
Wayne State University

Wayne State University Theses

1-1-2010

Electroless Deposition Of Superconducting
Magnesium Diboride Thin Films On Various
Substrates
Khrupa Saagar Vijayaragavan
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Chemical Engineering Commons, Electromagnetics and Photonics Commons, and
the Materials Science and Engineering Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Vijayaragavan, Khrupa Saagar, "Electroless Deposition Of Superconducting Magnesium Diboride Thin Films On Various Substrates"
(2010). Wayne State University Theses. Paper 30.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/30?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

ELECTROLESS DEPOSITION OF SUPERCONDUCTING MAGNESIUM DIB ORIDE 
THIN FILMS ON VARIOUS SUBSTRATES 

 
by 

KHRUPA SAAGAR VIJAYARAGAVAN 

                                                                     THESIS 

Submitted to the Graduate school 

of Wayne State University, 

Detroit, Michigan 

in partial fulfillment of the requirements  

for the degree of 

MASTER OF SCIENCE 

2010 

                                                                          MAJOR: CHEMICAL ENGINEERING 

                                                                          Approved By:                                                                   

 
                                                                          Advisor                                          Date                                                                                                                                            

                                                                                                                                            
                                                                            
                                                                         Advisor                                           Date 
 

 
 

 
 

 
 

 



 
 

DEDICATION 
 

This thesis is dedicated to my wonderful parents, Vijayaragavan and Subhashree who 

raised me to be the person I am today. I would like to thank my brother, sister-in-law, 

grandmother, my uncle, aunt and beloved cousins for being there through my good and bad 

times. Thank you for unconditional love, guidance, support that you have always given me, 

helping me succeed and instilling in me the required confidence. I also thank my closest friends 

that I am fortunate enough to have been blessed with.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 

ACKNOWLEDGMENTS 
 

I am deeply indebted to my advisor Dr. Susil K Putatunda and co-advisor Dr. Gavin 

Lawes for their constant support. Without their help, this work would not be possible. I would 

like to thank my committee members to attend my thesis defense: Dr. Howard Matthew and Dr. 

Harpreet Singh. Their advice and patience is appreciated. I thank my department chair Dr. 

Charles Manke and Dr. Yinlung Huang for giving me a chance to participate in the department 

research activity. Many thanks to Dr. Ratna Naik for giving me permission and access to utilize 

laboratory facilities in Department of Physics and Astronomy    

I must also acknowledge Mr. Ambesh Dixit, PhD student of Physics Department for his 

advice, science discussions and helping me obtain magnetic susceptibility data through SQUID 

measurements on my samples without whom my research would be incomplete. I gratefully 

thank Dr. Yi Liu for training and support on scanning electron microscope and Dr. Mary Jane 

Heeg for X-Ray diffractional analysis. 

I would like to show my gratitude to my close and extended family members for 

providing a loving support. Also to my lab mates Abhijith, Abhilash, Codrick and Varun for 

friendly environment during laboratory work hours. 

In conclusion I recognize that this research would not have been possible without the 

financial assistance of National Science Foundation (NSF) for our project. My gratitude to Dr 

Susil K Putatunda and my chair for providing me graduate teaching and research assistantship.    

 

 
 
 
 
 
 



 
 

TABLE OF CONTENTS 

 
Dedication ...................................................................................................................................... iii 

Acknowledgements ........................................................................................................................ iv 

List of Tables ............................................................................................................................... viii 

List of Figures ................................................................................................................................ ix 

CHAPTER 1 – INTRODUCTION  .............................................................................................. 1 

1.1 – Introduction ................................................................................................................... 1 

CHAPTER 2 – LITREATURE REVIEW  .................................................................................. 4 

2.1 – Superconductivity and its theory ....................................................................................... 4 

2.2 - Meissner Effect ................................................................................................................... 5 

2.3 - High Temperature Superconductors ................................................................................... 7 

2.4   Magnesium Diboride and its Properties .............................................................................. 9 

2.5   Electroless Plating ............................................................................................................. 12 

2.5.1   Thermodynamic Analysis of Electroless Plating ....................................................... 14 

2.5.2   Advantages of Electroless Plating ............................................................................. 15 

2.5.3   Applications of Electroless Plating ............................................................................ 15 

OBJECTIVE  ............................................................................................................................... 16 

2.6   Plating Variables ............................................................................................................... 17 

2.6.2   Stabilizers ................................................................................................................... 18 

2.6.4   Hypophosphite ........................................................................................................... 18 

2.6.5   Contamination ............................................................................................................ 18 

2.6.6   Operating pH .............................................................................................................. 19 

2.6.7   Operating Temperature .............................................................................................. 19 



 
 

CHAPTER 3 - EXPERIMENTAL PROCEDURE  .................................................................. 20 

3.1   Surface Preparation ........................................................................................................... 20 

3.1.1   Surface Preparation on Copper / Silver / Gold .............................................................. 20 

3.1.1.1   Alkaline Soak Clean ........................................................................................... 20 

3.1.1.2   Water Rinse ......................................................................................................... 20 

3.1.1.3   Electrolytic Clean ................................................................................................ 21 

3.1.1.4   Acid Clean .......................................................................................................... 21 

3.1.2 Surface Preparation on Silicon ..................................................................................... 21 

3.1.2.2   De-Ionized Water Rinse ...................................................................................... 22 

3.1.2.3   Sensitizing ........................................................................................................... 22 

3.2.1 Surface Activation on Copper / Silver / Gold .............................................................. 22 

3.2.2   Surface Activation on Silicon .................................................................................... 23 

3.3   Electroless Deposition ...................................................................................................... 23 

3.3.1   Electroless plating for Silver and Gold (Acidic Medium) ......................................... 23 

3.3.2   Electroless plating for Silicon and Copper (Alkaline Medium) ................................ 24 

3.4   Annealing of as-deposited MgB2 film .............................................................................. 26 

3.5   Characterization of deposited sample ............................................................................... 26 

3.5.1   Surface Morphology .................................................................................................. 26 

3.5.2   Compositional Analysis ............................................................................................. 26 

3.5.3   Temperature Dependent Magnetization Measurements ............................................ 26 

CHAPTER 4 - RESULTS & DISCUSSIONS………………………………………………...26 

4.1   Compositional Analysis .................................................................................................... 27 

4.2   Surface Morphology ......................................................................................................... 29 



 
 

4.2.1   Silicon Substrate ........................................................................................................ 29 

4.2.2   Copper ........................................................................................................................ 32 

4.2.3 Thin film Dimensional Thickness ................................................................................ 33 

4.3   Temperature Dependent Magnetization Measurements ................................................... 34 

4.3.1   Gold and Silver .......................................................................................................... 34 

4.3.2   Silicon ........................................................................................................................ 36 

4.4   Raman Spectra .................................................................................................................. 39 

CHAPTER 5 - CONCLUSIONS ............................................................................................... 41 

Refrences....................................................................................................................................... 45 

Abstract ......................................................................................................................................... 48 

Autobiographical Statement.......................................................................................................... 50 

  

 

 

 
 

 
 

 
 

 
 

 
 

 



 
 

LIST OF TABLES 
 

Table 3.1 Composition of acidic plating bath……………………………………………………24 

 

Table 3.2 Composition of alkaline plating bath………………………………………………….25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 
 

LIST OF FIGURES 

Figure 2.1 The Meissner effect in superconductor…………………………………………….......7 

Figure 2.2 Types of superconductors……………………………………………………………....8 

Figure 2.3 High temperature superconductor……………………………………………………....9 

Figure 2.3 The crystal structure of Magnesium Diboride……………………………………........11 

Figure 4.1 XRD pattern of the as-deposited MgB2 film on (a) Ag, and (b) Si substrates…….......28  

