOSL differential inclusions (1.2) by those for their discrete ap-
proximations and also to justify the strong WiP_convergence of optimal solutions to the
associated problems of dynamic optimization/optimal control under discrete approxima-
tions. The results obtained in this paper extend, to the case of MOSL differential inclusions
in finite-dimensional and Hilbert spaces, the corresponding developments of the third author
[16, 17, 18] for differential inclusions satisfying the classical Lipschitz condition.

Another achievement of this paper, motivated by applications to the convergence of
discrete approximations in optimal control while certainly significant for its own sake, is
establishing a Bogolyubov-type relazation/density theorem for differential inclusions satis-
fying the MOSL condition. The latter result is known to hold for Lipschitzian differential
inclusions and to feil for OSL ones. All the results obtained in this paper seem to be new
in both finite-dimensional and infinite-dimensional settings.



The rest of the paper is organized as follows. In Section 2 we formulate and discuss the
standing assumptions and then present some preliminary material, which is broadly used
for deriving the main- results of the paper.

Section 3 is devoted to the study of relationships between solution sets to MOSL differ-
ential inclusions and those to their discrete approximations constructed via the Euler finite-
difference scheme as well as to related semi-discrete approximations of (1.1). The main
results justify, under the MOSL property of F'(t, ), the possibility of the strong WP -norm
approzimation of any feasible trajectory for (1.1) by those for its discrete and semi-discrete
counterparts constructed in what follows. ' _ .

In Section 4 we derive certain density/relazation stability results of the Bogolyubov
type concerning relationships between trajectories to the original MOSL differential inclu-
sion coupled with an integral cost functional and the corresponding relaxed/convexified
counterpart. The results obtained seem to be new in the extensive literature on relaxation
gtability and related topics (e.g., Young measures) for variational problems; they are sen-
sitive even to a slight change of assumptions. Applying the technique developed in the

.proof of the main density theorem, we justify in this section a new .(different from that in
Section 3) version of the strong convergence theorem for discrete approximations imposing
milder time-dependence assuinptions on the initial data. ' : '

The concluding Section 5 deals with discrete approrimations of dynamic optimization
Bolza-type problems for nonconvex MOSL differential inclusions. It contains a major result
of the paper justifying the strong Wh?-convergence of optimal solutions for the discrete
approximation problems to the given optimal solution (actually an arbitrary locel mini-
mizer of the “relaxed intermediate” and strong types) for the continuous-time generalized
Bolza problem under consideration. We also establish general conditions (both necessary
and sufficient) for the value convergence of discrete approximations of the generalized Bolza
problem for MOSL differential inclusions. The results obtained in this section significantly
improve known results in this direction by weakening assumptions on the initial data de-
pendence with respect to both the state and time variables. The proofs given in this section
are essentially based on the previous results of the paper on strong approximation and
relaxation stability for MOSL differential inclusions. :

Qur notation is basically standard,. with some special symbols explained in the text
where they are introduced. Note that JB stands for the closed unit ball of the space in
question and that, given a subset {} of the Hilbert space H under consideration with its
norm denoted by | - |, the symbols O and co (2 signify the closure of 2 and the convex hull
of Q, respectively; JN := {1,2,...} stands for all the collection of natural numbers. Let us
also mention that the constant C > 0 used in the proofs and various estimates throughout
the paper is commonly a generic constant.

2 Basic Assumptions and Preliminaries

In this section we impose and discuss the underlying assumptions on the set-valued mapping
F from (1.1} standing throughout the whole paper and then present several known facts on
differential inclusions formulated in two lemmas, which are essential for proving the main



results of the paper.
Given two closed and bounded sets £, {3 C Z in some Banach space Z with the norm
| - ||, recall that the Hausdorff distance dz(£11,822) between them in Z is defined by

dz(Q1, 2) := max { sup dist(z; Qg), sup dist(y; 1)} with d1st(z 1) := 111f |z — wl|-

zeN
As usual, a set-valued mapping G: Y = Z between two Banach spaces is continuous on
some set  C Y if it is continuous on {2 with respect to the Hausdorff distance; it is Lipschitz
continuous on £} with modulus L > 0 if ‘

dz(G(1); G(y2)) < Llly1 — yall whenever y1,y, € Q. - (21

Recall further that a nonautonomous mapping G: T XY = Y is almost continuous on
T x €Y if for every € > 0 there is a compact set T, C T such that mes(T\ T:) < ¢ and G{(, -)
is continuous on 7% x Q, We refer the reader to the book [5] for the standard definitions
of lower semicontinuity (LSC) and upper semicontinuity (USC) and their similarly defined
almost LSC and almost USC counterpart. Furthermore, in [5] the reader can find the
‘conventional definitions of measurable and strongly measurable multifunctioﬁs; note that
the latter notions agree when the range space is separable.
Now we formulate the following standing assumptions imposed on the set-valued map-
ping F: T x H = H in our differential inclusion (1.1) defined on the Hilbert space H
considering, unless otherwise stated, only mappings with nonempty and compact values.

(AL F:Tx H= I is almost continuous and bounded on bounded sets.

(A2) There exist a constant L ¢ IR and an almost continuous function f: T'x R, — IRy
with the following properties: '

(i) f(t,0) =0, and it is bounded on bounded sets;

(ii) Given any z;,zz € H and 41 € F(t,z1), there exists yz € F(t, z2) such that -

(z1 — Z9,51 — y2) < L|z1 — 20 and jy1 — 1a| < f(t, |21 — z2]) (2.2)
for almoest all t € T.

- Note that the property described by the first inequality in (2.2) is known, for time-
independent mappings, as the one-sided Lipschitz (OSL) property of F(t,-); see the refer-
ences in Section 1 with more discussions given therein. The full property (A2) is a strength-
ened version of assumption (H4) from [7]; we call this new version the modified one-sided
Lipschitz (MOSL) property of multifunctions. It obviously holds when F(z,-) satisfies the
classical Lipschitz condition (2.1), while the measurable time dependence of F(-,z) is cov-
ered by (A2) due to Lusin/Scorza-Dragoni’s type theorems for set-valued and single-valued
mappings; see, e.g., [5, 20]. Observe that, in contrast to (2.1}, the constant L in (2.2) is
not reguired to be positive. This allows us to significantly extend the class of MOSL map-
pings in comparison with Lipschitz continuous mappings conventionally considered in the
theory and applications of discrete approximations and optimization for differential inclu-
sions. A simple example of a non-Lipschitzian (in the classical sense) function satisfying



(A2) is —2/3. A more involved situation when the MOSL property holds while F'(t,-) is
not Lipschitz continuqus is given by the two-dimensional differential inclusion

(& e {11}, m(0)=0,
By = |e1] — sign(za)/Jaa], 562(0) =0.

On the other hand, it is easy to check that the MOSL property implies the uniform
continuity of F(t,-). It is definitely stronger (more restrictive) than the standard OSL
property used in the literature. This stronger assumption, together with (A1), allows us to
establish here essentially stronger results than those known for OSL differential inclusions,
with no imposing.the full Lipschitz continuity (2.1). In particular, we justify the strong
W2-norm approzimation of solutions to (1.1) by discrete and semi-discrete trajectories in
Section 3 as well as the Bogolyubov-type relazation/density results of Section 4. The latter
result is known to fail under the standard OSL property; see, e.g., [4, Example 1.3].

In what follows, along with the original differential inclusion (1.1) we consider its relaz-
ation, which is obtained from (1.1) by using the convez closure of F(t,z):

(2.3)

i(t) e @F(ta(t) forae teT, z(0)=um e H. (2.4)

As usual, absolutely continuous (AC) solutions to (1.1) and (2.4) are called, respectively,
ordinary trajectories and relazed trajectories to the original differential inclusion. For the
proofs of our main results in the subsequent sections, we need the following facts concerning
ordinary and relaxed trajectories to the differential inclusions under consideration, which
are established in [8, 9] in more general settings.

