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Let X be a separable, or more generally, a weakly compactly generated Banach space. 

Then X admits an equivalent Gateaux smooth norm, and hence X is a weakly trustworthy 

space. This means that, in X, we have at hand a suitable fuzzy calculus for Gateaux­

like sub differentials. Unfortunately, such a calculus is not strong enough for handling 

some problems of nonlinear analysis. A suitable concept for attacking such problems is a 

Frechet-like subdifferential. However, the occurrence of such a subdifferential is more or 

less equivalent with the property of the space to be Asplund. This note is an attempt to 

go on, beyond the framework of Asplund spaces, and still working with a subdifferential 

sharing some of the features of the Frechet-like subdifferential. The point is that, if X is 

a separable, or more generally, a weakly compactly generated Banach space, we have at 

hand a better object than just the Gateaux (sub )differential. Actually, such spaces contain 

a dense set, which is, when endowed with a suitable norm, an Asplund space. This fact 

then allows us to define, in Asplund generated spaces, a limiting Frechet subdifferential 

and a limiting Frechet normal cone with properties imitating those of the limiting Frechet 

subdifferential and a limiting Frechet normal cone known from Asplund spaces [MS]. 

We conjecture that the theory of limiting Frechet subdifferentials and limiting Frechet 

normal cones developed by Mordukhovich and Shao in [MS] for Asplund spaces (see also 

the books [Ml, M2] for a comprehensive theory and applications of these constructions) 

can be extended to the larger class of Asplund generated spaces. The aim of this note is 

to support this belief by proving several statements in this vein, which extend those from 

[MS] to the Asplund generated setting. 

Consider a Banach space (X, ll·llx) such that there exists an Asplund space (Y, II· IIY ), 
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satisfying Y c X and yll·llx = X, and is such that IIYIIx :::; IIYIIY for every y E Y. Let 

i : Y ,....-t X be the inclusion mapping; note that i is continuous. The situation described 

above, that is, the pentad (X, Y, ll·llx, II·IIY, i), withY Asplund, will be called an Asplund 

generated scheme. Note that any Asplund generated space yields an Asplund generated' 

scheme and vice versa. A theory of Asplund generated spaces can be found, e.g., in 

[F, Chapter 1]. In what follows, we always consider a fixed Asplund generated scheme 

(X, Yll· llx, II· IIY, i). Let Bx and By denote the unit ball in (X, II· llx) and (Y, II · IIY) 

respectively. The symbol -, will mean the convergence in the weak* topology. Given a 

function cp : X ,....-t IR = ( -oo, +oo], we use the symbol IPIY for the restriction of cp to Y. 

Thus, i*(x*) = x*w for x* EX*. For x* EX* we define llx*llx· = sup(x*,Bx), and for 

y* E Y* we define 

IIY*IIY· =sup(y*,By) and IIY*II~· =sup(y*,BxnY). 

Note that if y* E Y* and IIY*IIx• < +oo, then y* is extendable to all of X, i.e., there is 

x* EX* such that x*w = i*(x*) = y* and llx*llx• = IIY*IIx•. Given a function 'lj;: Y ,....-t IR 

andy E dom 'lj;, the symbol EJ'lj;(Y) means the usual limiting Frechet subdifferential of 'lj; at 

y, see e.g., [Ml, MS], that is, 

EJ'lj;(Y) = { fJ E Y*; 3yn E Y, 3en ~ 0, 3fJn EBen 'lj;(yn), n E JN, 

so that llYn- fillY ,....-t 0, en -t. 0, and fJn -r fJ }. 

Note that Be'l/J(y) means the Frechet e-subdifferential of 'lj; at y, see [FM, MS]. We also use 

800 'lj;(Y) as defined in [Ml, MS]. Note that once Y is Asplund (as it always is in this note), 

then we can replace the en's by 0 in the above formula [MS]. Given a set n in a Banach 

space Z, we put 6n(z) = 0 if z E n and 6n(z) = +oo if z E Z\[~. Such a l5n is called 
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an indicator function of n. The limiting Frechet normal cone of n at z E n is defined as 

N(z; n) = 88n(z). 

Now we are ready to introduce our new concepts. 

Definition. Let (X, Y, ll·llx, II·IIY, i) be an Asplund generated scheme. Let cp: X -t 

IR be a function and x E dom cp n Y. Then we define 

Further, given a set n C X and x E 0 n Y, we define 

Ny(x; n) = oy8n(x). 

