
Wayne State University

Wayne State University Theses

1-1-2010

A Front-End For An Ownership Object Graph
Interactive Editor
Talia Frances Selitsky
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Computer Sciences Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Selitsky, Talia Frances, "A Front-End For An Ownership Object Graph Interactive Editor" (2010). Wayne State University Theses. Paper
42.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/42?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages

A FRONT-END FOR AN OWNERSHIP OBJECT GRAPH
INTERACTIVE EDITOR

by

TALIA SELITSKY

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2010

MAJOR: COMPUTER SCIENCE

Approved By:

Advisor Date

DEDICATION

To my family

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Abi-Antoun, for all of his hard work

in helping me to realize this thesis. He assigned me a project that I loved, which

made it easy to be motivated. I learned from him so many things that I apply every

day, and that I feel will help me tremendously throughout my career. He is a great

addition to the Wayne State University Computer Science department.

I was very fortunate to have a wonderful and distinguished thesis committee. I

would like to thank Professor Rajlich who got me interested in software engineering as

a field, and involved me early in my master’s degree in software engineering research.

I would also like to thank him for helping me get my first computer science job.

Thank you also Professor Reynolds for being part of my committee and giving me so

much helpful advice.

Thanks also to the members of the SEVERE group for being so supportive and

committed to research. I would especially like to thank Laurentiu Vanciu for being

such a great mentor, and always being available when I needed help or advice of any

type. Nariman Ammar got me through the program with all of her help, kindness,

and humor. Sonia Haiduc and Grace Metri made coming to the lab something that

I looked forward to, and something that I will miss.

I was fortunate to be a member of the ACM-Women chapter at Wayne State

University, which is a great group full of fun and inspiring members who I thank

for their enthusiasm, and teaching me how to play a role in the computer science

community. I would especially like to thank Monika Witoslawski, who started the

group, for all of her dedication and vision.

Thanks to my family, especially to my wonderful parents and sisters for putting

up with me during this time. I would also like to thank my grandmother for all of

her support and encouragement.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Figures . vi

Chapter 1: Introduction . 1

1.1 Architectural Abstraction . 2

1.2 Object Diagrams . 3

1.3 Background on Scholia . 3

1.4 Limitations of Scholia . 4

1.5 OOG Structure by Example . 5

1.6 Graphical Conventions . 6

1.7 Contributions . 6

1.8 Thesis Statement . 8

1.9 Outline . 11

Chapter 2: Previous Work . 12

2.1 Runtime Structure . 12

2.2 Ownership Structure . 12

2.3 Hierarchical Views . 13

2.4 Iterative Refinement . 14

Chapter 3: Requirements . 15

3.1 General Requirements . 15

3.2 Human-Computer Interaction Requirements 16

3.3 Tool Support . 18

3.4 Iterative Refinement . 20

Chapter 4: Implementation . 25

4.1 Tool Implementation Overview . 25

4.2 Tool Features . 27

iv

4.3 Future tool features . 29

4.4 Example . 29

4.5 Ownership Domains Data Model . 33

4.6 System documentation . 35

Chapter 5: Evaluation . 39

5.1 Self-Evaluation using Cognitive Dimensions 39

5.2 Expert UI Review . 43

5.3 Pilot Evaluation . 45

5.4 Future Evaluation Example . 49

Chapter 6: Discussion and Conclusion . 53

6.1 Validation of Hypotheses . 53

6.2 Missing Back-End . 55

6.3 Current Limitations in Front-End . 56

6.4 Satisfaction of the Requirements . 57

6.5 Conclusion and Broader Impact . 61

References . 63

Abstract . 70

Autobiographical Statement . 72

v

LIST OF FIGURES

Figure. 1.1 MicroDraw represented as an OOG 5

Figure. 3.1 Manipulate object hierarchy . 20

Figure. 3.2 Manipulate objects in top-level domains 21

Figure. 3.3 Add domains to object . 21

Figure. 3.4 Merge domains . 21

Figure. 3.5 Split domains . 22

Figure. 3.6 Merge objects . 22

Figure. 3.7 Split objects . 22

Figure. 3.8 Summary edges . 23

Figure. 3.9 Lifted edges – before . 24

Figure. 3.10 Lifted edges – after . 24

Figure. 4.1 OOGIE Prototype . 25

Figure. 4.2 Object drag and drop . 28

Figure. 4.3 Tabbed editor showing the top-level domains 29

Figure. 4.4 Tabbed editor showing the top-level domains and obj1 29

Figure. 4.5 MicroDraw flat object graph . 30

Figure. 4.6 MicroDraw initial extracted object graph 30

Figure. 4.7 Add domains to refine object graph 31

Figure. 4.8 Move objects to refine object graph 31

Figure. 4.9 Expose sub-architecture . 32

Figure. 4.10 Data model . 33

Figure. 4.11 Object diagram for nestedObjectDomain. 36

vi

Figure. 4.12 Object diagram for nestedControlObject. 37

Figure. 4.13 Object diagram for codeWizard3. 38

Figure. 5.1 DrawLets: initial extracted OOG 50

Figure. 5.2 DrawLets: refined OOG . 52

vii

1

Chapter 1: Introduction

One of the greatest challenges faced by practicing software engineers is understanding

the structure of large software systems. This understanding is necessary for many

software evolution tasks, such as isolating and fixing defects, adding new functionality,

optimizing performance, or identifying and addressing security vulnerabilities.

Over the last 20 years, the discipline of software architecture has emerged to

capture the high-level structure of a software system [39, 51]. A software architecture

abstracts the system’s organization into components and shows how those components

interact.

The different ways of looking at a system’s structure are called architectural

views [11]. Different views serve different purposes. A code view shows modules

as groups of source code functions, files, classes, and packages. Code views are use-

ful for reasoning about dependencies between source code modules. Runtime views,

the focus of this work, show components and connections between them. A compo-

nent represents a set of one or more objects in the running system. Runtime views

are useful for tasks related to performance, reliability, and security [8]. Such views

are increasingly important in object-oriented code, which makes heavy use of design

patterns [19].

Instead of reading the code to understand it, it would be ideal to have a tool

that could assist the engineer in extracting a runtime view. Recent work has shown

that sound runtime structure extraction from object-oriented systems is technically

feasible [4]. Soundness means two things. First, each runtime object has exactly

one representative in the object graph. Second, the object graph has edges that

correspond to all possible runtime points-to relations between those objects.

The extraction tool produces a default decomposition [4]. But many decomposi-

tions are possible. So, ideally, one must provide efficient and interactive mechanisms

2

to let a developer refine the default decomposition to reflect their design intent. We

consider that the object graph reflects design intent when it is at an abstraction level

that is comparable to a conceptual architecture, i.e., they both have similar tiers (a

tier is a way of grouping components with the same functionality to create conceptual

partitions), similar hierarchical decomposition (a component can have sub-structure),

and similar number of components and tiers at each hierarchy level.

The goal of this work is to support the above refinement. We propose a tool with

a graphical user interface to manipulate an extracted object graph. We focused on

the front-end of the tool and on addressing some of the usability limitations of the

previous work on extracting object graphs.

1.1 Architectural Abstraction

Because a system’s runtime structure often has many objects, the resulting graph is

often large and complex. Hierarchy is often used to mitigate this problem. This is

because hierarchy provides architectural abstraction, allowing two or more nodes to

collapse into one, and allows collapsing or expanding selected elements [54] to allow

both high-level and detailed understanding [54]. But architectural hierarchy is not

directly expressible in a general purpose programming language.

In order to impose hierarchy on a flat object graph, we use ownership domains.

An ownership domain is a runtime abstraction that groups together objects. An

ownership domain has a name which indicates design intent, and policies that govern

how it can reference objects in other domains. An ownership domain is either private

or public. A private domain provides strict encapsulation. A public domain provides

logical containment and its objects are accessible to all objects that can access the

outer object. Each object can support one or more domains to hold its internal

objects. In particular, public domains enable a developer to impose a conceptual

hierarchy on objects. Thus, ownership domains support the conversion of a flat object

3

graph into a hierarchical object graph, which we refer to as an ownership object graph

(OOG) [4], by allowing objects to contain other objects.

An OOG provides abstraction by ownership hierarchy when it shows architec-

turally significant objects near the top of the hierarchy and data structures further

down. Moreover, an OOG can provide abstraction by types and allow objects to be

collapsed further according to their declared types.

1.2 Object Diagrams

It is important for developers to understand the type structure of a program when

they are developing a software system. The type structure is often represented as

class diagrams. There are many tools that can extract class diagrams [28]. The

runtime structure is depicted as ownership object graphs, which are a type of object

diagram. An object diagram is important because it helps the developer understand

the instance structure of the program which is important for object-oriented code [19].

There are not many tools that can effectively extract object diagrams from the code.

The tools that do extract object graphs, extract flat object graphs [25, 57], which

do not scale to programs of more than a few classes since the graph becomes quickly

overly complex for people to use effectively. For this reason, it is important for object

diagrams to include architectural abstraction.

1.3 Background on Scholia

In this section, we summarize previous work, Scholia [4, 3], on which this approach

builds, and which is the state of the art in the sound, static extraction of runtime

architectures.

Scholia reasons about runtime architecture through the use of ownership type

annotations, which must be added to the code before analysis begins. In order for

4

the extracted architecture to be sound, the annotations must be consistent with each

other and with the code, so the developer must run an ownership type checking

algorithm on the annotated code, and fix any high-priority warnings.

Scholia adopts the accepted extract-abstract-present strategy [31] for architec-

tural extraction. A static analysis extracts a sound object graph from the anno-

tated code, using ownership to generate a containment hierarchy of objects. Next,

Scholia abstracts the extracted object graph into a runtime architecture showing

components and connectors. Then, Scholia presents the built runtime architecture

in an architecture description language (ADL). But this thesis is concerned with the

manipulation of extracted object graphs, and does not abstract object graphs into

component-and-connector views represented in an ADL, as in Scholia [4].