Figure 4.2 SEM image of MgB2 film deposited on silicon substrate using electroless plating........30 

Figure 4.3 SEM image of MgB2 film deposited on silicon substrate using electroless plating…....31 

Figure 4.4 SEM image of MgB2 film deposited on copper substrate using electroless plating…....32 

Figure 4.5 Thickness of MgB2 film on silicon and silver……………………………………..........33 

Figure 4.6 (a) Magnetic susceptibility, plotted in units for a perfect diamagnetic, for MgB2            
deposited on an Au substrate, (b) Magnetic susceptibility for MgB2 deposited on            
an Ag substrate……………………………………………..........................………......35 

Figure 4.7 Magnetic susceptibility of MgB2 deposited on Si measured at different magnetic 
fields…………………………………………………………………………………....37 

Figure 4.8 (a) Raman spectrum for MgB2 deposited on Ag, (b) Raman spectrum for MgB2  
deposited on Si...…………………………………………………….………….……....40



1 
 

CHAPTER 1 – INTRODUCTION 

1.1 – Introduction 

  Since 1960’s researchers have explored the possibility that superconducting properties 

of thin films may be superior to or at least different from those of bulk materials. A number of 

techniques have been developed for synthesizing superconducting thin film including 

electrochemical synthesis [1]; electrophoresis based techniques [2], sol-gel synthesis [3], 

molecular beam epitaxy [4], ion beam synthesis [5], and pulsed laser deposition [6], among 

others. These techniques have several limitations such as requiring high temperatures and high 

pressures, possibly producing non uniform coatings, and result in high processing costs. They 

also require complex equipment such as vacuum deposition chamber, ion implant chamber, 

electrode assemblies etc, or are only suitable for producing thin films on certain types of 

conductive substrates as in case of electrochemical synthesis. Electroless Plating is an effective 

alternate technique for preparing superconducting thin films on diverse substrates having 

irregular shape and size. Electroless plating typically uses a redox reaction to deposit metals on 

surfaces without requiring an electric current [8, 9]. The technique of electroless plating 

addresses some of the processing shortcomings of these other deposition processes like 

limitations on the substrate size and geometry, energy consumption and cost. To date, this 

technique has been almost universally employed only for the deposition of elemental metals. 

 In recent years there has been significant interest in preparing superconducting thin films 

of magnesium diboride (MgB2). Its relatively high critical temperature of 39 K, large critical 

field, coherence length, magnetic penetration depth, and high critical current have raised 

considerable interest among researchers concerning its potential applications in thin film based 

devices. 
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Preliminary work investigating the electroless deposition of Lead films on a variety of 

substrates and MgB2 films on copper established the suitability of this technique for preparing 

superconducting thin films [10]. However, these studies also found that the MgB2 films prepared 

on Cu exhibited a superconducting fraction of only 0.1% and the film quality was strongly 

affected by the presence of oxygen and impurities during preparation of the precursor materials 

and the deposition process [11]. To address these limitations, we investigated the deposition of 

MgB2 onto noble metals like silver and gold. Motivated by the observation that using substrate 

materials high on the electromotive force series (EMF) results in higher quality films, we 

extended our study to explore electroless deposition on silicon while controlling the oxidation 

potential of the electrolytic bath. Silicon, apart from being non-metallic, non-conductive in 

nature, it has many other advantages over gold and silver as cost, availability of the material. It is 

most widely used material in electronics industry and a junction between the study & application 

area of superconductors and semiconductors.  

We conducted extensive physical characterization of these superconducting films. The 

crystallinity and microstructure of the samples were investigated using X-Ray diffraction, Raman 

spectrometry, and SEM imaging. The X-ray diffraction was done by a Rigaku rotating anode 

(Ru-2000) X-ray diffractometer, while the Raman used a Triax spectrometer and Ar+-ion laser, 

and the SEM images were obtained on a Hitachi S-2400 system. We also conducted magnetic 

susceptibility measurements to probe the superconducting properties of these films using SQUID 

magnetometer (Quantum Design MPMS-5S) to obtain the DC magnetization and a Physical 

Property Measurement System (Quantum Design PPMS) capable of measuring both DC and AC 

magnetic susceptibility. X-ray diffraction and Raman spectroscopy confirmed the presence of 
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polycrystalline MgB2 along with some impurities. All the films show a superconducting 

transition at 39 K, the value of bulk MgB2 with superconducting volume fraction of 1 �2 %  
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CHAPTER 2 – LITREATURE REVIEW  
 

2.1 – Superconductivity and its theory 

Superconductivity was discovered by Kammerlingh Onnes in 1911. It is an element, 

inter-metallic alloy or compound that will conduct electricity without resistance below critical 

temperature. In many applications, Resistance is undesirable because it produces losses in energy 

flowing through the material. Once set in motion, electrical current will flow forever in a closed 

loop of superconducting material [12]  

Electrical resistance in metals arises because electrons propagating through the solid are 

scattered due to deviations from perfect translational symmetry. These are produced either by 

impurities or defects or the phonons or lattice vibrations in a solid. 

Inside a superconductor the behavior of electrons is quite different. The impurities and 

lattice are still there, but here the superconducting electrons travel through the material with no 

measurable loss in the current and energy [13]. Within a superconductor, electrons having 

opposite spin and momentum couple together to form cooper pairs which is held together by the 

lattice vibrations called phonons. This electron-phonon interaction gives rise to a highly 

correlated pair of conduction electrons which flow in a single coherent motion. Below Tc, the 

cooper pair are not scattered by defects in a crystal lattice and they flow without any dissipation 

[14] 

The essential point is that below Tc the binding energy of a pair of electrons causes the 

opening of a gap in the energy spectrum at Ef (the Fermi energy), separating the pair states from 

the "normal" single electron states. The size of a Cooper pair is given by the coherence length 

which is typically 1000Å. The space occupied by one pair contains many other pairs, and there is 
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thus a complex interdependence of the occupancy of the pair states. There is then insufficient 

thermal energy to scatter the pairs, as reversing the direction of travel of one electron in the pair 

requires the destruction of the pair and many other pairs due to the nature of the many-electron 

BCS wave function. The pairs thus carry current unimpeded, at least for sufficiently small 

currents. 

BCS theory has been successful in explanation of low Tc superconductors such as 

Nb3Ge (Tc = 23K). The central supposition of BCS theory is the idea that electrons at very low 

temperature behave like a super fluid and in the atomic lattice of a material, they couple together 

to form cooper pairs. The electrons are bound together by their interaction with the vibrations of 

the underlying lattice: one electron in the pair polarizes the lattice by attracting the nuclei 

towards it, leaving a region of excess positive charge (a potential well) into which a second 

electron is attracted - the positively charged nuclei thus mediate an attraction between the 

negatively charged electrons. Only electrons with energies close to Ef, strictly speaking, within 

hω, where ω is a characteristic phonon frequency, can be paired by this interaction, and so only a 

small fraction of the electrons become superconducting [15] 

2.2 - Meissner Effect 

       The abrupt transition from the normal to superconducting state occurs at a boundary 

defined not only by the transition temperature (Tc) but also by magnetic field strength. There is a 

critical value of magnetic field, Hc, above which the superconductivity is destroyed [16, 17]. If a 

paramagnetic or diamagnetic material is placed in a magnetic field, then the magnetic lines of 

force penetrate through the material as shown in Figure 2.1(a). However when the same material 

is made superconducting by cooling to a low temperature below Tc then the magnetic lines of 

force are completely expelled from the interior of material, at least for small magnetic fields, as 
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shown in Figure 2.1(b). This effect is called Meissner effect. Based on Meissner effect, the 

superconducting materials are classified as Type 1 and Type 2 superconductors.           