Definition. Given z E M c Z, we say that M is sequentially normally compact 

(SNC) at z if ll(nll-* 0 whenever Zn E z, Cn-!- 0, (n E Be:n8M(zn), n E lN, llzn- zJJ-t 0, 

and (n ..., 0. Given a function 'if; : Z -t IR and z E dom 'if;, we say that 'if; is SNC at z if 

epi 'if; is SNC at the point (z, 'if;(z)) in the space Z x IR. 

Note that if Z is an Asplund space, we can take en = 0 above; see [MS, Theorem 2.9 (iii)). 

Definition. Let (X, Y, II · llx, II · Jly, i) be an Asplund generated scheme. Consider a 

set n c X and x En n Y. We say that n is Y -SNC at x if n n Y is SNC at x (in the 

spaceY). Consider a function cp: X -t IR and x E domcp n Y. We say that cp is Y -SNC 

at x if the restriction 'PlY is SNC at x (in the space Y). 

Remarks. Note that, in the special case when Y =X, we get the concepts known from 

Asplund spaces: 

8xcp(x) = 8cp(x), 8xcp(x) = 800 cp(x), Nx(x; 0) = N(x; 0). 
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Also X -SNC is just SNC. Moreover, it is straightforward to check that 

Ny(x; n) = i"'- 1 (N(x; n n Y)), 

where N(x, n n Y) is the limiting Frechet normal cone in the space Y, as it is defined in, 

[MS]. Indeed 

i"'- 1 (N(x; n n Y)) = i*- 1 (8onnY(x)) = i"'- 1 (8( (on)IY)(x)) = 8yon(x) = Ny(x;, n). 

Also, it is not difficult to prove that 

8ycp(x) = {x"' EX"'; (x"',O) E NYxiR((x,cp(x)); epicp)}. 

Indeed, 

8¥cp(x) = i"'-1800 ((cpiY)(x)) 

= i*-1 {y* E Y*; (y*,O) E N((x,cp(x)); epi(cp1y))} 

= i*-1{y* E Y*; (y*,O) E N((x,cp(x)); epi<pn (Y x IR))} 

= {i*-1y*; (i*-1y*,O) E (i x id)*- 1 (N((x,cp(x)); epi<pn (Y x IR))} 

= {x* EX*; (x*,O) E NYxiR((x,cp(x)); epicp)}. 

Moreover, we can readily see that 

x* E 8ycp(x) ¢:? (x*, -1) E Ny((x, cp(x)); epicp). 

Further, we can easily verify that a function <p: X-+ IRis Y -SNC at x E dom<p n Y if 

and only if the set epi <pis Y x IR-SNC at the point (x, cp(x)). 

Now we are ready to formulate a sum rule in Asplund generated spaces for the new 

concepts 8ycp and 8y<p. 
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Theorem 1. Let (X, Y, II · II x, II · II y, i) be an Asplund generated scheme. Consider two 

lower semi continuous functions <p1, <p2 : X -+ IR and x E dom <p1 n dom <p2 n Y. Assume 

that 

(i) <{}j is Y -SNC at x for some j E {1, 2}, 

(ii) 8y<p1(x) n -8y<p2(x) = {O}, 

(iii) i*(8y<pj(x)) =8(<pj
1
y)(x) forsomej E {1,2}, and 

(iv) i*(8y<pj(x)) = 800 (<pjiy)(x) for some j E {1, 2}. 

Then 

Proof. Take any e E 8y(<p1 + <p2)(x) (if it exists; otherwise we are done). Then 

Here the inclusion follows from [MS, Theorem 4.1]. Indeed, <piiY are lower semicontinuous 

functions on Y. Also, 800 
( <p1IY) (x) n -800 

( <p2IY) (x) = { 0}. In fact, take any fJ in this 

intersection. Assuming that (iv) holds for, say, j = 2, we get that -ry = i*(x*) = x*IY for 

some x* E 8y<p2(x). Then i*( -x*) = fJ E 800 (<p11y(x) and so-x* = i*-1(ry) E 8y(<p1)(x). 

Therefore, by (ii), x* = 0 and so rJ = 0. Thus, by [MS, Theorem 4.1], elY= f/1 + ry2 , with 

suitable 'r/j E 8(<pj
1
y(x), j = 1, 2. But (iii) guarantees that, say, ry1 E i*(X*). Then 

f/2 E i* (X*) as well, and so 

The second inclusion, dealing with 8y, can be proved analogously. I 
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Remark. If X is an Asplund space itself, then we can put Y =X in Theorem 1 and we 

thus get exactly [MS, Theorem 4.1] for n = 2. 