Lemma 2.1. (Boundedness of Trajectories) Let ¢: T — H be an ebsolutely continuous
function satisfying the inclusion

i(t) e WE (L x(t)+ B)+ B forae teT, z(0)=xo (2.5)
under assumptions (A1) and (A2). Then there is a number M > 0 such that
lz(t}] < M and sup{|v| | v € F(t,2(t) + B) + B} < M for-a.e. teT. (2.6}

Lemma 2.2. (Qualitative Properties of Solution Sets) The following assertions hold
under the standing assumptions (A1) and (A2): '

(i) The set of AC solutions to the relazed differential inclusion (2.4) is nonempty and
compact in the space C(T; H) of continuous functions z: T — H endowed with the standard
supremum norm on 1. ‘

(ii) Let G: T x H = H be almost LSC with nonemply, compact values and such that
| G(t,:c) CTF(t,z) forall (t,z)eT x H.
Then the set of AC solutions to the differential inclusion
i(t) € Gt,2(t)) forae teT, z(0)=up (2.7)

is nonempty and C(T; H)-precompact, i.c., relatively compact in the norm topology of C(T; H).



3 Strong Approx1mat10n of Solutlon Sets to MOSL leferen-
tial Inclusions under Discretization

The primary goal of this paper is to study discrete approzimations to the original differen-
tial inclusion (1.1) satisfying the standing assumptions (A1) and (A2). For simplicity we
consider the uniform Euler scheme to replace the time-derivative in (1.1) by the standard
finite difference. Let

h::-;];-. and t; :=gjh, 7=0,....k kelN, _ ' (31)

where we omit in notation the dependence on & of the discretization étepsize h-and the

mesh points ¢;. The corresponding sequence of finite-difference inclusions is now given by

2(t) =2() + (= t)v;, 2(0) =m0, 1; St Sty 3.2)
With UjGF_(tj,Z(tj)), i=0,...,k-1

?

where solutions to (3.2) are piecewise linear functions on T, i.e., they are familiar Euler’s
polygons/broken lines.
Due to the construction of {3.2), if is natural to expect that well-posedness and approxi-
mation results involving (3.2) require appropriate continuity assumptioné on the dependence
of F with respect to the time variable. One of the possibilities to avoid such requirements
s to consider the sequence of semi-discrete approzimations defined by

{ @}(t) € Flt,y(ty) ae. telttin), ()= }ting;y(t),

(3.3)
i=1,...,k=1, 9(0) = =z,

which is well posed under the standing assumptions (A1) and (A2). In what follows, we -
denote by S the set of AC solutions to (1.1), by S{h) the set of AC solutions to (3.2) for
any fixed & from (3.1), and by S(h) the set of (absolutely continuous) solutions to (3.3). ‘

In papers [7, 8, 9, 10, 11], the reader can find various estimates of the uniform Hausdorff
distance-—in the space C(T'; H)—between the solution set S to the convezr-valued differential
inclusion (1.1) and the solutions sets S(k) and S(k) to its discretized counterparts under
more general assumptions in comparison with (Al) and (A2). These results imply the
uniform convergence of the sets S( (h) and S(h) to S as h | 0in the space C(T; H); in
particular, they imply the uniform approximation of solutions to (1.1) by solutions to the
discretized inclusions (3.2) and (3.3). The latter corresponds, by the Newton-Leibnitz
formula, to the weak convergence of the derivatives in L*(T; H).

Our main attention in this section is to obtain results on the strong in L}(T; H)—
actually in any LP(T; H) as p > 1 due to the assumptions made—convergence of the so-
lution derivatives for sequences of the discrete and semi-discrete approximations, which
implies the (almost everywhere) pointwise convergence of the corresponding subsequences.
This means in fact the strong convergence of trajectories in the Sobolev spaces Wi»(T; H)
instead of C(T; H) as before. Results of this type were derived in [16, 17, 18], for the
case of discrete approximations (3.2) of differential inclusions with finite-dimensional and
infinite-dimensional (reflexive) state spaces, under the Lipschitz continuity of F'in z with



no convexity assumptions on the velocity sets F(t,z). In what follows we establish the
strong convergence resulté, also for nonconvez inclusions while in the Hilbert space setting,
under essentially less restrictive MOSL property of F'. Such significant improvements of the
previous results are important for their own sake and play a crucial role in applications to
optimal control problems for MOSL differential inclusions considered in Section 5.
~ We start with relationships between solution derivatives for the differential inclusion
(1.1) and its semi-discrete approximations (3.3). Denote by D and D(h) the sets of the
time-derivatives for solutions to (1.1) and (3.3), respectively. The next theorem justifies the
strong convergence of the Hausdorff distance between these sets in the space LP(T; H), i.e.,
the two-sided closeness of these sets as b | 0.

Theorem 3.1. (Strong Convergence of Semi-Discrete Approximations for Non-
convex MOSL Differential Inclusions) Under the standing assumptions (Al) and (A2)
we have the solution set convergence '

de (D(h),D) =0 as h |0 forall p>1, (3.4)
" where the Hausdorff distance is taken in the correspbndz’ng space LP(T; H).

Proof. 1t is sufficient to justily the strong convergence result of the theorem for the case of
p = 1, which easily implies (3.4) for any p > 1 due to the standing assumptions made.

Observe that, by Lemma 2.1, every solution y{-) to (3.3) for all & > 0 sufficiently small—
which is always assumed in what follows— can be extended to the whole interval T, and
we have the estimate ' -

Sﬁp{|v[ |veF(ty(t)+ B)+ B} <M forae teT. - (3.5)

Hence the sets ’5(h) as h > 0 are uniformly bounded in L'(T'; H) together with the sets S and
D, which are nonempty by Lemma 2.2. Furthermore, the sets D and 5(1‘1) are obviously
closed in the norm topology of L}(T; H), and thus the Hausdorff distance dp1 (D(h), D)
between them is well defined. :

‘ Part 1. We first prove that the set D can be approximated by D(h)} as h | 01in the space
LT, H). Take any z(-) € S and construct the required discrete approximations y(-) € S(h)
as h | 0 of this trajectory by the following step-by-step procedure on the consequent intervals
[tj,tj41] for 7 =0,...,k—1. Denote y; := y(¢;) for j = 0,...,k—1 and observe that—since
the initial point yo = z¢ is given—it is sufficient to construct the required trajectory y(t)
to (3.3) on the interval {t;,2;41] for § = 0,...,k — 1 provided that y; = y(t;) is known. To"
proceed, let us show that whenever § = 0,...,k — 1 there is a strongly measurable selection

v;{t) € F(t,y;) for ae. € [t;,t541] (3.6)
satisfying the relationships
(yj = (1), vi(8) — #(8)) < Ly — =(t)* and |vj(t) — &)} < £ (b le(®) —3sl)  (37)

for a.e. t € [tj,tj41]as j=0,...,k— 1.



Indeed, it is easy to check that for each j = D,....,F,c — 1 the set-valued ma.pping
S;t [ty t541] = H defined by '

Sy(t) = {v € H] (g = 2(t),0(0) = #(2)) < Llys = s, 1402) o] < £(t, Iolt) - 1))

is Lusin in the sense of [5], and hence it is measurable on [t5,t541]. Consequently, each
intersection mapping €; defined by | ‘ '

Qi(t) == F(t,y;) N S;(t), t€ s til, §=0,...,k—1,

is nonempty-valued due to (A2) and strongly measurable on [tj,1;41], since F(¢,1;) is
compact-valued and has this property by (Al). Thus, by the classical measurable selec-
tion results and the almost separable-valuedness of Q; (see, e.g., [20, Chapter 1)), there is a
strongly measurable selection v;(t) € Q;(t) for a.e. t € [t;, tj41] satisfying the relationships
in (3.6) and (3.7) whenever j = 0,...,k — 1. Moreover, each selection v;(-) is actually
summable on the corresponding interval [t;,%,41] by the boundedness property (3.5).

Having in hand the solution z(t) to (1.1) and the summable selections v,(t) satisfying
(3.6) and (3.7) for a.e. t € [t;,t;41] with § = 0,...,k — 1, we construct the corresponding
solution y(t) to (3.3) defining it on each interval [t;,1;11] by

i .

y(t) = yj+/ vi(s)ds for all t € [tj,t41], 7=0,...,k—1, (3.8)
N _ |

where the integral is taken in the Bochner sense, and thus y(.) satisfies the differential’
inclusion (3.3).. Furthermore, by (3.5) and (3.7), we have the following estimates for a.e.
te [tj,tj+1] andall 7=0,...,k—1:

(w(t) — a(t), v3(6) — #(8) < Llu(t) — a(®)?
< IEI(ly() — (O — |95 — ()]?) + [og(8) — #0)] - |95 — y(0)
< Liy(t) — z(8)|* + 2M2 (2|L] + 1) A.

