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Abstract 
 

This study examines the morphology of the hyoid in three closely related species, 

Homo sapiens, Pan troglodytes and Gorilla gorilla. Differences and similarities between the 

hyoids of these species are characterised, and used to interpret the morphology and 

affinities of the Dikika A. afarensis, Kebara 2 Neanderthal, and other fossil hominin hyoid 

bones.  

Humans and African apes are found to have distinct hyoid morphologies. In humans 

the maximum width across the distal tips of the articulated greater horns is usually slightly 

greater than the maximum length (distal greater horn tip to most anterior point of the hyoid 

body in the midline). A different pattern is usually found in the African ape hyoids, which 

have much greater maximum lengths. In humans, the hyoid body is also much more antero-

posteriorly shallow in proportion to its height and width, and this is true for all age classes.  

The Dikika australopithecine hyoid body proportions are chimpanzee-like. A 

discriminant function analysis, using a larger subadult sample from the three extant species 

than that reported by Alemseged et al. (2006), confirms this finding. The Kebara hyoid 

dimensions (body alone, and articulated body and greater horns) are almost all within the 

observed range for human hyoids. Discriminant functions clearly distinguish human from 

African ape hyoids, and classify the Kebara 2 hyoid as human (confirming the finding of 

Arensburg et al. 1989).  

Our virtual dissection of a chimpanzee air sac system shows its subhyoid extension 

into the dorsal hyoid body. Following Alemseged et al. (2006), the expanded bulla 

characteristic of the African ape and australopithecine hyoid body is therefore interpreted as 

reflecting the presence of such a laryngeal air sac extension. Its absence in the human, 

Neanderthal, and H. heidelbergensis (Atapuerca SH) hyoids implicates the loss of the 

laryngeal air sacs as a derived Neanderthal and modern human trait, which evolved no later 

than the middle Pleistocene. If, as has been argued by de Boer, the loss of the air sac 

helped to enhance perceptual discrimination of speech sounds, then this derived hyoid 

morphology can be added to the list of fossil markers of the capacity for speech. 
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INTRODUCTION 
 

This study examines the morphology of the hyoid bone, its relationship with the air 

sac (where present), and its scaling with skull and mandible dimensions in three extant 

hominoid species, Homo sapiens, Pan troglodytes and Gorilla gorilla. Results from those 

tests are then used to inform interpretation of the A. afarensis hyoid from Dikika, Ethiopia 

(Alemseged et al. 2006), the Neanderthal hyoid from Kebara Cave, Israel (Arensburg et al. 

1989), and other fossil hyoids from middle Pleistpcene hominins, and to assess their 

implications for the evolution of hominin vocal tracts and the capacity for speech. 

 

Hyoid anatomy in humans and great apes  

 

In adult primates, humans included, the hyoid presents approximately as a 

horseshoe shaped bone, located in the midsagittal plane of the neck, just inferior to the 

mandible and above the thyroid cartilage. The bones forming the adult primate hyoid are 

the unpaired body (basihyoid), the paired greater horns (thyrohyals) and the paired lesser 

horns (ceratohyals) (Liem et al. 2001; see also Senecail 1979). Developmentally, the hyoid 

bone is part of the pharynx, with the inferior half of the hyoid body and the greater horns 

originating from the third pharyngeal arch and the superior half of the hyoid body and the 

lesser horns arising from the second pharyngeal arch (Meikle 2002). The mammalian hyoid 

is usually suspended from the temporal bone via a series of small bone elements (such as 

the epihyal, stylohyal and tympanohyal, connecting to the lesser horns). However, in 

primates amongst some other mammalian groups, this series of bones is fused to the 

temporal bone in the form of a styloid process and the hyoid’s lesser horns connect to it via 

the stylohyoid muscle and ligament (Liem et al. 2001). Further attachments of the hyoid are 

to the oral cavity floor by the suprahyoid musculature – especially geniohyoid and 

mylohyoid - and to the thyroid cartilage by the thyrohyoid membrane and the infrahyoid 

musculature. The hyoid forms the osseous base of the tongue and plays an important role 

in its motion. It also lifts the larynx, and thus plays a crucial role in swallowing (Dodds et al. 

1990). 

In humans, the hyoid body is flat and bar-shaped (see Figure 1). The greater horns 

have a tendency to fuse with the body after the age of 40 (bilaterally or unilaterally), but in 

many individuals, this is not the case even in old age (Miller et al., 1998, O'Halloran and 
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Lundy, 1987). The human hyoid is positioned below the inferior margin of the mandibular 

body, approximately at the level of C3 to C4 and thus lies clearly below the tongue root.  

In great apes on the other hand, the hyoid is placed superior to the inferior margin of 

the mandibular body and lies behind rather than below the tongue root (Falk 1975). 

Furthermore, the shape of the hyoid body differs both between the great apes and humans 

as well as between African and Asian great apes: African ape hyoid bodies are expanded 

anteriorly with a curved bulla, which reflects the superior extension of the laryngeal air sac 

into the hyoid body (e.g., Miller 1941; Aiello & Dean 1990). The African ape hyoid body can 

appear almost translucent due to the thinness of the bone. Although organ-utans do not 

have an extensive hyoid body-bulla, they nevertheless have the most extensive and largest 

air sac system of all Hominoidea (Swindler and Wood 1973). The differences in hyoid body 

shape between the African and Asian great apes might be linked not to the presence or 

absence of the air sac system per se but to differences in how the subhyoid portion of the 

air sac reaches the pectoral and axillary regions in African and Asian great apes. 

