
Wayne State University

Wayne State University Associated BioMed Central Scholarship

2012

A natural language interface plug-in for cooperative
query answering in biological databases
Hasan M. Jamil
Wayne State University, hmjamil@wayne.edu

This Article is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University
Associated BioMed Central Scholarship by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Jamil: A natural language interface plug-in for cooperative query answering in biological databases. BMC Genomics 2012 13(Suppl
3):S4.
Available at: http://digitalcommons.wayne.edu/biomedcentral/36

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/biomedcentral


PROCEEDINGS Open Access

A natural language interface plug-in for
cooperative query answering in biological
databases
Hasan M Jamil

From IEEE International Conference on Bioinformatics and Biomedicine 2011
Atlanta, GA, USA. 12-15 November 2011

Abstract

Background: One of the many unique features of biological databases is that the mere existence of a ground data
item is not always a precondition for a query response. It may be argued that from a biologist’s standpoint, queries
are not always best posed using a structured language. By this we mean that approximate and flexible responses
to natural language like queries are well suited for this domain. This is partly due to biologists’ tendency to seek
simpler interfaces and partly due to the fact that questions in biology involve high level concepts that are open to
interpretations computed using sophisticated tools. In such highly interpretive environments, rigidly structured
databases do not always perform well. In this paper, our goal is to propose a semantic correspondence plug-in to
aid natural language query processing over arbitrary biological database schema with an aim to providing
cooperative responses to queries tailored to users’ interpretations.

Results: Natural language interfaces for databases are generally effective when they are tuned to the underlying
database schema and its semantics. Therefore, changes in database schema become impossible to support, or a
substantial reorganization cost must be absorbed to reflect any change. We leverage developments in natural language
parsing, rule languages and ontologies, and data integration technologies to assemble a prototype query processor
that is able to transform a natural language query into a semantically equivalent structured query over the database.
We allow knowledge rules and their frequent modifications as part of the underlying database schema. The approach
we adopt in our plug-in overcomes some of the serious limitations of many contemporary natural language interfaces,
including support for schema modifications and independence from underlying database schema.

Conclusions: The plug-in introduced in this paper is generic and facilitates connecting user selected natural
language interfaces to arbitrary databases using a semantic description of the intended application. We
demonstrate the feasibility of our approach with a practical example.

Background
The choice of interface becomes a critical factor in many
large community databases such as GenBank, UCSC
Genome Browser, and FlyBase, as well as many smaller
individual databases, used by researchers across the
globe. Applications in life sciences domain are often
designed using specific analysis or query need in mind.
These applications widely use graphical interface technol-
ogies for access to the underlying database and to capture

query semantics. These query driven graphical user inter-
faces do not allow free form and arbitrary querying,
thereby limiting the use of the underlying database con-
tent. Since these interfaces must necessarily be built for
each query need, cost acts as a significant prohibitive fac-
tor. As a result of adopting pre-fabricated web interfaces
for access, the wealth of these repositories remain poorly
used. To compensate for the perceived lack of use and to
serve users who desire to exploit the content in ways
other than originally anticipated, database contents are
often made available for copying and differential use.Correspondence: hmjamil@wayne.edu

Department of Computer Science, Wayne State University, Michigan, USA

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

© 2012 Jamil; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:hmjamil@wayne.edu
http://creativecommons.org/licenses/by/2.0


This materialized view [1] based alternative has been pro-
ven to be expensive and complicated, principally because
indiscriminate copying introduces version maintenance
problem, making it difficult to correct obsolete informa-
tion in the copied version when the main copy is cor-
rected. End users in general, and biologists in particular,
prefer to use graphical interfaces to access databases
mainly because query language based interfaces demand
considerable familiarity with the underlying database
schema and expertise in framing semantically meaningful
queries. While SQL or XQuery type query languages
allow ad hoc and arbitrary querying, and potentially elim-
inate the bottleneck imposed by pre-fabricated graphical
interfaces, biologists are resistant to adopting such an
archaic interface. To exacerbate this situation, databases
are slowly but certainly adopting more complex XML
type representations for the purpose of information inter-
change and data integration, making it even harder for
biologists to accept textual query interfaces because
XQuery type languages are considerably more complex
than SQL.
Regardless of the query platform used, in works such as

BioBike [2], it was argued that for several decades biolo-
gists have voted overwhelmingly not to embrace compu-
ter programming as a basic tool through which to look at
their world. BioBike tries to simulate a natural language
like interface using graphical interactions as a means to
support access to database content. The idea is based on
the premise that the limitations imposed by graphical
interfaces and the complexity inherent in query lan-
guages such as SQL and XQuery can be bypassed if
access to information is facilitated using natural language
queries. Natural language processing (NLP) based query
answering systems enjoy the benefit of user’s natural abil-
ity to frame queries at a conceptual level she is comforta-
ble with. The real issue is how abstract such queries can
be so that the user need not worry about the technicality
involved in framing the query for the database query
engine to understand and execute the intended query.
The higher the abstraction level, the harder usually it is
to parse and map the query on the underlying database
schema. Such a high level interface still remains illusive
mostly because of the representation hurdles, highly
interpretive nature of life sciences data (tool applications
are often essential before an understanding can be gained
for many health care data. Simple read off of the data as
in relational model does not reveal any information in
general), translation from natural language to database
queries, and the inherent difficulty in processing NLP
queries. A practical approach, we argue, is providing a
flat universal relational view of data so that users can
comprehend and query the information repositories at
their disposal. Once chosen, the question remains, how
do we facilitate comprehension of a natural language

query in a given context, device a strategy to compute its
response, and implement the strategy as a traditional
query over structured relations stored in local or remote
information repositories.
Our goal in this paper is to develop a semantic “plug-in”

in the form of a common knowledge ontology to describe
the intended semantics of the underlying database, still at
a conceptual level. We use this common knowledge ontol-
ogy to bridge the semantic gap between the database
schema and the NLP parsing engine so that meaningful
connections between the natural language queries and
database can be established. We present a method to map
conceptual queries to database schema and show that a
natural language parser now has a better chance to gener-
ate meaningful SQL queries, especially for short natural
language queries. We also show that the use of the plug-in
makes it possible for the parsing systems to be unaware of
low level schema details.

