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A pedagogical tool is presented for applied researchers dealing with incomplete multilevel, longitudinal 
data. It explains why such data pose special challenges regarding missingness. Syntax created to perform 
a multiply-imputed growth modeling procedure in Stata Version 11 (StataCorp, 2009) is also described. 
 
Key words: Missing data, longitudinal data, multilevel data, multiple imputation, growth modeling, 

Stata. 
 
 

Introduction 
One research challenge faced when conducting a 
longitudinal study is selecting a method for 
handling missing data. Incomplete assessment 
histories for longitudinal study participants are 
ubiquitous (Allison, 2002; Jeličić, Phelps & 
Lerner, 2009), and are due to multiple factors, 
such as participants’ attrition, illness, 
unwillingness or inability to answer certain 
questions, and problems related to the methods 
of data collection. 

When considering how longitudinal data 
are inherently structured – with repeated 
measurements (at level-one) clustered or nested 
within individual participants (at level-two) – 
such  data  are in effect multilevel or hierarchical 
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(complex) (Zaidman-Zait & Zumbo, 2013). 
Hence, incomplete assessment histories may 
affect the availability of values for both time-
varying and time-invariant variables. 

Ignoring missing data can significantly 
bias estimates of coefficients and standard 
errors, inflate Type I and II error rates, degrade 
confidence intervals and/or distort statistical 
power (Acock, 2005; Allison, 2002; Collins, 
Schafer, & Kam, 2011; Little & Rubin, 2002; 
Schafer & Graham, 2002; Zaidman-Zait & 
Zumbo, 2013). Therefore, missing data should 
be a focus of any longitudinal study, rather than 
being sidelined as a bother (Allison, 2002; Little 
& Rubin, 2002; Schafer & Graham, 2002). 

Unfortunately, many of the strategies 
proposed to handle missingness tend to be 
primarily implementable in relatively 
rudimentary research contexts in which data lack 
the intricacy and “messiness” of real-life data 
(Carpenter, Goldstein & Kenward, 2011; 
Graham, 2009; Johnson & Young, 2011). To 
complicate matters, some best-practice studies 
of missing data imputation provide such 
stringent technical requirements for filling-in 
missing data that their recommendations cannot 
realistically be met in many real-life research 
contexts. Some of these requirements were 
generated from elementary simulated, single-
level data sets (von Hippel, 2007, 2009). 
Furthermore, large percentages of longitudinal 
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researchers either did not comment on their 
studies’ missingness or they utilized outdated 
and even incorrect methods to handle 
missingness. As a result, the longitudinal 
research literature is scattered with examples of 
bad missing data practices (Jeličić, et al., 2009). 

Given the lack of a robust empirical 
research base centered on this problem, the lack 
of conclusive recommendations about precisely 
how to deal with the problem, and the dearth of 
statistical software resources that allow users to 
resolve this problem (Allison, 2002; Carpenter, 
et al., 2011; Graham, 2009), many longitudinal 
researchers find themselves at an impasse. To 
further complicate matters, graduate training in 
statistics, measurement and research 
methodology in North American universities has 
declined significantly in recent years, while 
there has been an increasing trend toward 
doctoral-level researchers with minimal 
knowledge of statistics who nonetheless conduct 
analyses (Aiken, West & Millsap, 2008; Aiken, 
et al., 1990; Merenda, 2003). For these reasons, 
dealing with incomplete complex data is a good 
idea in theory, but a challenging one in practice. 
 
Objectives 

The goal of this article is to provide a 
pedagogical tool for applied longitudinal 
researchers dealing with incomplete complex 
data. The first objective is to explain and 
illustrate why complex data pose special 
challenges when it comes to missingness. 
Inspired by the work of the UCLA Academic 
Technology Services’ Statistical Consulting 
Group (n.d.a), the second objective is to provide 
a step-by-step description of syntax created to 
perform a multiply-imputed individual growth 
modeling procedure in a real-life longitudinal 
research context (Obradović, Lloyd & Motti-
Stefanidi, manuscript in preparation), using Stata 
Version 11 (StataCorp, 2009). 

