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Let X be a separable, or more generally, a weakly compactly genérated Banach space.
Then X admits an equivalent Gateaux smooth norm, and hence X is a weakly trustworthy
space. This means that, in X, we have at hand a suitable fuzzy calculus for Gateaux-
like subdifferentials. Unfortunately, such a calculus is not strong enough for handling
some problems of nonlinear analysis. A suitable concept for attacking such problems is a
Frééhet-like subdifferential. However, the occurrence of such a subdifferential is more or
less equivalent with the property of the space to be Asplund. This note is an attempt to
go on, beyond the framework of Asplund spaces, and still working with a subdifferential
sharing some of the features of the Fréchet-like subdifferentialv. The point is that, if X is
a separable, or more generally, a weakly coﬁpactly generated Banach space, we have at
hand a better object than just the Gateaux (sub)differential. Actually, such spaces contain
a dense set, which is, when endowed with a suitable norm, an Asplund space. This fact
then allows us to define, in Asplund generated spaces, a limiting Fréchet subdifferential
and a limiting Fréchet normal cone with properties imitating those of the limiting Fréchet

subdifferential and a limiting Fréchet normal cone known from Asplund spaces [MS].

We conjecture that the theory of limiting Fréchet subdifferentials and limiting Fréchet
normal cones developed by Mordukhovich and Shao in [MS] for Asplund spaces (see also
the books [M1, M2] for a comprehensive theory and applications of these constructions)
can be extended to the larger class of Asplund generated spaces. The aim of this note is
to support this belief by proving several statements in this vein, which extend those from

[MS] to the Asplund generated setting.

Consider a Banach space (X, ||+||x) such that there exists an Asplund space (V|| - ||y),
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satisfying Y C X and yilix = X, and is such that lullx < llylly for every y € Y. Let
i : Y = X be the inclusion mapping; note that ¢ is continuous. The situation described
above, that is, the pentad (X,Y, I llx, - |l¥,%), with Y Asplund, will be called an Asplund
generated scheme. Note that any Asplund generated space yields aﬁ Asplund generated'
scheme and vice versa. A theory of Asplund generated spaces can be found, e.g., in
[F, Chapter 1]. In what follows, we always consider a fixed Asplund genérated scheme
(X,Y] - lix, |l - lly,%). Let Bx and By denote the unit ball in (X, |- |lx) and (Y, || - |v)
respectively. The symbol — will mean the convergence‘in the weak* topology. Given a
function ¢ : X = IR = (~o00,40oc], we use the symbol @y for the restriction of ¢ to Y.

Thus, 7*(z*) = z*y for * € X*. For z* € X* we define ||z*|

x» = sup(z*, Bx), and for

y* € Y* we define

ly*|ly= = sup(y*, By) and |ly*|lx~ = sup(y*, Bx NY).

Note that if y* € Y* and ||y*|

x+ < +o00, then y* is extendable to all of X, i.e., there is
z* € X* such that z*y = ¢*(2*) = y* and ||z*||x~ = ||y*||x~. Givena function¢: ¥ — IR
and ¥ € dom ¢, the symbol 8¢(7) means the usual limiting Fréchet subdifferential of ¢ at
7, see e.g., [M1, MS)], that is,
0%(F) = {n € Y*;3ya € Y, Jen 20, Inn € 8., %(yn), n € W,
so that ||lyn — Jlly = 0, €, 1 0, and 7, — n}.

Note that 8;9(y) means the Fréchet e—subdifferential of ¢ at y, see [FM, MS]. We also use
0°°9(7) as defined in [M1, MS]. Note that once Y is Asplund (as it always is in this note),
then we can replace the e,’s by 0 in the above formula [MS]. Given a set 2 in a Banach
space Z, we put dq(z) = 0 if z € Q and dg(2) = +o0 if z € Z\Q. Such a dq is called
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an indicator function of Q. The limiting Fréchet normal cone of  at Z € Q is defined as
N(zZ; Q) = 86a(2).

Now we are ready to introduce our new concepts.
Definition. Let (X,Y,]-||x, || ||y,z) be an Asplund generated scheme. Let ¢ : X —
IR be a function and T € domp NY. Then we define
Iy (@) =" (3(py) (@), 3§°<P(T) =i (0% (¢)y)(@)).-
Furthgr, given.a set QC X and T € QNY, we define
Ny (%; Q) = 0y 0a(T).