 

Laryngeal air sac anatomy 

 

Based on their origin as lateral outgrowths from the ventricular recesses formed by 

the inferior thryo-arytenoid fold and the vocal folds, the air sacs observed in all great apes 

are classified as lateral ventricular sacs (Hewitt et al., 2002, Kelemen, 1963, Negus, 1949, 

Avril 1963, Brandes 1932; Fick 1895; Miller 1941; Nemai and Kelemen 1929). However, in 

African great apes, the ventricular processes fuse to a single air sac space within the 

confinement of the hyoid body (see figure 2 for illustration) (Avril 1963 ; Miller 1941). It is 

this fused “stem” of the subhyoid portion of the air sac which emerges mid-sagittally through 

the thyrohyoid membrane of African great apes (Avril 1963; Miller 1941; Swindler and Wood 

1973). It can therefore be argued that an air sac system with midsagittal plane exit point 

from the larynx complex forms a hyoid body bulla. That this might be the case is further 

supported by other primate species with air sac systems which differ from that of the 

Hominoidea (lateral ventricular sacs system) but which still leave the larynx complex via the 

thyrohyoid membrane in the midsagittal plane. Cercopithecoids (for example Papio) have 

subhyoid air sac systems which originate directly from the hyoid space rather than the 

laryngeal ventricles (Hewitt et al. 2002). However, they share the point of emergence of the 
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air sac with the African great apes (Avril 1963). In Papio and Ateles, there is bulla formation 

of the hyoid body observed (Hilloowala 1975, Swindler and Wood 1973).  

Orang-utans contrast from this arrangement in that their ventricular processes pierce 

the thyrohyoid membrane laterally, below the greater horns of the hyoid (Fick 1895) rather 

than through the anterior aspect of the thyrohyoid membrane in the midsagittal plane. The 

two air sacs then fuse to a single sac below and anterior to the hyo-laryngeal complex. The 

orang-utan hyoid body on the other hand does not show an extensive, thin-walled bulla 

formation as seen in the African great apes, although some anterior swelling is observed in 

the supero-anterior wall of the orang-utan hyoid body (see e.g. Nemai and Kelemen 1929 

for an image of an orang-utan hyoid body). The reason for the difference in these 

arrangements is not clear – perhaps it links to differences in suprahyoid musculature 

insertion on the hyoid between African apes and orang-utans. For example, the anterior 

belly of the digastric muscle is missing in orang-utans but present in African great apes 

(and humans) and the posterior digastric belly inserts into the angle of the mandible rather 

than the hyoid bone (Fick 1895; Nemai and Kelemen 1929; Swindler and Wood 1973). 

Perhaps this leads to a different arrangement in available space for the subhyoid air sac to 

emerge but further studies of air sac development would be necessary to test such a 

hypothesis. 

With regards to the development of great ape air sacs there are only limited data 

available. Studies by Miller (1941) and Nishimura et al. (2007) suggest that the 

development of air sacs in African great apes occurs entirely postnatally. The very limited 

data available for the gorilla indicate that the hyoid air sac is already shaping a small hyoid 

cavity before the age of 2 years (Miller, 1941). A study of chimpanzee air sac development 

with MRI scans in vivo in three chimpanzees between age 1 month and 5 years (Nishimura 

et al. 2007) revealed an initial period of steady, relatively slow growth during early infancy 

up to 2 years of age. In this stage, the hyoid air sac continuously grows and is the most 

clearly visible part of the air sac system. In late infancy (age 2 to 5 years), a rapid descent 

and extension of the subhyoid part of the air sac system is observed. During this time, the 

air sacs reach the sternal level.  
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Laryngeal air sac function, and the loss of this system in human evolution 

 

If data on the anatomy of the great ape air sac are relatively scarce, it is even less 

clear what the function of primate laryngeal air sacs is (e.g. Hewitt et al. 2002; see also 

Kelemen, 1963, Negus, 1949, Nemai, 1926, Sonntag, 1924). In some primate species, air 

sacs, in junction with the vocal folds clearly play a role as a resonating chamber – 

especially in Cercopithecoidea, Alouatta (the howler monkey), and Hylobates (cf. Schon 

1971, Schon Ybarra 1995; Hilloowala 1975). It has been suggested that air sacs can 

increase the duration and alter the formant frequencies of vocalization, perhaps as a means 

of exaggerating the body size of the caller (Fitch and Hauser 1995, Fitch 2000, de Boer 

2009; Hewitt et al., 2002; cf. Hilloowala and Lass 1978). Riede et al. (2008) found - using a 

physical model - that air sacs can increase vocal variability (both by extending the dynamic 

range, and by increasing variability in vocal tract impedance). Nevertheless, both Riede et 

al. (2008) and de Boer (2009, 2012) also suggest that air sacs can introduce additional 

resonances into the vocal signal that would reduce the efficiency of a speech-like vocal 

communication system. 

Of all the Hominoidea, only modern humans and some of the gibbon species do not 

have an air sac system and the possession of lateral ventricular air sacs is considered to be 

the ancestral state for the Hominoidea (Hewitt et al. 2002). This leads to further enquiries 

about the presence or absence of an air sac system in fossil hominoid taxa. The fossil 

record has yielded several complete or partial hyoids, of which the two best-known are one 

from the Kebara 2 Neanderthal (Arensburg et al. 1989) and one (represented by the body 

only) from the Dikika Australopithecus afarensis (Alemseged et al. 2006). These two bones 

represent very different moments in the evolution of the hominins, after the split of the last 

common ancestor of modern humans and African great apes. Additionally, in Spain the El 

Sidron site, dated to about 43 kya yielded a hyoid body assigned to Neanderthal which is 

very similar in size and shape to that of modern humans (Rodriguez et al. 2003), while the 

Sima de los Huesos site (also from Spain) has yielded two hyoid bodies, possibly belonging 

to a subadult and an adult specimen (Martinez et al. 2008), which are of great interest 

because they are attributed to middle Pleistocene European Homo (almost certainly 

ancestral to Neanderthals, and sometimes included in Homo heidelbergensis) and date to 

approximately 530 kya BP. 
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Aims of this paper 