This consequently implies the inequalities
d . .
v — 2@ <2Ljy(t) — ()P + Ch,  [y(t) - 2(t)] < CVA
and thus gives by (3.7) the desired estimate
|i(t) — £(£)] < f(t,CVR) forae teT,

where C' > 0 is a generic constant. By the properties of f in (A2) we therefore get the
strong L(T'; H)-convergence of (-} = yx{-) to () as h | 0 and finish the proof of Part 1.

Part 2. Let us now show that, taking any solution y(-)S(h) to the semi-discrete inclusion
(3.3), we always can find a solution z(-) € S to the original differential inclusion (1.1) such
that

£(t) — §(1)] < f(t,CVR) forae. teT, - (3.9)



where £ is our standing estimate function from (A2) while C > 0 is a generic constant. It is
clear that estimate (3.9) implies the required approximation of the derivative set 5(}1) for
(3.3) by the derivative set D for (1.1), and hence—together with Part 1—it fully justifies
the claimed convergence (3.4) of the theorem.

To proceed with the proof of (3.9), we take any ¢ > 0 and consider the set- valued
mapping G : T x H = H defined by

Ge(t, z) = {'v € F(t, a:)| {yj — 2, 9(t) ~v) < Liyg; —z2+¢, ) — vl < flt,ly; —=|) + e}

for a.e. t € [tj,%41] with y; = y(t;) as § = 0,...,k — 1. Since the original mapping F is
compact-valued, so is G., and—due to the basic assumption (A2)-—the values of G.(t, z)
are nonempty for all z € H and a.e. t € T. Moreover, it is standard to check that the
constructed mapping G. is almost LSC for any £ > 0. Employing now Lemma 2. 2(11), we
conclude that the differential inclusion

©(t) € Ge(t, z(t)), a:(O) =g | (3.10}

admits an AC solution z(-) on T. It further follows from the constructlon of Ge—by the
MOSL property of F'—that

p . ,
=2 - y(t)|* < 2Lie(t) = y(@)[2 + C(h +¢) forae. teT,
whlch consequently 1mphes the inequalities
et y(t)‘<C\/ on T and |i( t)—y(t)|<ft (t,Cvh+¢) forae teT.

Since € > 0 was chosen arbltrarlly, we arrive at the required estimate (3.9) and thus complete
the proof of Part 2 and of the whole theorem. ‘ O

Next we study the strong approzimation—in the norm topology of WiP(T; H)—of any
feasible trajectory z(-) € S to the original nonconvez differential inclusion (1.1) satisfying
the MOSL condition by a sequence of feasible trajectories z;(-) € S{hx) to the discrete
inclusions (3.2). We establish two independent versions of such a strong approximation
result. The fist version presented in what follows justifies the strong discrete approximation
for any sequence of partitions of the interval T—even for nonuniform partitions more general
than (3.1)—imposing, however, additional continuity assumptions on the mappings F and f
with respect to both variables (t, z). The second version drops these additional assumptions
and imposes only the standing assumptions (Al) and (A2), but the price to pay is that
the strong convergence can be justified only for some sequence of discrete partitions of T
Since the proof of the second version is technically more involved and is strongly based on
the technique developed in the proof of the density theorem in Section 4, it makes sense to
present the latter version in the next section.

Theorem 3.2. (Strong Convergence of Discrete Approximations for Nonconvex
MOSL Differential Inclusions under Continuity Assumptions) Suppose that the



mappings F, f in assumptions (A1) and (A2) are continuous in both variables. Then for
every AC solution z(-) to (1.1) and for every sequence of partitions Ay of T' given by

Ak:={0=t’5<t1f<...<'t§§:1} with hk:xkn_la.x. {t?_,_l—t?}LO - (8.11)
<j<h—

there is o sequence of piecewise linear solutions z;(-) to the discretized mcluszons (3 2) on
Ay satisfying the relationships

1 ‘
z(t) — z(t) uniformly on T and / |:::g(t) — (1) |jp dt—0, p>1,  (3.12)

as k — oo; the latter implies the convergence 4, (t) — &(t) of a subsequence for a.e. t eT.

Proof. Fix an arbitrary number € > 0 and observe—by Lemma 2.1-—that there is a constant -
M > 0 such that for a.e. t € T we have the estimate

|z(t)] gM and |&(t)| £ M whenever dist(d(t), F(t,z(t))) <e. (3.13)

Note also that, due to the continuity of F(:,-}, the composition F'(,x(t)) is uniformly
continuous-(in on the compact interval T for any continuous function z: T — H .
To proceed, we pick an AC solution z(-} to (1.1) with the derivative £(¢) and consider
the given sequence of partitions Ay from (3.11). As mentioned, it is sufficient to justify
(3.12) for p = 1. By the density of step functions in L (T'; H), approximate #(t) ‘strongly
in L}T; H) by a sequence of step functions w(t), which are bounded in LY(T; H) and
constant on the intervals [t¥,¢% ), j=0,...,k — 1, from the sequence of partitions (3.11).
The latter can be adopted without loss of generalify in the proof below due to the continuity
assumptions imposed. Construct now the AC functions

t _ '
() = zo +f wi(s)ds, teT, kelN, (3.14)
0 ' '

via the Bochner integral of wy(-) and observe that

 yk(t) — z(t) uniformlyin teT as k— oo

Since w(t) — #(t) pointwisely on T' along a subsequence of k — oo and since wy(-) are

piecewise constant, we can select [tk 3 _|_1) such that
|wp@) — 2()| <e/2 forall j=0,....k—1and ke N  (3.15)

and that the differential inclusion (1.1) holds at ¢ = Z&.

Let us show next that
dist (g (£); F(t, 1(t)) < ¢ whenever te T (3.16)

and k € IV is sufficiently large; in the latter case we include all k € IV into consideration.
Indeed, select k € N so large that

g (F(t, (1), F(IF, () < e/2 forall j=0,...,k—1 and such k € IV,
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for the Hausdorff distance in H, which is possible due to the choice of E;" and the uniform
continuity of F(¢,z(t)) on T. Then using again the continuity of F(-,-) and the uniform

convergence of yp(-) — z(-) on T, we get

dist (wr(2); F'(¢, yu(8))) < dist (we(#); F(F, 2(E))) + dur (F(t, i (2)), F &5, 2 (E5)))

k

for all £ € T and for all large k, since wy(-) are piecewise constant on [¢7,

(3.15). This justifies (3.16).
Observe that the functions yx(-) defined in (3.14) are not feasible trajectories to the
discretized inclusions (3.2). Now we construct, based on yi(-) and the MOSL property of -
F in (A2), the required piecewise trajectories zy () to inclusions (3.2) on the partitions Ay
built above such that the strong convergence relationships (3.12) are satisfied.
 Fix k € IN and construct the required trajectory z(t) = zx(t) to (3.2) on Ay, omitting
the index “k” in the notation of z(t) and t; = tf; for simplicity. We proceed as follows.
Assuming that z{¢;) is known (for 7 = 0 it is always the case), we want to extend z(-) to
the interval (£;,%;4+1] in (3.2). By the structure of (3.2) this means that we need to find an
appropriate velocity v; € F(t;, 2(t;)). Let us do it by the projection method on the base of
- the MOSL property of F(t;,-). Having wi(t;) and yx(t;) from the above constructions, we
select—by the compactness of F(t, z)—a Euclidean projection |

t;" 1) and satisfy

- Uj € PrOj g, (tj)F-(tj;yk(tj))
for this fixed § € {0,...,%k — 1}. Note that |u;| < M and |u; — wi(t;)| < € by (3.13) and

(3.15). Employing the MOSL property (A2) of F(t;, ) with z1 = (%), z2 = z(¢;), and
u; € F(t,yr(ty)), we find v; € F(t;,2(t;)) satisfying ' E

(u(ty) — 2(t5), w5 — v3) < Dlywlty) — 201 ug — v5| < £ (85, lun(ts) — 2(85)]). '.

Define now the trajectory y(t) of (3.2) on [t;,t;41] by using this velocity v; and show
that the constructed sequence z(t) = z(t) on T satisfies the required properties. By the
choice of v; and the triangle inequality we have '

(ue(8) — 2(t), s — vj) < (ww(t) — 2(t5), u; — vy)

Hiylt) — 2(8), uy — vz) — (e(ty) — 2(25), w5 — vj) :

< Llye(ts) — 2(85) 12 + (lugl + vsl) (12(8) — 2(5)1 + |ya(t) — ylts)])

< Llyk(t) — ()12 + | Llye(t) = 2(8)* - Llya(ts) — 2(t;)?| + 4M2(t — t;).