Definition. Given Z € M C Z, we say that M is sequentially normally compact
(SNC) at 7 if ||| — O whenever z, € Z, €n L0, Cn € 8e,01(24), n € IN, |jzn — Z|| = 0,
and {, — 0. Given a function ¥ : Z — IR and Z € dom4), we say that 1 is SNC at 7 if

epit is SNC at the point (Z,%(Z)) in the space Z x IR.
Note that if Z is an Asplund space, we can take €, = 0 above; see [MS, Theorem 2.9 (iii)].

Definition. Let (X,Y,|| |lx, || - |lv,?) be an Asplund generated scheme. Consider a
set QC X andZT e QNY. Wesay that Qis Y-SNC at T if @NY is SNC at T (in the -
space Y). Consider a function ¢ : X = IR and T € dompNY. We say that ¢ is Y —~SNC |

at 7 if the restriction oy is SNC at T (in the space Y).

Remarks. Note that, in the special case when Y = X, we get the concepts known from

Asplund spaces:

Ox¢(T) = 0p(T), OF¢(T) =0%¢(T), Nx(T;9) = N(7;9Q).
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Also X —SNC is just SNC. Moreover, it is straightforward to check that
Ny(z;Q) =i*7H(N(z;QNY)),

where N(Z,22NY) is the limiting Fréchet normal cone in the space Y, as it is defined in

[MS]. Indeed

HN@EQNY)) =i (8bany (7)) = *H(8((da) y) @) = Byda(T) = Ny (%;,9).

Also, it is not difficult to prove that

00(E) = {a* € X*; (2*,0) € Nywm (7 0(@); epiv)}.
Indeed,
0P (@) =" 0% ((¢1v)(@)) |
="y e Y™ (¥4,0) € N((f,é(fj); epi (¢py)) }
*Hyr e Y™ (v,0) € N(@ ¢(@)); epien (Y x R))}
= {i*7'y* *71y*,0) € (6 x 1d)* T (N((7, 9(@)); epip N (Y x R))}
= {2* € X*; (¢*,0) € Nyxr((T, ¢(%)); epiop)}.

Moreover, we can readily see that

z* € Oy p(T) & (z*,—1) € Ny ((Z, o(T)); epip).

Further, we can easily verify that a function ¢ : X - JRis Y-SNC at T € domypnNY if

and only if the set epip is Y x IR—SNC at the point (Z, p(T)).

Now we are ready to formulate a sum rule in Asplund generated spaces for the new

concepts Oy ¢ and 05°¢.



Theorem 1. Let (X,Y,||-|lx,| - lly,i) be an Asplund generated scheme. Consider two
lower semicontinuous functions ¢1,p2 : X — IR and T € dom ; N dompy NY. Assume

that
(i) @; is Y—SNC at T for some j € {1,2},
(ii) 05°¢1(T) N -0 p2(T) = {0},
(iii) i* (By ¢;(T)) = 8(jyy) (T) for some j € {1,2}, and
(iv) i* (0 05(z)) = 8 (pj,y) () for some j € {1,2}.

Then

Oy (1 + ¢2)(F) C Oy p1(T) + Oy p2(T) and 0F (p1 + 92)(T) C 0F 91(T) + 05 02(T).

Proof. Take any € € Oy (1 + 2)(T) (if it exists; otherwise we are done). Then
Ey = 1*(€) € 0((p1 + p2)yv) @) = d(p1yy + o2pv) (@) C 3(<P1|y)(5) + 8(p2)y ) (T).

Here the inclusion follows from [MS, Theorem 4.1]. Indeed, Piy aré lower semicontinuous
functions on Y. Also, 0°°(p1)y)(Z) N —0%°(p2y)(Z) = {0}. In fact, take any 7 in this
intersection. Assuming that (iv) holds for, say, j = 2, we get that —n = i*(z*) = z*y for
some z* € 05°¢2 (). Then i*(—z*) = 1 € 9%°(p1)y (T) and so —z* = * (1) € 65°(¢1)(T).
Therefore, by (ii), z* = 0 and so = 0. Thus, by [MS, Theorem 4.1], {|y = 11 + 72, with -
suitable n; € 8(<pjly(f), j = 1,2. But (iii) guarantees that, say, m; € ¢*(X*). Then

ne € i*(X*) as well, and so

£ =1 m) +1* 7 (m2) € 7101y (@) + T (O(p2y (7)) = Oy ¢1(T) + Oy 2(T).

The second inclusion, dealing with 05°, can be proved analogously. |
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Remark. If X is an Asplund space itself, then we can put Y = X in Theorem 1 and we

thus get exactly [MS, Theorem 4.1] for n = 2.