 

(A)                                                        (B) 

                                        Figure 2.1 The Meissner effect in superconductor 

In Type 1 superconductor there is a sharp transition from superconducting state to 

normal state as shown in Figure 2.2 (a), with no magnetic flux ever penetrating the 

superconducting state [18]. This kind of behavior is shown by pure metals.  

In Type 2 superconductors there are two values of critical field: the lower critical field, 

Hc1, and the upper critical field Hc2. For H<Hc1, the field is completely expelled from 

superconductor [19]. However for H>Hc1, the magnetic field penetrates the material slowly and 

continues to Hc2, beyond which the material transforms completely from superconducting state to 
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normal state. The state between Hc1 and Hc2 is called vortex or mixed state. Figure 2.2 (b) shows 

H-T phase diagram for conventional low Tc superconductors. At low fields, there is meissner 

effect and at high fields vortices enter the material from a vortex lattice. Superconductivity is 

completely destroyed Hc2 for which the density of vertices is such that the normal cores fill the 

entire material. For low Tc superconductors, this behavior is exhibited, in general, by alloys and 

compounds. On the other hand all high Tc superconductors behave as Type 2 superconductors.    

       

 

Figure 2.2 Types of superconductors 

 

2.3 - High Temperature Superconductors 
 

The high temperature superconductors represent a new class of materials which bear 

extraordinary superconducting and magnetic properties and great potential for wide-ranging 

technological applications. This class of materials not only show high temperature 

superconductivity but also shows properties that are different than classical superconductors. 
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They offer a great challenge to understanding the basic phenomenon that causes 

superconductivity in these materials and to developing the appropriate preparation. There has 

also been great progress in understanding the properties of materials developing different 

methods of preparation and realizing superconducting devices which use these superconductors 

[20]. 

The first of the high temperature superconductors to be identified was Ba doped La2CuO4 

in 1986, which exhibited a transition temperature of Tc=30 K. This result was remarkable 

because the parent compound was anti ferromagnetic, insulating and because this transition 

temperature was much higher than what could be predicted by BCS theory [20]. Since then there 

have been many discoveries in the field of HTS classifying them into metallic low temperature 

superconductors, cuprate based, iron based and other high temperature superconductors.  

       The structure of high Tc superconductors is closely related to pervoskite structure 

discovered in 1986. The unit cell consists of two metal atoms A and B with three oxygen atoms 

with the general formula given as ABO3 [20]. The ideal structure is as shown in the Figure 2.3. 

Atom A sitting at the body centered site is coordinated by 12 oxygen atoms. Atom B occupies 

the corner site and oxygen occupies the edge centered position.                                                                                   

                                                                   

Figure 2.3 High temperature superconductors 
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High Tc superconductors are prepared in form of bulk, thick films, thin films, single 

crystals, tapes and wires. Strict control of stoichiometry of composition is very much required for 

preparing high Tc superconductors with desirable characteristics. Even a small change in oxygen 

content or cation doping level can transform the material from a superconductor to a low carrier 

density metal or even to insulator.  

       For thin films different techniques such as sputtering, evaporation, molecular beam 

epitaxy, laser ablation, chemical vapor deposition and so forth have been used for thin film high 

Tc superconductors. Most of these techniques work in vacuum environment and the oxygen 

partial pressure near the substrate is controlled to obtain superconducting thin film. This can be 

done during film deposition or post deposition annealing. The substrate temperature during 

deposition is a crucial parameter that determines microstructural details such as texture and 

degree of epitaxy. It is desirable to develop low temperature process to maintain good quality 

films and prevent substrate film interaction.     

2.4   Magnesium Diboride and its Properties 
  
       The discovery of its superconducting nature with Tc 39 K [22] was announced by 

Nagametsu and his co-workers in Journal Nature 2001. The critical temperature is the highest 

among the superconducting transition temperatures of all metallic compounds, but still smaller in 

comparison with that of some other high Tc superconductors, such as the cuprate 

superconductors. MgB2 does not require the very low temperatures of conventional 

superconductors, so it would be used to fabricate devices that operate in liquid helium, liquid 

hydrogen, or cryocoolers. As a consequence of large coherence length, this compound has weak 

free grain boundaries, and therefore, high transport current densities of order of 106 A/cm2 and 

high upper critical magnetic field in the temperature range from 4.2 K to 25 K in bulk sample. 
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Another important reason to count MgB2 as a promising candidate for industrial application is 

because it’s low cost and it is abundantly available. Practical long-length multifilament 

conductors can be made more inexpensively than niobium-based low temperature 

superconductors and sterling silver-clad low temperature superconductors. The density of MgB2 

is comparable to aluminum, leading to its uses in lightweight applications as well.  

      MgB2 has a simple hexagonal crystal structure with P6/mm symmetry in which graphite 

like honeycomb layer of boron atoms is stacked in between two hexagonal layers of magnesium 

atoms. This structure is very similar to that of graphite where each carbon atom – which has four 

valence electrons – is bonded to three others and occupies all planar bonding states (the sigma 

bands) [23]. The remaining electron moves in orbitals above and below the plane to form pi 

bands. Boron atoms have fewer valence electrons than carbon so not all of the sigma bands are 

occupied. This means that lattice vibrations in the planes are much larger, which results in the 

formation of strong electron pairs [24]. Even though superconductivity in MgB2 is much lower 

than high temperature cuprates it is important because of its superiority over high Tc materials. 

Firstly it is made up of light and cheap elements abundantly in nature. Secondly, unlike cuprates 

MgB2 doesn’t have high contact resistance between grain boundaries eliminating weak link 

problem that has plagued wide spread commercialization of the cuprates. Further, the conduction 

electron density and normal state conductivity are one to two orders of magnitude higher for 

MgB2 than for the cuprates in the present day wires and thin films [25]. These features make 

MgB2 attractive for many applications.  

We now discuss some of the experiments on MgB2 thin films in restricted geometry. Thin 

films have a wide range of applications in electronic industry e.g. digital convertors, transmitters 

and receivers. Thin films are also useful for their power storage, transmission and consumption 
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of extremely low power.  There has been a significant amount of work done on developing MgB2 

wires and films that could be used for commercial applications. Hot isostatic pressing of wires 

made of magnesium diboride has shown that the critical current for these wires are significantly 

higher than Nb based superconductors. 

 

 

 

 

 

                            

                                   Figure 2.4 The crystal structure of Magnesium Diboride 

 Filaments made from MgB2 could significantly reduce the costs for applications using 

superconducting wires such as magnetic resonance imaging and electrical generators.  At 

present, a large number of groups around the world are engaged in the fabrication of wires and 

the preparation of high quality thin films for possible device applications. However, fabricating 

MgB2 films is complicated because of large differences in vapor pressure between B and Mg and 

because Mg oxidizes easily. These problems do not arise in the electroless deposition process. 

MgB2 may also prove to be useful in developing devices for electronic applications as well. Thin 

films of MgB2 may have applications in thin film geometries based superconducting devices 

such as Josephson junctions and superconducting quantum interference devices (SQUIDs).   

Many workers have been successful in growing MgB2 films using different techniques, 

such as pulsed laser deposition, molecular beam epitaxy, dc magnetron sputtering, hybrid 

physical–chemical vapor deposition, co-deposition and electrophoresis. These methods consist of 
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two-step growth processes. The first step is deposition of Mg–B or B precursor films and the 

second step is high-temperature annealing in Mg vapor. The high-temperature process involved 

in the above methods, however, hinders the fabrication of multilayer and high-quality Josephson 

tunnel junctions. To fabricate Josephson tunnel junctions with MgB2 films, a low-temperature 

method of depositing as-grown MgB2 thin films needs to be developed. 