Corollary 1. Let (X, Y, II · llx, II· IIY, i) be an Asplund generated scheme and consider 

functions cp1, cp2 : X -+ IR and a point x E dom cp1 n dom cp2 n Y such that cp1 is Lipschitzian 

and cp2 is lower semicontinuous in a ll·llx-vicinity ofx. Then 

Proof. The Proposition below guarantees that (i)-(iv) in Theorem 1 are satisfied. I 

Theorem 2. Let (X, Y, ll·llx, II·IIY, i) be an Asplund generated scheme and consider two 

closed sets fh, 02 c X and a point x E fh n 02 n Y. Assume that 

(i) ni is Y -SNC at x for some j E {1, 2}, 

(ii) Ny(x; fh) n -Ny(x; ~h)= {0}, and 

(iii) i*(Ny(x; Oj)) = N(x; nj n Y) for some j E {1, 2}. 

Then 

Proof. We observe that, if z EM c Z, then 

88M(z) = N(z, M) = 800 8M(z). 

Indeed, the first equality here is just the definition, while the second equality can be 

obtained by some elementary calculation. Thus, in the space Y, 

88niny(x) = N(x; Oj n Y) = 8008njnY(x), j = 1, 2. 
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Then our condition (ii) yields immediately the condition (ii) in Theorem 1. (Yes, i* 1s 

injective.) Also, by our condition (iii), we have 

and thus (iii) in Theorem 1 is verified. And, as oyc5nJ (x) = 8yc5nJ (x), we got also (iv) in 

Theorem 1. 

Let us check (i) in Theorem 1. Our (i) says that, say, fh nY is SNC at x (in the space 

Y). By the fact below, c5n1 nY is SNC at x. But c5n1 nY = (c5n1 )IY· Hence, by definition, 

'Pl = c5n1 is Y -SNC, which is the condition (i) in Theorem 1. We thus verified all the 

assumptions of Theorem 1. Hence 

Ny(x; fh n fh) = 8yc5n1 nn2(x) = 8y(c5n1 + c5n2)(x) 

c 8yc5n1 (x) + 8yc5n2 (x) = Ny(x; fh) +Ny(x; n2). 
It remains to formulate and prove the following 

Fact. Assume that n c Y is SNC at yEn. Then the function c5n is SNC at y. 

In order to prove this, observe that epi c5n = n X [0, +oo). So let (Yn' tn) E y X IR, en ;:::: 

0, (rJn, Sn) E a~n c5nxiR(Yn, tn), n E IN, llYn -filly --+ 0, en -!- 0, and rJ ---, 0, Sn --+ 0. We 

immediately have that rJn E B~nc5n(Yn), n E IN. And, as 0 was SNC at fj, we get that 

llrJniiY--+ 0. We thus proved that epic5n is SNC at (y, 0). And this, by the definition, means 

that c5n is SNC ·at fj. I 

Remark. If X is an Asplund space itself, then we can put Y = X in Theorem 2 and we 

thus get exactly [MS, Corollary 4.5] for n = 2. 
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Corollary 2. Let (X, Y, II · llx, II · IIY, i) be an Asplund generated scheme. Consider two 

closed sets nl, n2 c X 'x 1R, where nl = epi 'Pb and 'Pl : X --+ 1R is II . llx-Lipschitzian 

in an ll·llx-vicinityofsomexE Y. Assume that (x,cp1(x)) E f22. Then 

Proof. Use Proposition below and Theorem 2. I 

Now we prove the following Proposition, which provides a raison d'etre for the new 

concepts oy and Ny. 

Proposition. Let (X, Y, ll·llx, II·IIY, i) be an Asplund generated scheme. Let cp: X--+ 1R 

be a function, which is ll·llx-Lipschitzian in a ll·llx-vicinity of some x E Y. Then 

(i) i* ( oycp(x)) = 8( 'PlY )(x) ( # 0), 

(ii) 8~cp(x) = {O}, 

(iii) (i* x identity)(NYxiR((x,cp(x)); epicp)) = N((x,cp(x)); epi(cpiY) (# {(0,0)}), 

(iv) cp is Y -SNC at x. 