The latter implies by elementary transformations that

b lyw () — 28] = lyn(ts) — 2(25) ]
< (e + [2()] + lyt)] + 121 (@) — 2(8)] + |2() — 2(t;)])
< 8M2h forall t€ltj tip1], §=0,....k—1, k&N,

Furthermore, taking into into account that |u; —v;j| < eforall j = 0,...,k—1 by the above
constructions of u;, v; and the previous estimates, we get '

&E|yk(t) — 2 < 2Lly(®) — 2P + Clhe +€) forae. €[ty tjp], §=0,....k—1,
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with a generic constant C' > 0, which consequently gives
lye(t) — 2(2)] < Cv/he +¢ and [gx(t) — 2(t)| L e + Tmax ft, Vi +e), teT, (3.17)

for all k € IN. Putting e = &4, | 0 as k — oo in (3.17) and using the uniform convergence of
yk(t) - =(t) as well as the LP-convergence of yp(-) = wr(-) — (-}, we arrive at the claimed
relationships (3.12) and complete the proof of the theorem. ' O

4 Bogolyubov-Type Relaxation Theorem for MOSL Differ-
ential Inclusmns

This section concerns relationships between the original dynamic system (1.1) and its con-
vexification (2.4). Questions of this type play a key role in many aspects of dynamic
optimization and related topics; they are usually unified under the name of density and/or
relazation theorems. In the framework of the classical calculus of variations, pioneering
research was done by Bogolyubov, Young, and McShane in the 1930s; in optimal control-
by Gamkrelidze, Filippov, Warga, and Wazéwski in the 1960s. The reader can find more
information and discussions, e.g., in the books [2, 13, 17, 20] and the references therein.
Relaxation/density results say, roughly speaking, that admissible trajectories to the
original continuous-time dynamic system are dense under certain conditions among admis-
sible trajectories to the convexified/relaxed one and, furthermore, ‘that the value of the
cost functional in the corresponding dynamic optimization problem does not change under
- convexification. The first result of this type was probably obtained by Bogolyubov (3] for
“the simplest problem of the calculus of variations; and thus results in this vein are often
called Bogolyubov-type theorems. .
We refer the reader to {2, 4, 20] for the classical and recent results in this direction for dif-
ferential inclusions in finite-dimensional and infinite-dimensional spaces. These results are
obtained under the full Lipschitz condition imposed on the velocity map F with respect to
the state variable. Moreover, the classical example by Plis [19] (see also {20, Example 3.2.1])
shows that the Lipschitz continuity of F(t,-) cannot be dropped, or even relaxed to conti-
nuity. In fact, Plig’ example corresponds to system (2.3) with the only change: the term
—sign{xy) is replaced with sign(z9). As mentioned above in Section 2, density/relaxation re-
sults do not generally hold if the Llpschltz coutinuity of F'(¢,-) is replaced with its one-sided
Lipschitz continuity. :
The primary goal of this section is to show tha.t the modified one-sided Lipschitz con-
dition (A2) allows us to establish approprlate density/relation results, which are further
employed in Section 5 to the strong convergence of discrete a_pproximations.' Note, in par-
ticular, that the “almost-Plis” system (2.3) satisfies our requirements. |
To cover in the sequel dyhamic optimization problems of the Bolza type, we consider-—
along with the original differential inclusion (1.1)—the integral functional

Ia] = fo o(t, 2(1), 8(2)) de (4.1)
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defined over absolutely continuous trajectories z: T —~H (T'=1[0,1]) to the differential
inclusion (1.1). In addition to the standing assumptions (A1) and (A2) on F(t,x), we
impose the following ones on the integrand g in the “cost” functional in (4.1):

(A3) The integrand g: T x H x H — R in (4.1) is almost continuous on the product
T x (H x H) and its absolute value is majorized by a summable function on T' uniformly
-in the last two variables.

Note that the uniform boundedness assumptions on the integrand g is imposed for
simplicity; it can be replaced by an appropriate growth condition as, e.g., in [4]. -

Consider further the following extended differential system involving the differential in-
clusion (1.1) and the differential equation generated by (4.1):

{ (t) € F(t,z(t)) forae. teT, =z(0)=mg,

5(6) = g(t,2(6),#(1) for ae. tet, s(0)=0. *2)

Letting y := (2, s) € H x IR, define the set-valued mapping G: T x H x R = H x IR by
G(t,yj = {(v,9) € H x RI v € Ft,z), ¢ = g'(t,rzc, U)}, : (43)
and consider the eztended differential inclusion
§(t) € Glt,y) forae teT, y(0)=yo = (zo,0) - -(4.4)
together with its relazation/convezification .
y(t) € WWG(t,y) forae teT, y(0) - Yo- | | (4.5)

Observe that the extended differential inclusion (4.4) is obviously equivalent to the extended
system (4.2) and that the mapping G in (4.4) is actually independent of the component
s € IR of the state variable y = (z,s). The following new density theorem establishes
the possibility of the uniform approximation—under the key MOSL condition—of any AC
trajectory to the convexified extended inclusion (4.5) by AC trajectories to its ordinary
_counterpart (4.4).

Theorem 4.1. (Uniform Density under Relaxation of MOSL Differential Inclu--
sions) Let all the assumptions (A1), (A2), and (A3) be satisfied. The the set of AC solu-
tions to the extended differential inclusion (4.4) is dense with respect to the norm topology
of C(T; H) in the set of AC solutions to the convezified differential inclusion (4.5).

Proof. 1t is easy to observe that the mapping G(-,-) in (4.3) is almost continuous due
to imposing this property on F' and g. Furthermore, we conclude from the boundedness
assumptions in (Al) and (A3) and the boundedness property of Lemma 2.1 that the sets
G(t,y) = G(t,x) are uniformly bounded over a bounded set containing all the relaxed
trajectories. For definiteness, suppose that

sup {|u| | u € WEG(t,y)} < M~ 1/2 with some M >1/2 (4.6)
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for all (¢,y) under consideration. Let us now fix an arbitrary AC trajectory z(t) to the
convexified inclusion (4.5). Our goal is, given any € > 0, to e-approximate it in the norm
topology of C(T; H) by an AC trajectory to the extended differential inclusion (4.4). We
split our proof into two major steps; each of them is certainly if independent interest.

Step 1. First we find a quasitrajectory w(-) to (4.4), which is e-close to z(+) in the norm
of C(T; H). Our intention thus is to construct an AC function w: T — H such that

w(t) € G(t,wit)) +eB as te Ty, w(O) =1 (4.7)
for some cdfrlpact subset T, C T with mes(T}) > 1 — g, that |w(¢)| < M on T, and that
|w(t) — 2(t)| <& forall teT. (4.8)
Taking (4.6) into account, .we have‘from {4.7) and (4.8) that
dist (w(t); G(t, w(t))) < 2M on T\ T,

which we use in what follows. Note that in the proof of Step 1 below we do not employ the
MOSL pr'operty of while manage to establish the approximation result by quasitrajectories
under merely the almost continuity assumption on F' and g, which are weaker than in
previously known results of this type in both finite and infinite dimensions; see, e.g., [2, 4, 20]
and the references therein.

To begin Wlth take A > 0 and show that there exist a compact set T\ C T with

mes(Th) > 1 — A2 and an absolutely continuous functlon p: T — H with the piecewise
constant derivative satisfying

12~ pllz1erany < A and dist(p(t);b‘GIG(t, p(t))) < A/10 on T). (4.9)

Indeed, by the almost continuity property of G(-, ) and the classical Lusin property of 2(-}, -
we find Ty C T with mes(Ty) > 1— A2 such that G(., ) is continuous on T3 x H and that 2()
is continuous on 7. Since the convexified mapping @ G(-, -} is also continuous on Ty x H,
for some v € (0, A/20} we have

dir (G(t, (1)), G{t,y)) < A/20 and dy(coG(t, 2(2)),T0 Gt y)) < A/20 (4.10)

whenever |z(t) —y| < v and t € T)\. Employing the classical Egorov theorem from real
analysm and taking into account that z(t) is uniformly continuous on the compact set Ty,
find a piecewise constant function v: 7" — H such that

|2() — v(t)] < /20 for €Ty and |2 — vl < 7.
Defining now p(:) by the Bochner integral
¢
p(t) = yo +f v(t)dr, teT,
0

and taking into account the choice of v > 0, we get the desired function p(-) satisfying the
relationships in (4.9) . Clearly, |z(¢) — p(t)] < on 7. ‘
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Having this function in hand, let us construct the approzimating quasitrajectory w(-) to
(4.4) with the properties described above. To proceed, we divide the underlying interval
T = [0, 1] into nonintersecting and depending on the chosen A > 0 intervals {Jx}, k € IV,
with lengths not greater than A? such that the integrand »(.) is constant on each J; and

du(G(t,p(), G{r,p(r))) < A/10 whenever t,7 € yNTy, ke . (4.11)
Take some 7'1; e J.NT) for ea_ch %k € IN and consider the projeétion
Tk 1= Proj y(r, )% G (Tk, P (7k))

of the point v(7,) on the set €0 G (74, pr(7%)); the existence and uniqueness of this projection
under the assumptions made are well known. By (4.10) we obviously have the estimate

|my — v(m)| < A/10 for all k€ IN. - (4.12)