2.5   Electroless Plating  
 

The technique of using a redox reaction to deposit metal on surface without use of 

electric current is termed as Electroless plating The chemical deposition of a metal from an 

aqueous solution of a salt of said metal has an electrochemical mechanism of involving both 

oxidation and reduction reactions involving the transfer of electrons between reacting chemical 

species [8]. The oxidation of a substance is characterized by the loss of electrons, while 

reduction is characterized by a gain of electrons. Further, oxidation describes an anodic process, 

whereas reduction indicates a cathodic action. For example when magnesium metal is immersed 

in copper sulphate solution, the magnesium metal atoms dissolve and are spontaneously replaced 

by copper atoms.  

 

Oxidation                  Mg                           Mg2+(aq) + 2e        Eo = +2.36 V                 (1) 

Reduction                 Cu2+(aq) + 2e           Cu(s)                      Eo = +0.34 V                 (2) 

Overall Equation       Mg(s) + Cu2+ (aq)     Mg2+(aq) + Cu(s) Eo = +2.70 V                  (3) 

In order to continuously build thick deposits by chemical means without consuming the 

substrate, it is essential than a sustainable oxidation reaction be employed as an alternative to the 

dissolution of the substrate. The deposition reaction must occur initially and exclusively on the 

substrate and subsequently continue to deposit on the initial deposit. The redox potential for this 
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chemical process is usually more positive than that for a metal being deposited by immersion. In 

general, electroless plating is characterized by the selective reduction of metal ions only at the 

surface of a catalytic substrate immersed into an aqueous solution of said metal ions, with 

continued deposition on the substrate through catalytic action of the deposit itself. Since the 

deposit catalyzes the reduction reaction, the term autocatalytic is also used to describe the plating 

process. This process offers distinct advantages when plating irregular shaped objects, holes, 

recesses, internal surfaces, valves or threaded parts.  

Electroless deposition of metals can be explained as the sum of the cathodic reduction of 

the metal combined with the anodic oxidation of the reducing agent, both on the catalytic 

surface. In addition, there might be also some interference effects between the reactions. 

Therefore, the complete reaction is a result of a combination of two different partial reactions. 

Those two partial reactions, however, occur at one electrode, the same metal/solution interface. 

For example the chemical deposition of cobalt metal by hypophosphite requires partial reactions 

meeting both oxidation and reduction reactions without changing mass of substrate.  

 

Reduction    Co2+  + 2e-                                      Coo                                              (4) 

Oxidation     H2PO2-  + H2O                              H2PO3- + 2H+ + 2e-                  (5) 

Overall Reaction Co2+ + H2PO2- + H2O             Coo + H2PO3- + 2H+                      (6) 

All of these postulations were made on a base of the Wagner-Traud mixed potential theory 

of corrosion processes [26]. According to this theory, the rate of a faradaic process is 

independent of other faradaic processes occurring simultaneously at the electrode and thus 

depends only on the electrode potential. Hence the polarization curves for the independent 

anodic and cathodic processes may be added to predict the overall rates and potentials which 
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exist when more than one reaction occurs simultaneously at an electrode. According to the 

Wagner and Traud theory electroless metal plating processes have been identified as mixed 

potential systems, and it has been suggested that the electroless plating mechanisms can be 

predicted from the polarization curves for the partial processes. Such polarization curves can be 

obtained by one or more of the following methods: 

1. By applying the steady-state galvanostatic or potentiostatic pulse method to each partial 

reaction separately;  

2. By applying potential scanning techniques to a rotating disk electrode;  

3. By measuring the plating rate from the substrate weight-gain as a function of the 

concentration of the reductant or the oxidant.  

          The plating rate is then plotted against the mixed potential to obtain the Tafel parameter. 

Application of the mixed potential theory has led to a technique by which electroless plating 

processes may be classified according to their overall mechanisms.  

2.5.1   Thermodynamic Analysis of Electroless Plating 
 
           The autocatalytic metal reduction reactions are classified as redox reactions with the metal 

as a final product. Such reactions may take place both in aqueous and non aqueous media. Metals 

that are thermodynamically stable in water are candidates for autocatalytic reduction in aqueous 

media. Such metals are Fe, Cd, Tl, Co, Ni, Sn, Pb, Bi, Re, In, Cu, Hg, Pd, Pt and Au [26].             

However, reactions that are possible from thermodynamics considerations are retarded due to the 

reaction’s kinetics and the overall deposition rate is very low. Moreover, the product of the 

autocatalytic metal reduction does not necessarily from continuous metal layer. It may be high 

porous deposit or metal powder. The autocatalytic metal reduction reactions have top chemical 

nature, i.e., they occur at the interface between the product and the reaction media. 
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Consequently, the reaction has many stages and there are many parameters that govern the 

overall reaction kinetics. Among those parameters are the following: 

a) Transport phenomena of reactive species in the liquid 

b) Transport phenomena of the reactive species at the solid/liquid interface 

c) Transport phenomena of adsorbed species on the interface; 

d) The nucleation kinetics 

e) The kinetics of the electrochemical and chemical reactions that take place at the liquid and 

solid/liquid interface  

2.5.2   Advantages of Electroless Plating  
 
a) Excellent uniformity of coating thickness, demonstrating 100% Throwing Power [28]  

b) Bulk processing capability  

c) Ability to produce unique catalytic coatings   

d) Ability to coat non-conductive materials such as ceramics and plastics.  

e) No need to use electric power and electrical contacts are eliminated   

f) Homogenous chemical, mechanical and magnetic properties.  

g) It can be used to uniformly coat irregular shaped objects. 

2.5.3   Applications of Electroless Plating 
 
1. Plating on Plastics: The plated plastic parts having many potential uses. In consumer products 

plating has been used primarily for decorative purposes. It has many functional advantages in the 

plumbing and marine industries as electroless plated parts are far more corrosion resistant than 

electroplated parts.  
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2. Solderability: Electroless nickel has been widely used in soldering aluminum parts. It is 

similarly effective for steel 

3. Electronics: The application is for plating through holes in printed circuit boards. Plated holes 

are used to provide either a conducting path for the two sides of the board or wicking path for 

solder during installation.  

4. Automotive: Shock Absorbers, heat sinks, gears, cylinders, brake pistons etc.  

5. Aviation & Aerospace: Satellite and rocket components, rams pistons, valve components etc. 

6. Oil & Gas: Valve components, such as Balls, Gates, Plugs etc. And other components such as 

pumps, pipe fittings, packers, barrels etc.  

OBJECTIVE 

The primary objective is to develop a novel electroless plating process for the synthesis 

of thin films of superconducting magnesium diboride on a range of insulating, conducting and 

semiconducting substrates. The secondary objective is to characterize these films using different 

analytical techniques including X ray diffraction, magnetic susceptibility, energy dispersive X-

ray analysis and Raman spectroscopy to ascertain the reproducibility and durable 

superconducting properties of these films. In order to prepare compound superconducting films 

using novel electroless plating technique, it will be necessary to obtain the relevant 

thermodynamic data and determine the rate controlling mechanism for this process. These 

studies will clarify the role of oxidation potential during the deposition process. 
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2.6   Plating Variables 
 

The chemical and physical properties of electroless plating depend on its composition, 

which, in turn, depends on the formulation and operating conditions of the plating bath. The 

constituents of the solution are: 

• Source of metallic ions 

• A reducing agent 

• Suitable complexing agent 

• Stabilizer/Inhibitors 

• Energy 

Every plating process requires and benefits from process control. It is vital to achieve the 

desired properties. Most commonly desired properties include corrosion resistance, hardness and 

wear resistance. The chemistry, operating parameters, surface preparation and equipment 

considerations are the primary variables that influence deposition rate, coverage, adhesion, 

smoothness, uniformity and brightness [29].  