Related research
While systems such as Toorjah [3] and CoIn [4] attempt
to improve the usability repertoire of databases, they still
do not support unrestricted use as they remain com-
mitted to pre-fabricated query interfaces. In this paper,
we argue that universal and ad hoc access to community
biological databases can be facilitated through natural
language interfaces to counter interface constraints. We
envision database independent natural language inter-
faces which will intelligently map English sentences to
SQL like structured queries to return a response. In such
an environment, we also expect the system to tolerate
discrepancies in users’ knowledge of the database scheme
and to allow flexibility by not demanding strict schema
adherence in user queries.
In natural language processing community, Stanford

Parser [5-7] and MINIPAR [8] are two leading tools that
perform fairly well in recognizing acceptable English sen-
tences. The success of NLP systems such as these are
encouraging database interface development in English
to facilitate access to databases using text querying [9,10]
with limited scope. While NLP interfaces for traditional
databases has been extensively studied in the literature
(e.g., [11-17]), several recent proposals toward mapping
NL queries to SQL [18-21] are of significant interest.
However, most of these interfaces work well for a limited
class of queries, and for a specific database schema. In
other words, changes in application objectives or under-
lying databases are extremely difficult to accommodate in
these approaches. An important limitation is that these
systems are unable to incorporate arbitrary rules that
drive computational tools to make inferences, a feature
that biologists need. Our contention is that although
there have been many attempts in other domains, natural
language interfaces for biological databases remain an

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 2 of 12



emerging area of research. The few that are prominent
(e.g., BioBike [2]), are extremely rigid and difficult to
replicate.

An illustrative example
Consider the biological database shown in Figure 1 con-
sisting of relationships among genes and organisms, and
a set of computational tools to analyze its contents. The
database has the following tables with the primary keys
underlined - Gene (represents genes and their properties
such as common name, ID, UniProt [22] ID, underlying
DNA sequence and the organism in which it is found),
Protein (represents proteins and their properties such as
common name, ID and functions), EquivalentGenes
(represents an equivalence relation between two biologi-
cal concepts and their relationships), and GeneProteinEn-
coding capturing all proteins encoded by a gene.
The database may also include computational tools

such as DAVID [23] and GeneCards [24] for ID map-
ping, and BLAST [25] for sequence homology analysis.
These tools are used to analyze the contents in more
sophisticated ways using generalized knowledge such as
the ones below.

1. Function of gene A is equivalent to function of
gene B IF A and B are equivalent.

2. Two object IDs are equivalent IF they are aliases,
orthologs, or homologs.
3. Two sequences are homologs IF BLAST returns
true (given a threshold θ).
4. Two IDs are homologs IF their corresponding
sequences are so.
5. Two IDs are equivalent IF DAVID or GeneCards
returns one for the other.
6. Two IDs A and B are equivalent IF a gene (ID A)
encodes a protein (ID B).

These rules can be used to derive the function of gene
LOC458201 in chimpanzees (using rule 1) even though
there is no record of this gene in the database. This is
because LOC458201 is an ortholog of the gene UQCC in
humans, and either GeneCards will successfully establish
the correspondence (using rule 5), or Blast will (using
rule 3). Users traditionally write queries and apply similar
functions to draw conclusions. The question that we are
trying to address is: is it possible for a natural language
interface to hide the complex computational view of the
database and respond to queries from a more conceptual
level For example, could we develop a system to answer
natural language query such as (1) “what is the function
of gene LOC458201 “ or (2) “which gene in chimpanzees is
responsible for growth control “ Our focus in this paper is

Figure 1 Example database Δ.

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 3 of 12



to propose a practical method to map such queries to
semantically equivalent database specific SQL queries.
We also envision that a generalization of the above

mechanism will significantly enhance the query answer-
ing capability of a database when augmented with appro-
priate deductive capabilities and machineries to compose
scripts for executing computational pipelines. For exam-
ple, the query (2) above cannot be directly computed
from the example database in Figure 1. To compute this
query, we must first find out the complete set of chim-
panzee genes and apply the six rules above to infer possi-
ble responses. If, in addition to the above six rules, we
also know that the HomoloGene database [26] can be
queried to get a list of organism genes, we can then con-
struct a pipeline to compute a possible response and find
that chimpanzee gene LOC458201 is a growth control
gene. Alternately, we can find the growth control genes
of all organisms, and find out from GeneCards if there is
a chimpanzee ortholog for any of these genes. In the
remainder of this paper, we discuss a general approach
toward constructing a computational strategy to respond
to a natural language query. Our focus is mainly on strat-
egy construction and query translation by exploiting the
strengths of MINIPAR [8], or other similar tools for par-
sing, and dependency assignments of query sentences.
Accordingly, we discuss the following components
needed for the construction of our interpreter.