1.4 Limitations of Scholia

An important issue in Scholia is that the process of refining the extracted archi-

tecture is somewhat awkward. When the extracted architecture does not match the

conceptual model, the architect must identify the cases where the cause of the dis-

crepancy is an incorrect ownership relationship, change the ownership annotations in

the code consistently to reflect the corrected ownership relationship, then regenerate

the architecture. This issue makes using Scholia tedious and time-consuming.

The proposed tool addresses this issues by allowing the developer to directly and

interactively manipulate an extracted object graph. This way, developers can in-

teractively refine the extracted view to bring its abstraction closer to their design

intent—without, of course, making the diagram unsound in the process.

5

VIEW

PRIVATE

fSelectionListener:
Vector<FigureSelectionListener>

drawingView:
StandardDrawingView

CONTROLLER

command:
AbstractCommand

app:
JavaDrawApp

standardDrawing:
StandardDrawing

MODEL

Figure 1.1: MicroDraw represented as an OOG.

1.5 OOG Structure by Example

We illustrate by example the Scholia approach on MicroDraw (Fig. 1.1), which illus-

trates the design of JHotDraw [1], an open source framework full of design patterns.

MicroDraw is a good example of the Model-View-Controller architecture [19]. The

MicroDraw architects would like to indicate that MicroDraw follows the Model-View-

Controller design pattern [19]. So, they represent the runtime architecture as having

three top-level ownership domains, MODEL, VIEW and CONTROLLER, which contain in-

stances of the core types as follows:

• MODEL: the MODEL domain has instances of types Drawing and Figure (a Drawing

consists of Figures). In the diagram, the standardDrawing object is labeled

by the type StandardDrawing (the class StandardDrawing implements the

Drawing interface).

• VIEW: the VIEW domain has instances of type DrawingEditor and the

DrawingView. In the diagram, the drawingView object is labeled by the

type StandardDrawingView (the StandardDrawingView class implements the

DrawingView interface). Also, the app object is labeled by the type

6

JavaDrawApp (the class JavaDrawApp implements the DrawingEditor inter-

face).

• CONTROLLER: the CONTROLLER domain has instances of type Command. In the

diagram, the command object is labeled by the type AbstractCommand (the class

AbstractCommand implements the Command interface).

The interface DrawingEditor extends from the FigureSelectionListener

interface. The class AbstractCommand implements the Command interface, as

well as the interface FigureSelectionListener. Thus, a reference of type

FigureSelectionListener could point to either DrawingEditor objects in the VIEW

domain, or to Command objects in the CONTROLLER domain (the two thicker edges in

Fig. 1.1). This subtyping illustrates one of the features of object-oriented languages

that makes object-oriented code challenging to analyze.

1.6 Graphical Conventions

In this document, our visualization (Fig. 1.1) uses circle nesting to indicate contain-

ment of objects inside domains, and domains inside objects. Dashed-border white-

filled circles represent domains. Solid-filled circles represent objects. Solid edges

represent field references. An object labeled obj:T indicates an object reference obj

of type T, which we then refer to either as “object obj” or as “T object”, meaning

“an instance of the T class”.

1.7 Contributions

I break up the overall contribution into the following:

• Front-end for the iterative refinement of an extracted object graph:

We designed the user interface for an interactive editor that allows developers to

7

refine an initial extracted flat object graph to better match their mental model

of the runtime structure.

• Novel techniques for refining a flat object graph into an ownership

object graph with collapsing and expanding sub-structures: OOGIE

allows developers to interactively manipulate flat object graphs into ownership

object graphs. The developer can create nested sub-structures, and developers

can manipulate the hierarchy by adding domains which can be used to nest ob-

jects. OOGIE’s contribution is that it supports these activities with easy-to-use

features such as drag-and-drop and context menus. These activities are repre-

sented graphically so that developers can visualize how they are manipulating

the runtime structure.

• Evaluation of OOGIE: We evaluated OOGIE to test whether outside devel-

opers can use OOGIE to refine an initial object graph and make it match their

mental model of the runtime structure.

8

1.8 Thesis Statement

The thesis is:

Developers can use the OOGIE tool to iteratively and interactively refine

an object graph to make it reflect their mental model or design intent

through direct manipulation.

I created several corresponding hypotheses, subordinate to the main thesis. Since

each hypothesis is smaller than the main thesis, each can be directly supported by ev-

idence. Taken together, these hypotheses solve the problem of interactive refinement

of an object graph.

H1: A developer can use OOGIE to manipulate the ownership hierarchy.

Success Criteria. The success criteria to objectively measure or falsify this hy-

pothesis include:

• Developers can use abstraction by ownership hierarchy, such as adding or re-

moving domains, and moving objects between domains to refine the hierarchy

of an ownership object graph to better fit their mental model of a system’s

runtime structure.

Evidence. We support this hypothesis with the following evidence:

• We evaluate the tool on several real object-oriented systems.

9

H2: A developer can use OOGIE to control the level of detail of a runtime

structure that is displayed in an OOG.

Success Criteria. The success criteria to objectively measure or falsify this hy-

pothesis include:

• A developer can expand or collapse the sub-structures of selected objects in

order to control the level of detail of a runtime structure that is displayed in an

OOG.

• A developer can use abstraction by types to collapse objects further according

to their declared types, or to reduce the amount of object merging.

Evidence. We support this hypothesis with the following evidence:

• We evaluate the tool on several real object-oriented systems.

H3: Developers can accomplish H1 and H2 through direct manipulation

Success Criteria. The success criteria to objectively measure or falsify this hy-

pothesis include:

• Developers can accomplish H1 and H2 using user-friendly manipulation features

such as selecting items from context menus, and using drag-and-drop.

Evidence. We support this hypothesis with the following evidence:

• We evaluate the tool using a self-evaluation methodology called cognitive di-

mensions.

• We let experts in Human-Computer Interaction review the tool’s user interface

design.

10

• We evaluate the tool’s usability using outside developers.

H4: OOGIE is user-friendly to developers

Success Criteria. The success criteria to objectively measure or falsify this hy-

pothesis include:

• OOGIE has easy-to-use navigation.

• Developers can understand the graphical representation.

• Developers can refine the object graph to better match their mental model

within a reasonable amount of time and steps.

Evidence. We support this hypothesis with the following evidence:

• We evaluate the tool using a self-evaluation methodology called cognitive di-

mensions.

• We evaluate the tool using real object-oriented systems and outside participants.

During the exit interview, we ask the participants about the perceived user-

friendliness of the tool.

11

1.9 Outline

The rest of this report is organized as follows: Chapter 2 discusses previous work.

Chapter 3 discusses requirements. Chapter 4 discusses the tool implementation.

Chapter 5 discusses evaluations that were conducted on the tool. Chapter 6 discusses

how the requirements were satisfied, the limitations of this work, and concludes.

12

Chapter 2: Previous Work

2.1 Runtime Structure

Many dynamic analyses focus on visualizing the object structures of a running sys-

tem [12, 14, 32, 49, 29, 26, 58, 45, 15, 20, 53, 52, 37, 13, 46, 38, 44].

These dynamic analyses handle programs for which source code is not available,

do not require source code annotations, and allow more fine-grained user interaction

in producing a visualization.

These task-focused views explain detailed interactions, help developers understand

a program, or find low-level defects, such as memory leaks [15, 42]. The extracted

views have the granularity of individual objects and classes.

Many of these approaches extract one or more collaboration diagrams [22, 29, 14,

45, 58], rather than a global object diagram for the entire system. A collaboration

diagram that contains all objects and all invocations between them may be unusable,

for anything but the smallest of systems. Most approaches allow the developer using

the tool to focus the interaction diagram to include only specific method invocations,

issued from a starting method of interest. In some cases, the recovered views highlight

design patterns [30, 48], but often, they are not architectural, because they are neither

abstract nor global.

2.2 Ownership Structure

More closely related are dynamic analyses that infer the ownership structure of a

running program based on its heap structure [23, 36, 43, 18, 33]. In general, dynamic

analyses have the advantages of being more scalable and more precise than their static

counterparts. In addition, dynamic ownership analyses do not require a programmer

to annotate their code with ownership type annotations. However, previous such

13

analyses assume a strict owner-as-dominator model which cannot represent many

design idioms. In such a model, a higher-level object cannot collapse underneath it

not many low-level objects, so they end up cluttering the top-level diagram.

Hill, Noble and Potter [23, 36] and Potanin et al. [40] used dynamic analyses and

showed both matrix and graph views of ownership structures and demonstrated that

ownership is effective at organizing runtime objects. Several others followed suit [33,

43, 18]. Other work [43] characterizes sharing and ownership and produces a matrix

display of the ownership structure. They later used the results of this analysis to

investigate memory leaks [42]. Similarly, another work [33] uses lightweight ownership

inference to examine a single heap snapshot rather than the entire program execution,

and scales the approach to large programs through extensive graph transformation

and summarization.

This body of work showed that ownership does provide abstraction, and is effective

at organizing large object graphs. Scholia uses the same key insight but in a static

analysis which must address several additional challenges. Most of the previous tools

extracted abstractions that are hard-coded in the tool. OOGIE allows a developer to

refine the abstraction, thanks to the expressiveness of ownership domains.

2.3 Hierarchical Views

Several tools produce hierarchical views of the code architecture that can expose or

collapse sub-architecture such as the Rigi visualization system [35] and its follow-

up SHriMP Views [56]. These tools also allow for code exploration by allowing

developers to examine different parts of the code. Rigi also allows developers to

refine the abstraction. But these systems show the code structure, and OOGIE shows

the runtime structure.

14

2.4 Iterative Refinement

DA-TU [24] is an application that manages the complexity of large graphs in two

ways, clustering and navigation. The clustering action allows developers to manip-

ulate the level of abstraction of a graphical representation of a software base. This

is done through the grouping of nodes together to be represented by a super-node.

The navigation action allows the developers to only look at a sub-set of the graphical

representation at a time. We incorporated clustering and navigation functionalities

into OOGIE. But DA-TU groups nodes together based on their location in the graph-

ical representation. OOGIE is designed to allow developers to group nodes together

based on their view of the runtime structure, not on the location in the graph.

Another class of tools that often include iterative design features are UML tools,

such as QuickUML [10], which allows developers to design UML class diagrams. But

OOGIE follows strict guidelines as to how the developer can modify the visualization.