Corollary 1. Let (X,Y,| - |lx,|l - lly,?) be an Asplund generated scheme and consider
functions ¢y, p2 1 X — IR and a point % € dom piNdom @,NY such that p; is Lipschit;zian'

and @y is lower semicontinuous in a || - || x —vicinity of Z. Then

Oy (1 + 2)(T) C Oy pr1(Z) + Dy pa(T) and 8P (p1 + 92)(T) C 091 (T) + 05 2 (2).
Proof. The Proposition below guarantees that (1)—(iv) in Theorem 1 are satisfied. N

Theorem 2. Let (X,Y,|||x,||*|ly,?) be an Asplund generated scheme and consider two
closed sets Q1,2 C X and a point T € Q1 NNy NY. Assume that
(i) Q; is Y—SNC at T for some j € {1,2},
(ii) Ny (Z; Q1) N =Ny (T;Q2) = {0}, and
(iii) *(Ny (Z;Q5)) = N(;Q; NY) for some j € {1,2}.
Then

Ny(f; QN Qz) C Ny(T, Ql) + Ny (E, Qz).
Proof. We observe that, if Z€ M C Z, then
00m(Z) =NEZ, M) =0%0u(Z).

Indeed, the first equality here is just the definition, while the second equality can be

obtained by some elementary calculation. Thus, in the space Y,

Bégjny(f) = N(.f, Q] N Y) = 6OO(SanY(f), _7 = ]., 2.
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And, as 5any = (591) we get

y?

Oy dq, (T) = Ny (T; ;) = 0% 0q, (%)
Then our condition (ii) yields immediately the condition (ii) in Theorem 1. (Yes, ¢* is
injective.) Also, by our condition (iii), we have

*(Oybq, (T)) =" (Ny (T;Q5)) = N@: Q; NY) = 3dq,ny () = 8((5Qj)ly)(§)

and thus (iii) in Theorem 1 is verified. And, as dydq,(Z) = 0§°dq, (T), we got also (iv) in
Theorem 1.

Let us check (i) in Theorem 1. Our (i) says that, say, 21 NY is SNC at T (in the space
Y). By the fact below, dq,ny is SNC at . But dg;ny = (0g,)|y. Hence, by definition,

01 = 0g, is Y—SNC, which is the condition (i) in Theorem 1. We thus verified all the

assumptions of Theorem 1. Hence
Ny (Z; Q1N Q) = Oy da,na, () = 0y (0, + dq, ) (T)

C 6y(5g1 (E) + ay592 (:_If) = Ny (T; Ql) + Ny (_.’f; 92).
It remains to formulate and prove the following '

Fact. Assume that 2 CY is SNC at 7 € ). Then the function dg is SNC at 7.

In order to prove this, observe that epi dg = Q2 x[0, +00). So let (yn,tn) € Y XR, &, >
0, (Mn,sn) € 5sn69xm(yn,tn), ne€N, |lyn —Flly =0, €, 4 0, and n — 0, s, = 0. We
immediately have that 7, € 5€n69(yn), n € IN. And, as Q was SNC at 7, we get that |
lInlly — 0. We thus proved that epidg is SNC at (7,0). And this, by the definition, means

that dg is SNC at 7. : |

Remark. If X is an Asplund space itself, then we can put ¥ = X in Theorem 2 and we
thus get exactly [MS, Corollary 4.5] for n = 2.
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Corollary 2. Let (X,Y,||-|lx,| - llv,i) be an Asplund generated scheme. Consider two
- closed sets Q1,09 C X X IR, where Q; = epiy, and 1 : X — R is || - ||x —Lipschitzian

in an || - || x —vicinity of some T € Y. Assume that (T, ¢1(Z)) € Q2. Then

Ny (Z; 21N Q) C Ny (Z, ) + Ny (7, Qz).
Proof. Use Proposition below and Theorem 2. |

Now we prove the following Proposition, which provides a raison d’étre for the new

concepts Jy and Ny.

Proposition. Let (X,Y,]|-||lx, || |lv,?) be an Asplund generated scheme. Let ¢ : X — IR |
be a function, which is || - || x —Lipschitzian in a || - || x —vicinity of someZ € Y. Then
() i (Bre(@)) = (o) (@) (£0),

(ii) 65 ¢(z) = {0},

(iii) (i* x identity) (Ny xr((%, ¢(%)); epiy)) = N((Z, ¢(2)); epi(py) (# {(0,0)}),

(iv) ¢ isY—SNC at 7.