1. A model for an ontology with deduction rules is
proposed. Such an ontology helps bridge the semantic
gap between the decoupled user view and the database
view. Earlier research have already exploited similar
adoption to facilitate natural language interfacing [27].
2. The concept of a schema graph to merge the ontol-
ogy and the database scheme as an interface between
the user view of the database and the database
instance. Similar tools, e.g., structured object model
[28], for bridging user view and the database have
been previously investigated and exploited.
3. We adopt a deductive query processing model to
support intensional query processing. But we do so
using SQL since the vast majority of biological data-
bases use a relational platform. We, however, derive
the computational strategy intensionally entailed by
the query using deductive rules in the ontology. A
similar approach, though in significantly limited form,
has been exploited in BioBike [2].
4. We support querying online resources to access
tools and databases needed to process user queries
and modeled as functions in the ontology. We exploit
the notions of remote user defined functions [29] and
biological workflows [30] we proposed earlier to facil-
itate such integration in a user transparent way.

In the next few sections, our plan is to explain these
components using the query “List all growth control genes
in dogs that function similar to human genes (but are
absent in fruit flies).” For simplicity, we first consider the
query without the parenthesized part, and then consider
the full query to see how more complex queries can be
constructed. We discuss the construction of structured
queries in the context of the database in Figure 1.

Methods
Structure of a natural language interpretable database
The overall approach is to view the base database as a col-
lection of entity and relationship sets in the sense of ER
model [31], and preserve this conceptual view across dif-
ferent levels of abstractions we use to facilitate mapping of
natural language queries to SQL queries. Accordingly, the
base database Δ is a set of 3rd normal form classical rela-
tions r over schemes R with attributes A1, . . ., An with cor-
responding domains D1, . . ., Dn. The database Δ in Figure
1 contains four such relations wherein the primary key of
each relation is underlined. Although not readily apparent,
the relations EquivalentGenes and GeneProteinEncoding
are relationship sets in the sense of ER model while the
remaining two are entity sets. For this fact to be available
to the natural language interpreter and to exploit this
structural information toward query construction, we
complement the database with the following machineries.

Common knowledge ontology
An ontology O in our system is a set of basic concepts
C , a set of base relationships R among the concepts, a
set of derived relationships as inference rules I invol-
ving ontological concepts in C , and a type hierarchy T
involving the concepts in C . Inference rules thus define
more concepts in the form of relationships involving the
concepts. In Figure 2, we show such an ontology for our
database Δ. In this figure, genes, functions and organisms
are concepts, and so are molecular functions and plant.
partof and has are relationships. In this system, concepts
are distinct from instances or objects, and instances are
not part of the ontology although we show a few
instances (as ellipses) for expository purposes, e.g.,
human is an instance of a concept. For every concept
and relationship in the ontology, we expect to find a
representation of each as an entity or relationship set, or
as their attribute in the underlying database. The con-
verse need not be true, i.e., we may have attributes and
relations in the database that are not represented in the
ontology.
The knowledge similar to the six rules embedded in

the database Δ can be represented in terms of the con-
cepts in the ontology O as the following set of rules. In
this ontology language, all predicates are either unary,

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 4 of 12



or binary. The object (or instance) of a concept is repre-
sented in the form of concept(x) where concept is the
concept name, and x is either a variable or a concrete
object (constant) that uniquely identifies an object in
the database. Similarly, a relationship between two con-
cepts is represented as a binary predicate of the form
relationship(x, y) as all relationships in our ontology are
binary in nature.

1. function(X, Y) ¬ alias(X, Z), has(Z, Y).
2. alias(X, Y) ¬ homolog(X, Y).

alias(X, Y) ¬ ortholog(X, Y).
alias(X, Y) ¬ gene(X), encode(X, Y).

Note that the concepts homolog and ortholog in the rules
above are not represented in Figure 2, yet they are part of
this vocabulary. Concepts not part of the ontology descrip-
tion are expected to be computed or represented in the
database as properties of entities or relationships. All
unary undefined concepts are considered entity properties
while binary concepts are considered relationship proper-
ties. Finally, observe that not all six rules are captured in
the ontology as some of them are more database and
operation specific. Our goal is to cover this gap using a
reduction function, defined next.

Ontology augmented schema graph
The ontological characterization of a database is at the
highest level of conceptual relationship among the database
objects. It is defined independent of the database schema
and structure so that it reflects a commonsense and gen-
eral view of the information content. This view is expected
to be close to the natural language queries we anticipate.
To bridge this high level view with the underlying database,
we create a schema graph that merges the ontology with
the database scheme to capture the semantic relationships
the database objects share through their attributes to

facilitate natural language query to SQL translation. Before
presenting the process of conversion from ontology to
schema graph, we present the idea on intuitive grounds.
Given the database scheme ∑ = ⋃rÎΔr(R), the schema graph
for the database Δ in Figure 1 with respect to the ontology
O in Figure 2 is shown in Figure 3.
In the schema graph, (i) a rectangle represents the con-

cept in the ontology, (ii) a solid ellipse represents a data-
base attribute in which the annotation above the middle
line is the relation name and the one below is the attri-
bute name, (iii) a solid line between an ellipse and rectan-
gle represents the attribute’s classification in T , (iv) a
solid named double ended arrow between two ellipses
represents an association in O , and (v) a dashed
unnamed double ended arrow represents a property of
an object. A value concept is represented in two ways -
(vi) as an extension in a database column (shown as a
solid ellipse relating one or two database attributes, e.g.,
relationship in EquivalentGenes), or (vii) as an intension
modeled as a function that returns a value in a database
column (shown as a dashed ellipse accepting inputs of
database attribute types, e.g., the unary function Gene-
Mapper which returns GeneID type values, and the bin-
ary function IDMapper returning Relationship type
values).
The schema graph emphasizes the concepts, and

groups database attributes according to them. The rela-
tionships (associations, property, and value mappings)
are captured using attribute relationships. Additional
database attributes not present in the ontology are also
included as properties of a concept represented as keys.
Finally, user defined database functions are included to
complete artifacts needed for querying the database.
Essentially, a schema graph represents reachability struc-
ture among the database concepts, using which we plan
to construct SQL queries from natural language
sentences.