The requirements come from experimental results [8], and they must be operations

that preserve diagram soundness (Sec. 1).

15

Chapter 3: Requirements1

In this chapter, I discuss the requirements for the tool, which come from the discussion

in the introduction (Chapter 1), our previous research [8] and from the results of the

evaluations we conducted (Chapter 5).

3.1 General Requirements

The following is the list of the general requirements:

3.1.1 RQ 01-Support iterative refinement

The extracted object graph may not necessarily be the same as what the developer

would have drawn [8]. Our tool must allow developers to iteratively refine the graph

to make it match their intent, while still preserving soundness.

3.1.2 RQ 02-Must be an Eclipse plug-in

The tool must be well integrated with the Eclipse IDE.

3.1.3 RQ 03-Must load and save states

A developer must be able to save object graph configurations.

3.1.4 RQ 04-Must be easy to use

The tool must be easy to use because the developer needs to focus on manipulating

the object graph, and not on trying to operate the tool.

1Portions of this chapter appeared in [7, 50].

16

3.1.5 RQ 05-Must invalidate incorrect manipulations of the

OOG

The tool must prevent developers from manipulating the OOG incorrectly. This

includes deleting non-empty domains, giving domains names that are already used by

other domains, moving objects into a private domain that are not strictly encapsulated

by the parent object, and adding domains to other domains.

3.1.6 RQ 06-Support the data model of ownership domains

OOGIE must support the data model of ownership domains which we explain in more

detail later (Sec. 4.5).

3.1.7 RQ 07-Maintain diagram soundness

OOGIE must preserve diagram soundness (Sec. 1). In terms of tool implementation,

this means that no relationships can be added or deleted directly, and no objects

can be added or deleted directly. This is because the tool allows developers to edit

an abstraction of the runtime structure, and not to modify the runtime structure

directly.

3.2 Human-Computer Interaction Requirements

In order for the tool to be user-friendly and to take into account good practices from

human-computer interaction research, we imposed the following requirements.

17

3.2.1 RQ HCI1-Create visual distance between semantic

ideas

It is important that semantic concepts should be differentiated from each other with

more than one variable. This helps the brain to quickly process a visual representa-

tion without much cognitive overhead so that developers can focus on more difficult

tasks [34]. This includes using different shapes and different colors to distinguish

between semantic concepts.

3.2.2 RQ HCI2-Make use of hierarchies

Previous work showed that organizing complex systems into hierarchies is very effec-

tive, and also helps in top-down understanding of software engineering diagrams [34].

3.2.3 RQ HCI3-Limit number of on-screen components

The number of components that appear on the screen at a time should not exceed

what the working memory can handle. Crossing this boundary leads to cognitive

overloading, and a decrease in comprehension [34].

3.2.4 RQ HCI4-Implement easy navigation

The tool should allow the developer to go from one place to another in a simple

manner [55]. There should be navigation support for pan, zoom, and scroll.

3.2.5 RQ HCI5-Implement orientation cues

The tool must implement orientation cues to indicate to the developer where they

are in the software and how to visit other areas [55]. This is done by highlighting

selected objects in both the treeviewer and the graph.

18

3.2.6 RQ HCI6-Implement an undo feature

The tool must implement a feature that allows a developer to easily undo operations

that were performed on the representation.

3.3 Tool Support

From the features in the stand-alone viewer in the previous study that we con-

ducted [8], and from the results from our pilot evaluation (Sect. 5.3), the tool

must provide the following: display inheritance hierarchy, collapse/expand sub-

substructures, control node labels, trace to code, search for an object, distinguish

between private and public domains, include object type in the label, and show all of

an object’s outgoing and incoming edges. We will describe each one in more detail.

3.3.1 RQ TS1-Display inheritance hierarchy

The tool must display the inheritance hierarchy of the types of the field declarations

that an object merges.

3.3.2 RQ TS2-Collapse/expand sub-structures

The tool must produce a object graph that the developer can collapse or expand the

sub-structures of selected objects. This allows a large graph to be manageable on a

normal size screen.

3.3.3 RQ TS3-Control node labels

The tool must support renaming the labels of domains and objects in the diagram.

19

3.3.4 RQ TS4-Trace to code

The tool must allow the developer to select an element (object or edge) in the diagram

and trace to the corresponding lines of code.

3.3.5 RQ TS5-Search for an object

The developer must be able to search for an object in the visualization by name or

by type.

3.3.6 RQ TS6-Distinguish between private and public do-

mains

The tool must differentiate between public and private domains throughout the visu-

alization.

3.3.7 RQ TS7-Include object type in the label

The tool must include the type of the object along with the object’s name in the label

of an object.

3.3.8 RQ TS8-Show all of an object’s outgoing and incoming

edges

The tool should include a feature that allows the developer to see all of the rela-

tionships that an object has. This will help a developer to decide where to move an

object.

20

3.3.9 RQ TS9-Collapse to domains

The developer must be able to collapse a graph to just reveal the top-level domains.

This feature would allow the developer to get a general overview of the system’s

architecture.

3.4 Iterative Refinement

To allow for iterative refinement, our tool must support the following features; manip-

ulate the ownership hierarchy, manipulate domains, abstract objects by type, sum-

marize objects as connectors, lift edges, and support making an object be “shared”.

We will discuss each one in more detail.

3.4.1 RQ IR1-Manipulate the ownership hierarchy

The developer must be able to change the way that objects are grouped into compo-

nents. This requires functionality to allow the developer to move an object from one

domain to another (Fig. 3.2). If an object is in a higher level tier, but the developer

thinks that the object is less relevant and should be in a lower-level tier, the developer

must be able to move the object into a lower level tier, and vice versa (Fig. 3.1).

17

obj2
obj2

obj1
obj1

MODEL MODEL

Figure 3.1: The developer moves the object obj2 from a top-level domain to a lower-
level domain nested inside an object.

21

obj1

MODEL VIEW
MODEL VIEW

obj1

Figure 3.2: The developer moves the object obj1 from one domain to another.

3.4.2 RQ IR2-Manipulate domains

The developer must be able to create new public and private domains in any object

that the developer considers appropriate (Fig. 3.3), combine domains (Fig. 3.4), and

split domains (Fig. 3.5).

obj1 PUBLIC

PRIVATE

obj1

Figure 3.3: The developer adds the domains PRIVATE and PUBLIC to the object obj1.

MODEL

VIEW

CONTROLLER

MODEL

VIEW

Figure 3.4: The developer merges the domains VIEW and CONTROLLER into VIEW, while
keeping MODEL unchanged.

3.4.3 RQ IR3-Abstract objects by type

The initial extracted object graph creates a component for every type of object at

every level in which it is created. However, often times, many types play the same

architectural role. So one of the requirements for iterative refinement is that the tool

22

MODEL

VIEW

MODEL

VIEW

CONTROLLER

Figure 3.5: The developer splits the VIEW domain into VIEW and CONTROLLER, while
keeping MODEL unchanged.

supports operations that merge components into one (Fig. 3.6), and split a conceptual

component into several components, each of which includes different types of objects

(Fig. 3.7).

ellipseFigure
circleFigure

squareFigure

figure

Figure 3.6: The developer merges the objects circleFigure, ellipseFigure and
squareFigure into figure object.

ellipseFigurecircleFigure

squareFigure

figure

Figure 3.7: The developer splits the object figure into circleFigure,
ellipseFigure and squareFigure objects.

3.4.4 RQ IR4-Summarize objects as connectors

We often treat connectors as mere references from one object to the next. However,

often higher-level connectors are really implemented by some objects in the program:

23

Examples include buffers or streams. Thus, it may be necessary to provide an oper-

ation for treating one or more objects as a connector.

node:
Node

net:
Net

node:
Node

net:
Net

term:
Terminal

DB DB

Figure 3.8: The developer elides the term object, which leads to a summary edge
between the node and net objects.

3.4.5 RQ IR5-Support lifting edges

Because in our graph some objects can be hidden while others are shown, there could

be relationships between hidden and exposed objects (Fig. 3.9). In such cases, the

edge is lifted to the parent of the hidden node (Fig. 3.10). The tool does this automat-

ically whenever the user collapses or expands objects. Edge lifting is a visualization

feature commonly employed in hierarchical representations [17].

The definition of edge lifting is, if node x has an edge to node y, and x is a

descendant of PX and y is a descendant of PY , then we lift the edge (x, y) to

(PX,PY) only if PX and PY are distinct nodes and PX is not a descendant or

ancestor of PY [17].

3.4.6 RQ IR6-Make an object shared

Some objects, such as Strings, are treated as shared, globally aliased references. So,

the tool must allow a developer to mark an object as “shared” by moving it into

the shared domain. The shared domain must be a top-level domain, and one which

developers cannot add or delete.

24

model:
Model

DOCUMENT

VIEW

barChart:
Barchart

PUBLIC

listeners
List<Listeners>

Figure 3.9: There is an edge between listeners which is nested in barchart, and
model.

model:
Model

DOCUMENT

VIEW

barChart:
Barchart

Figure 3.10: listeners is hidden, so the edge is lifted to the parent barchart which
is exposed.

25

Chapter 4: Implementation

In this chapter, we will discuss how we implemented the tool based on the require-

ments (Chapter 3)

MODEL

obj1

VIEWER
MODEL

MISC. VIEW

obj1Rename
Visible
Add Public Domain
Add Private Domain
Show Internals
Collapse All
Expand All

Figure 4.1: Prototype for OOGIE

4.1 Tool Implementation Overview

We implemented the interactive editor as a split-panel user interface. The left-hand

side is a tree visualization of the ownership structure. The right-hand side is a graph

visualization with nested circles to indicate containment (Fig. 4.1).

4.1.1 Treeviewer

For the treeviewer, we used the JFace UI toolkit [27], which is designed to simplify

tasks related to building user interfaces, such as populating and updating widgets. It

separates the data model from the user interface implementation. This is what allows

the graph and the treeviewer to work in sync, since they are using the same data

model. In the treeviewer, right-hand clicking on an object or domain will produce a

26

context menu with a list of options on ways to manipulate the visualization, such as

renaming domains, or expanding/hiding object sub-structures (Fig. 4.1).