Proof. (i) Take any rJ E 8(cpiY)(x). Find Yn E Y, en~ 0, 'TJn E B~n(cpiY)(Yn), n E IN, 

such that llYn - xiiY --+ 0, en {. 0, and 'fin ---, 'fl· Find D. > 0 so that cp is Lipschitzian 

on {x EX; llx- xllx < 2D.}, with Lipschitz constant L > 0, say. Fix any hEY, with 

llhllx = 1. Fix any n E IN such that llYn - xiiY < D.. Then for every e > 0 there is 

o(e) E (0, D.) so that 

cp(y)- cp(yn) ~ (rJn, Y- Yn) ~ -(e + en)IIY- YniiY 
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whenever y E Y and IIY- YniiY < 8(c-). Then 

(rJn, Y- Yn) ::; (c + cn)IIY- YniiY +LilY- Yniix 

for ally E Y, with IIY- YniiY < 8(c-). For 0 < t < 8(c-)/llhliY we have 

and so (rJn, h)::; (c+cn)llhiiY+L. This holds for all c > 0. Thus (rJn, h) ::; cnllhiiY+L, and 

for n---+ oo we get (rJ, h) = limn-+oo(rJn, h) ::; L. Therefore llrJIIx• = sup(ry, Bx n Y) ::; L. 

Hence 17 is "extendable" to X and so 17 E i*(X*). We thus proved that rJ E i*(8ycp(x)). 

The reverse inclusion in (i) holds always. 

(ii) This follows from the fact 800 ('PIY )(x) = {0} as 'PlY is ii·lly-Lipschitzian. How-

ever, because of further purposes and the ease of the reader, we include the proof. So, 

take any e E 8~cp(x). Thus elY E 800 ('PIY )(x). Find then Yn E Y, tn E IR, (rJn, sn) E 

N((yn, tn); epi ('PlY)), n E IN, so that llYn -xiiY---+ 0, tn-+ cp(x), rJn -relY, and Sn-+ 0. 

Find I:!. > 0 so that cp is Lipschitzian on { x E X; llx- xiix < 21:::!.}, with Lipschitz constant 

L > 0, say. Fix any hEY, with llhllx = 1. Fix any n E 1N such that llYn- xiiY < 1:::!.. Fix 

any n E 1N. (As Y is Asplund, we can take en= 0.) Then 

lim sup 
Y-+Yn ,t-+tn ,(y,t)E epi 'PlY 

(rJn, Y- Yn) + Sn(t- tn) < O. 
IIY- YniiY +it- tni -

We can easily check that tn > cp(yn) implies (rJn, sn) = (0, 0). So, next assume that 

tn = cp(yn)· Then for every c > 0 we can find 8(c-) > 0 so that 
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whenever y E Y and IIY- YniiY < 8(c-). (Yes, 'PlY is continuous at Yn·) Then, as cp is 

Lipschitzian in II · llx-riorm, with constant L, we have that 

whenever y E Y and IIY- YniiY < 8(c-). Thus for 0 < t < 8(c-)/llhiiY we have 

and so 

And, letting c.!- 0, we get (rJn, h) :::; lsniL. Therefore(~, h) :::; limn-+oo(rJn, h) :::; limn-too lsniL = 

0. This holds for all h belonging to a dense set of the unit sphere of X. Hence ~ = 0. 

(iii) Take any (rJ, s) E N((x, cp(x); epi(cpjy )). Find Yn E Y, tn E R, (rJn, sn) E 

N((yn,tn); epi(cpjy)), n E IN, so that llYn -xll¥ ...,-t 0, tn--t cp(x), 'f/n-, rJ, and Sn --t 

s. Then, exactly as in the proof of (ii), we get that llrJnllx· :::; lsniL for every n E 

IN. Thus llrJIIx• :::; limsupn-+oo lirJnllx• :::; limsupn-+oo lsniL = lsiL, and hence (rJ, s) E 

i* ( Ny x IR ( (x, cp(x); epi cp). The reverse inclusion holds always. 

(iv) We have to prove that epi cp n (Y x IR), that is, epi (cp1y) is SNC at (x, cp(x)) in 

the spaceY x IR. So, consider Yn E Y, tn E IR, (rJn, sn) E N((yn, tn), epicply ), n E IN, 

with rJn-, 0, Sn --t 0. Then as in the proof of (ii), we get that llrJnllx• :::; lsniL and hence 

I 

The next statement is a mean value theorem imitating [MS, Theorem 8.2]. For a, bEY 

we put 

[a, b] = {ta + (1- t)b; t E [0, 1]} and (a, b)= {ta + (1- t)b; t E (0, 1)}. 
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~n E X* and that ll~nllx• ~ L for all n E IN. We recall that the dual unit ball in X* is 

weak* sequentially compact, see, e.g., [F, Chapter 2]. Therefore there exists~ E 8y f(c) 

such that (~, b- a) = f(b)- f(a). 