Figure 2 Ontology O for database Δ in Figure 1.

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 5 of 12



Procedure for generating the schema graph
In the spirit of [32,33], we make no distinction between
objects represented as values, attributes or classes, and
adopt the view that ontological concepts not only relate
class objects, but also value objects. For example, gene
(55245) represents the object 55245 in the table Gene in
Figure 1 as the class object gene in ontology O . How-
ever, the fact that UQCC is an ortholog of LOC608882 is
not captured as a relationship in table EquivalentGenes.
It is however captured as an attribute value of the rela-
tionship. To accommodate such relationships, we adopt
a priority scheme for mapping concepts to underlying
database in which we prefer to map them first to the
database scheme, and then we map only those concepts
to instances for which we fail to find a schema level
mapping. We explain the process below the result of
which is the schema graph shown in Figure 3 on data-
base Δ and ontology O .
Mapping ontology to schema graph
We define two functions μ and � to map respectively
the concepts and associations in the ontology to
an underlying database. Let ℜ and A correspondingly
be finite sets of relation and attribute names in data-
base Δ where each attribute name in A is made
unique by prefixing the relation name to which
it belongs, i.e., for relation r Î ℜ and A Î r(R), there
is r.A ∈ A . Then, μ : C → 2A , such that for
∀c∀c′∀s∀t(c, c′ ∈ C ∧ s ∈ μ(c) ∧ t ∈ μ(c′) ∧ s = t ⇒ c = c′) .
In other words, all concept to attribute mappings are
unique. For example, μ(gene) = {Gene.GeneID, Equiva-
lentGene.Object1, GeneProteinEncoding.Gene}, and that
Gene.GeneID Î μ(gene) and Gene.GeneID Î μ(protein)

is not simultaneously possible. Also, whenever ∃s, s =
r.A Î μ(c), and A ® R holds, concept c is said to have
an entity mapping c ⇀ r. The set of all concepts having
entity mapping is denoted by E , and nothing else is in
E . In the gene database, μ(gene) has an entity mapping
since GeneID in Gene is a primary key. The mappings
that are not in E , i.e., mappings ∀c ∈ O , μ(c) ≠ ∅ but
c /∈ E , are called property mapping. Generally, all map-
pings in μ(c) are denoted as c ↠ r.A.
For every association a ∈ R involving concepts

c, c′ ∈ C , if (i) {c, c′} ⊆ E (this means c and c’ are pri-
mary keys of relations other than r, because they cannot
be simultaneously keys for r) and r.A Î μ(c) ^ r.B Î
μ(c’) and r.A and r.B are prime attributes (part of a pri-
mary key) of r, or (ii) c = r. A ∈ E , c’ = r’. B /∈ E and
r = r’, then a has a relationship mapping a ⇁ 〈r.A, r.B〉.
The set of all associations having relationship mapping
is denoted by S . For example, in the first category, for
the associations alias and encode respectively, alias ⇁
〈EquivalentGenes.Object1, EquivalentGenes.Object2〉 and
encode ⇁ 〈GeneProteinEncoding.Gene, GeneProteinEn-
coding.Protein〉 hold. In the second category, for the
associations partof and function partof ⇁ 〈Gene.GeneID,
Gene.Organism〉 function ⇁ 〈Protein.ProteinID, Protein.
Function〉 hold.
To facilitate mapping of concepts that are captured as

values at the database level, we use a second function �.
Therefore for every concept c ∈ C such that μ(c) = ∅, �
maps c to a set of instance values in relations, i.e.,
ϕ : C → 2V , where V is a set of unique values of the
form r.A.v in which r is the relation name, and v is a
value in column A of r (in the parlance of [34], the

Figure 3 Schema graph of database Δ, ontology O and type system T .

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 6 of 12



representation corresponds to r[A ® v]), i.e., ® sA = c

(πA(r)) ≠ ∅. Since value concept may be part of an
entity set as well as a relationship set, it is denoted as a
polymorphic relation c ↣ 〈r.A, r.B〉 whenever ∃a, a ⇀ 〈r.
A〉 and r.B.v Î �(c), or c ↣ 〈r.A, r.B, r.C〉 whenever ∃a,
a ⇁ 〈r.A, r.B 〉 and r.C.v Î �(c).
The predicate representation of value concepts is