The three primary areas include the chemical balance, the interaction of rate and loading 

effects and the influence of the process equipment on the final quality.  

 
2.6.1   Chemistry and chemical balance 

The key to a successful plating system is proper replenishment. Neglecting replenishment 

schedules or maintenance of solution levels can cause non-uniform deposits, premature bath 

decomposition, slow deposition rates, poor adhesions, poor brightness, pitting or roughness [29]. 

Usually, the effects of poor bath control are seen immediately after the parts have been plated. 

With a variety of chemical materials comprising these systems, an imbalance will likely cause 

some negative result.  
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2.6.2   Stabilizers  

Stabilizers are important in regulating the plating rate while also preventing the solution 

from spontaneously decomposing.  

2.6.3   Magnesium and Boron controls  

As the metal ions decreases, the rate of deposition decreases. A decreasing Mg and B 

concentration affects the coverage, brightness and uniformity of the deposit through a reduction 

of the plating rate or initiation of plate. In order to maintain these properties at an optimum level, 

small frequent additions should be made. In addition to stabilizer effects than can result, large 

chemistry replenishments tend to shock the solution, possibly resulting in salt precipitation, 

deposit porosity and roughness, especially in aged baths. 

2.6.4   Hypophosphite  
 

The reducing agent is consumed both productively and non-productively during plating. 

The reducing agent influences plating efficiency. During plating, the sodium hypophosphite 

reducing agent, “the chemical rectifier”, is consumed in a given ratio to the metals in plating. 

The reducing agent is also consumed non-productively through hydrolysis, which occurs, when 

solution is kept at the operating temperature and not used to plate. To optimize, the 

hypophosphite efficiency, it is important to heat up and cool down the solution quickly while 

maintaining a constant process load in the tank when solution is heated.  

2.6.5   Contamination  
 

The concentration of trace metals and other contaminants within the plating solution will 

affect deposit quality and appearance. Some metals may also tend to act as stabilizers and/or 

catalytic poisons that inhibit plating. Elements that act as stabilizers include sulfur, cadmium, 
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bismuth, antimony, mercury, lead, zinc and iron. Source of organic contamination include 

masking agents, oils, plasticizers.  

2.6.6   Operating pH  
 

The solution’s operating pH is an important parameter because it affects the plating rate 

and amount of phosphorous co-deposited. Higher pH values favor lower phosphorus contents in 

the deposit while increasing the plating rate. Higher pH values, within the range for the particular 

system used, can lead to precipitation of metal hydroxides or orthophosphates. The precipitation 

normally causes porosity, which affects corrosion resistance. The pH is easily checked 

electrometrically or with pH papers.  

2.6.7   Operating Temperature 
 

The temperature of plating solution is one of the most important factors affecting 

deposition. It is important to have the proper heating system to avoid localized overheating, 

which can result in bath decomposition or deposit roughness. It also has an influence on deposit 

smoothness, coverage and adhesion.  
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CHAPTER 3 - EXPERIMENTAL PROCEDURE 

 

3.1   Surface Preparation 
 

An important characteristic of plating metals is the strength of the bond that can develop 

between the base metal and coating. Metal to metal bonds with high adhesion values require 

thorough surface preparation – removing from base metal surface foreign contaminants and 

eliminating mechanically distorted surface layers to present a clean healthy surface structure. 

The surface contamination can be extrinsic, comprised of organic debris and mineral dust from 

the environment or can also be intrinsic, an example being a native oxide layer [30]. Cleaning 

methods needs to be carefully selected and designed to minimize substrate damage. An improper 

treatment can affect and thus increase the porosity of metal substrate, creating more passive spots 

that will not initiate electroless plating.  

3.1.1   Surface Preparation on Copper / Silver / Gold 

3.1.1.1   Alkaline Soak Clean 
 

The first step in pre-treatment was carried out using DS Ronaclean GP 300 LF, a low 

foaming high detergency alkaline soak cleaner. It is designed for primary cleaning of metals with 

or without use of organic solvent degreasing. A copper metal strip was immersed in alkaline 

solution for 2 – 3 minutes, when the solution was maintained at a temperature of 70 deg C. The 

solute concentration was 40-55 g/l and it was diluted using de-ionized distilled water. 

3.1.1.2   Water Rinse 
 

Through the entire pre-treatment process, the metal plate was rinsed in de-ionized water 

in between steps in order to remove alkaline salt residues and unwanted impurities settled on the 

surface. The de-ionized water was obtained from U.S Filter Pure lab having resistivity of 18 
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M/cm for all rinsing operations. The de-ionized water rinsing is essential after every step to 

prepare the surface for next efficient cleaning procedure.   

3.1.1.3   Electrolytic Clean  
 

Electro cleaning is the normal way to prepare parts for electroless plating. In this case we 

used anodic electro cleaning for final cleaning. The metal surface is actually being dissolved as 

well as cleaned. This action removes metallic smuts and prevents deposition of non-adherent 

metallic particles. At the interface of metal and solution oxygen is liberated which helps 

removing soil.    

The solution used was alkaline salt of Ronaclean GP 300 LF at concentration of 45-60 g/l.  It 

was heated to a temperature of 65-85 deg C for 2-3 minutes with copper connected to anode and 

graphite to cathode. A direct electric current supply of 5V was passed through the solution.  

3.1.1.4   Acid Clean 
 

It is a process where a solution of a mineral acid, organic acid, or acid salt in a 

combination of wetting agent and detergent is used to remove oxide, shop soil, oil, grease and 

other contaminants from the metal surfaces with or without application of heat. In our 

experiment we soaked the copper foil in 2-5 % dilute sulphuric acid for 1-2 minutes at room 

temperature to remove the alkaline residues left behind after alkaline soak clean and electro 

clean. 

3.1.2 Surface Preparation on Silicon 
 

The main difference between metallic and non metallic surfaces resides in the nature of 

bond between substrate and coating. The adhering to metal is atomic in nature but to non 

metallic is mechanical in nature. It is necessary to attain a right topography on silicon by 
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chemical and mechanical treatment. Their non catalytic nature requires them to undergo 

activation treatments. 

 3.1.2.1   Etching 

The silicon as described in earlier text requires a good mechanical treatment before the 

sensitization and activation steps. The substrate is etched using by 2-20 % dilute hydrofluoric 

acid with 18g/l of Aluminum fluoride dissolved in HF solution for 5-10 mins at room 

temperature.  

3.1.2.2   De-Ionized Water Rinse 

The etching is followed by water rinse to remove the fluoride residues left behind on the 

non-metallic substrate. The water was obtained from U.S Filter Purelab Plus deionization unit 

having resistivity of 18 M/ cm for rinsing operations. The water rinse is performed on substrate 

after each step of the cleaning process.  

3.1.2.3   Sensitizing 
 

This is a process of forming catalytic nuclei for electroless plating thereon, before 

immersing in electroless plating bath. Sensitizing for silicon is accomplished by immersing parts 

in a 50g/l of acid stannous chloride solution at room temperature for 5 minutes.   

3.2.1 Surface Activation on Copper / Silver / Gold 
 

In a process of electroless plating of magnesium Diboride onto a substrate of copper an 

aqueous solution of magnesium Diboride is used as an activator on to the substrate prior to the 

plating. The activation bath contains 1% MgB2 plating solution and the copper metal strip is 

dipped in the solution for 30-40 seconds at a temperature of 50-60 deg C with using copper as 

cathode and cleaned stainless steel as anode. A steady electric current of 5V from a DC source is 
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passed through the weak electrochemical bath. The metal strip needs to be rinsed off before final 

electroless plating procedure.  