Consequently, there are o, > 0 and u}, € G, p(r;)) for ¢ = 1,..., my with some my, € IV
such that, by taking the cliqsure operation in (4.12) into account, we get the relationships

mg ™mi .
Za}c =1 and \'nk - Za;u}’c
i=1

i=1

A
<
— 10

whenever my € IV is suﬂiciently large. For every fixed k € IN we divide now the interval
Ji into my, pairwise disjoint measurable sets Jki such that '

mes(J})
mes(J;.)’

a}€= t=1,...,mg, kEN.

Since the union of J over k € IV gives the whole interval T', and the union of the sets
Ji over i € {1,...,mg} gives Ji for each k, we can construct—for the chosen A > 0—the
~ summable function uy: T' — H by '

uy(t) 1= v} for tej,j_, i=1,...,mg, kelN,

and then define the absolutely continuous function wy: T' — H by the Bochner integral

wy(t) == yo+ /Dt upr(r)dr, tel. o (4.13)
It is easy to observe from the above estimates that |
lwn(t) = p()] < A/4 and |wy(t) — 2()] < /2 forall teT.
- Finally, we select A = A(e) < & so small that
dg(G(t, 2(2)), G(t,¥))) < /3 on Te CTy whenever |2(£)—y| < A (4.14)

The latter estimate and the inequality (4.11) imply the following estimates for the function
w(t) = Wy (t) constructed in (4.13):

dist (w(t); G(t, w(t))) < dist(w(t); Gt p(8)) + du (G(¢, p(t)), G{t, w(E}))

15



The triangle inequality

da (Gt p(), Gt w(t)) < dir (Gt p(8), Gt 2(9) + dar (G(t, 2(9), Gt w()

together with (4.11) and (4.14) iinply (4.7) on T, which shows that this function w(t) is
the required quasitrajectory to (4.4) satisfying the relationships in (4.7) and (4.8). This
completes the proof of Step 1.

Step 2. Next we are going to show that the gquasitrajectory w(-) to (4.4) constructed
above can be approximated by a proper AC trajectory y{-) to this differential inclusion. To
accomplish this goal, we strongly use the MOSL property of the original velocity mapping
F , which turns out to be a crucial assumption replacing the full Lipschitz continuity in
‘both finite and infinite dimensions. Having w(t) that satisfies (4.7) and (4.8), we represent
it as w(t) = (g(t),9(¢)) with q: T — H and ¥: T — R, clearly the g-part of w satlsﬂes the
differential inclusion

(i) € F(t,q()) +<B on T, q(0) =z, | (415)

where the compact T: € T is described in the beginning of Step 1. By using the compactneés
of the velocity sets F(t, x) and measurable selection theorems (cf. the proof of Theorem 3.1),
we can select the projection

7(t) € proj é(t)F(t,q(t)) on Tg,

which is strongly measurable on this set. Further, fix v > 0 and define the multifunction

Pyt u) = { uep@uﬂw—wmy<ﬂamm_ﬂn+s+% 
(a(t) = u,m(t) —v) < Llglt) —uP += 47}, teT,

where the constant L € IR and the function f: T x IRy — IRy are taken from the MOSL,
assumption (A2). Denote

Ptu) if teT:, B
Qyltu) = { F(t,u) otherwise : (4.16)

and observe that Q.(:, ) has nonempty and compact values due to (A2). Let us show now
that this mapping is almost LSC. _

Since F(:,:) is almost continuous and #() is measurable, for any v > 0 we find a
compact set T, C T with mes(T'\ 7,) < v such that F(-,-) is continuous on 7, x H and (")
is continuous on 7;,. Then it easily follows from the construction of Q. (:, ) in (4.16) that this
mapping is LSC on 7, x H, and so it is almost LSC on T x H. Applylng now Lemma 2.2(ii),
we conclude that there is an AC function ¢,: T' — H satisfying the differential inclusion

dy(t) € Q4(t, q4(t)) forae. teT, ¢,(0)=uxg. (4.17)
It easily follows from {4.15)—(4.17) that | '

(q(t) = g4(1),4(8) ~ ¢, ()) < Lig(t) — ey (&) + [{a(t) — ¢7(t}, 4(t) — 7)) + €+
< Lig(t) — gy (0)|* + €lq(t) — g4 (t)i + £ + v
< Lig(t) = g, ()2 + 0.5(? + |g(t) — ¢, ()|}) + e+, teTe.
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This consequently 1mphes the est1mate _
lg(t) — gy ()P < r(t) forall teT, (4.18)

where r(0) = 0 and the absolutely continuous function r: T — IR, satisfies the following
differential inequalities on T, and T \ Ty, respectively: ‘

) | 2L+ 1)r(t)+%2+2(e +7) on T,
< 4.19).
M) < { r(t) + 16M2 on T\T.. (4.19)
Applying the classical Gronwall Lemma to (4.19), we get the estimate
r{t) < Cle+7) forall teT, (4.20)

where the generic constant C is independent of £ and +. Thus

lg(t) — g, (8)| S CVE+7 forall teT : (4.21)

by (4.18) and (4.20) Consider now the integral functional (4.1), with a variable upper limit
of integration ¢ € T, computed on the absolutely continuous functions ¢: T — H and
gy: T — H, respectively:

t t ' :
Ity = [ g(r,q(r),d(m))dr, O,(t) = [ 9(r,q4(7),dy(7)) dr
0 - 0

By assumption (A3) we suppose without loss of generality that the integrand g(-,-,-) is
continuous on T, x H x H. Since '

lq"(t)—é'q«(t)lS_f(t,\/6+fy)+s+7, teT,

by the above estimates and since the function f can be assumed to be continuous on T} x R+
by (A2}, we get that the difference |9(t) — ¥, (t)| is uniformly small on T" provided that & and
7 are chosen to be sufficiently small. The latter conclusion and the estimate (4.21) imply

- that the trajectory (g,(t), 9,(t)) to the extended differential inclusion (4.4) is uniformly

close to the guasitrajectory w(t) = (g(¢),¥(t)) built is Step 1. By taking into account the
result of Step 1, this completes the proof of the theorem. O

Next let us derive from the density result of Theorem 4.1 a Bogolyubou-type theorem for
the MOSL differential inclusion (1.1) with the cost integral functional (4.1) under the as-
sumptions (A1), (A2), and (A3). This theorem ensures not only the uniform approzimation
-of relaxed trajectories to (1.1) by ordinary ones but also provides an important informa-
tion on behavior of the integral functional I[z] in (4.1) under such an approxnnatlon To
proceed, we consider the extended-real-valued function

gr(t,z,v) = g(t,z,v) + 6(11; Ft, a:)),

where §(-; Q) stands for the indicator function of a set that is equal to 0 on the set and
equal to co outside the set. Define then

§(t,2,) == (o7 (6,7, v) | (4.22)

© the biconjugate/bypolar function to gr(t,x;:) with respect to velocity, i.e., the greatest,
proper, conver, and lower semicontinuous function in v that is majorized by gr.
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Theorem 4.2. (Extended Bogolyubov Theorem for MOSL Differential Inclu-
sions) - Under the assumptions of Theorem 4.1 the following hold:

For every AC trajectory Z(-) to the convezified differential inclusion (2.4) there is a sequence
{z1(-)}, k € IN, of AC trajectories to the om'gz'nal differential inclusion (1.1) such that

Jim Iglea,x |a:k(t — ()| =0, ' (4.23) |
T | _ |
. kll‘rgo%ajgclfo [g('r, (1), &x(7)} — G(r, 5:"(7’),5:’(7‘))] d.T‘ =0. - (4.24)

Proof. This can be derived from Theorem 4.1 similarly to the device in-[4], where a (full)
Lipschitzian analog of Theorem 4.1 was established and employed for compact-valued dif-
ferential inclusions in separable Banach spaces.