 

The specific purpose of this paper is to describe the hyoid-air sac relationship in a 

chimpanzee, to provide a metrical analysis of hyoid characteristics in humans and in African 

apes that may relate to the presence or absence of a laryngeal air sac, and to characterize 

the fossil hyoids of extinct hominins in relation to those of these three living reference 

species. This paper revises and updates the data given in an unpublished analysis of hyoid 

metrical variation (Clegg 2001), and which have been used in two previous papers to 

contextualise and aid interpretation of individual fossil hominin hyoid bones (Alemseged et 

al. 2006; Martinez et al. 2008). In the wider research context, our work also relates to 

speech origins. Assuming both that the presence of air sacs can reduce the perceptual 

ease of discrimination of speech sounds, as argued by de Boer (2009, 2012), and that the 

common human and African great ape ancestor had an air sac system like that of the 

extant African great apes (expanding from the laryngeal complex via the thryrohyoid 

membrane in the midsagittal plane), then it can be argued that the loss of the air sac 

system in hominins is a marker of an enhanced capacity for articulate speech. It would 

therefore be of great interest to know at what point in time human ancestors lost the air sac 

system. 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ to acquire final version.



 8 

MATERIALS AND METHODS  

 
Chimpanzee air sac system: virtual dissection 

 

To study air sac morphology and hyoid relationships in a representative chimpanzee, a set 

of 3D Computer Tomography (CT) images of a chimpanzee cadaver was recorded in 

December 2007 at the Hospital Balgrist, Zurich, using a specimen from the A.H. Schultz 

and Primate Collections of the Anthropological Institute and Museum of the University of 

Zurich, Switzerland. The chimpanzee specimen (catalogue number 7288, Zurich 

Collections) used for the surface reconstruction of the air sac system was a juvenile male. 

Age is estimated at 4 to 5 years of age. The specimen originally came from the Department 

of Anatomy, University of Zurich and has been with the anthropology cadaver collections 

since 1966. The animal was a wet preserved cadaver; conservation is maintained with 

formaldehyde solution (4%). We used CT scan technology (Philips Brilliance 40 Medical 

Systems, slice thickness 0.67 mm, Inc. 0.33 mm, tube voltage 120 kV, tube current base 

line 120 mA, FOV 160 mm, all image matrices 512 x 512 x 512). ). From the CT scans, the 

volume of the air sac system was segmented from their entrances in the laryngeal 

ventricles and reaching both supra- and infra-laryngeal extensions using the software 

AMIRA® (Visage Imaging™). Segmenting means that the pixels of each slice image are 

assigned a label describing to which region or material the pixel belongs. A new data set is 

then created and a surface grid is produced from it which allows for making a 3D view of 

the selected object’s surface. All visualizations (slices, volume surface reconstructions) 

were produced with AMIRA 4.1.1. 

 

African ape and human hyoid morphology: osteological study 

 

African ape skeletal elements were from the Merfield and Congo expedition 

collections held by the Powell-Cotton Museum, Kent, England, and adult human skeletal 

elements were from the Christ Church Spitalfields collection held by the Natural History 

Museum, London, England. Hyoid bones were recorded for 118 adult individuals — 64 

humans Homo sapiens (38 males, 23 females, 3 unsexed), 33 chimpanzees Pan 

troglodytes (7 males, 26 females), and 21 gorillas Gorilla gorilla (10 males, 11 females) — 
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with additional measurements of the associated cranium and mandible when present. All 

species were assessed as adult on the basis of third molar in occlusion or, if the third molar 

was missing or impacted, tooth wear pattern on M1 and M2. The measurements taken are 

described in Table 1. Hyoid body measurements were also taken for a smaller number of 

infants and juveniles in the same collections (2 Homo sapiens, 17 Pan troglodytes, 21 

Gorilla gorilla), and for an additional human sample of 27 infants, juveniles and adolescents 

from the Mediaeval skeletal assemblage from Wharram Percy, Yorkshire, England. Figure 1 

illustrates examples of adult human, chimpanzee and Neanderthal hyoid bones. 

 

FIGURE 1 ABOUT HERE 

TABLE 1 ABOUT HERE 

 

The hyoid bone measurements were based on those that Arensburg and colleagues 

used to analyse the Kebara 2 Neanderthal hyoid bone and human comparisons (Arensburg 

et al., 1989, 1990), with an additional new measurement that captures the variation found 

when comparing human and African ape hyoids. The African ape hyoid bodies are often 

expanded anteriorly with a curved bulla, which may reflect the superior extension against 

the dorsal hyoid body of the laryngeal air sac (e.g., Aiello & Dean 1990). Arensburg et al. 

(1989)’s antero-posterior thickness measurement (APT) is compromised as a thickness 

measurement in the African ape bones by the fact that the upper and the lower posterior 

margins of the hyoid body are not equivalent in their posterior extension, since the upper 

margin typically extends a greater distance posteriorly in these species. The new 

measurement MAPT controls for this shape characteristic.  

The dimensions of the Dikika hyoid were taken from Alemseged et al. (2006), whose 

comparative analysis of its form used an unpublished earlier version of the chimpanzee and 

gorilla data reported here, with some additional cases (F. Spoor, pers. comm.). All metrical 

data reported in the present paper were collected by MC and JS during 2006 and 2007 

(new or re-measured), and supersede the values reported in an earlier iteration (Clegg 

2001) and which were used by Alemseged et al. (2006) and by Martinez et al. (2008). The 

comparative sample used by Alemseged et al. (2006) also included only three human 

subadults (two from Christ Church, Spitalfields, and one other). For the present study, we 

expanded the human subadult sample to 29 individuals, so that our analysis of Dikika in the 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ to acquire final version.
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present paper could make comparisons with a more appropriately age-matched sample 

from all three extant species. In these respects, the present comparative analysis of the 

morphology of the Dikika hyoid body should be seen as complementing that of Alemseged 

et al. (2006). The dimensions of the Kebara 2 hyoid were taken from Arensburg et al. 