If (ii) occurs we proceed similarly. We again profit from the ll·llx-Lipschitz property 

The last statement also follows from [L, Theorem 3.1]. I 

In Asplund spaces we have a representation formula for the Clarke's subdifferential 

8c in terms of the Frechet limit subdifferential 8c<p(x) = co* [ ocp(x)] provided that <p : 

X -t 1R is Lipschitzian around x EX, see [MS, Theorem 8.11]. For the Asplund generated 

scheme (X, Y, ll·llx, II·IIY, i), if <p: X -t 1R is ll·llx-Lipschitzian around x E Y, we have 

8ccp(x) ::> co* [ oycp(x)]. 

Indeed, take any ~ E oycp(x). Then ~IY = i*(~) E 8(cpiY )(x). Find Yn E Y, with 

llYn- xiiY -t 0, en-!- 0, and 17n E {jcn 'PiY(Yn) such that 17n -r ~IY· Fix any k E Y and find 

tn -J,. 0 so that ("7n, k) - 2cn < t~ ( <p(Yn + tnk) - <p(Yn)). Then 

And, as <p was II· llx-Lipschitzian around x, we get (~,h) ~ <p0 (x)(h) for every hE X. 

Therefore~ E 8c<p(x) and the inclusion is proved. 

We do not see how to prove the reverse inclusion. Indeed, the Clarke's subdifferential 

uses in its definition the convergence in the space (X, II· llx) while oy is defined via the 

convergence in (Y, II · IIY ). Yet there exist expressions for 8c, in the Asplund generated 

setting, in terms of other concepts of c-subdifferential and even c-differential, see [FLW]. 
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Remarks. 1° Let X be an Asplund generated space. Then, of course, there are plenty 

of Y's witnessing for X 'to be Asplund generated. And we do not know if it impossible to 

define some reasonable subdifferential not depending on the concrete Y. 

2° Let (X, Y, II · llx, II · IIY, i) be an Asplund generated scheme such that X is not 

Asplund. Let f : X --+ IR be a Lipschitz concave function which is nowhere Frechet 

differentiable [Ph, Corollary 2.35]. Then flof(x) = 0 for every x E X while our Proposition 

guarantees that 8y f (y) is nonempty for every y E Y. 

3° In what follows we shall show which Y can be chosen for some concrete Asplund 

generated spaces X. 

(a) Let X be a separable Banach space. Let {xn; n E IN} be a countable dense set in 

the unit ball of X. Define T : £2 --+ X by T(an) = 2.:::,1 an2-nxn, (an) E £2; this is a 

linear bounded mapping with dense range. Since the quotient £2/T- 1 (0) is again a Hilbert 

space, we get a linear bounded and injective mappingS: £2 --+ X with dense range. Put 

Y = S(£2) and define IIYIIY = IISII- 1 IIS- 1yll£2 , y E Y. Then (Y, II·IIY) is isomorphic with 

£2, and hence Asplund. Moreover, IIYIIx ~ IIYIIY for every y E Y. 

(b) More generally, let X be a weakly compactly generated Banach space. According to an 

interpolation theorem, see, e.g., [F, Theorem 1.2.3], X is Asplund generated, withY even 

reflexive, witnessing for this. Note that the proof of this theorem is constructive, starting 

from a given weakly compact subset of X which is linearly dense in it. It should also be 

noted that the space C(K) of continuous functions on K is weakly compactly generated if 

and only if K is an Eberlein compact, see, e.g. [F, Theorem 1.2.4]. 

(c) If J.t is a finite measure and X = L1 (J.t), it is enough to take Y = L2 (J.t) and 11·11 y = 11·11 L 2 • 
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Here, of course L2 (J.1) is Hilbert, hence Asplund space. Note that L1(11) is also weakly 

compactly generated. 

(d) According to Stegall [St], [F, Theorem 1.5.4], a compact space K is homeomorphic to 

a weak* compact subset of a dual to an Asplund space if and only if C(K) is Asplund 

generated. In this case, the construction of Y requires more care. 

4° We are convinced that our note provides an important tool for extending the 

nonlinear analysis from the framework of Asplund spaces to a much larger class of Asplund 

generated spaces. In particular, we do not see any serious obstacle for extending many 

results from the paper [MS] in this vein. 
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