3.2.2   Surface Activation on Silicon 
 

To make the surface active the substrate is treated with 0.1 – 0.5g/l of palladium chloride 

with 1-3 g/l of hydrochloric acid at room temperature for 5-10 minutes. After activation the parts 

should be ready for electroless plating with hypophosphite electroless MgB2 solutions. It must be 

remembered that final adherence of electroless deposit will not only depend on pretreatment, but 

also on the characteristics of the plating process    

3.3   Electroless Deposition 
 

The cleaned and pre-treated substrate is used for electroless plating technique. For our 

experiments we carried out two different plating bath conditions. In case of silver and gold 

substrate we have made use of acidic medium based electroless plating bath solution and for 

copper and silicon plates we use an alkaline based electroless bath solution. The parameter 

details and bath conditions for each of them as explained below 

3.3.1   Electroless plating for Silver and Gold (Acidic Medium) 
 

The electroless plating of MgB2 on silver and gold required an acidic bath with a high 

redox potential. The plating bath contained MgB2 powder, a reducing agent (Sodium 

hypophosphite), a complexing agent (Sodium Succinate), a buffer (Sodium acetate) and 

Dimethyl Sulphoxide (80 ml/L) to prevent oxidation. The operating temperature of the bath was 

held between 70-75˚C with the pH maintained at 6±0.5. The plating process was carried out in a 

dry argon atmosphere. 
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3.3.2   Electroless plating for Silicon and Copper (Alkaline Medium) 
 

We used an alkaline bath with a low redox potential for the electroless deposition of 

MgB2 on silicon. This plating bath was composed of MgB2 powder, Sodium citrate, and Sodium 

hypophosphite. Sodium citrate was used as the complexing agent, sodium hypophosphite as the 

reducing agent.  We also added ammonium hydroxide (NH4OH) to adjust the pH to 12±0.5, with 

the temperature held at 73±3oC. The molar concentration of MgB2 in the plating bath was kept at 

0.2 M, which was experimentally determined to yield the best results for this system. 

 

 

 

Table 3.1 Composition of 
acidic plating bath 

Chemical Property Value 

MgB2 Salt 0.6 g 

Sodium Hypophosphite 1.04 g 

Sodium Succinate 0.5 g 

Dimethyl Sulfoxide 4 ml 

Sodium Acetate 1.20 g 

Temperature 70-80 deg C 

pH 6.5 – 7.5  

Time  120 min 
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The chemical reduction of Magnesium diboride on the catalytic surface can be represented by 

following reactions.  

Ionization of water at surface 

2H20                     2H+ + 2OH-  

Coordination of hydroxyl ions to solvate magnesium diboride 

Mg(H20)x
+2  + 2OH-                  Mg(OH)2 + 2H2O 

Mg(OH)2
  + H2PO2-

                     B(OH)3 + H2PO2-
                          Mg(OH)ads B(OH)ads + H2PO3

- + H 

Mg(OH)ads +B(OH)ads + H2PO2
-                   MgB˚ + H2PO3

- + H 

 

 

 
 

Chemical Property Value 

MgB2 Salt 0.6 g 

 Sodium Hypophosphite 1.25 g                                             

Sodium Citrate 3.0 g 

Ammonium Hydroxide 2 ml 

Temperature 70-80 deg C 

pH 12 +  

Time  120 min               

Table 3.2 Composition of alkaline 
plating bath 
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3.4   Annealing of as-deposited MgB2 film  
 

The as-deposited MgB2 were annealed in a sealed tube furnace under presence of 

nitrogen at 250 deg C for 2 hours to convert the film into polycrystalline superconducting phase. 

The annealed films were then ready for analysis of material properties.  

3.5   Characterization of deposited sample  

3.5.1   Surface Morphology 
 

The annealed and crystallized films of magnesium Diboride were surface analyzed using 

high resolution scanning electron microscope Hitachi S-2400.  The analysis was performed on all 

substrates.  

3.5.2   Compositional Analysis 

X-ray diffraction analysis (XRD) was performed using Rigaku Ru-2000 Rotating Anode 

Diffractometer. The X-ray diffraction technique brings out detailed information about chemical 

composition and crystallographic structure of MgB2 superconductor. All X-ray examinations 

were carried out using Cu Kα radiation having wavelength 0.154 nm with 2θ range from 0˚ to 

80˚ was used.    

3.5.3   Temperature Dependent Magnetization Measurements 
 

The magnetic susceptibility measurements i.e. magnetization as a function of temperature 

and magnetic field was measured using SQUID magnetometer (Quantum Design MPMS-5S) that has 

DC magnetic susceptibility to 10-8 and a Physical Property Measurement System (Quantum Design 

PPMS) capable of measuring both DC and AC magnetic susceptibility. All samples were cooled from 

well above the critical temperature at zero magnetic field and temperature dependant 

magnetization under different applied fields.  
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CHAPTER 4 - RESULTS & DISCUSSIONS 
 

4.1   Compositional Analysis 
 

The XRD analysis patterns of the annealed films of silver, copper and silicon are shown 

in Figure 4.1. The pattern on silver exhibited polycrystalline MgB2 peaks along with some 

impurity phases of MgB4, MgB6, and MgB12.  

The XRD diffraction pattern of all these thin films are indexed using XRD PDF# 38-1369 

(MgB2), PDF# 15-0299 (MgB4), PDF# 15-0298 (MgB6), PDF# 08-0263 (MgB12), PDF#30-0794 

(MgO). The pattern also shows presence of underlying substrate of silver.  In order to establish 

whether these impurity phases were present before deposition process the precursor salt was 

analyzed using X-ray diffraction. The analysis confirmed that the impurities were accumulated 

during the electroless plating technique, hence providing a significant opportunity for improving 

the film quality possibly by adjusting the processing conditions.  

The XRD pattern on copper (not shown) and silicon shown in Figure 4.1 has MgB2 peaks 

at 2θ reflection angle of 42.40˚ and 33.48˚ indicating the formation of crystalline MgB2 phase 

with hexagonal P6/mm symmetry. The experimental procedure on these substrates was based on 

an alkaline medium plating process to that of silver in acidic medium. All fabricated films on 

different substrates are polycrystalline in nature, which we also confirmed from our SEM 

analysis, showing different grains with different orientations. 
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Figure 4.1 XRD pattern of the as-deposited MgB2 film on (a) Ag, and (b) Si substrates.  The 

MgB2 peaks are indexed, with substrate peaks labeled with an asterisk (*) and the impurity peaks 

are labeled by the number sign (#). 
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4.2   Surface Morphology 

4.2.1   Silicon Substrate  

Post annealed film is as shown in Figure 4.2. The image shows a homogeneous uniform 

film with a few cracks. The film appears to have good connectivity except in a few sections, 

giving us the opportunity to improvise on continuous film which bodes well for applications 

involving electroless plated MgB2. The film thickness for silicon was found to be 13.5 µm on a 

consistent basis. The film crack length was around 80-140 µm. These are not good for any 

application of point of view. These cracks may be arising during the annealing i.e. growth of the 

sample. The thermal expansion of the MgB2 (approx) 2.6 x 10-6 / deg K and silicon (approx) 1.09 

x 10-5/ deg K causes the film to crack over the plate. In order to prevent this, thermal expansion 

studies requires to be analyzed in depth and different techniques of annealing needs to be 

employed.   
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Figure 4.2 SEM image of MgB2 film deposited on silicon substrate using electroless plating 
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The Figure 4.3 below is another representation on MgB2 on silicon substrate. The crystals 

are observed in form of minute grain like structures that are closely bounded with a few areas 

where the silicon substrate is seen. These sites exhibit sections with no adhesion of magnesium 

diboride. Silicon being non-metallic in nature possesses poor activation sites compared to 

metallic substrates that are atomic in nature. This irregularity and poor adhesion may be due to 

poor catalytic sites generation during pretreatment preventing the nucleation of chemical. Hence 

a better chemical and mechanical treatment is required for a more continuous uniform deposit.  