(1989), except MAPT which was taken from a high-quality cast.  

 

Statistical analysis 

 

Descriptive statistics were obtained for all adult hyoid dimensions measured in the 

three extant species, and discrimination function analysis of these three groups was used to 

classify extant specimens from each of two extinct species, Australopithecus afarensis and 

Homo neanderthalensis. The scaling of dimensions was estimated by reduced major axis 

regression (Sawada 1999), and the test for isometry was whether or not a value of 1.0 fell 

within the 95% confidence interval for the slope of the log-log regression. 

Predicted morphological relationships of the hyoid with the craniofacial and laryngeal 

complexes include those between the total maximum breadth of the hyoid (distance 

between the distal greater horns in their anatomical positions) and transverse diameter of 

the basal oropharynx, and between total maximum length of the hyoid and mid-sagittal 

diameter of the basal oropharynx and tongue root. Soft tissue dimensions were not 

available to test these predictions in our samples. To explore these relationships indirectly, 

a set of cranial dimensions was measured in the adult human and African ape sample 

(Table 2), and bivariate correlations calculated to estimate the covariance of each hyoid 

dimension with the most highly correlated cranial variable in the three extant species. The 

expectation was that hyoid widths would scale most closely with one or more width 

measurement on the cranial base or facial skeleton, and that hyoid lengths would scale 

most closely with one or more cranial base length measurement. 

Statistical analyses were undertaken using SPSS for Windows, version 14.0 (SPSS 

Inc., 2005), and the reduced major axis regression add-in for Microsoft Excel (Sawada 

1999). 
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RESULTS 
 
Our results support a clear distinction between the African ape and human hyoid body 

morphologies, which (as our virtual dissection confirms) relate to underlying contrasts in the 

presence or absence of the infrahyoid extension of the air sac system. Multivariate 

analyses support the reconstruction of a chimpanzee-like air sac system in earlier hominins 

(A. afarensis), and of the absence of this system in later hominins (H. heidelbergensis, H. 

neanderthalensis). Overall dimensions of the hyoid (body plus greater horns) are 

associated across species with width and length variation in the cranial base.  

 
The chimpanzee air sac system.  

 
Our virtual dissection study yielded a clear illustration of the relationship between the 

laryngeal air sac and the hyoid body in an African ape. Figure 2 shows an image of the 

head and neck of the male subadult chimpanzee, consisting of a midsagittal plane slice 

combined with a coronal section. The expansions of the hyoid air sac and the midline 

process (labelling of air sacs as defined by Miller, 1941) are clearly visible. Some other 

clearly identifiable anatomical structures are labelled as well. Figure 3 shows a super-

imposition of the surface reconstruction of the air sac system combined with a midsagittal 

plane slice. In Figure 3, only features of the air sac system lying anterior to the midsagittal 

plane slice are visible. However, clearly visible are the greater horn of the hyoid as well as 

the submaxillary air sac, the infrahyoid air sac (midline passage), infraclavicular air sac and 

the episternal air sac. Since this is a juvenile animal, the episternal air sac did not reach 

further down than approximately halfway to the manubrium. Figure 4 shows another view of 

a combination of the surface reconstruction of the air sac system and in this case a coronal 

section (approximately at the level of the spheno-maxillary border, behind the sphenoid 

sinus. The anterior third of the temporal bone, but behind the maxilla and mandible is 

visible). This image has been chosen because it shows where and how the air sac system 

branches off the pharynx and trachea.  

 
FIGURE 2 ABOUT HERE 

FIGURE 3 ABOUT HERE 

FIGURE 4 ABOUT HERE 
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FIGURE 5 ABOUT HERE 

FIGURE 6 ABOUT HERE 

 

Additional interesting details are visible in the image of the surface reconstruction of 

the hyoid bone and air sac system only – as shown in Figure 5. Although the view on the 

hyoid air sac is obscured by the hyoid bone, relationships between the different air sacs 

show quite well. Ventricular and thyrohyoid processes are visible too although the exact 

connection to the air sacs is somewhat unclear in this image. To further visualize the 

connections between the pharynx, trachea and the processes of to the air sac system, the 

final image (Figure 6) is presented. The air sac system is shown from posterior and the 

surfaces are rendered semi-transparent for better visualization of overlaying structures. The 

image first shows that the left side is the dominant part of the air sac system of this 

specimen. The image also reveals that not only do the ventricular processes lead to the left 

and right sides of the air sac system but that there is a connection, located anteriorly and in 

the midline between the air sac system and the trachea. The air sac system becomes 

asymmetric just after the processes leading to the submaxillary air sacs are branching off: 

The left thyrohyoid process clearly connects to the hyoid air sac and the left midline process 

then leads to left and right pectoral air sacs, episternal air sac and left and right 

infraclavicular air sacs. The right thyrohyoid process on the other hand ends blind without 

connecting to the hyoid air sac.  

 

Adult human and African ape hyoids.  
 