identical to class concepts, i.e., gene(X), function(X) or
ortholog(X, Y). In this database, the class concept gene is
represented as a table (Figure 1(a)), whereas the class
concept function is represented as an attribute of the
table Protein. In both representations, X is the primary
key of the tables Gene and Protein, respectively. For
example, for gene(55245), 55245 is a primary key, and
for ortholog(UQCC, LOC608882), both UQCC and
LOC608882 are in the primary key of EquivalentGenes
table. The set of all such mappings are denoted by P .
Concept and association mapping functions Imple-
mentation of the concept mapping function μ, and value
mapping function � is quite straight forward and intuitive.
For the function μ, first, we use a subset of the Gene
Ontology [35] and adopt the ontology as our type hierar-
chy T . We use a simple syntactic scheme for typing attri-
bute values. For example, UQCC will be typed as a gene
name, while 55245 will be recognized as a gene. We
inspect and select a representative set of values per col-
umn of each table in the database, using a statistical sam-
pling technique. The type of the attribute is then taken as
the least upper bound of all the types of sampled values in
each column in the type hierarchy T . The value concept
mapping function � is implemented as sA = c(πA(r)) for
each attribute A of each relation r in Δ. With the help of
these two functions, we classify each attribute of each rela-
tion as a type/class concept in T , and capture the value
concepts in O , i.e., concepts that do not have an attribute
level correspondence, as associations. For example, ortho-
log can be viewed as a relationship between two gene pro-
ducts X and Y , whereas growth control may be viewed as
a unary relationship with a protein X, a property.
Database to schema graph mapping
Since users view of the database is somewhat unrestricted
and independent of any database schema, or the assumed
ontology, queries may involve concepts and relationships
that are represented in the database even though they are
not present in the ontology. Therefore, the ontology to
schema graph mapping described in the previous section
will miss them. To fill this gap, we also define a backward
mapping from the database to schema graph as follows.
Let r(R) be a relation with primary key K such that K is

mapped to concept c, i.e., r.K Î μ(c). If c ∈ O , r.K will be
connected to a concept c in schema graph as described
with a solid line although it may not have any relation-
ship with any other concept. However, if r.K Î μ(c) but
c /∈ O , we create a new concept c in the schema graph

and represent it. For both cases, i.e., c ∈ O and c /∈ O ,
every attribute A Î {R - K} that is not in O but r.A Î
μ(c) for some c, we create a concept c and associate r.A
with c, and connect r.A as an unnamed property of r.K
(dashed unnamed double arrow). In the schema graph in
Figure 3, GeneName and ProteinName are of concept
type name (not shown), and DNASequence is of concept
type sequence (also not shown). These are called database
concepts and always connect to the concept, representing
the key of the relation they belong to.
For every database function f, we add an intensional

value concept (dashed ellipse) that accepts a set of con-
cepts and returns a concept in the schema graph. For
example, GeneMapper and IDMapper are two such
functions. Since these database functions produce value
concepts, value concepts in O can be mapped to these
functions as well. For example, IDMapper is an imple-
mentation of the value concepts in column Relationship,
i.e., given two gene products, it returns the nature of
their relationship.

Query transformation
While natural language interfaces are powerful, intuitive
and desired, it is well established that current technology
does not make it possible for us to support unrestricted
querying on all databases accurately [36,37]. It is thus
often suggested [38,39] that limiting the type of queries
supported on a specific database may help alleviate the
problem and improve the usability of such interfaces over
generic databases. Accordingly, our goal in this paper is to
allow three types of queries - interrogative, imperative and
declarative. While all three types of sentences are basically
queries, an interrogative sentence poses a question specifi-
cally using a structure such as “Does”, “Is”, “Why”, “How”,
“What”, and so on. While “Does” and “Is” types of ques-
tions mainly pose existential or verification type queries
and can be computed using selection operation in rela-
tional algebra, “Why” and “How” types of questions often
imply deductions and require significant reasoning to
answer. Imperative questions, and often declarative ques-
tions, generally use structures such as “List”, “Print”, and
“Return” that is a selection query in its simplest form. The
real complexity though lies in the way such questions are
formed.

Semantic roles of objects in queries
Since our main interest is in mapping natural language
queries to structured queries, and not in developing par-
sing technologies, we exploit systems such as MINIPAR
[8] or Stanford Dependence Parser [40] that are widely
respected for their accuracy in parsing query sentences
and computing dependence graphs and semantic roles.
We accept the semantic roles generated by MINIPAR in
conjunction with data dictionaries such as WordNet [41].

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 7 of 12



The overall translation process is shown in Figure 4 in
which we introduce three components - term analyzer,
semantic graph matcher, and query generator.
The term analyzer generates the semantic role of the

query sentence in the form of a dependence graph as
closely as possible, using the concepts and terms in the
schema graph, synonyms and other equivalence relations
in WordNet and the type hierarchy T . Intuitively, the
term analyzer transforms the query sentence using
terms in the schema graph concepts. The dependence
graph is analyzed to identify the subgraphs in the
schema graph that match. If the match results in a con-
nected graph, it is accepted as a logical query graph and
sent to query generator. The query generator then gen-
erates the SQL query by properly sequencing the joins,
plugging selection conditions, and substituting function
calls when needed. Let us revisit the query we intro-
duced in section, “[List all growth control genes in dogs]
that function similar to human genes (but are absent in
fruit flies).” and discuss it in the context of the machi-
neries we have introduced so far, and see how we can
formulate a structured query to respond to it, and how
the nature of the query changes as we modify it slightly.
In this query, we have separated four segments (under-
lined, within square brackets, up to the parenthesis, and
the whole sentence) that changes the nature of the
query when added successively. The query “List all
growth control genes” is a simple imperative query that
can be answered with a simple selection query as fol-
lows:

select GeneID
from Gene G, Protein P
where G.UniProtID = P.ProteinID and P.Function =
“growth control”