 

Figure 4.3: SEM image of MgB2 film deposited on silicon substrate using electroless plating 
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4.2.2   Copper 

Figure 4.4 shows synthesis of MgB2 on copper substrate. The image suggests a uniform 

with good connectivity. It exhibits a difference in coloration throughout the surface that may be 

due to presence of oxides and impurities. The film is made of different crystallites of varying 

sizes and orientation due to its polycrystalline nature. The variation in crystallographic directions 

can be random or directed due to films growth and processing conditions. The polycrystalline 

MgB2 is made of many monocrystalline modules. Polycrystalline compounds are less efficient 

but easier to produce and inexpensive.  

 

Figure 4.4 SEM image of MgB2 film deposited on copper substrate using electroless plating 
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These films are polycrystalline and in our SEM images reflect it showing different grains 

across the films. The grains for MgB2 on Ag, Cu are randomly sized, while MgB2 film is highly 

textured along (100) direction. 

4.2.3 Thin film Dimensional Thickness 

A microscopically thin layer of material is deposited on metallic and non metallic 

substrates as shown below in Figure 4.5. The coating thickness was 13.5 µm on silicon and 1µm 

on silver.          

       

               
Figure 4.5 Thickness of MgB2 film on silicon and silver 
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4.3   Temperature Dependent Magnetization Measurements 

4.3.1   Gold and Silver 
 

Magnetization measurements were performed with SQUID magnetometer and a Physical 

Property Measurement System to determine the superconducting properties of the deposited 

samples. The temperature dependent magnetic susceptibility for polycrystalline MgB2 thin films 

on Au and Ag is as shown in Figure 4.5. The figure shows the magnetic susceptibility (χ = M/H, 

where M is magnetization and H is magnetic field) as a function of temperature under conditions 

of zero field cooling and field cooling at 200 Oe. The susceptibility is plotted in dimensionless 

unit as a fraction of the susceptibility for a perfect diamagnet, appropriate for a superconducting 

fraction of 100%. The susceptibility has been corrected for background diamagnetic contribution 

from substrates by shifting high temperature susceptibility to zero. The measured magnetization 

with no background correction for the MgB2 film on Ag is shown in Figure 8. It can be seen that 

the magnitude of raw signal is on the order of 10-6 emu. The existence of superconducting phase 

is confirmed by measuring Meissner effect on cooling in magnetic field. The onset of well 

defined Meissner effect was observed at 40 K. From the diamagnetic signature we estimate the 

superconducting transition temperature of 40 K to be consistent with the superconducting 

transition temperature for bulk MgB2. The transition is rounded for sample prepared on gold, 

whereas the sample on silver shows a clear and sharp drop around 38 K. This indicates that the 

film prepared on gold may have structural defects or a more inhomogeneous composition 

compared to the film on silver, thus exhibiting a broadening effect. Using diamagnetic signal as a 

measure of superconducting fraction we determined the superconducting fraction for gold was 

1% and that of silver was found to be 2%.   
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Figure 4.6 (a) Magnetic susceptibility, plotted in units for a perfect diamagnetic, for MgB2 

deposited on an Au substrate, (b) Magnetic susceptibility for MgB2 deposited on an Ag 

substrate.  Inset: Net measured magnetic moment for MgB2 on Ag with no background 

correction. 

 

 

 
 

 
 

 



36 
 

 
 

4.3.2   Silicon 

The temperature dependence of magnetic susceptibility for MgB2 on silicon deposited 

through an alkaline medium is dominated by strong diamagnetic signal and sharp drop at 

superconducting transition of 40 K at zero magnetic field. The figure 4.6 plots the magnetic 

susceptibility of samples measured at 0 T (bottom curve), 0.25 T, 0.50 T and 1 T (upper curve). 

The phase transition is sharp and has a width of ∆T = 3.5 K, thus showing a minimal broadening 

of superconductivity. The transition temperature decreases monotonically with increasing field. 

The suppression is very similar to that observed in bulk MgB2. Using the relative decrease in 

susceptibility at superconducting transition; we can estimate the superconducting volume in 

these films. At 10 K fraction reaches 1.3% at low fields but falling to 1.1% in a field of 1T.  This 

is consistent with the presence of impurities in these films together with the high concentration 

of structural defects. In addition to determining the magnetic measurements we also looked at 

procuring resistivity data. We were unable to observe any change in conductivity of these 

samples. This is due to small superconducting fraction which falls below percolation threshold. 

If the volume fraction is increased by factor of 2 we definitely expect to observe some resistive 

transition.    
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Figure 4.7 Magnetic susceptibility of MgB2 deposited on Si measured at different magnetic 

fields, as indicated. 
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In previous studies we prepared a superconducting thin film of magnesium Diboride on 

copper which exhibited a film with a very small superconducting volume fraction. However, the 

results of MgB2 film deposition on silver and gold show a magnitude increase in 

superconducting fraction. This improvement in our study is owing to better redox potential 

values observed in case of silver and gold compared to copper substrate. The poor film quality 

on copper was due to its easily oxidizing tendency during the deposition process, preventing its 

activation on substrate surface essential for electroless plating. The theory of controlling the 

redox potential was also proved through our electroless deposition on silicon. Our previous study 

provided ineffective results for electroless deposition using conventional acidic electrolytic bath, 

so we carried out experimental studies of MgB2 deposition using alkaline electrolytic bath, which 

were successful as explained in our earlier sections.  

In the acidic electrolytic bath the hypophosphite is reduced to H2PO3- by the following 

reaction. 

H2PO2
- + H20                    H2PO3

- + 2H+ + 2e-                        (1)  

The measured redox potential of the bath was 0.499 volt. 

Conversely, in the alkaline bath the hypophosphite is reduced to HPO3
2- by the reaction as 

follows 

H2PO2
- + 3OH-                   HPO3

2- + 2H2O + 2e-                      (2) 

The measured redox potential of the bath was 1.57 volt. 

 These reactions show that the hypophosphite anion is a much more powerful reducing 

agent in basic solutions than in acid solutions. This reduction of the hypophosphite ion 

contributes to the increased redox potential. This drives the deposition reaction of MgB2 on 

silicon surface. This higher redox may also reduce surface oxidation at the silicon surface. 
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4.4   Raman Spectra  
 

We used Raman spectroscopy to probe the microstructure of these thin films using 

Horiba spectrometer and 514.5 nm green laser as incident light. The Raman spectrum was 

carried out at many different points across the films, are identical to the shown in Figure 4.7. A 

factor group analysis yields the decomposition of the coordinate representation for MgB2 (space 

group P6/mmm z=1) G=B1g + E2g + E1u + A2u. Of the zone centre optical models, the A2u mode 

(B and Mg planes moving against each other) and E1u mode (B and Mg planes sliding along x, 

y) are infrared active, the B1g mode (two borons displaced along z in opposite directions) is 

silent, and only the E2g mode (in-plane displacements of borons) is Raman active [31]. We 

observe the expected E2g Raman active mode at ~620 cm-1 for both samples, which is consistent 

with previous theoretical and experimental studies. We also observed an intense mode at 640 cm-

1, which is predicted as MgO complex, an impurity that could be expelled by controlling the 

redox potential in the electrolytic plating bath during synthesis technique. Apart from MgO there 

are various other peaks that are also observed that are not attributed to MgB2.  Raman data for 

films prepared on silicon show additional peaks at 300 cm-1, 520 cm-1 and 950 cm-1 apart from 

the substrate and MgB2. These peaks are indications of impurity phases; that are consistent with 