The mean and range of values for metrical attributes of adult hyoids for each species 

are shown in Table 2. Three distinct patterns emerge. First, adult African ape hyoids have 

an anteroposteriorly expanded body compared to the human hyoids, with the presence of a 

posterior cavity or bulla reflected in the large differences between humans and the African 

apes in depth of the posterior surface of the body (DPS) and its maximum antero-posterior 

thickness (MAPT). This contrast is not found in other adult hyoid body dimensions (body 

height, MMH, or body width, MTD). Secondly, in humans the maximum width across the 

distal tips of the articulated greater horns (TMB) is usually slightly greater than the 

maximum length (TML, distal greater horn tip to most anterior point of the hyoid body in the 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ to acquire final version.
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midline). A different pattern is found in the African ape hyoids, which have much greater 

maximum lengths. Thirdly, within the African apes the mean anteroposterior dimensions of 

the adult gorilla hyoid bodies are greater than those of the adult chimpanzee hyoid bodies, 

although the bones of these two species are not statistically distinguishable in the other two 

dimensions (maximum transverse diameter, MTD, and maximum medial height, MMH). 

These contrasts are confirmed by the t-tests of differences between means for each 

possible pairing of species (Table 3). 

 

TABLE 2 ABOUT HERE 

TABLE 3 ABOUT HERE 

 

In the discriminant function analysis some of the hyoid measurements were 

excluded. TML and TMB were excluded because the sample of articulated bodies and 

greater horns in Gorilla was too small to make the analysis meaningful with these 

measurements included. APT was excluded to prevent redundancy, given the inclusion of 

the new alternative measurement MAPT.  

 

TABLE 4 ABOUT HERE 

TABLE 5 ABOUT HERE 

FIGURE 8 ABOUT HERE 

 

The first discriminant function analysis included measurements from both the hyoid 

body and the (disarticulated) greater horns. The coefficients and the structure matrix 

(Tables 4a, 4b) indicate that DF1, which accounts for 96% of the variance (Wilks’ λ = 0.032, 

p<0.001), reflects primarily variation in the anteroposterior depth of the body. MAPT and 

DPS have the highest correlations on this factor. This analysis shows a clear division 

between humans and the African apes (Fig. 8a). Human hyoids have a shallow body 

compared with the African ape species. DF2 accounts for only 4% of the variance (Wilks’ λ 

= 0.583, p<0.001), and is therefore not considered further. All the humans and 
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chimpanzees and all but one of the gorillas were correctly classified by this analysis (Table 

4c).  

The second discriminant function analysis included measurements from the hyoid 

body only, enabling a larger sample to be used (Figure 8b). The coefficients and the 

structure matrix (Tables 5a, 5b) indicate that DF1, which accounts for 99.3% of the variance 

(Wilks’ λ = 0.05, p<0.001), also reflects variation in the anteroposterior depth of the body. 

MAPT and DPS, which diagnose hyoid body thickness differences between humans and 

African apes, again have the highest correlations on this factor, confirming the first analysis. 

Classification results were also similar, although the inclusion of a larger number of 

individuals resulted in three chimpanzee hyoids being misclassified as gorilla, and three 

gorilla hyoids being misclassified as chimpanzee (Table 5c).  

 

Kebara adult Neanderthal hyoid. 

 

 The measurements of the adult Kebara 2 hyoid fall within the observed range for 

adult human hyoids in almost all dimensions (Table 2). The exception is MAPT, for which 

the Kebara value of 8.0 mm is marginally higher than the observed range for the human 

sample (3.4-7.6 mm). This higher value for MAPT reflects the relatively pronounced medial 

crest for attachment of the geniohyoid muscle, which Arensburg et al. (1989) suggested 

would have been unusually robust given the large size of the associated Kebara 2 

mandible. Compared with the African apes, the Kebara hyoid is smaller than the observed 

range for total length (TML) and for length of the greater horn (LGH), is wider between the 

distall tips of the articulated greater horns (TMB), and is shallower in body depth (DPS, 

MAPT). This is consistent with the human pattern. The Kebara hyoid falls within the 

observed range for all three species for other, less differentiating, dimensions (MTD, MMH, 

WGH). The discriminant functions classify the Kebara hyoid as human in both cases (based 

on body and horns, and on body only; see Tables 4c and 5c). 

 
Subadult human and African ape hyoids. 

 

The contrasts found in the adult hyoids are also found in the subadults. Compared 

with humans, the subadult African ape hyoids have an anteroposteriorly expanded body 
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with the presence of a posterior cavity or bulla, as can be seen in plots of the depth of the 

posterior surface (DPS) against both width (MTD) and height (MMH) (see Figure 9a). The 

ontogenetic scaling trends are summarised in Table 6, and indicate that at all ages, the 

human values for DPS are very significantly lower than those of either African ape for any 

given value of MTD or MMH, as indicated by the different values for the intercept in the 

regression models. In African apes the depth of the bulla (DPS) is greater from an early 

age, and also hyperscales to the hyoid body’s other linear dimensions (width, MTD and 

height, MMH), reflecting the growth of the air sac system. Width (MTD) and height (MMH) 

of the hyoid body scale isometrically in chimpanzees but MMH hyperscales relative to MTD 

in gorillas, reflecting an additional dimension of expansion of the gorilla hyoid bulla (the air 

sac growth presumably causing the hyoid bulla to expand superiorly as well as anteriorly, 

relative to its transverse diameter). 

A discriminant function analysis of the subadult sample based on the three hyoid 

dimensions reported for the Dikika specimen (Alemseged et al. 2006) correctly classifies all 

the humans, and the majority of the chimpanzees and gorillas (a small minority of each ape 

species being misclassified as the other; see Table 7). The first discriminant function is the 

only statistically significant one (Wilks’ λ = 0.129, p<0.001), and DPS has the strongest 

loading on it. A high value for DF1 indicates a relatively deep posterior surface in proportion 

to the height of the hyoid body.  

 
TABLE 6 ABOUT HERE 

TABLE 7 ABOUT HERE 

FIGURE 9 ABOUT HERE 

FIGURE 10 ABOUT HERE 

 
Dikika juvenile hyoid dimensions. 

 

As previously observed by Alemseged et al. (2006), and now confirmed with a larger 

subadult human sample and with only subadults considered, the Dikika juvenile australopith 

hyoid is deep for its height and width (Figure 9), and is morphologically chimpanzee-like. 