This query can be generated based on dependence parse
tree of the query sentence and by establishing the

semantic roles of the sentence. For example, MINIPAR
will generate the terms {(list.v)(growth.n)(control.n)(genes.
n)} where “growth control” is treated as a modifier of the
head noun gene. We then match the head noun with the
concept gene, and “growth control” to the concept function
using type hierarchy T . The relationship between these
two terms are then generated as the graph in Figure 5
from the schema graph, called the logical graph (a sub-
graph of the schema graph), since this is the shortest path
to connect them (gene ® Gene.GeneID ® Gene.UniProtID
® protein ® Protein.ProteinID ® Function). Semantically
this subgraph means every gene has a UniProt protein ID
for which a function is available. In terms of the database
Δ, this graph also entails the SQL query above. While this
query is somewhat straightforward, the query “List all
growth control genes in dogs” is not simple to generate, and
will require substantial machineries described next. The
query “List all growth control genes in dogs that function
similar to human genes” will require even more.

Correspondence between English sentence structures and
concepts
Once the sentence is parsed and terms are generated by
MINIPAR, the query is decomposed into semantic roles
and verbs. Each semantic role is comprised of a head
noun and a set of modifiers. In the query, “List all growth
control genes”, growth control (both nouns) are modifiers
of the head noun gene. The verbs are the terms that
relate the semantic roles we generate. Once the semantic
roles for the English sentence has been established, and
the dependence graph has been generated by the term
analyzer, we use table 1 as a guide toward establishing
correspondence between the terms and the concepts in
the schema graph.

A generalized mapping procedure
The SQL query that our system would ordinarily gener-
ate (in the absence of the rules in the ontology) to

Figure 4 Query processing and transformation model.

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 8 of 12



compute the query “List all growth control genes in dogs”
is as follows.

select GeneID
from Gene G, Protein P
where G.UniProtID = P.ProteinID and G.Organism =
“Dog” and P.Function = “growth control”

Given the database instance Δ, this query will produce
the response LOC608882. In the event the third row in
table Gene is missing, our hope is that we still will be able
to compute this response because we know (from the
rules in I ) Q9NVA1 is a growth control protein encoded
by gene UQCC which is an ortholog of LOC608882. Since
we would not know to which organism LOC608882
belongs, we could invoke a function, say OrganismMapper,
that maps a gene ID to an organism, and see if
LOC608882 belonged to dog. If such a function existed in
the database, the query generator would also return the
following SQL query segment that we would union with
the one above to generate all possible responses.

select GeneID
from Gene G, Protein P, EquivelantGenes E
where G.UniProtID = P.ProteinID and G.GeneID = E.
Object1 and P.Function = “growth control” and Orga-
nismMapper(E.Object2) = “Dog”

In [30], we introduced an SQL construct using which
external web form based, or desktop based, functions may

be conveniently used as tables to maintain compatibility
with SQL. This mechanism allows the capability to exploit
arbitrary external resources to enhance computing cap-
abilities. For example, consider now the query “List all
growth control genes in dogs that function similar to
human genes”. This query is more complex and requires
more analysis because a direct conclusion is not possible
from the database instance. A possible approach is as fol-
lows. First, find the growth control gene LOC608882 in
dog. Then, find all the orthologs of this gene in human.
Check to see if they control growth. Else, find all genes in
human and find DNA similarity, and infer functional simi-
larity using tools. Return response found. Clearly, the
complexity has increased, but if the knowledge to carry
out the process is included in the ontology, constructing
the required query is possible.

Results and discussion
At this point, it is only instructive to mention that the
entire query “List all growth control genes in dogs that
function similar to human genes but are absent in fruit
files” though feasible, is likely to be very complex if
effective semantic role of the sentence can be computed.
Our attempt to compute a dependence graph for this
sentence using CMU Link Parser [42] is shown in Fig-
ure 6. CMU Link Parser has similar functionality as
Stanford parser and MINIPAR but generates a visualiza-
tion of the parse graph. The graph for this query is
shown in Figure 6(a). It is apparent that for complex
queries such as this, the dependence graph generation is
a challenge. The figure shows broken links for many of
the query terms. For less complex queries such as “List
all growth control genes in dogs that function similar to
human genes”, the parsers work reasonably well as
shown in Figure 6(b). So the choice of the parsing and
semantic link generation tool becomes exceedingly cru-
cial. However, this choice often forces changes in our
system as well as significant interfacing effort. In our

Figure 5 Logical query graph.

Table 1 Correspondence table

POS Ontological entity

Common noun Concept, property of a concept

Proper noun Object or head noun

Transitive verb Association name

Adjective Property of concept or object

Adverb Property of association

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 9 of 12



current prototype, we remain uncommitted to a specific
parser as we investigate several parsers and their suit-
ability for such complex queries.
We believe the novelty of our plug-in is in its ability to

bridge the semantic gap between a database schema and
engine that maps NLP queries into queries in SQL or
other declarative languages by leveraging the parsing effec-
tiveness of short NLP queries by Stanford Parser or MINI-
PAR. To accurately map each NLP query to an equivalent
SQL query, we leverage a high level conceptual description
of an application in the context of which all NLP queries
are interpreted. The dynamic nature of the plug-in allows
updates in the knowledge base to refine application
semantics to improve the quality of the query response.
Such flexibility is desirable in databases needing to change
the underlying database schema, or the guiding rules for
query response. The separation of layers in our system
also allow for accommodating changes at any level without
disturbing the other layers, thus facilitating the portability
of our approach to other applications.