4.1.2 Graph

To represent the graph, we used the Prefuse framework [2] which is an extensible

software visualization framework. It can create interactive information visualization

applications. Right-clicking on objects can be used to select multiple objects or

multiple domains but not both. Right-clicking on an object or domain will produce

a context menu that gives the developer a list of options on how to manipulate the

object graph, similar to the context menu in the treeviewer. Selecting an object or

domain in the graph also highlights the object or domain in the treeviewer.

4.1.3 Motivation

Our motivation for implementing the interactive editor with both a treeviewer and

a corresponding graph is that it allows for developers with different preferences to

interact with the graph in different ways. In some ways, the treeviewer is independent

from the graph. If a node is expanded/collapsed in the graph, it is not automatically

expanded/collapsed in the treeviewer. Having a treeviewer be independent in this

way also allows for information hiding. This is because it allows for developers to

examine sub-structures without exposing them in the graph, and keeping the graph

formation as is. In the future, we plan on allowing developers to hide an object in the

graph while still displaying it in the treeviewer. In this way, soundness is preserved.

In this way, soundness is preserved. Our motivation for highlighting objects in the

tree that have been selected in the graph, and vice versa, is that it helps deal with the

problem of scalability. Large graphs can be difficult to navigate. If a developer finds

an object or domain in the graph to be examined in more detail, they do not have to

search the tree in order to manipulate it, and vice-versa. Our motivation for allowing

27

the developer to manipulate the graph from the treeviewer or the graph itself, is that

it improves the developer’s speed and performance, since they do not have to go back

in forth between the two views. Also, the treeviewer scales more than the Prefuse

graph, in the sense, that screen real estate allows expanding only a limited number

of nodes in Prefuse, whereas the entire tree can be expanded and still fit within the

same space, due to the use of vertical and horizontal scroll bars.

4.2 Tool Features

• Select a component: Selecting an object, domain, or edge in the tree selects

the corresponding component in the graph, and vice versa. This feature allows

the developer to use the tool more efficiently, since it will allow them to quickly

go back and forth between the tree and the graph, and choose which view they

prefer to manipulate. The tool also supports multiple selection of objects and

domains (not both).

• Rename domains: Since domains are conceptual groups of objects that are

just runtime abstractions, they can be renamed if the developer sees fit. The

domains are initially added as annotations in the code. But the developer can

rename the domains after the object graph has been extracted. Developers can

also rename domains that they created during the manipulation of the object

graph.

• Drag-and-drop objects: The developer can move objects between domains

by dragging them from one domain in the tree to another (Fig. 4.2). This

allows for developers to choose whether the objects are more important than

their location in the initial graph indicates, and should therefore be moved into

a higher-level domain, or vice-versa. This change in the tree is reflected in the

graph so that developers can better visualize the changes that they have made.

28

MODEL

obj1

PUBLIC

VIEW

obj3

PRIVATE

obj2

MODEL

VIEW

PUBLIC PRIVATE

PUBLIC PRIVATE

obj1

obj3
PRIVATE

PUBLIC

obj2

Figure 4.2: Moving objects in the tree from one domain to the other is reflected in
the graph

• Collapse/expand domains: The developer can choose to collapse the graph

to just show the top-level domains

• Collapse/expand objects: The developer can choose an object to examine

in more detail. The sub-structure of objects are initially hidden, but through a

context menu in the tree or graph, the developer can choose to view or collapse

the sub-structure of an object.

• Collapse all/expand all: The developer can choose to show all of the graph

up until a certain level. This feature will display all of the objects and all

of their sub-structures up until the pre-determined level. The reason that the

developer can see only a certain number of levels at the time is that large graphs

are unusable and cannot always fit on a normal size screen. The developer can

also choose to collapse all of the objects so that only the top-level domains are

displayed.

29

4.3 Future tool features

We plan to implement in the future a tabbed window that will allow the developer

to examine the different layers of an object. For example, the first tab might show

the top level domains with top level objects (Fig. 4.3), and then the next tab might

show the sub-structure of one of the objects (Fig. 4.4). This allows the developer to

incrementally explore the different layers of the abstraction.

Root

obj2

VIEW

CONTROLLER

Figure 4.3: Tabbed editor showing the top-level domains.

Root
obj1

sub-structure

obj3

PUBLIC PRIVATE

obj1

MODEL

obj2

VIEW

CONTROLLER

Figure 4.4: Tabbed editor showing the sub-structure of obj1.

4.4 Example

Like in the earlier example (see Sec. 1.5), we will illustrate our approach on Micro-

Draw.

30

Flat graph. Many tools extract flat object graphs [25, 57], which are often overly

complex for developers to navigate and use. An automated analysis however can

infer that fSelectionListener is strictly encapsulated in the drawingView object

(Fig. 4.5).

app:
JavaDrawApp

standardDrawing
StandardDrawing

drawingView:
StandardDrawingView

fSelectionListeners
Vector<FigureSelectionListener>

command:
AbstractCommand

Figure 4.5: Flat object graph of MicroDraw.

Initial object graph. Even an automated extraction algorithm will extract a

mostly flat object graph, where all the objects are in one top-level tier (Fig. 4.6),

since the architectural intent of multiple tiers does not exist in the code. When the

developer decides to convey the Model-View-Controller design pattern, she renames

the top-level tier to MODEL.

55

System

MODEL

app

command

standardDrawing

VIEW

drawingView

CONTROLLER

app

command

standardDrawing

drawingView

CONTROLLER

VIEW

MODEL

Figure 4.6: Initial extracted object graph of MicroDraw.

31

Creating domains. She also adds two other top-level domains, VIEW and

CONTROLLER. This is demonstrated in the figure below (Fig. 4.7).

54

System

MODEL

app

VIEW

standardDrawing

drawingView

CONTROLLER

command

app

command

standardDrawing

drawingView
CONTROLLER

VIEW

MODEL

Figure 4.7: Refined object graph with added top-level domains VIEW and CONTROLLER.

Moving objects. The developer then moves the drawingView and the standard-

Drawing objects into the VIEW domain, and moves the command object into the

CONTROLLER domain. This is represented in the figure below (Fig. 4.8).

53

System

MODEL

app

command

standardDrawing

VIEW

drawingView

standardDrawing

drawingView

CONTROLLER

command

app

command

standardDrawing

drawingView

command

standardDrawing

drawingView
CONTROLLER

VIEW

MODEL

Figure 4.8: Refined object graph with objects moved from the MODEL domain into the
top-level domains VIEW and CONTROLLER.

Controlling level of detail. Then the developer decides to examine the

drawingView object in more detail and exposes its sub-structure (Fig. 4.9). For

example, this diagram highlights that the drawingView listens to notifications from

32

other objects such as command. This information would be valuable for another de-

veloper performing a code modification task.

56

System

MODEL

VIEW

standardDrawing

drawingView

CONTROLLER
command

app

command

standardDrawing

CONTROLLER

VIEW

MODEL

drawingView

owned

fSelectionListener

OWNED

fSelectionListener

Figure 4.9: Object drawingView’s sub-structure is exposed.

33

4.5 Ownership Domains Data Model

Figure 4.10: Data model for OOGIE extracted using AgileJ [9].

The data model is the domain logic which is separate from the user interface. The

same data model is used in the treeviewer and in the graph, so data model changes

are represented in both the treeviewer and the graph. Fig. 4.10 is a representation of

the ownership domains data model using a UML class diagram. It is made up of the

following elements:

• DisplayModel: A DisplayModel contains a root DisplayObject. The root

DisplayObject has nested zero/or more DisplayDomains, which has nested

zero/or more DisplayObjects, so by containing the root DisplayObject, it also

contains the set of all DisplayObjects, and the set of all DisplayDomains. It

also contains the set of all DisplayDomainLinks and the set of all DisplayEdges.

• DisplayDomainLink: DisplayDomainLinks indicate relationships between

DisplayDomains.

• DisplayEdge: DisplayEdges indicate points-to relationships between

DisplayObjects.

34

• DisplayDomain: DisplayDomains represent ownership domains. A

DisplayDomain does not directly contain other DisplayDomains. A

DisplayDomain has a single parent DisplayObject, and can contain zero/or

more DisplayObjects.

• DisplayObject: DisplayObjects represent runtime objects. A

DisplayObject does not directly contain other DisplayObjects, and

can contain zero/or more DisplayDomains.

35

4.6 System documentation

We represented the implementation of the tool as object diagrams.

nestedObjectDiagram (Fig. 4.11) is the main object of system. It is the class that

builds the graph. graphAdapter converts the data model in the treeviewer into a

format that is usable by the graph. This allows the treeviewer and the graph to work in

sync. collectiveLayoutActivity collects together all of the objects that are respon-

sible for the layout of the graph, and turns off the layouts when changes are made to

the graph to prevent concurrent modification exceptions. parameterObject puts to-

gether some of the objects that are used by many other objects. prefuseMakeInitial

builds the initial view of the graph.

nestedObjectDiagram instantiates nestedControlObject (Fig. 4.12), which is

responsible for responding to users interacting with the graph, including producing

the context menu that appears when users click on the graph, and also highlighting

selected graph components, when a component is selected. When a developer right-

clicks on domains and objects in the graph, popUpMenu is instantiated, which produces

a context menu that gives developers a list of ways to manipulate the representation.

codeWizard3 (Fig. 4.13) builds the treeviewer and it instantiates the

nestedObjectDiagram object. It also instantiates the data model that is used to rep-

resent the different components in the runtime structure. It instantiates the classes

that respond to users interacting with the treeviewer, including producing the con-

text menu when components are selected in the treeviewer, and also highlighting the

selected components in the treeviewer. When a developer right-clicks on an object or

domain in the treeviewer, a context menu appears which gives the developer a list of

way to manipulate the representation.

36

selectedPrefuseItemnestedDomainObject

forceDirectedLayoutaggregateLayoutnestedDomainObjectLayoutcollectiveLayoutActivity

visualGraph
parameterObjectnestedDomainObject

prefuseMakeInitialnestedDomainControl

aggregateTable

graphAdapter

Figure 4.11: Object diagram nestedObjectDomain.