Indeed, it is shown in [4] (the proof of this part holds with no change under our assump— '
tions) that the pair y(-) = (z(:),8()) is a solution of the converified extended differential
. inclusion (4.5) if and only if one has

{ i(t) € wF(t,z(t) forae teT, z(0)=xo, (4.25)

§(ty = g(t,z(t),2(t)) forae teT, s(0)=0.

_Thus taking the designated solution %(-) to the convexified differential inclusion (2.4) in the
statement of the theorem, we consider the pair : :

(52),5() with §(t) = fo tg(fr,as(f),i(#r)) dr, teT,

which, by (4.25), is a solution to (4.5). Employing now Theorem 4.1, we find a sequence of -
solutions yx(-) = (2x(-), sk()) to the extended inclusion (4.4} such that.

. t
zp(t) — E(t) and si(t) = f (7, 2e(7), (7)) d7 — (1) uniformly on T as &k — co.
0

The latter gives (4.23) and (4.24) and completes the proof of the theorem. O

Now, as a bonus of the technique developed in the proof of Theorem 4.1 combined with
the proof of Theorem 3.2, we establish a version of Theorem 3.2 on the strong convergence
-of discrete approzimations that does not require any additional (joint continuity) assump-
tions.on F(f,z) and uses only the standing assumptions (Al) and (A2). In particular,
the following result allows us to deal with discrete approximations of MOSL differential
. inclusions and control systems whose initial data are merely measurable in time. This
seems to be new (even for fully Lipschitzian problems with respect to state variables in
finite-dimensional spaces) in the theory of discrete approximations and makes it possible to
employ the method of discrete approzimations as a vehicle for the qualitative and quanti-
tative study of continuous-time systems with the measurable dependence on time variables,
which was not the case in the previous developments and applications; see, e.g., [16, 17, 18]
and the references therein. '
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Theorem 4.3. (Strong Convergence of Discrete Approximations for Nonconvex
MOSL Differential Inclusions under Almost Continuity Assumptions) Let the
standing assumptions (A1) and (A2) be satisfied. Then for every AC solution z(-) to (1.1)
there is a sequence of partitions Ay of T given in (3.11) and a sequence of piecewise linear
solutions zi(-) to the discretized inclusions (3.2) on Ay as k — oo such that the strong
convergence relationships (3.12) hold. '

Proof. Fix an AC solution z: T — H to the differential inclusion (1.1). Following the proof
of (4.9) in Theorem 4.1, where the convex-valuedness of the mapping €0 G(-, ) does not
play any role while its almost continuity is crucial, for any A > 0 we find a coinpact subset
Ty C T with mes(7}) > 1 — A? and an absolutely continuous function y: T' — H with the
piecewise constant derivative such that the mappings F(-,-) and f(-,-) from (Al) and (A2)
are continuous on Ty x H and the estimates

dist(g(2); F(5,y(@)) <A on Ty and ||y — llpyrm S A (4.26)
are satisfied. Thus there is a subdivision | |
Ap={0=1m < <...<7mp=1}, meN,

of T such that g(t) is piecewise constant on every subin_terval [ 1), 3 =0,...,m—1.
We can assume without loss of generality that 7" € T), for each j € {0,...,m—1} _

Note that the above functions y(t) = yx () satisfying (4.26) are not feasible trajectories
to the discretized inclusions (3.2). Now, arguing similarly to the proof of Theorem 3.2, we
can approzimate them strongly in WLe(T; H), p € [1,00), by a sequence of piecewise linear
trajectories z,(t) to the discrete inclusions (3.2) defined on the appropriate subintervals

o SO e kR E 11w - koo gk
Ap={0=1t5<t] <...<tf=1} with hy '_Og?é‘kx—l{tj"'l_tj} 10 as k—o0

of T. To proceed, we use the uniform continuity property of F(-,-) on T x H along the
functions y(t} = ya(t) from (4.26) meaning that for every € > 0 there is 1 > 0 ensuring

dg (F(t,y(1)), F{,2)) < e whenever t,7€Th, |t~7|<n, |y) -z <7,

and then employ the projection method as in the proof of Theorem 3.2, which is essentially
based on the MOSL property of F. The reader can furnish all the details similarly to the
proof of Theorem 3.2. ' 5]

Remark 4.4. (Differential Inclusions with Noncompact Values) Careful analysis
and appropriate technical modifications of the given proofs for the above approximation and
relaxation results show that the compact-valuedness requirement on F(-, -} can be dropped
under the basic assumptions (Al), (A2), and (A3). In particular, the projection construc-
tions essentially used in the proofs above, which eventually require the compactness of
underlying sets in infinite dimensions, can be replaced in the approximating procedures by
density results of Lau’s nearest point type; see [14].
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5 Discrete Approximations of the Generalized Bolza Prob—
lem for MOSL Differential Inclusions

In this section we study discrete approximations of dynamic optimization problems over
trajectories to MOSL differential inclusions. The main problem under consideration is
known as the generalized Bolza problem and is described as follows:

. 1 -
minimize J[z] := p(z(1)) +./0.g(t, z(t), &(t)) dt (5.1)

over AC trajectories z: T — H to the original differential inclusion (1.1) subject to the
general endpoint constraints

z(l) et C H. (5.2)

This problem denoted as (P) has been well recognized as a basic model in dynamic optimiza-
tion that covers both conventional and nonconventional problems of the (one-dimensional in
time) calculus of variations and constrained optimal control for open-loop and closed-loop
systems; see [2, 17, 20] for more discussions.

The cost functional J[z] in (5.1) differs from [[z] in {4.1) considered in Section 4 in
connection with the extended Bogolyubov theorem by the endpoint (or M ayer) term @ (:c(l)) :
typmal in problems of optimal control.

Our primary attention in this section is paid to constructing well—pOSed discrete ap-
prozimations to problem {P) by a sequence of optimization problems governed by discrete

-inclusions whose optimal solutions strongly in WY2(T; H}, p € [1, 00), converge to the given
optimal solution :E(t)_ for the continuous-time problem (P). More precisely (and more gen-
erally), we deal with the so-called “intermediate local minimizers” to (P) in the sense of
[16], which are situated strictly between the classical weak and strong local minima; see [16]
and [17, Subsection 6.1.2] for detailed discussions and examples.

Recall that a feasible trajectory Z(:) to (P) is an intermediate local minimizer (ILM) of
rank p € [1,00) to this problem if there are nurabers £ > 0 and a > 0 such that J[z] < J[z]
for any feasible trajectory z(-) to (P) satisfying

. 1
|z(t) —z(t)| <& on T and a/o l.?:(t) —z(H)iPdt < e. (5.3)

The relationships in (5.3) actually mean that we consider a neighborhood of Z(-) in the
Sobolev space WIP(T; H). The case of & = 0 in (5.3) corresponds to the classical strong
 local minimum and surely includes global solutions to (P) in the usual sense. The classical
~ weak local minimum corresponds to (5.3) with o # 0 and p = co, which is more restrictive.

In what follows we are going to construct strong discrete approximations of the local
solution Z(-) in the afore-mentioned sense under localizing assumptions (A1), (A2), and (A3).
This means that we need their fulfillment not on the whole space H as formulated but only
on some bounded set U C H with includes #(t), Z(t), and the underlying neighborhood of
the intermediate local minimizer. Furthermore, for simplicity and convenience we slightly
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modify the assumptions in (A3) on the integral g in (5.1) requiring that

(A8') g(t,-,-) is continuous on U x U uniformly in t € T, while g{-, z, v} is measurable on
T and its absolute value is majorized by a summable function uniformly in (z,v) € U x U.

As well known, (A3') implies the almost continuity property of g(-,-,-) in {A3) in sepa-
rable spaces; 50 we can use the results obtained in Section 4 under (A3') in separable Hilbert
' spaces. On the other hand, we can avoid the separability requirement on H if g is assumed
to be continuous in t (i.e., jointly with respect to all its variables); see Remark 5.2. In
fact, based on the technique developed in the proof of Theorem 4.1, one can proceed in the
slightly modified construction below with the (localized) almost continuity assumption on g
in nonseparable spaces as in (A3) including the integrand g into the discrete approximation
procedure of Theorem 4.3; we leave details to the reader.
To proceed, we also need to add to (Al), (A2), and (A3) the following unrestrictive
assumptions concerning the new data ¢ and Q in problem (P) and involving the afore-
mentioned bounded set U C H:

(A4) The function ¢(-) from (5.1} is continuous on U and the set £} from (5.2) is closed
- around Z(1).