This similarity applies both when comparing only subadults from the three extant species 
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(Figure 9a), and when comparing across all observed age classes (Figure 9b; this graph 

also shows the plotted values for the two middle Pleistocene European hominin hyoids from 

Atapuerca SH, attributed here to H. heidelbergensis). The discriminant function analysis of 

subadult hyoid bodies, based solely on the three hyoid body dimensions reported for the 

Dikika specimen, also classifies this specimen with chimpanzees (Table 7; Figure 10).  

 

Adult cranial and hyoid shape 
 

Bivariate correlations between hyoid and cranial dimensions (Table 8) indicate that in 

the adults (with all three extant species pooled), hyoid total maximum length, greater horn 

length, and body thickness are all most highly correlated with cranial base length (orale-

endobasion; vs. TML, Pearson’s r = 0.92**; vs. LGH, Pearson’s r =  0.75**; vs. DPS, 

Pearson’s r = 0.92**; vs. MAPT, Pearson’s r = 0.95**). The scatterplot of MAPT vs. O-E 

(Figure 11) suggests that this correlation may simply reflect a size effect in both dimensions 

that differentiates mean values in the three species. When the sample is split into the three 

extant species, this pattern of statistically significant correlation only holds for the gorillas. 

However, there may be some overall functional significance in the fact that anteroposterior 

thickness of the hyoid body correlates with a cranial base dimension taken in the same 

plane.  

Total maximum breadth of the hyoid is most highly correlated with bicarotid canal 

width (TMB vs. CC-CC, Pearson’s r = 0.71**, all three species pooled). When broken down 

by species, this correlation is also supported by the chimpanzee data, and in humans, the 

highest correlation is with the closely-related dimension of bistylomastoid width (TMB vs. 

SM-SM, Pearson’s r = 0.50*); the gorilla sample is too small for independent assessment. 

This result is consistent with the soft tissue relationships: the styloid process is connected 

to the hyoid via the stylohyoid ligament and muscle, while the carotid artery passes just 

lateral to the superior thyroid cartilage and bifurcates at the level of the C3 vertebra, the 

internal branch passing more medially to enter the skull via the carotid canal. 

Bistylomastoid foramen and bicarotid canal width might therefore be expected to scale with 

the transverse diameter of the larynx and pharynx.  

The width of the hyoid body correlates most highly with bicondylar breadth of the 

mandible (MTD vs. MBB, Pearson’s r = 0.59**, all three species pooled; Figure 12a), and is 

next-most highly correlated with mandibular bigonial breadth (MTD vs. MGB, Pearson’s r = 
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0.55**, all three species pooled), which must also reflect a size relationship between these 

closely contiguous structures. In the Kebara Neanderthal, the scaling of maximum bigonial 

breadth of the mandible to maximum transverse diameter of the hyoid body is consistent 

with this observed relationship in the extant species (Figure 12b).  

 
TABLE 8 ABOUT HERE 

FIGURE 11 ABOUT HERE 

FIGURE 12 ABOUT HERE 
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DISCUSSION 
 

Humans and African apes form a distinct clade, within which it is relevant to look for 

phenotypic evidence of divergent behavioural evolution. Human and African ape hyoid 

bones have distinct morphologies. The hyoid measurements recorded in this study from a 

human sample from early modern London reproduce with remarkable consistency the 

pattern found by Arensburg et al. (1989), in their earlier study of five Holocene human 

populations from Europe and the Near East (see Table 9). Human hyoids usually have a 

slightly greater total maximum breadth than total maximum length, and their bodies are 

relatively shallow anteroposteriorly, although their maximum transverse diameters do not 

differentiate them from the African apes.  

 
TABLE 9 ABOUT HERE 

 

The discriminant function coefficients indicate that the hyoids of the African apes and 

of humans are principally distinguished by the relative depth of the body (i.e. the presence 

or absence of the expanded bulla), which reflects the presence or absence of a subhyoid 

airsac extension (as our chimpanzee virtual dissection clearly illustrates). The discriminant 

function analysis did not misclassify any adult human hyoids. The adult chimpanzee and 

gorilla hyoids are more similar, to the extent that a small minority of examples from one 

species were wrongly classified as the other, in the post hoc analysis. The primary 

difference in the African ape bones is in their total maximum length and in the depth of the 

body, the gorilla hyoids being on average larger in these dimensions than the chimpanzee 

examples even after controlling for hyoid body width and height.  

We predicted that total maximum length (TML) of the hyoid would covary with 

antero-posterior length of the basal oropharynx and tongue root, and that total maximum 

breadth (TMB) of the hyoid (distance between the distal greater horns in their anatomical 

positions) would covary with transverse diameter of the basal oropharynx. Published soft 

tissue measurements of adult humans are consistent with these expectations. Perrier et al. 

(1992) found the transverse diameter of the basal oropharynx to be 41 mm in a cast from a 

single adult vocal tract, which is in the middle of the range for TMB in our own adult skeletal 

sample (40.7±5.2 mm., n=21). The pharyngeal cavity at this level is longer in transverse 
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than in sagittal diameter, and it is the sagittal diameter of the tongue root which makes the 

additional contribution to TML. Taylor et al. (1996) found the average distance from the 

superior point of the anterior hyoid body to the posterior wall of the pharynx in the midline to 

be 28 mm in females and 35 mm in males, based on samples of 18 year-olds measured 

from lateral cephalometric radiographs. This is approximately consistent with our own 

findings of an overall mean adult TML of 36 mm, with a mean for adult females (n=17) of 34 

mm, and a mean for adult males (n=20) of 38 mm. It would be useful in future to collect 

more data on oral and pharyngeal cavity dimensions in chimpanzees and gorillas, so that 

species differences in hyoid dimensions can also be correlated more precisely with the 

dimensions of these soft tissue structures and the relevance inferred for any functional 

differences in (e.g.) swallowing movements. In the African apes, the relatively large values 

found for TML also reflect a third factor — the greater depth and curvature of the hyoid 

body itself, which is filled by a laryngeal air sac. 