Proof. (i) Take any n € 8(pjy)(%). Find y, €Y, €, >0, n, € 5€n (e1v)(¥n), n € IN,
such that ||y, — Z|ly = 0, €, 4 0, and 7, — 1. Find A > 0 so that ¢ is Lipschitzian
on {z € X; ||z — T||x < 2A}, with Lipschitz constant L > 0, say. Fix any h € Y, with
|hllx = 1. Fix any n € IN such that ||y, — Z|ly < A. Then for every ¢ > 0 there is

d(e) € (0,A) so that

o(y) — ©(WUn) 2 sy~ yn) 2 —(e+ En)“y — Unlly
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whenever y € Y and ||y — ynlly < &(¢). Then

(M, ¥ — Yn) < (e+en)lly — wnlly + Llly — yullx

for all y € Y, with |ly — ynlly < 6(¢). For 0 < t < §(¢)/||h|ly we have
(nn, th) < (e + en)|[thlly + Liith||x,

and 50 (1), h) < (e+€p)||hlly +L. Thié holds for all e > 0. Thus (n,, h) < e, ||h|ly + L, and
for n — co we get (n, h) = limy—y00{n, h) < L. Therefore ||n||x+ = sup(n,BxNY) < L.
Hence 7 is ”extendable” to X and so € ¢*(X*). We thus proved that n € i*(0y ¢(T)).
The reverse inclusion in (i) holds always.

(ii) This follows from the fact 9%°(p|yv)(Z) = {0} as ¢y is || - {|ly —Lipschitzian. How-
ever, because of further purposes and the ease of the reader, we include the proof. So,
take any £ € 05°¢(Z). Thus §y € 0%°(pjy)(Z). Find then y, €Y, tn €R, (Mn,sn) €
N((¢n, ts); epi (¢y)), n € IN, so that |lyn —Z|ly = 0, tn — @(Z), 7 — &y, and s, — 0.
Find A > 0 so that ¢ is Lipschitzian on {z € X; ||z —Z||x < 2A}, with Lipschitz constant
L > 0, say. Fix any h € Y, with ||h]|x = 1. Fix any n € IN such that ||y, — Z|ly < A. Fix

any n € IN. (As Y is Asplund, we can take €, = 0.) Then

limsup' <77nay——yn>+sn(t_tn) S 0.
Y—Yn,t—tn,(y,t)E epip|y ly = ynlly + [t — tn]

We can easily check that ¢, > ¢(y,) implies (1,,8,) = (0,0). So, next assume that

tn = ©(yn). Then for every € > 0 we can find d(g) > 0 so that

(MY = Yn) + 8a(0(y) — ©(¥n)) < elly = ynlly +ele(y) — @(yn))
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whenever y € Y and ||y — yully < d(¢). (Yes, ¢y is continuous at yn.) Then, as @ is

- Lipschitzian in || - || x —norm, with constant L, we have that

(s ¥ — Yn) S €lly = Ynlly + (e + Isnl)Llly — ynllx

whenever y € Y and ||y — ynlly < d(€). Thus for 0 <t < §(¢)/||h||y we have

(Mn,th) < ellthlly + (¢ + |sn) LllthAlIx, -

“and so

(s B) < ellblly + (€ + |sn]) L.

And, letting € | 0, we get (9, h) < |sn|L. Therefore (¢, h) < limy 00 (s h) < limp 00 |8p|L =
0. This holds for all h belonging to a dense set of the unit sphere of X. Hence ¢ = 0.

(iii) Take any (n,s) € N((Z,¢(%); epi(py)). Find y, € Y, t, € R, (1, n) €
N((ynstn); epi(ppy)), n € I, so that [lyn — Zlly —= 0, tn = ¢(&), 7 — 7, and s, —

s. Then, exactly as in the proof of (ii), we get that ||n,|

x+* < |sn|L for every n €

IN. Thus ||n|

x+ < 1imsupn_,oo |sn|L = |s|L, and hence (n,s) €
i*(Ny xr((Z, ¢(T); epip). The reverse inclusion holds always.

(iv) We have to prove that epip N (Y x IR), that is, epi(¢y) is SNC at (T, (%)) in
the space Y x IR. So, consider y, € Y, t, € IR, (1, 8,) € ]V((yn,tn), epi<p|y), n € IN,

with 7, — 0, s, — 0. Then as in the proof of (ii), we get that ||7,||x+ < |sn|L and hence

Imnllys < 19nllx- = 0 as n — 0. , "

The next statement is a mean value theorem imitating [MS, Theorem 8.2]. Fora,b € ¥
we put

[a,b] = {ta+ (1 —t)b; t € [0,1]} and (a,b) = {ta+ (1 —1¢)b; t € (0,1)}.
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€, € X* and that ||&,]

x+« < L for all n € IN. We recall that the dual unit ball in X* is
weak* sequentially Compacf, see, e.g., [F, Chapter 2]. Therefore there exists { € dy f(c)
such that (¢,b—a) = f(b) — f(a).