37

nestedDomainControl popUpMenu
showInternalsActionGraphrenameActionGraphaddPrivateDomainActionGraph
addPublicDomainActionGraph
removeDomainActionGraph

prefuseInternals
domainActionHelper
domainActionHelper

prefuseRemoveDomain
Figure 4.12: Object diagram nestedControlObject.

38

codeWizard3 displayModel displayObject displayDomain

addPublicDomainActionTreeaddPrivateDomainActionTree
showInternalsTreecloseAllActionopenAllActionremoveDomainActionTreetreeViewerdisplaynestedDomainObject

prefuseDnD
domainActionHelperdomainActionHelper

prefuseCloseAllprefuseOpenAll
prefuseCloseAllprefuseInternals

Figure 4.13: Object diagram for codeWizard3.

39

Chapter 5: Evaluation

5.1 Self-Evaluation using Cognitive Dimensions

One framework that can be used for evaluating interactive devices that uses HCI

cognitive models is the Cognitive Dimensions Framework [21]. In this section, we use

the Cognitive Dimensions Framework to evaluate OOGIE for quality attributes. We

followed Scaffidi et al. [47] to tailor the framework for software visualization. This

analysis was useful to find certain limitations in the tool that should be addressed

before conducting a larger evaluation.

Closeness of Mapping. Closeness of mapping refers to the mapping between the

problem and the system’s representation of the problem. OOGIE has a strong close-

ness of mapping to the problem domain because the initial extracted object graph

does match closely the developer’s mental model [8], and our tool adds support to

refine the object graph to match their mental model to an even higher degree. But

because we have not yet demonstrated that OOGIE preserve soundness, OOGIE

does not guarantee that the refinements a developer makes to the abstraction of the

runtime structure, will always be faithful to the actual runtime structure.

Abstraction Gradient. Abstraction refers to putting elements together to be rep-

resented as a single entity. Abstraction gradient refers to how much the system allows

for more abstraction. OOGIE gives the developer the opportunity to manipulate the

hierarchy by grouping more objects together which changes the level of abstraction.

The developer can also choose how much abstraction the graph should represent. De-

velopers can choose a high-level view which has a high degree of abstraction, or they

can choose to examine all of the sub-structures which has a low level of abstraction.

The developer can also change the abstraction through the manipulation of domains.

40

This indicates that OOGIE is an abstraction-hungry tool [21].

Visibility. The visibility dimension refers to whether necessary information is easily

to access without the developer having to put in a lot of effort. More specifically,

it is the number of steps necessary to make something visible. OOGIE has some

limitations when it comes to visibility. A developer can easily examine an object’s

sub-structure by selecting an object and clicking on the context menu. But a developer

cannot yet make a hidden node visible, without opening its parent’s sub-structure.

This means that in order to make a hidden object visible, a developer must first find

its parent object and then open the sub-structure of the parent object. This creates

cognitive overhead, and must be addressed.

Juxtaposability. Juxtaposability refers to seeing two different parts of a program

next to each other. OOGIE supports this property by having a treeviewer which

represents the runtime structure next to the graphical representation of the runtime

structure. For example, the developer could look at a graphical representation of

the runtime structure at its highest level, but still examine the sub-structure of the

runtime structure through the treeviewer. Another example of juxtaposability is the

trace-to-code feature since the developer can examine a high-level view of the runtime

structure, but also examine the underlying lines of code that corresponds to it.

Error-proneness. Error-proneness refers to reducing the potential for program-

mers to make analysis errors. OOGIE does take many steps to prevent the developer

from making errors, but it could take more. OOGIE does prevent errors by turning

off the feature of domain creation when a domain is selected since they can only be

added to objects. The feature to rename domains is turned off when objects are se-

lected. It prevents developers from using the multiple selection feature to select both

objects and domains since it should only work for objects or domains. One major

41

short-coming is that is does not prevent developers from adding private domains when

they should be public because the objects in the domain are not strictly encapsulated.

Premature Commitment. Premature commitment refers to the developer having

to make a decision about the final outcome before all of the information is available.

In OOGIE, the developer is given leeway to experiment with the abstraction, and

undo some changes that they made to the extracted object graph, such as change the

name of a domain, or to delete a domain after it is added. But there is no feature

that simply allows the developer to undo recent changes because OOGIE does not

record the steps that the developer took. We plan on addressing this issue in the

future. We also plan on implementing a feature that would allow developers to save

their work, and reload old projects.

Viscosity. Viscosity refers to resistance to change. Too much viscosity will make

a software system less usable. OOGIE was designed in a way to make it easy for

developers to make changes and reduce viscosity. It makes moving object from one

domain to another very easy because it is done through a drag-and-drop functionality

in a tree which is intuitive. Also, in order to perform most operations, the developer

must simply use the context menu in the treeviewer or in the graph. Also, because

clicking on an object in the tree selects the object in the graph, and vice versa, it is

easy for developers to go from one to the other. All of these features reduces cognitive

overhead.

Hard Mental Operations. Hard mental operations refers to forcing developers

to solve unnecessarily hard problems. OOGIE produces a default runtime structure

decomposition, and makes it easy for developers to make changes to the software

visualization through simple UI activities such as drag and drop and context menu

clicks, which reduces the need for developers to produce hard mental operations.

42

Progressive Evaluation. Progressive evaluation refers to regularly allowing devel-

opers to evaluate their progress. OOGIE supports progressive evaluation because the

developer can see the results of all the changes of the graph, and some of the changes

are reversible, such as being able to rename domains.

43

5.2 Expert UI Review

We had one-on-one consultations with user interface experts at Carnegie Mellon Uni-

versity, with one professor of human-computer interaction and one graduate student

in the field of human-computer interaction. The following is a list of their recommen-

dations and our responses to their recommendations, which we incorporated into the

requirements section (Sec. 3).

• Right-click should be available both in the tree and on the graph:

This feature has been implemented.

• Selecting an element in the tree should also select it in the graph:

This feature has been implemented.

• Show top-level context menu in the graph: This feature has been imple-

mented.

• Support drag-and-drop in the graph: This feature has not been imple-

mented because we think that it would be best to first improve problems with

graph layout before we implement this feature.

• Enable trace from diagram element to code: This feature has been im-

plemented.

• Support trace from code to diagram: This feature is left for future work.

One element in the code could map to multiple elements in the diagram, so to

implement this feature, it may need to suggest a list of possibilities and have

the developer pick one.

• Implement functionality to elide object: This feature is left for future

work since it is infrequently used in practice.

44

• Implement check boxes to be able to re-add elided objects: The con-

sultants did not agree on this feature. The professor said there is no point in

complicating the tree, for the rarely used feature of eliding objects.

• Support ability to hide an object, without specifying or caring where

it goes: This is an alternative to pushing an object underneath another in

which the developer must identify the owning object. The need for this feature

was mentioned in a previous study that we did [8].

• Support ability to make an object ’shared’: This feature is left for future

work.

• Pin object down for tabbed mode feature: This feature is left for future

work.

• Support resize handle on nodes: This feature is left for future work.

• Support renaming domains in the graph: This feature is left for future

work.

• Re-add pan and zoom in the graph: This feature is left for future work.

We are not sure that this feature is needed or helpful.

• Support ability to collapse to top-level domains: This feature is left for

future work.

45

5.3 Pilot Evaluation

5.3.1 Method for Pilot Study

We conducted a pilot lab study in which one participant worked on one task for two

hours. The participant had experience with the subject system that we used. We had

the participant think-aloud during the study, and we recorded her activities through

note-taking to understand how she accomplished the designated task.

Subject System

We used the DrawLets [16] runtime structure for our experiment. DrawLets is a

framework for creating figures. It includes a drawing canvas which the user adds

figures to. The user can interact and manipulate the figures. The figures that can

be displayed includes lines, shapes, and free-hand figures. DrawLets is around 8,000

lines of code, and includes over 100 classes. It is rich in design patterns [41].

Study Design

For the pilot study, we recruited a Wayne State University masters student who has

experience working with DrawLets. We designed the pilot in this way because we

wanted to get a picture of how a person with knowledge about a system, enough

to form a mental model, could use our tool to iteratively refine an ownership object

graph, and we did not have to rely on the participant’s word about their skill level, and

did not want to train someone in the subject system. We chose one participant instead

of many because it is a pilot study, and just wanted to make sure that our study design

is correct and find changes that need to made to the tool before conducting a larger

evaluation.

46

Participant

The participant spent many months of research using DrawLets. She has a few years

of industry experience, in which she coded in the Java programming language. She

is knowledgeable about object graphs and has used them in the past, and is familiar

with the concept of ownership domains.

Tasks

We had the participant do a number of preliminary activities including adding a

domain, moving an object from one domain to another, renaming a domain, and

expanding/collapsing an object, so that we could document these activities for future

qualitative analysis. We also had the participant refine the initially extracted object

graph using OOGIE. We did not prep the participant on how to use OOGIE, because

we want to make sure that the tool is intuitive, and not difficult for novice users to

learn. We had the participant do a think-aloud while she was refining an initial object

graph so that we could later perform a qualitative analysis.

Tools and Instrumentation

The participant was provided with an Eclipse IDE. The participant was allowed to

view Java and DrawLets documentation. OOGIE is an Eclipse plug-in, so the partici-

pant used an Eclipse workspace. She was asked to think-aloud during the experiment.

She was prompted regularly with the reminder, “Please think aloud”. We took notes

on what she said during the course of the experiment on her activities.

Procedure

The participant was not briefed or prepped for this evaluation since we already knew

that she is knowledgeable about DrawLets and the Eclipse IDE.

47

First, the participant was given a list of activities to complete using OOGIE. These

activities include adding a domain, moving objects from one domain to another, and

renaming domains. She was given 30 minutes to complete these tasks, though she

required a lot less.

Next the participant was asked to use OOGIE to refine the initial extracted model

to better match her mental model. This portion took one hour.

5.3.2 Results of Pilot Study

The participant was able to complete the task of manipulating the initial object graph

to better fit her mental model. She was able to figure out how to use OOGIE without

much trouble, indicating that the tool is intuitive. She was able to understand the

hierarchical structure of the graph, indicating that she also understood ownership

hierarchy. She also was able to understand abstraction by types. We met all of the

success criteria from the hypothesis.