Conclusions
Our goal in this paper was to explore the outline of a
smarter and cooperative natural language interface for bio-
logical database where the semantics of a query usually
have many interpretations. We have demonstrated that in
such databases, even though an answer is available,

traditional systems will usually fail to respond due to the
conventional query processing model. The novelty of our
approach is in the generation procedure of the schema
graph that embodies the semantic relationship in a con-
ceptual ontology in terms of an arbitrary database scheme
in a user transparent way. The process ensures that all the
information content of a database is matched to the con-
ceptual view to the maximum possible extent. The inclu-
sion of conceptual rules enhances the querying capability
of the system and allows deductive queries involving com-
plex rules and external functions, even over-the-internet
queries. This feature now allows users to plug in generic
hypotheses and enrich the query capability of the engine,
modifying as needed. Our contention is that the idea of an
automatically generated schema graph allows us to map
natural language queries to SQL queries over arbitrary
database scheme. The requirement that we include an
ontology and a type hierarchy is far less restrictive and
non-technical than the requirements imposed by contem-
porary systems (concrete schema correspondence, applica-
tion specific dictionary, restriction on the type and
structure of English queries, etc.). These two requirements
can be readily met by many domain ontologies being pro-
posed and developed by the community, one of which is
Gene Ontology. From the standpoint of community
knowledge sharing, this is a significant strength of our
system.

Figure 6 Query parse trees.

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 10 of 12



This paper also raises an interesting question - is it
possible to transform an SQL query to respond in a way
similar to how it would respond to a natural language
query. For example, is it possible to transform the SQL
query discussed earlier that one would traditionally issue
to compute the query “List all growth control genes in
dogs”. We assert that it is easier to provide a smarter
response when a natural language query is asked
because such queries offer the semantic richness to
explore logical alternatives, that is seemingly difficult at
the SQL level. However, this is one of the issues we
would like to explore in the future.

Acknowledgements
This research was supported in part by National Science Foundation grant
IIS 0612203.
This article has been published as part of BMC Genomics Volume 13
Supplement 3, 2012: Selected articles from the IEEE International Conference
on Bioinformatics and Biomedicine 2011: Genomics. The full contents of the
supplement are available online at http://www.biomedcentral.com/
bmcgenomics/supplements/13/S3.

Authors’ contributions
HMJ is the sole contributor of this paper.

Competing interests
The author declares that they have no competing interests.

Published: 11 June 2012

References
1. Gupta A, Mumick IS: Maintenance of materialized views: problems,

techniques, and applications. IEEE Data Eng Bull 1995, 18(2):3-18.
2. Elhai J, Taton A, Massar JP, Myers JK, Travers M, Casey J, Slupesky M,

Shrager J: BioBIKE: a web-based, programmable, integrated biological
knowledge base. Nucleic Acids Res 2009, 37:W28-W32.

3. Calì A, Martinenghi D: Conjunctive query containment under access
limitations. ER 2008, 326-340.

4. Jagadish HV, Jamil HM: Accepting external constraints on deep web
database query forms and surviving them. Tech rep Wayne State
University, Detroit, MI, Department of Computer Science; 2011.

5. Klein D, Manning CD: Accurate unlexicalized parsing. ACL 2003, 423-430.
6. Klein D, Manning CD: Fast exact inference with a factored model for

natural language parsing. NIPS 2002, 3-10.
7. Klein D, Manning CD: Natural language grammar induction using a

constituent-context model. NIPS 2001, 35-42.
8. Lin D: Dependency-based evaluation of MINIPAR. Proceedings of the

Workshop on the Evaluation of Parsing Systems Granada, Spain; 1998.
9. Elworthy D: Question answering using a large NLP system. TREC 2000.
10. Goldsmith EJ, Mendiratta S, Akella R, Dahlgren K: Natural language query

in the biochemistry and molecular biology domains based on cognition
search. Nature 2008.

11. Li Y, Yang H, Jagadish HV: NaLIX: an interactive natural language
interface for querying XML. SIGMOD 2005, 900-902.

12. Cimiano P, Haase P, Heizmann J, Mantel M, Studer R: Towards portable
natural language interfaces to knowledge bases - the case of the
ORAKEL system. Data Knowl Eng 2008, 65(2):325-354.

13. Laukaitis A, Vasilecas O: Natural language as progarmming paradigm in
data exploration domain. Information Technology and Control 2007,
36:30-36.

14. Clegg AB, Shepherd AJ: Benchmarking natural-language parsers for
biological applications using dependency graphs. BMC Bioinformatics
2007, 8:24.

15. Popescu AM, Etzioni O, Kautz HA: Towards a theory of natural language
interfaces to databases. IUI 2003, 149-157.

16. Stratica N, Kosseim L, Desai BC: Using semantic templates for a natural
language interface to the CINDI virtual library. Data Knowl Eng 2005,
55:4-19.

17. Distelhorst G, Srivastava V, Rosse C, Brinkley J: A prototype natural
language interface to a large complex knowledge base, the
Foundational Model of Anatomy. AMIA Annu Symp Proc 2003, 200-204.

18. Giordani A, Moschitti A: Corpora for automatically learning to map
natural language questions into SQL queries. In Proceedings of the
Seventh Conference on International Language Resources and Evaluation
(LREC’10). Valletta, Malta: European Language Resources Association (ELRA);
Calzolari N, Choukri K, Maegaard B, Mariani J, Odijk J, Piperidis S, Rosner M,
Tapias D 2010:.