Note that the results on discrete approximations obtained below signiﬁcantly improved
the known ones (see {16, 17, 18] with the discussions and references therein) in both finite-
dimensional and Hilbert space settings by replacing the full Lipschitz continuity of F'(¢, -) by
the weaker MOSL property and also by replacing of the strong continuity-like requirements
with respect to ¢ by the almost continuily assumptions on F(-,-), which allows us to cover
measurable in time data; see the above discussions. At the same time the compactness
requirement on the set values F(t, ) seems to be essential for the results of this section as
well as for those in [16, 17, 18]. :

To proceed, we need some amount of relazation stebility. Similarly to [16, 17], let
us formalize this requirement in the following way. Along with (P), consider the relazed
generalized Bolza problem (R) given by: -

- _
minimize Jz] := o (z(1)) -l-f §(t,2(t), 2(t)) dt ' (5.4)
. : 0 .
subject to the converified differential inclusion _
@(t) e WF(t,x(t)) forae. teT, =z(0)=w (5.5)

with the endpoint constraints (5.2). We say that an absolutely continuous function z: T' -
H is a relazed intermediate local minimizer (RILM) of rank p € [1,00) to the original Bolza
problem (P) if Z(.) is feasible to (P} and provides an intermediate local minimum of this
rank to the relaxed problem (R) with the same cost value J[Z] = J|Z]. _

Clearly that any RILM for (P) is ILM to this problem and that the opposite is true 1f
this (P) is convez in the sense that the velocity sets F(¢,z) are convex and the integrand
g(t,z,v) is convex in the velocity variable v. Moreover, the latter property is satisfied for
beyond converity; see a number of sufficient conditions for it in [16, 17, 20} and the references
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therein. A new result in this direction follows from Theorem 4.2 and is used in what follows;
see the proof of Theorem 5.1(iii).

Take and fix an arbitrary RILM Z(-) for the original problem (F) and suppose for
convenience (and without loss of generality) that p = 2, that @ = 1, and that

Z(t) +£/2€ U whenever t€T

for the constants (p,a,¢) in (5.3). We now construct in the following way a desired se-
quence of discretized problems (P;) as k € IN whose optimal solutions exist and strongly
approximate the given RILM Z(-) as k& — oc. :
Using Theorem 4.3, find a sequence of discrete partitions Ay, = {t 1i=0,...,k}of T as
in (3. 11)~wom1tt1ng the upper index “k” for simplicity—and a sequence of plecewise linear
‘solutions Zr(-) to the discretized inclusions (3.2) such that the convergence relationships
(3.12) hold with z(-) = Z(-) and 2z,(-) = Z (). Then problem {Py) for each k € IN consists
of minimizing the cost functional ' ‘ ‘

kel 'z Nt
Jel2) = p(2(tk)) +Z/ g t,z(tj),%__fgl) gt
_ +Z/ﬁ

- over plecew1se linear trajectories z(-) to the dlscretlzed 1nc1u51on (3.2) subject to the state
and endpoint constmmts

B (5.6)

z(t.?+1) Z(t ) —(t)‘zdt
ti+1 =

£

|2(¢;) — 2(t;)| < 5 forall j=1,...,k, ' (5.7)

| Haz(tie) — 2(t) . g
th Thaiet, (t)‘ di < 3, (5.8)
2(tk) € Q+mB with g = |Z(tk) — 2(te) |, (5.9)

where 7y | 0 as k — oo by Theorem 4.3 employed for «(.) = Z(-) and z(-) = Z(-).

The following major result ensures the strong Wl’P—approximation of any given RILM
Z(-) to (P} by optimal solutions to the discrete problems (Fy) and, furthermore, justifies
such a discrete approximation for an arbztmry strong local minimizer to the original Bolza
{P) with no endpoint constraints (5.2). ‘

Theorem 5.1. (Strong Convergence of Discrete Optimal Solutions to RILMs
~ and Strong Local Minimizers for the Bolza Problem). Let Z(-) be o RILM to the
Bolza problem (P) under the localized assumptions (A1), (A2), (A3'), and (A4) in separable
Hilbert spaces H. The following assertions hold:

(i) Each discrete approzimation problem (Py) admits an optimal solution.

(if) Any sequence of optimal solutions {Z;(-)} to (F) converges to Z(-) strongly in the
space WYP(T; H} as p € [1,00).

(iii) If Q@ = H in (P), then the above conclusions of the theorem are fulfilled for an
arbitrary strong local minimizer Z() to the original problem.
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Proof. To justify (i), we first observe that the set of feasible solutions to each problem (Pr)
is nonempty for all k¥ € IV sufficiently large. Indeed, that approximating trajectories Z;(-)
are feasible to (P;) as k& — oo due to Theorem 4.3 and the construction of (Fy). This
observation holds for any ILM Z(-) by its definition in (5.3). Then the existence of optimal
solutions to (Py) in assertions (i) and (iii) follows directly from the classical Weierstrass
existence theorem due to the compactness and contlnulty (in 2) assumptions imposed on
the initial data of (P).
Next we prove (ii). It is easy to see (from the proof of Theorem 5. 1} that without loss of

generality the knots ¢; in (P) can be chosen as points of continuity of the velocity mapping
F(t,-). Let us first check that

Telf] — J[3] as k— o0 | (5.10)

aiong some subsequence of k € IV for the cost functionals (5.1) and (5.6) in problems (FPy)
and (P), respectively, where Z(-) and Zj(-) are related by Theorem 4.3. Since ¢ is continuous
around Z(1), the convergence relation (5.10) obviously reduces to

it Ze(tj1) — Zelts 1 L
Z[ tzk(t_j), ’“(t;'”) k(tj))dt*’/o g(t, 2(t),2(t)) dt as k — oo,
7=0

41 = b5

which follows from Theorem 4.3 and Lebesgue’s dominated convergence theorem for the
Bochner integral that is valid under (A3'). .

The arguments above did not involve the property of Z(+) to be a relazed ILM to the
Bolza problem (P). Now, employing this. property and taking any sequence {Zz(- )} of
-optimal solutions to the discrete problems (FPy), let us show that

hm/ |2:(t) — 2(8)[* dt = 0, (5.11)

which obviously implies the conclusion in (ii). Assuming the contrary and using the Dunford
theorem on the weak precompactnessin L1(T; H) (see, e.g., [6, Theorem TV.1]), we find v > 0 .
and v(-) € LY(T; H) such that '

/: |2 (t) — :E(t)|2 dt — v and () — v(-) weakly in L}(T;H) (5.12)

along a subsequence of k¥ € IV, which we identify -as usual with the whole natural series.
Since the Bochner integral is a linear continuous operator from L'(T; H) into H, it remains
continuous with respect to the weak topology. Taking also into account Lemma 2.2(ii) on
the precompactness in C(T"; H) of the solution set to (3.2) under the assumptlons made, we
" find an absolutely continuous function z: T' — H such that

1
Z(t) = zo —}—/ v(r)dr forall teT,
0
and thus Z(¢) = v(t) for a.e. t € T and () — #(-) weakly in LY(T; H) by (5.12) as k — cc.
Observe furthermore that the limiting function Z(-) is a solution to the convezified

differential inclusion (5.5). Indeed, it follows from the classical Mazur theorem that weak
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convergence of {Z()} from (5.12) implies the strong in LY(T;H) convergence to () of
some conver combinations of %(-), and hence the a.e. pointwise convergence to Z(t) of (a
subsequence of } these convex combinations. Thus inclusion (5.5) for Z(-) follows from those
in (3.2) for all Z(-) as kK — co. By passing to the limit in the constraint relationships (5.7)
and (5.9) for Z(-), we conclude that '

|&(t) - 3(5)] <=/2 on T and #(1) € Q.

For passing to the limit in (5.8), observe that the integral functional

1
] = fo lu(t) — ()| dt

is lower semicontinuous in the weak topology of L3(T; H } due to the convezity of the in-
tegrand in u. Since the weak convergence of z(-) — ':i:"() in LY(T; H) is equivalent to the
one in L?(T; H) by the unform boundedness property of Lemma 2.1, we conclude from '
the afore-mentioned lower semicontinuity and the piécewise linear structure of z(-) that
the limiting function %(-) satisfies the integral constraint in (5.3), and thus it belongs to
prescribed e-neighborhood of the RILM Z(-) under consideration.