XRD data that also show secondary phases present on films. Most of these impurities are present 

in our bulk precursor material as proven in Raman data (not shown) for bulk MgB2. The data 

obtained was identical and consistent due to structural uniformity of the films.      
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Figure 4.8 (a) Raman spectrum for MgB2 deposited on Ag, (b) Raman spectrum for MgB2 

deposited on Si.  The dashed line indicates the 620 cm-1 peak expected for MgB2 

 

 

 

 



41 
 

 
 

CHAPTER 5 - CONCLUSIONS 
 

1. MgB2 films were deposited on to conducting and non-conducting substrates using a novel 

electroless deposition technique. This study extended previous investigations of lower 

quality films prepared on copper to develop an approach to synthesizing films on silver, 

gold and copper. The three metals have very high electrical conductivity, with the 

conductivity of Silver being 63.0*10-6 S/m, Copper 59.6 * 10-6 S/m, and Gold 45.2*10-6 

S/m.  These values emphasize the importance of copper, in particular, for electrical 

application due to its electrical properties and low cost.  

 The deposition of MgB2 onto any non-conducting substrates, such as silicon, had 

not been done successfully in the past The ability to use electroless deposition to prepare 

MgB2 on Si greatly expands the potential applications for this system due to the wide 

industrial use of Si in semiconductor devices, integrated circuits and microchips.  

 
2.  This study represents the first time that the electroless deposition of any compound was 

successfully achieved. This technique is conventionally only used to deposit metals, such 

as: Nickel, Aluminum, or Copper. The deposition of the compound MgB2 deposition 

proceeds through reactions due to the ionization of water at the substrate surface and 

coordination of hydroxyl ions to obtain magnesium and boron ions on the active surface.  

 
3.  The MgB2 films were prepared on silver and gold using an acidic electrolytic plating 

bath. The films on silver show a sharp superconducting transition at 38 K; gold exhibits a 

rather broad transition just below 40 K. The temperature dependence of the critical field 

was also similar to that of bulk MgB2 and the samples had superconducting fractions of 

2% for silver and 1% for gold. The diamagnetic signal in these samples is much higher 
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than found in previous MgB2 films on copper, which developed a superconducting 

volume fraction of only0.1-0.2 %. This significant improvement in superconducting 

quality represents an important advance in our research studies. In our future work we 

will need to achieve still larger superconducting fractions, which may be accomplished 

by depositing more uniform and more homogeneous films. This may be accomplished by 

varying the deposition parameters or adjusting the treatment of as-deposited film.  

 
4. The films on silicon were prepared using an alkaline electrolytic plating bath. The 

superconducting transition was observed at 40 K at zero magnetic fields. On the 

application of higher magnetic fields the transition temperature decreased monotonically 

to 34 K at 1 Tesla. The alkaline plating bath minimized the oxidizing tendency for silicon 

substrate unlike so in acidic plating bath. This investigation emphasized the importance 

of controlling oxidation potential, which was not realized in previous investigations.  

 
5.  XRD studies confirmed the presence of polycrystalline MgB2 along with some secondary 

phases. The SEM cross sectional study showed that the film thickness on silicon was 13 

µm compared to 1µm on conductive substrates such as silver. There remains an analysis 

on how this could be achieved when the silicon has fewer catalytic site compared to 

surfaces on silver and gold. Another open question also remains concerning the relation 

between the film thicknesses and superconducting properties, as magnesium diboride 

crystals are extremely brittle and tend to crack above a threshold thickness. The SEM 

images show cracks in the film that may arise from differences in the thermal expansion 

between the substrate and film.  This cracking will need to be eliminated through more 

effective annealing procedures especially controlling the rate of cooling and heating.  
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6. The Raman spectrum shows an active mode at 620 cm-1, consistent with theoretical 

predictions for MgB2. The Raman spectra also show peaks at certain other modes that are 

similar to those observed in bulk MgB2 powder, thus proving presence of impurities in 

precursor materials  

     
7. Results obtained show evidence of MgB2 formation by electroless deposition with 

presence of oxide and magnesium segregation, which may explain the low quality of 

these samples. These compounds are present in the as-deposited films, and the annealing 

process tends to segregate impurities near the surface of film.   

 
       8. The temperature dependent resistivity for these superconducting MgB2 films could not be 

measured on any of the samples. Resistivity measurements require uniform deposition 

without presence of cracks as present on figures shown in our results and discussions.  

 
9. The world’s requirement of power is increasing daily and in time it will reach capacity and 

grid will not be able transfer any more power. Replacing them with superconducting 

wires will be a good way forward. Superefficient, environmentally friendly motors and 

underground transmission lines can revolutionize the power grid. Superconducting wires 

have large scale applications in motors, power cables and high strength magnets as well. 

The conventionally used superconducting wires now are Niobium-Tin alloy. Magnesium 

Diboride with a higher Tc than Nb-Sn can reduce refrigeration cost and with effective 

uniform deposition on curved surfaces such as wire using electroless plating technique; it 

can boost performance with good mechanical property and high engineering critical 
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current density in applied magnetic field. This can very well revolutionize and broaden 

the scope & application of superconducting wire industry.  
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ABSTRACT 
 
ELECTROLESS DEPOSITION OF SUPERCONDUCTING MAGNESIUM DIB ORIDE 

THIN FILMS ON VARIOUS SUBSTRATES 
 

by 

KHRUPA SAAGAR VIJAYARAGAVAN 

MAY 2010 

Advisor: Dr. Susil K Putatunda 
                      Dr. Gavin Lawes 

      Major :    Chemical Engineering 

Degree:    Masters of Science          

 

     Superconducting thin films of magnesium diboride were synthesized by a novel 

electroless plating process. Electroless plating shares many similarities to electroplating with 

the major difference being the absence of a continuous bias voltage.  Significantly, this work 

represents the first investigation where electroless deposition has been used to prepare 

compounds, as opposed to the elemental metals considered in all previous studies. 

Magnesium Diboride is a recently discovered superconducting material with a relatively high 

transition temperature (Tc = 39 K). MgB2 plated wires offer potential applications for MRI 

(magnetic imaging resonance), NMR (nuclear magnetic resonance), particle accelerators and 

the electronic industry. The low cost and wide availability of magnesium diboride make this 

material a possible future source of superconducting magnets to replace the Nb-Sn (Niobium 

Tin) alloy that that is presently used. The MgB2 thin films were synthesized on conducting 

substrates including silver, gold, copper and insulating silicon. Thin solid film deposition is 

widely used in the electronic industry for benefits in high power storage, transmission and 



49 
 

 
 

low power consumption. In this electroless plating of MgB2, sodium hypophosphite was used 

as a reducing agent in acidic and alkaline plating solutions. The structural, morphological and 

superconducting properties of these films were examined using X-ray diffraction, 

temperature-dependent magnetometry, scanning electron microscopy (SEM), energy-

dispersive X-ray analysis (SEM-EDX) and Raman spectroscopy. The magnetic study of these 

thin films indicates the presence of clear superconducting phase below the critical 

temperature of roughly 39K with a diamagnetic susceptibility corresponding to 

approximately 1-2% of a perfect superconductor for different substrates. The vibrational 

spectroscopy of these thin films confirms the crystalline nature and correct stoichiometry of 

MgB2. The structural and microstructural analysis of these thin films indicates the 

polycrystalline nature of the film with presence of small amount of impurity phases of 

different magnesium and boron compounds. The SEM analysis also determines the cross 

sectional thickness acquired on substrate surface. The synthesis process of these films and 

their superconducting properties will be discussed in detailed.  
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