Examining the fossil hyoids and comparing them with the modern hominoid samples 

show that the Dikika A. afarensis hyoid has the expanded bulla found in the African apes 

associated with retention of the laryngeal air sac with its subhyoid extension (Alemseged et 

al. 2006).  

The Kebara Neanderthal specimen and the hyoid body of the juvenile 

Australopithecus afarensis from Dikika, Ethiopia (Alemseged et al. 2006) are not the only 

published hyoids from extinct hominins, although they are the best-known. Hyoids of extinct 

hominins were also found at two Spanish sites. In Spain the El Sidron site, dated to about 

43 kya yielded a hyoid body assigned to Neanderthal which is very similar in size and 

shape to that of modern humans (Rodriguez et al. 2003). The Sima de los Huesos site (also 

from Spain) yielded two hyoid bodies, possibly belonging to a subadult and an adult 

specimen (Martinez et al. 2008). These two hyoids are of great interest because they are 

attributed to pre-Neanderthal archaic Homo (Homo heidelbergensis) and date to 

approximately 530 kya BP. The absence of an expanded bulla in these hyoid bodies of 

humans, Neanderthals and Homo heidelbergensis suggests that they shared the derived 

feature of an absence of laryngeal air sacs. There is no evidence, nor to our knowledge any 

plausible functional reason to expect, that later hominins passed through an orangutan-like 

stage with a large air sac that did not impinge on the hyoid body. Such a suggestion would 

lack parsimony. The loss of the air sac system can therefore be dated to no later than the 

middle Pleistocene. 
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Our study has focused on comparative hyoid bone morphology in African apes and 

humans, and its implications for the presence or absence of an air sac system. If the 

presence of an air-sac system hinders the production of easily-perceptible contrasts in 

basic speech sounds and its absence in humans reflects selection against that hindrance 

(as de Boer has proposed based on his experimental and modelling work; de Boer 2009, 

2012), then the emergence of human-like speech can also therefore be dated to no later 

than the middle Pleistocene. Our comparative analysis was, by its nature as a dry bone 

study, unable to identify any association between the shape or size of the hyoid bone and 

its position in relation to the mandible; our study therefore sheds no new light on the vexed 

question of the lengths of the vertical and horizontal portions of the supralaryngeal vocal 

tract in fossil hominins (cf. Fitch 2009). However, elsewhere we have explored the 

reconstruction of the Neanderthal vocal tract using three-dimensional shape analyses and 

software articulatory models of vowel production, with hyoid position predicted by 

extrapolation from a reference sample of head-and-neck scans of adult humans (Barney et 

al. 2012); similarly to Boe et al. (2002, 2011), we found that the reconstructed Neanderthal 

tract has comparable properties to those of humans, although the necessity of estimating 

fossil hominin soft tissue relationships from an extant reference species limits independent 

validation of the modelling assumptions. The presence in Neanderthals of the human 

variant of the FOXP2 gene (Krause et al. 2008, Burbano et al. 2010), the possible skeletal 

evidence of adaptations for ‘speech breathing’ (Maclarnon and Hewitt 1999, 2004), the 

skeletal evidence for H. heidelbergensis and Neanderthal right-handedness (e.g. Steele 

and Uomini 2009, Frayer et al. 2012, Volpato et al. 2012) and the presence in Neanderthals 

of the human pattern of cerebral petalias (e.g. Barzeau et al. 2012), provide additional 

independent supporting evidence for a capacity for speech in these fossil hominins.   
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Table 1. Hyoid and cranial measurements. Unilateral measurements taken on left side 
where available. 
 
 Measurement Description 
Hyoid bone measurement (after Arensburg et al. 1989, 1990; except MAPT,  defined for this study) 
TML Total maximum length  Total maximum length of the hyoid bone in the mid-sagittal plane, 

in projection from the distal end of the greater horns to the most 
antero-medial point of the body, with the greater horns attached to 
the body in their anatomical position. 

TMB Total maximum breadth  Total maximum breadth of the hyoid bone in transverse plane, 
taken at the most external distal ends of the greater horns, with the 
greater horns attached  to the body in their anatomical position 

MTD Maximum transverse 
diameter 

Maximum transverse diameter of hyoid body 

MMH Maximum medial height Maximum medial height of  hyoid body (midsagittal distance 
between the supero-posterior and infero-posterior borders of the 
hyoid body) 

APT Antero-posterior thickness Antero-posterior thickness of hyoid body in sagittal plane; one 
caliper branch tangent to upper and to lower posterior margins of 
hyoid body, the other branch tangent to the most protruding antero-
medial point.of the hyoid body 

MAPT Maximum antero-posterior 
thickness 

Chord length in sagittal plane, from medial point on upper posterior 
margin of hyoid body, to the most protruding antero-medial point.of 
the hyoid body 

DPS Depth of the posterior 
surface  

Depth of the posterior surface of the hyoid body, measured from 
the the upper and the lower posterior margins of the hyoid body in 
the mid-sagittal plane 

LGH Length of the greater horn  Distal end to the lateral border of proximal articular surface 
WGH Width of the greater horn  Infero-superior width of greater horn taken at widest point closest to 

hyoid body 
Skull measurements 
U.FACE Upper facial height  From nasion to alveolare 
BIZYGO Bizygomatic breadth From zygion to zygion 
IPL Internal palate length From orale to staphylion 
IPB Internal palate breadth  From endomolare to endomolare 
MBB Mandibular bicondylar 

breadth  
From condylion to condylion 

MGB Mandibular bigonial breadth  From gonion to gonion 
S. HT Mandibular symphysis 

height  
From gnathion to infradentale 

ML Mandibular length Horizontal distance from the posterior aspect of condyles to 
gnathion 