The participant made the following suggestions which we incorporated into the

requirements section (Sec. 3):

• Fix layout: The participant had trouble figuring out whether nodes were in

different aggregates that overlapped, or whether nodes were in the same aggre-

gate. This suggests that the layout requires some fine-tuning in order to clearly

represent what is intended. We have not addressed this issue yet, but we plan

to in the future.

• Distinguish between private and public domains in the treeviewer:

The participant wanted the treeviewer to indicate whether a domain was private

or public. We addressed this issue by making the names of domains blue and

the names of objects black in the treeviewer.

• Add more features in graph: She also wanted to invoke the right-click

48

context menu from the graph, and not just the tree. We have since implemented

this feature.

• Include object type in the label: The participant thought that it was

difficult to understand what each object was without the type being included

in the label. We addressed this concern by including the type of object in the

treeviewer.

• Add feature to show all of an object’s outgoing and incoming edges:

The participant wanted to be able to see all of the relationships that an object

had so that she could move the object into another object’s domain that it was

related to.

During the second half of the experiment, the participant spent most of the time

exploring the runtime structure visualization. There were components that she felt

were misplaced. More specifically, she felt that the toolbar object, which was located

in the top-level domain, should be more nested. In order to verify her hypothesis, she

asked for different views of the runtime structure.

With these resources she was able to confirm her hypothesis that a component

was misplaced. So she moved the component to a better location. This indicates that

OOGIE is capable of helping developers to refine a software visualization graph to

better fit their mental model.

Sometimes she wanted to see versions of the runtime structure visualization with

more nodes, and sometimes versions of the runtime structure visualization with less.

This indicates that it is useful to have a tool that can easily switch between views

with more or less abstraction.

49

5.3.3 Threats to Validity

The experiment was only a pilot, and the results are only helpful for designing the next

experiment and figuring out some limitations of the tool that needs to be addressed.

Some of the threats to validity include the fact that there was only one participant.

Many more are needed to draw real conclusions about the usefulness and usability of

the tool. Another threat to validity is that we did not use a video or an audio recorder.

Instead, we recorded the participant’s activities and think-aloud by hand. This made

it hard to verify whether the experimenter was correct in what they recorded, and

whether they recorded everything. Another issue is that we did not have a control

group to test a tool that extracts flat object graphs and to see whether our tool

is better at helping developers realize their mental model of the runtime structure

than the flat object graph extractor. Also, the participant was already familiar with

ownership object graphs, so it does not help us understand whether the concept

can be easily adapted by developers without previous knowledge of ownership object

graphs. The participant also had previously worked with the Scholia approach so

she already had experience working with tools that visualize ownership object graphs,

so the pilot does not demonstrate that the tool is intuitive for a novice user. Despite

these threats, the experiment did indicate to us what features we needed to add to the

tool for a larger experiment. In the future, we plan on conducting a larger evaluation

with participants who are not familiar with ownership object graphs.

5.4 Future Evaluation Example

Abi-Antoun and Nammar [5, 6] extracted various OOGs from a real object-oriented

system, DrawLets. They initially extracted an OOG, then refined the OOG to better

fit the mental model of a developer performing code modification tasks. We studied

the evolution of the DrawLets OOGs to determine if OOGIE could be used to refine

50

Figure 5.1: Extracted OOG with less relevant objects showing in the top-level do-
mains.

the OOG by direct manipulation. Figs. 5.1, and 5.2 were not produced from OOGIE,

but from the previous tool, which is a read-only viewer. They are just used to

demonstrate how a previous evaluation that was done on the stand-alone viewer from

previous work (Sec. 1.4) could be used on OOGIE to show what kind of evaluations we

plan on conducting in the future. More specifically, we will discuss how participants

could use the different features in OOGIE to refine an initial Drawlets OOG (Fig. 5.1)

into one that conveys the DrawLets architectural intent (Fig. 5.2).

Abstraction by types

A participant decides that though the panel:Panel object was the result of merging

objects that are in the same domain and have the Panel supertype, it is actually more

helpful to show these objects. The participant could accomplish this using OOGIE

(this feature has not yet been implemented but is listed in the requirements).

51

A participant decides that the objects relativePoint:RelativePoint,

figureRelativePoint:FigureRelativePoint, and locator:DrawingPoint are not

architecturally significant, and since they are in the same domain and share the same

supertype Locator, they could be merged into one object called locator:Locator.

This could be accomplished using OOGIE (this feature has not yet been implemented

but is listed in the requirements).

Make an object shared

A participant decides that the encompass:Rectangle and polygon:Polygon objects

are not architecturally significant enough to be in top-level domains. OOGIE would

help the developer move these objects into a shared domain (this feature has not yet

been implemented).

Manipulate domains and the ownership hierarchy

A participant decides that the OOG should convey the observer pattern. The par-

ticipant decides to add a SUBS public domain inside SimpleModelPanel object and

to move the observers into the new domain. The participant could use OOGIE to

do this by selecting the SimpleModelPanel object, and then choosing “Add Public

Domain” in the context menu. The participant could then use the drag-and-drop

feature in the treeviewer to move the observer objects into the SUBS domain.

52

Figure 5.2: OOG after being refined based on input by the developer.

53

Chapter 6: Discussion and Conclusion

6.1 Validation of Hypotheses

The goal of this thesis was to present the front-end of a tool that could help developers

iteratively refine an object graph using directly manipulation. We divided our goal

into four hypotheses. In the following section, we will discuss how we satisfied these

hypotheses.

6.1.1 H1: Ownership hierarchy manipulation

We added a number of features in order to allow developers to manipulate the own-

ership hierarchy. For one, we allow developers to add/remove domains, to enable

developers to move objects up and down the hierarchy. We also allow developers to

move objects from one domain to another through a drag-and-drop feature in the

tree. Our evidence that developers can use these features is from the pilot evaluation

(Sec. 5.3).

Our participant was able to add/remove domains, and to move objects from one

domain to another. The participant was able to use the features to better fit her

mental model of the runtime structure because she found an object that she felt was

less architecturally relevant, and she was able to move the object to a lower-level

domain in the hierarchy. This indicates that this hypothesis was satisfied.

6.1.2 H2: Level of detail control

In order to allow developers to control the level of detail of a runtime structure,

we added a feature to allow developers to expand/collapse the sub-structure of an

object. We have not yet implemented abstraction by types, so this hypothesis was

not completely satisfied. During the pilot evaluation (Sec. 5.3), we found that the

54

developer was able to expand/collapse objects to change the level of visual detail in

the representation.

6.1.3 H3: Direct manipulation to accomplish H1 and H2

All of the features previously listed (Sec. 6.1.1 and Sec. 6.1.2) are supported by

direct manipulation, either in the treeviewer or in the graph. The developer can

either use a context menu which appears in the treeviewer and in the graph, or use a

drag-and-drop feature in the treeviewer to move objects from one domain to another.

These types of manipulation are easy for developers and do not require much cognitive

overhead. A self-evaluation based on cognitive dimensions (Sec. 5.1) indicated that

these features do not require much cognitive overhead. In the pilot evaluation, when

the participant was asked to add/remove domains, move objects from one domain

to another, and collapse/expand objects, she was able to do so without being taught

how. This indicates that the tool’s features are easy to use, assuming that we properly

accounted for the threats to validity. This is evidence that this hypothesis has been

satisfied.

6.1.4 H4: User-friendly to developers

OOGIE includes features to make it more user-friendly for developers. This includes

highlighting components that are selected in both the treeviewer and in the graph.

This improves the developers ability to navigate the representation. We also chose

different colors for different kinds of components, including the color used to highlight

a component that has been selected. This makes it easier for developers to distinguish

between components, reducing cognitive overhead. What makes the tool less user-

friendly are the problems related to graph layout (Sec. 6.3.1). This issue came up

during the pilot evaluation. Another problem is that developers cannot yet undo

manipulations that they made to the representation. This was pointed out during

55

the self-evaluation (Sec. 5.1). This indicates that this hypothesis has not yet been

completely satisfied, and in the future, the user-friendliness of the tool needs to be

improved.

6.2 Missing Back-End

The present work focused on the front-end or user interface of an interactive editor

for manipulating object graphs. As a result, the current implementation is not that

of a complete tool, in that it still lacks the back-end processing.

6.2.1 Convert edits into annotations

Currently, OOGIE does not convert the developer’s graphical edits into annotations.

OOGIE simply records the changes to the ownership relationships. The expecta-

tion is that a person who knowledgeable with the annotation process changes the

ownership annotations consistently to reflect the corrected ownership relationship,

then re-extracts a hierarchical object graph. This issue makes using OOGIE in a

production environment tedious and time-consuming. However, OOGIE is currently

not unlike dynamic analysis tools, which instrument a system, and allow a user to

manipulate one or more traces of execution.

6.2.2 Maintain diagram soundness

The current implementation makes no guarantees of preserving the diagram’s sound-

ness for all of the iterative refinement operations (Sec. 3.4). Moving an object to an

“outer level” or inside another object may have many effects, because of the notion

of ownership parameters. In some cases, the tool may need to update many edges

associated with the object that was moved. We also cannot simply give an input to

OOGIE with a list of allowable changes at this point because moving an object in or

56

out of a domain can cause extra edges due to domain parameters.

For future work, for each operation we provide, we will formally specify an algo-

rithm for performing that operation on a portion of a diagram, resulting in a new

diagram. We will then prove that each and all of our operations preserve sound-

ness: if the original diagram is a sound abstraction of the runtime structure, then the

updated diagram will be sound as well.

6.2.3 Reflect concurrent changes to the code

We will research a mechanism to update the extracted object graph if the code

changes. In this way, the developer can get an updated view of the architecture

without having to redo all the operations that transformed the original structure into

one that better represents the architect’s intent.

6.3 Current Limitations in Front-End

The current OOGIE front-end still has some important limitations.

6.3.1 Graph Layout

Graph layout is a very difficult problem. We used Prefuse’s force-directed layout.