Since the approximating trajectories Z(-) from Theorem 4.3 are feasible to (P;;) while
z1(-) are optimal to these problems as k — oo, we have '

JeZk] < Jr[Z] for all large & € IN. ' - (5.13)

Taking into account the structure of Ji in (5.6) and the arguments above, as well as con-
struction (4.22) of the convexified integrand g in (5.4}, we get from (5.10) by passing to the
limit in (5.13) that

o
p(E( )+/ G(t, #(1), #(1) dt+'y< J(z],
0
where v > 0 by (5.12). Thus we arrive at the contradiction
JiE < Jjz] = Jlz]

to the fact that Z() is a RILM to (P), which therefore justifies (5.11) and completes the
proof of assertion (ii) in the theorem. -

. It remains to prove the convergence statement in (iii) for an arbitrary strong local mini-
-mizer T{-) to the original Bolza problem (P) with no endpoint constraints (5.2). It turns out
that in this case, under the assumptions of the theorem for MOSL differential inclusions,
any strong local minimizer to (P) is a strong local minimizer for the relazed problem (R),
and hence it is a RILM to (P) enjoying the conclusion in (ii). Indeed, given a strong local
minimizer Z(-) to {P) and assuming the contrary, for any ¢ > 0 we find a traJectory Z(-) to
the convexified inclusion (5.5) such that

|Z(t) — Z(t)] < & whenever t €T and

7 < J17) < J[al,
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where the latter inequality is automatic. Now applying the relaxation result from The-
orem 4.2 to the designated relaxed trajectory Z(-) and taking into account the continuity
assumption on the cost function y, we find a sequence of AC trajectories z(-) to the original
inclusion (1.1) such that z(t) — Z(t) as k — oo uniformly on T and

lim inf Jfax) < J12) < J{a]. O (5.14)

Note that all zx(+) are feasible to (P)—by the absence of endpoint constraints-~and belong
to any prescribed neighborhood of :Ts() in the space C(T; H) for all £ € IN sufficiently large.
Thus (5.14) clearly contradicts the strong local minimality of Z(-) to the original problem -
(P). This completes the proof of assertion (iii) and of the whole theorem. O

Remark 5.2. (Simplified Discrete Approximations of the Bolza Problem with
Continuous Integrands) Note that if the integrand g in (5.1) is assumed to be continuous
in t, then the second term in representation (5.6) of the discretized cost functions Ji[z] can
be simplified in the constructions and conclusions of Theorem 5.1 by

k—1

Z (E___}_.__) (tj,z(t ) M) (5.15)
§=0

i1t 41—t

for any discrete partition Ay of T' from 7(3.11). Moreover, in this case we do not need to
assume that the space H is separable in Theorem 5.1. This observation follows directly from
the proof of Theorem 5.1 by using Theorem 3.2 instead of Theorem 4.3 therein.

Finally in this section, we obtain a general theorem on the value convergence of discrete
“approximations for MOSL differential inclusions extending previous results in this dlrectlon
known for full Lipschitzian counterparts; see [17] and the references therein.

Observe that the cost functional (5.6) as well as constraints (5.7)—(5.9) in the discrete
approximation problems (Py) ezplicitly contain the given local minimizer #(-} to the original
problem (P). From the numerical viewpoint, it is important to6 construct discrete approx-
imations involving only initial data of (P) but not information about its (local) optimal
solutions, which may not even exist. To proceed in this way, we modify (P;) considering
instead it the the following sequence of discrete approximation problems (ﬁk)

tig1—1

minimize Ji[z] = 1)) + Z /%H M) dt

subject to the discretized inclusions (3.2) with the perturbed endpoint constraints (5.9),
where the sequence 7y, is not yet specified. Similarly to (5.15), we can simplify the approx-
imating functional J if the integrand ¢ is continuous in ¢. Denote

inf(P), inf(R), and J?:=inf(P,) as ke IN

the optimal values of the cost functionals in the original, relaxed, and discretized problems
- under consideration. We say that problem (P) is stable with respect to relozation if

inf(P) = inf(R). (5.16)

25



The reader can find a number of efficient conditions ensuring this property in (2, 4, 13, 16, 17]
and the references therein.

The following theorem shows that the relaxation stability (5.16) is necessary and suffi-
cient for the value convergence of discrete approximations for MOSL differential inclusions
under appropriate perturbations of the endpoint constraints. -

Theorem 5.3. (Value Convergence of Discrete Approximations for MOSL Dif-
ferential Inclusions) Let U be an open and bounded subset of a separable space H such
that zm(-) €U ast € T and m € IN for a minimizing sequence of feasible solutions to (P).
Suppose that the localized assumptions (A1), (A2), (A3"), and (Ad) are satisfied whenever
(z,v) € U x U with Q to be fully closed in (Ad4). Then the following assertions hold:

" (i) There is a sequence of the endpoint constraint perturbations ni | 0 in (5.9) such that

inf(R) < liminf J? < limsup J? < inf(P), - (547)

and so the relaxation stability (5.16) ensures the value convergence inf (ﬁk) — inf(P) of the
.above discrete approzimations.

(ii) Conversely, the relazation stability of (P) is also necessary for the value convergence
inf(l?’k) — inf(P) of the discrete approzimations with arbitrary perturbations ny, | 0 of the
endpoint constraints.

Proof. To justify (i), we take the minimizing sequence of feasible trajectories zm(-) to (P)

specified in the theorem and apply to each ,,(-) Theorem 4.3 on the strong -approxima-

tion by discrete trajectories. Employing the standard diagonal process, we construct the
trajectories Z(-) to the discretized inclusions (3.2) such that

M = |Z(1) — T (1)] > 0 85 & — oo. - (5.18)

Then the proof of (5.17) is similar to the ones in assertions (i) and (ii) of Theorem 5.1 with
the endpoint perturbations 7, specified in (5.18).

To justify the converse assertion (ii) in the theorem, we first observe that the relaxed
problem (R) admits an optimal solution under the assumptions made. This follows from
the compactness assertion (i) of Lemma 2.2 and the lower semicontinuity arguments in the
proof of assertion (i) of Theorem 5.1, Taking an optimal solution Z(-) to problem (R), we
approximate it by feasible trajectories Zn(:), m € IN, to the original problem (P) in the
sense of Theorem 4.2 and then strongly in WY2(T; H) approximate each %,,(-) by some
trajectories zm, (-), & € IN, to the discretized inclusions (3.2). Using again the diagonal
- process, we thus build the corresponding trajectories Z(-) to (3.2) approximating Z(-) in
the sense of Theorem 4.2 and define the endpoint perturbations 7, by '

= |Z(1) - 2(1)] = 0 as k— o0, ' {(5.19)
Suppose now that (P) is not stable with respect to relaxation, i.e.,

(2] = min(R) < inf(P). (5.20)
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for the fixed optimal solution Z(-) to (R). Then we construct the dlscrete approximation
problems (Pk) as above with the endpoint perturbations ny, specified in (5.19). By (5. 19),
the afore-mentioned approximating trajectories Zi(-) are feasible to (Py). It follows from
the construction of these trajectories and the assumed strict inequality in (5.20) that

; t - .
fminf 7} < limint [so(zk(ll)) + [ o, 20) a
< ola(w) + [ 306 3(6) 50) & < nt(P),

which shows that the value convergence inf(B) — inf(P) does not hold for the constructed
sequence of discrete approximations. This completes the proof of theorem. O

~ As in Remark 5.2, observe that Theorem 5.3 holds in nonseparable spaces H and the
discrete approximation in (Py) can be simplified by (5.15) if the integrand g is assumed to
be continuous in time. This follows from the application of Theorem 3.2 in the proof above.

Remark 5.4. (Value Convergence and Strong Solution Convergence of Semi-
Discrete Approximations for MOSL Differential Inclusions). Similarly to the proofs
of Theorem 5.1 and Theorem 5.3, we can establish the strong solution convergence and value
convergence results for semi-discrete approzimations of the generalized Bolza problem (P)
under the same assumptions. To justify this, it is sufficient to proceed as in the proofs of
the corresponding discrete approximation theorems with replacing there the application of
Theorem 4.3 and Theorem 3.2 by that of Theorem 3.1 with no additional sepambthty or
time-confinuity assumptzons
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