If (ii) occurs we proceed similarly. We again profit from the || - || x-Lipschitz property
of fia.

The last statement also follows from [L, Theorem 3.1}. 1

In Asplund spaces we have a representation formula for the Clarke’s subdifferential
dc in terms of the Fréchet limit subdifferential dc¢(%) = co0* [0¢(T)] provided that ¢ :
X — TR is Lipschitzian around T € X, see [MS, Theorem 8.11]. For the Asplund generated

scheme (X,Y, || llx, |- lly,%), if ¢ : X = R is || - || x—Lipschitzian around T € Y, we have
dcp(T) D T * Oy ¢(T)]-

Indeed, take any £ € Oy(Z). Then §y = i*(§) € d(py)(®). Find y, € Y, with
lyn — Zlly — 0, en 40, and 7, € 5€n<p|y(yn) such that 7, — {y. Fix any k € Y and find

tn 4 0 s0 that (g, k) — 26, < %((p(yn +tnk) — (p(yn)). Then
(6, k) < limsup & (P(Yn + tak) — @(yn)) < ¢°(@) (k).

And, as ¢ was || - || x—Lipschitzian around Z, we get (§,h) < ¢°(T)(h) for every h € X. -
Therefore £ € 0cp(T) and the inclusion is proved.

We do not see how to prove the reverse inclusion. Indeed, the Clarke’s subdifferential
uses in its definition the convergence in the space (X, || - ||x) while dy is defined via the
convergence in (Y,]| - |ly). Yet there exist expressions for d¢, in the Asplund generated
setting, in terms of other concepts of e—subdifferential and even e—differential, see [FLW].
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Remarks. 1° Let X be an Asplund generated space. Then, of course, there are plénty
- of Y’s witnessing for X to be Asplund generated. And we do not know if it impossible to

define some reasonable subdifferential not depending on the concrete Y.

2° Let (X,Y,|| - |Ix,| - lly,i) be an Asplund generated scheme such that X is not
Asplund. Let f : X — IR be a Lipschitz concave function which is nowhere Fréchet
differentiable [Ph, Corollary 2.35]. Then 8 f(z) = 0 for evefy z € X while our Proposition

guarantees that dy f(y) is nonempty for every y € Y.

3° In what follows we shall show which Y can be chosen for some concrete Asplund

generated spaces X.

(a) Let X be a separable Banach space. Let {z,; n € IN} be a countable dense set in
the unit ball of X. Define T : £ — X by T(an) = e 14n27 "%y, (an) € £o; this is a
linear bounded mapping with dense range Since the quotient £5/T~1(0) is again a Hilbert
space, we get a linear bo.unded and injective mapping S : £3 — X with dense range. Put
Y = S(£) and define |ly|ly = [|SI-1S~¥lle,, ¥ € Y- Then (¥, |- [lv) is isomorphic with

{3, and hence Asplund. Moreover, ||y||x < ||y|ly for every y € Y.

(b) More generally, let X be a weakly compactly generated Banach space. According to an
interpolation theorem, see, e.g., [F, Theorem 1.2.3], X is Asplund generated, with Y even
reflexive, witnessing for this. Note that the proof of this theorem is constructive, starting
-from a given weakly compact subset of X which is linearly dense in it. It should also be
noted that the space C(K) of continuous functions on K is weakly compactly generated if

and only if K is an Eberlein compact, see, e.g. [F, Theorem 1.2.4].

(c) If p is a finite measure and X = L;(u), it is enough to take Y = Lo(p) and ||-||y = ||||z,-
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Here, of course Ly(u) is Hilbert, hence Asplund space. Note that L;(u) is also weakly
compactly‘ generated. |
(d) According to Stegall [St], [F, Theorem 1.5.4], a compact space K is homeomorphic to
a weak* compact subset of a dual to an Asplund space if and only if C(K) is Asplund
generated. In this case, the construction of Y requires more care.

4° We are convinced that our note provides an important tool for extending the
nonlinear analysis from the framework of Asplund spaces to a much larger class of Asplund
generated spaces. In particular, we do not see any serious obstacle for extending many

results from the paper [MS] in this vein.
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