There is still a good deal of overlapping of objects and domains. This creates confusion

and cognitive overhead. The force-directed layout also produces too much movement.

In the future we plan on improving the layout by reducing the movement and making

the representation of the relationships of the domains and the objects clearly defined.

We will also use an algorithm that places the components in a way that is easy for

developers to understand.

57

6.3.2 Visualization Hacks

The layout uses many hacks. These hacks include invisible edges and invisible nodes

of varying sizes. These hacks make the system more complicated and difficult to man-

age. They also make the forced-directed layout more difficult to manage because the

invisible nodes and edges also have forces which act on other graphical components,

so the components might not be visible, but their effects on other components are

visible, causing a distortion. It will be harder for future developers to use and extend

the system because of these hacks. In the future, better solutions to the problems

that the hacks were used for, need to be implemented. This may or may not involve

using a framework other than Prefuse.

6.4 Satisfaction of the Requirements

In this section we discuss how the requirements from Chapter 3 were satisfied.

6.4.1 General Requirements

• RQ 01-Support iterative refinement: See Sec. 6.4.4.

• RQ 02-Must be an Eclipse plug-in: OOGIE satisfies this requirement.

• RQ 03-Must load and save states: To load and save states, the data model

is persisted to XML.

• RQ 04-Must be easy to use: OOGIE satisfies this requirement through the

fulfillment of requirements HCI1,HCI4,HCI5.

• RQ 05-Must invalidate incorrect manipulations of the OOG: OOGIE

partially satisfies this requirement. It does not allow developers to add domains

to other domains. It does not allow developers to give domains names that are

already used by other domains. It does not allow developers to delete non-empty

58

domains. But it does not yet check to make sure that only strict encapsulated

objects are in private domains. We discussed previously the reason that this

has not been implemented (Sec. 6.2.2).

• RQ 06-Support the data model of ownership domains: OOGIE satisfies

this requirement because it supports all of the components of the ownership

domain data model (Sec. 4.5).

• RQ 07-Maintain diagram soundness: OOGIE partially satisfies this re-

quirement. It does not allow developers to add/delete an object or edge.

6.4.2 Human Computer Interaction Requirements

• RQ HCI1-Create visual distance between semantic ideas: OOGIE cre-

ates visual distance in many ways. The objects are yellow and the domains are

white. The public domains have thin dotted lines and the private domains have

thick doted lines. When clicked on, the outside domain lines turn blue, the

outside object lines turn red, and the edges turn purple. In the future, we will

implement the domains as squares and the objects as circles to increase visual

distance.

• RQ HCI2-Make use of hierarchies: OOGIE satisfies this requirements by

making use of hierarchy in both the treeviewer and the graph itself.

• RQ HCI3-Limit number of on-screen components: OOGIE will satisfy

this requirement in the future by limiting the number of recursive levels the

graph can expand to.

• RQ HCI4-Implement easy navigation: OOGIE satisfies this requirement

because when the developer clicks on a component in the treeviewer, it shows

59

up in the graph, and vice versa. This allows the developer to go in between the

graph and treeviewer easily.

• RQ HCI5-Implement orientation cues: OOGIE satisfies this requirement

because when the developer clicks on a component, it is highlighted.

• RQ HCI6-Implement an undo feature: This feature was left for future

work.

6.4.3 Tool Support

• RQ TS1-Display inheritance hierarchy: This feature is left for future work.

• RQ TS2-Collapse/expand sub-structures: OOGIE satisfies this require-

ment through context-menu features to “Expand/Collapse”, and “Expand

All/Collapse All” which expose or hide the sub-structures of selected objects or

of all the objects in the diagram.

• RQ TS3-Control node labels: Through the rename domain feature, this

requirement is satisfied.

• RQ TS4-Trace to code: OOGIE includes a trace to code feature.

• RQ TS5-Search for an object: OOGIE includes a feature to search for an

object in the treeviewer. The developer types a regular expression to match an

object’s name or type and the treeviewer is filtered to highlight the matching

elements.

• RQ TS6-Distinguish between private and public domains: The tool

distinguishes between public and private domains in the graph by making the

lines of the private domain thicker than the lines of the public domain, and

the tool distinguishes between public and private domains in the treeviewer by

using different colors.

60

• RQ TS7-Include object type in the label: The treeviewer shows the type

of the object along with its name.

• RQ TS8-Show all of an object’s outgoing and incoming edges: This

feature is left for future work.

• RQ TS9-collapse domains: This feature is left for future work. The tool

only collapses to the top-level domains with the top-level objects.

6.4.4 Iterative Refinement

• RQ IR1-Manipulate the object hierarchy: OOGIE has a drag-and-drop

feature to move objects from one domain to another, which changes the object

hierarchy.

• RQ IR2-Manipulate domains: OOGIE satisfies this requirement through

the features adding domain, renaming domain,and the drag and drop of objects.

• RQ IR3-Abstract objects by type: OOGIE does not yet satisfy this re-

quirement. This is because this feature requires manipulating annotations so it

is out of the scope of this thesis.

• RQ IR4-Summarize objects as connectors: OOGIE does not yet satisfy

this requirement. This feature is not often needed so it is left for future work.

• RQ IR5-Support lifting edges: OOGIE automatically adds and removes

lifted edges, and thus satisfies this requirement.

• RQ IR6-Make an object shared: This feature is left for future work.

61

6.5 Conclusion and Broader Impact

Software architecture is important for many software evolution tasks. It serves as a

road-map so that developers can orient themselves in a large code base. Software

architectures can help speed up the process for developers to learn a code base well

enough so that they can perform basic maintenance tasks, which saves resources such

as time and money. It is not enough just for developers to understand the code

structure. They must also understand the runtime structure. Runtime structure ex-

acerbates the problems of turning large software systems into graphs because runtime

structures show the runtime code components and all of their potential relationships.

This creates the need to hide many parts of the runtime structure so that the devel-

opers can focus on area that they are making changes to.

The Scholia approach extracts the runtime structure and produces an ownership

object graph (OOG). Because in an ownership object graph, objects contain other

objects, it reduces the size of the graph that is depicted, but is still sound. But the

Scholia approach was not designed with usability in mind. It produces a default

decomposition. Iteratively refining the decomposition is tedious.

The front-end of OOGIE is a tool that is designed to improve the usability of

the Scholia approach. It takes an initial extraction of the runtime structure, and

allows developers to iteratively refine the depiction in a way that is intuitive and

user-friendly. Though it is not yet integrated into the Scholia approach and takes

as input an OOG in an XML file, it demonstrates that the iterative refinement of an

OOG can be accomplished through direct manipulation. The methods that OOGIE

uses will improve the potential and usefulness of the Scholia approach and object

graph extractors in general because the nature of object graphs necessitates that

they include architectural abstraction, but architectural abstraction means that many

views are possible since the hierarchy is not implicit in the code. This means that

developers will need to refine the abstraction of an initial object graph. The front-end

62

of OOGIE is presented as a way to allow them to do so.

63

REFERENCES

[1] JHotDraw. www.jhotdraw.org, 1996. Version 5.3.

[2] Prefuse. www.prefuse.org, 2007.

[3] Abi-Antoun, M. Static Extraction and Conformance Analysis of Hierarchical

Runtime Architectural Structure. PhD thesis, Carnegie Mellon University, 2009.

Available as Technical Report CMU-ISR-09-119.

[4] Abi-Antoun, M., and Aldrich, J. Static Extraction and Conformance

Analysis of Hierarchical Runtime Architectural Structure using Annotations.

In Object-Oriented Programming, Systems, Languages, and Applications (OOP-

SLA) (2009).

[5] Abi-Antoun, M., and Ammar, N. A Case Study in Evaluating the Usefulness

of the Run-time Structure during Coding Tasks. In Workshop on Human As-

pects of Software Engineering (HAoSE), co-located with the ACM International

Conference on Systems, Programming, Languages, and Applications: Software

for Humanity (SPLASH) (2010).

[6] Abi-Antoun, M., Ammar, N., and Khazalah, F. A Case Study in Adding

Ownership Domain Annotations. Tech. rep., Wayne State University, 2010.

[7] Abi-Antoun, M., and Selitsky, T. Interactive Refinement of Runtime

Structure. In Workshop on Flexible Modeling Tools (FlexiTools), co-located with

the ACM International Conference on Systems, Programming, Languages, and

Applications: Software for Humanity (SPLASH) (2010).

[8] Abi-Antoun, M., Selitsky, T., and LaToza, T. Developer Refinement of

Runtime Architectural Structure. In Workshop on SHAring and Reusing archi-

tectural Knowledge (SHARK) (2010).

64

[9] AgileJ. StructureViews. www.agilej.com, 2008.

[10] Alphonce, C., and Ventura, P. QuickUML: a tool to support iterative

design and code development. In Companion of the 18th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applications

(2003), ACM, p. 81.

[11] Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little,

R., Nord, R., and Stafford, J. Documenting Software Architecture: View

and Beyond. Addison-Wesley, 2003.

[12] De Pauw, W., Helm, R., Kimelman, D., and Vlissides, J. Visualiz-

ing the Behavior of Object-Oriented Systems. In Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA) (1993).

[13] De Pauw, W., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides,

J. M., and Yang, J. Visualizing the Execution of Java Programs. In Re-

vised Lectures on Software Visualization, International Seminar (2002).

[14] De Pauw, W., Kimelman, D., and Vlissides, J. M. Modeling Object-

Oriented Program Execution. In European Conference on Object-Oriented Pro-

gramming (ECOOP) (1994).

[15] De Pauw, W., and Sevitsky, G. Visualizing Reference Patterns for Solving

Memory Leaks in Java. In European Conference on Object-Oriented Programming

(ECOOP) (1999).

[16] DrawLets. www.rolemodelsoft.com/drawlets/, 2002. Version 2.0.

[17] Fahmy, H., and Holt, R. C. Using Graph Rewriting to Specify Software

Architectural Transformations. In Automated Software Engineering (2000).

65

[18] Flanagan, C., and Freund, S. N. Dynamic Architecture Extraction. In

Workshop on Formal Approaches to Testing and Runtime Verification (August

2006).