19. Giordani A, Moschitti A: Semantic mapping between natural language
questions and SQL queries via syntactic pairing. NLDB 2009, 207-221.

20. Afonso A, da C Brito L, Vale O: An evolutionary method for natural
language to SQL translation. SEAL 2008, 432-441.

21. Barbosa JJG, Rangel RAP, Cruz IC, Fraire HJ, Aguilar S, Pérez J: Issues in
translating from natural language to SQL in a domain-independent
natural language interface to databases. MICAI 2006, 922-931.

22. Consortium TU: Ongoing and future developments at the Universal
Protein Resource. Nucleic Acids Res 2011, 39:D214-D219.

23. Huang DW, Sherman BT, Stephens R, Baseler MW, Lane HC, Lempicki RA:
DAVID gene ID conversion tool. Bioinformation 2008, 2(10):428-430.

24. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N,
Bahir I, Doniger T, Krug H, Sirota-Madi A, Olender T, Golan Y, Stelzer G,
Harel A, Lancet D: GeneCards Version 3: the human gene integrator.
Database 2010, 2010:baq020.

25. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

26. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Church DM,
DiCuccio M, Edgar R, Federhen S, Helmberg W, Kenton DL, Khovayko O,
Lipman DJ, Madden TL, Maglott DR, Ostell J, Pontius JU, Pruitt KD,
Schuler GD, Schriml LM, Sequeira E, Sherry ST, Sirotkin K, Starchenko G,
Suzek TO, Tatusov R, Tatusova TA, Wagner L, Yaschenko E: Database
resources of the National Center for Biotechnology Information. Nucleic
Acids Res 2005, 33:D39-D45.

27. Zarate MJA, Pazos RA, Gelbukh AF, Ortega JP: Improving the
customization of natural language interface to databases using an
ontology. ICCSA (1) 2007, 424-435.

28. Feijs LMG: Natural language and message sequence chart representation
of use cases. Information & Software Technology 2000, 42(9):633-647.

29. Chen L, Jamil HM: On using remote user defined functions as wrappers
for biological database interoperability. International Journal on
Cooperative Information Systems 2003, 12(2):161-195.

30. Jamil HM, Islam A: The power of declarative languages: a comparative
exposition of scientific workflow design using BioFlow and Taverna. 3rd
IEEE International Workshop on Scientific Workflows Los Angeles, CA: IEEE
Computer Society; 2009, 322-329.

31. Chen PP: The entity-relationship model: toward a unified view of data.
VLDB 1975, 173.

32. Gyssens M, Lakshmanan LVS: A foundation for multi-dimensional
databases. VLDB 1997, 106-115.

33. Gingras F, Lakshmanan LVS: nD-SQL: a multi-dimensional language for
interoperability and OLAP. VLDB 1998, 134-145.

34. Kifer M, Lausen G, Wu J: Logical foundations of object-oriented and
frame-based languages. Journal of ACM 1995, 42(4):741-843.

35. Gene Ontology Consortium: Gene Ontology: tool for the unification of
biology. Nat Genet 2000, 25:25-29.

36. Kaufmann E, Bernstein A: Evaluating the usability of natural language
query languages and interfaces to Semantic Web knowledge bases. J
Web Sem 2010, 8(4):377-393.

37. Cimiano P, Minock M: Natural language interfaces: What is the problem -
a data-driven quantitative analysis. NLDB 2009, 192-206.

38. Coheur L, Guimarães A, Mamede NJ: Natural language interfaces to
databases: simple tips towards usability. NLPCS 2008, 147-158.

39. Li Y, Chaudhuri I, Yang H, Singh S, Jagadish HV: Enabling domain-
awareness for a generic natural language interface. AAAI 2007, 833-838.

40. de Marneffe MC, Manning CD: The Stanford typed dependencies
representation. Proceedings of the Workshop on Cross-Framework and Cross-
Domain Parser Evaluation Manchester, UK; 2008, 1-8.

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 11 of 12

http://www.biomedcentral.com/bmcgenomics/supplements/13/S3
http://www.biomedcentral.com/bmcgenomics/supplements/13/S3
http://www.ncbi.nlm.nih.gov/pubmed/19433511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19433511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14728162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14728162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14728162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21051339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21051339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18841237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20689021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract


41. Miller GA: WordNet: a lexical database for English. Commun ACM 1995,
38(11):39-41.

42. CMU Link Parser. [http://www.link.cs.cmu.edu/link/].

doi:10.1186/1471-2164-13-S3-S4
Cite this article as: Jamil: A natural language interface plug-in for
cooperative query answering in biological databases. BMC Genomics
2012 13(Suppl 3):S4.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Jamil BMC Genomics 2012, 13(Suppl 3):S4
http://www.biomedcentral.com/1471-2164/13/S3/S4

Page 12 of 12

http://www.link.cs.cmu.edu/link/

	Wayne State University
	2012
	A natural language interface plug-in for cooperative query answering in biological databases
	Hasan M. Jamil
	Recommended Citation


	Abstract
	Background
	Results
	Conclusions

	Background
	Related research
	An illustrative example

	Methods
	Structure of a natural language interpretable database
	Common knowledge ontology
	Ontology augmented schema graph
	Procedure for generating the schema graph
	Mapping ontology to schema graph
	Database to schema graph mapping

	Query transformation
	Semantic roles of objects in queries
	Correspondence between English sentence structures and concepts
	A generalized mapping procedure

	Results and discussion
	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