HR Maximum height of 
mandibular ramus 

From gonion to uppermost part of condyle 

C-E Cranial base length Hormion to endobasion 
O-E Total cranial base length Orale to endobasion 
TP-TP Bitympanic width Cranial base width at most inferior point of lateral end of tympanic 

plates 
SM-SM Bistylomastoid width Width between central points in the left and right stylomastoid 

foramina 
CC-CC Bicarotid canal width Width between central points in the left and right carotid canals 
TP-PA Tympanic-petrous length Length between most inferior point of lateral end of tympanic plate 

and  anteriormost point of inferior surfaces of petrous temporal 
bone 
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Table 2. Descriptive statistics for adult human, chimpanzee, and gorilla hyoid bones, with 
individual values for Neanderthal (Kebara 2) and A. afarensis (Dikika). Measurements in 
millimetres. 
 

	
   	
  
Homo	
   Pan	
   Gorilla	
  

TML	
   Mean,	
  SD	
   36±4.1	
   48.3±4.5	
   67.3±1.1	
  

	
  
n,	
  range	
   n=37;	
  27.8-­‐42.4	
   n=5;	
  43.3-­‐55	
   n=2;	
  66.5-­‐68	
  

TMB	
   Mean,	
  SD	
   40.7±5.2	
   31.2±5.4	
   32.8±5.9	
  

	
  
n,	
  range	
   n=21;	
  30.7-­‐50.6	
   n=5;	
  24.1-­‐37.4	
   n=2;	
  28.6-­‐37	
  

MTD	
   Mean,	
  SD	
   23.4±2.5	
   23.5±2.6	
   25±3.6	
  

	
  
n,	
  range	
   n=62;	
  17.1-­‐29.9	
   n=31;	
  17.7-­‐29	
   n=18;	
  18.8-­‐31.5	
  

MMH	
   Mean,	
  SD	
   10.6±1.2	
   11.1±1.7	
   13.1±3.3	
  

	
  
n,	
  range	
   n=63;	
  8-­‐13.7	
   n=32;	
  8-­‐14.4	
   n=18;	
  7.5-­‐18.2	
  

APT	
   Mean,	
  SD	
   5.1±1	
   7.3±1.3	
   11.6±3	
  

	
  
n,	
  range	
   n=63;	
  3.1-­‐7.4	
   n=31;	
  5.4-­‐10.4	
   n=17;	
  6.2-­‐17.5	
  

MAPT	
   Mean,	
  SD	
   5.1±1	
   13.4±1.9	
   17.1±2.9	
  

	
  
n,	
  range	
   n=63;	
  3.4-­‐7.6	
   n=31;	
  8.7-­‐16.8	
   n=17;	
  11.5-­‐21.4	
  

DPS	
   Mean,	
  SD	
   2±0.7	
   6.6±1.4	
   9.9±2.4	
  

	
  
n,	
  range	
   n=63;	
  0.9-­‐3.8	
   n=31;	
  3.9-­‐10	
   n=17;	
  5.7-­‐14.6	
  

LGH	
   Mean,	
  SD	
   28.1±3.8	
   33.6±5.4	
   40±7.6	
  

	
  
n,	
  range	
   n=41;	
  19.2-­‐35.5	
   n=27;	
  26-­‐51.6	
   n=15;	
  30.5-­‐51.8	
  

WGH	
   Mean,	
  SD	
   7±1.1	
   7±1.3	
   9.5±2.1	
  

	
  
n,	
  range	
   n=49;	
  5.2-­‐9.3	
   n=28;	
  4-­‐11.7	
   n=17;	
  6-­‐13	
  

 
 

Table 2 (continued). Descriptive statistics for adult human, chimpanzee, and gorilla hyoid 
bones, with individual values for Neanderthal (Kebara 2) and A. afarensis (Dikika). 
Measurements in millimetres. 

 
 

 TML TMB MTD MMH APT MAPT DPS LGH WGH 
Dikika1 - - 11.7 7.7 - - 4.7 - - 
Atapuerca AT-15002  - - 21.8 10.8 6.8 - 2.8 - - 
Atapuerca AT-20002 - - 18.6 10.2 6.7 - 1.6 - - 
SDR-0343 - - - 10.5 5.5 - 2.6 - - 
Kebara4 35.5 45.0 24.6 13.4 5.8 8.0 3.8 25.0 5.2 

 

                                            
1 Juvenile Australopithecus afarensis. From Alemseged et al. (2006), online supplementary 
material 
2 Homo heidelbergensis. From Martinez et al. (2008). 
3 Neanderthal. From Rodrıguez et al. (2003). 
4 Neanderthal. From Arensburg et al. (1989), except MAPT, taken from a cast 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ to acquire final version.



 29 

Table 3. T-tests for comparison of means for adult hyoid bone measurements (estimated 
with or without equality of variance assumed, accordjng to results of Levene’s test for each 
paired comparison) 
 

 Homo/Pan Homo/Gorilla Pan/Gorilla 
TML <0.001 <0.001 0.003 
TMB 0.001 0.056 0.744 
MTD 0.872 0.094 0.094 
MMH 0.229 0.006 0.02 
APT <0.001 <0.001 <0.001 
MAPT <0.001 <0.001 <0.001 
DPS <0.001 <0.001 <0.001 
LGH <0.001 <0.001 0.008 
WGH 0.983 <0.001 <0.001 

 
Significance levels: α=0.002 for p<0.05 after applying Bonferroni’s correction for multiple 
comparisons (n=27 tests). 
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