[19] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[20] Gargiulo, J., and Mancoridis, S. Gadget: a Tool for Extracting the Dy-

namic Structure of Java Programs. In Software Engineering and Knowledge

Engineering (2001).

[21] Green, T., and Petre, M. Usability Analysis of Visual Programming Envi-

ronments: A ’Cognitive Dimensions’ Framework. Journal of Visual Languages

and Computing 7, 2 (1996), 131–174.

[22] Gschwind, T., and Oberleitner, J. Improving Dynamic Data Analysis

with Aspect-Oriented Programming. In European Conference on Software Main-

tenance and Reengineering (CSMR) (2003).

[23] Hill, T., Noble, J., and Potter, J. Scalable Visualizations of Object-

Oriented Systems with Ownership Trees. Journal of Visual Languages and Com-

puting 13, 3 (2002).

[24] Huang, M. L., and Eades, P. A fully animated interactive system for

clustering and navigating huge graphs. In Graph Drawing, S. Whitesides, Ed.,

vol. 1547 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,

1998, pp. 374–383.

[25] Jackson, D., and Waingold, A. Lightweight Extraction of Object Models

from Bytecode. IEEE Transactions on Software Engineering 27, 2 (2001).

66

[26] Jerding, D. F., Stasko, J. T., and Ball, T. Visualizing Interactions

in Program Executions. In International Conference on Software Engineering

(ICSE) (1997).

[27] JFace. http://wiki.eclipse.org/JFace.

[28] Kollman, R., Selonen, P., Stroulia, E., Systä, T., and Zundorf, A.

A Study on the Current State of the Art in Tool-Supported UML-Based Static

Reverse Engineering. In Working Conference on Reverse Engineering (WCRE)

(2002).

[29] Koskimies, K., and Mössenböck, H. Scene: Using Scenario Diagrams and

Active Text for Illustrating Object-Oriented Programs. In International Confer-

ence on Software Engineering (ICSE) (1996).

[30] Kramer, C., and Prechelt, L. Design Recovery by Automated Search for

Structural Design Patterns in Object-Oriented Software. Working Conference

on Reverse Engineering (WCRE) (1996).

[31] Krikhaar, R. L. Reverse Architecting Approach for Complex Systems. In

International Conference on Software Maintenance (ICSM) (1997).

[32] Lange, D. B., and Nakamura, Y. Interactive Visualization of Design Pat-

terns Can Help in Framework Understanding. In Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA) (1995).

[33] Mitchell, N. The Runtime Structure of Object Ownership. In European

Conference on Object-Oriented Programming (ECOOP) (2006).

[34] Moody, D. The Physics of Notations: Toward a Scientific Basis for Construct-

ing Visual Notations in Software Engineering. IEEE Transactions on Software

Engineering (2009), 756–779.

67

[35] Müller, H., and Klashinsky, K. Rigi – a System for Programming-In-The-

Large. In International Conference on Software Engineering (ICSE) (1988).

[36] Noble, J. Visualising Objects: Abstraction, Encapsulation, Aliasing, and Own-

ership. In Revised Lectures on Software Visualization, International Seminar

(2002).

[37] Oechsle, R., and Schmitt, T. JAVAVIS: Automatic Program Visualization

with Object and Sequence Diagrams using the Java Debug Interface (JDI). In

Revised Lectures on Software Visualization, International Seminar (2002).

[38] Pacione, M. J., Roper, M., and Wood, M. A Novel Software Visualisation

Model to Support Software Comprehension. In Working Conference on Reverse

Engineering (WCRE) (2004).

[39] Perry, D., and Wolf, A. Foundations for the Study of Software Architecture.

Softw. Eng. Notes 17, 4 (1992).

[40] Potanin, A., Noble, J., and Biddle, R. Checking Ownership and Con-

finement. Concurrency and Computation: Practice and Experience 16, 7 (April

2004).

[41] Rajlich, V., and Gosavi, P. A Case Study of Unanticipated Incremental

Change. In International Conference on Software Maintenance (ICSM) (2002).

[42] Rayside, D., and Mendel, L. Object Ownership Profiling: a Technique for

Finding and Fixing Memory Leaks. In Automated Software Engineering (2007).

[43] Rayside, D., Mendel, L., and Jackson, D. A Dynamic Analysis for Reveal-

ing Object Ownership and Sharing. InWorkshop on Dynamic Analysis (WODA)

(2006).

68

[44] Reiss, S. P., and Renieris, M. Jove: Java as it Happens. In ACM Symposium

on Software Visualization (2005).

[45] Richner, T., and Ducasse, S. Recovering High-Level Views of Object-

Oriented Applications from Static and Dynamic Information. In International

Conference on Software Maintenance (ICSM) (1999).

[46] Salah, M., and Mancoridis, S. A Hierarchy of Dynamic Software Views:

From Object-Interactions to Feature-Interactions. In International Conference

on Software Maintenance (ICSM) (2004).

[47] Scaffidi, C., Myers, B., and Shaw, M. Fast, accurate creation of data

validation formats by end-user developers. End-User Development (2009), 242–

261.

[48] Schauer, R., and Keller, R. K. Pattern Visualization for Software Com-

prehension. In International Workshop on Program Comprehension (IWPC)

(1998).

[49] Sefika, M., Sane, A., and Campbell, R. H. Architecture-Oriented Visual-

ization. In Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA) (1996).

[50] Selitsky, T. OOGIE: Ownership Object Graph Interactive Editor. In Confer-

ence Companion for the ACM International Conference on Systems, Program-

ming, Languages, and Applications: Software for Humanity (SPLASH) (2010),

pp. 215–216.

[51] Shaw, M., and Garlan, D. Software Architectures: Perspectives on an

Emerging Discipline. Prentice Hall, 1996.

69

[52] Smith, M. P., and Munro, M. Runtime Visualisation of Object Oriented

Software. In VISSOFT (2002).

[53] Souder, T., Mancoridis, S., and Salah, M. Form: a Framework for

Creating Views of Program Executions. In International Conference on Software

Maintenance (ICSM) (2001).

[54] Storey, M.-A., Best, C., and Michaud, J. SHriMP Views: An Interac-

tive Environment for Exploring Java Programs. In International Workshop on

Program Comprehension (IWPC) (2001).

[55] Storey, M.-A. D., Fracchia, F. D., and Müller, H. A. Cognitive De-

sign Elements to Support the Construction of a Mental Model During Software

Exploration. J. Systems & Software 44, 3 (1999).

[56] Storey, M.-A. D., Müller, H. A., and Wong, K. Manipulating and

Documenting Software Structures. In Software Visualization (1998), P. Eades

and K. Zhang, Eds.

[57] Waingold, A., and Lee, R. SuperWomble Manual. http://sdg.lcs.mit.

edu/womble/, 2002.

[58] Walker, R. J., Murphy, G. C., Freeman-Benson, B., Wright, D.,

Swanson, D., and Isaak, J. Visualizing Dynamic Software System Infor-

mation through High-Level Models. In Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA) (1998).

70

ABSTRACT

A FRONT-END FOR AN OWNERSHIP OBJECT GRAPH
INTERACTIVE EDITOR

by

TALIA SELITSKY

December 2010

Advisor: Dr. Marwan Abi-Antoun

Major: Computer Science

Degree: Master of Science

Runtime views which show runtime structure, is a type of object graph. They

show components as groups of objects and data structures. Runtime views are use-

ful for tasks related to performance, reliability, and security. Most previous work

on extracting object graphs has produced flat object graphs which are not scalable.

Ownership object graphs (OOGs) increase the scalability of object graphs because it

nests objects, creating hierarchy. Recent work has shown that sound extraction of

OOGs from object-oriented systems is technically feasible. Soundness means that in

any execution of the program, every object can be mapped to exactly one component

in the graph. The recent work is a read-only viewer and shows a default decomposi-

tion. In order for developers to change the default decomposition, they must change

the annotations. This is very tedious.

In order to allow developers to iteratively refine an OOG, we propose the front-end

of an editor to support this functionality, OOGIE. The OOGIE tool only supports op-

erations that intuitively support soundness. For example, objects cannot be deleted,

and edges cannot be added. The tool allows developers two kinds of operations

to change the decomposition, abstraction by ownership hierarchy and abstraction by

type. Abstraction by ownership hierarchy means that the decomposition shows ar-

71

chitecturally significant objects near the top of the hierarchy and less architecturally

significant objects such as data structures further down. Abstraction by types allow

objects to be collapsed further according to their declared types. The work in this

thesis is the first stage in addressing the usability problems of the read-only viewer.

At this stage, OOGIE takes an XML file that contains an initial OOG produced by

the extraction tool, and records the changes made to the OOG by the developer in the

XML file. In the future, we plan on integrating the OOGIE tool with the extraction

tool, and having OOGIE manipulate the annotations directly so that the developer

does not have to. Having a user-friendly method of abstracting and manipulating

OOGs increases their usefulness since developers can pick the decomposition that

best suits their needs.

72

AUTOBIOGRAPHICAL STATEMENT

TALIA SELITSKY

EDUCATION

• Master of Science (Computer Science), November 2010
Wayne State University, Detroit, MI, USA

• Bachelor of Arts (Political Science), June 2007
University of Michigan, Ann Arbor, MI, USA

PUBLICATIONS

1. Abi-Antoun, M., Selitsky, T., and LaToza, T. Developer Refinement
of Runtime Architectural Structure. In Workshop on SHAring and Reusing
architectural Knowledge (SHARK) (2010).

2. Abi-Antoun, M., and Selitsky, T. Interactive Refinement of Runtime
Structure. In Workshop on Flexible Modeling Tools (FlexiTools), co-located
with the ACM International Conference on Systems, Programming, Languages,
and Applications: Software for Humanity (SPLASH) (2010).

3. Selitsky, T. OOGIE: Ownership Object Graph Interactive Editor. In Confer-
ence Companion for the ACM International Conference on Systems, Program-
ming, Languages, and Applications: Software for Humanity (SPLASH) (2010),
pp. 215–216.

	Wayne State University
	1-1-2010
	A Front-End For An Ownership Object Graph Interactive Editor
	Talia Frances Selitsky
	Recommended Citation

	tmp.1294170484.pdf.nhv3P