Strategies for handling missing complex 
data will be presented, although it is not claimed 
that they are a perfect solution to the problem. 
The complex structure of data in this study was 
not amenable to certain imputation-related 
recommendations offered in the general missing 
data literature. In short, missingness was dealt 
with in the best way possible given the 
unanswered questions that surround missing 

complex data. But it is precisely because of 
these unanswered questions that the 
implementation of a modern procedure, such as 
multiple imputation, to fill in incomplete 
multilevel, longitudinal data is, in principal, 
justifiable until the missing data literature 
provides conclusive recommendations for 
handling missing complex data in broadly-
defined longitudinal research contexts. 

Different types of missing data and 
missing data mechanisms were discussed by 
Allison (2002), Collins, et al. (2011), Graham 
(2009), Little (1995), Little and Rubin (2002), 
Schafer and Graham (2002) and Zaidman-Zait 
and Zumbo (2013). Applications, strengths, and 
limitations of assorted traditional and modern 
methods by which to handle missing data were 
discussed by Acock (2005), Allison (2002), 
Collins, et al. ( 2011), Little and Rubin (2002), 
Schafer and Graham (2002). Working 
knowledge of how to run individual growth 
models (multilevel models of change) is 
assumed (Raudenbush & Bryk, 2002; Singer & 
Willett, 2003), as is familiarity with Stata’s 
programming language. That said, step-by-step 
syntax descriptions facilitate translating the Stata 
commands into other programming languages or 
platforms. 
 
Why Complex Data Pose Special Challenges  

Multiple imputation involves four steps: 
(1) replication, wherein multiple copies of an 
incomplete data set are created; (2) imputation, 
wherein missing values in each data set are 
replaced with plausible versions of the complete 
data derived from multivariate data; (3) analysis, 
wherein each imputed data set is analyzed 
separately using standard methods of statistical 
analysis; and (4) recombination, wherein  the 
results of the separate analyses are combined or 
pooled (Rubin, 1987; Schafer, 1999; Schafer & 
Graham, 2002; von Hippel, 2007). The process 
of combining results of parameter estimates and 
their respective standard errors from several 
imputed data sets has been shown to yield valid 
statistical inferences that reflect the uncertainty 
due to the missingness (Yuan, 2011).  

Unfortunately, it is challenging to begin 
the multiple imputation process when dealing 
with complex data. For example, von Hippel 
(2009) and Allison (2002) recommended 
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calculating transformations such as interactions 
and squared terms using the incomplete data 
and, in turn, imputing the transformations 
alongside the other regular variables. This 
transform-then-impute approach has been shown 
to yield better, less-biased regression estimates 
than when variables are imputed in their raw 
form and, in turn, transformations are calculated 
from the imputed data (the impute-then-
transform approach; von Hippel, 2009). 
Although the transform-then-impute approach 
may be possible to heed in certain single-level or 
simulated contexts, it is difficult to implement 
when dealing with complex data.  

Consider a hypothetical example in 
which a longitudinal study involves data 
collected across three waves, in which Yti is the 
observed score at time or wave t for individual 
participant i. Consider further that there is one 
time-varying predictor, Xti, and two time-
invariant predictors, Vi and Wi. Then imagine 
that the data have been entered into a 
spreadsheet in person or wide format – wherein 
all of the records collected for an individual 
participant are entered along one row of the 
spreadsheet. As indicated in Table 1, when data 
are formatted this way, there is no time or wave 
variable (i.e., a variable that explicitly denotes 
the particular period of data collection). Instead, 
individuals’ scores for time-varying variables 
are represented by as many separate variable 
names (i.e., columns in the spreadsheet) as there 
are waves. For example, Xi for waves 0 through 
2 are respectively denoted by variables X0, X1, 
and X2. 

Although the lack of a wave variable 
makes it possible to create single-level 
interactions between time-invariant variables 
(e.g., Vi*Wi at level-two), it is computationally 
difficult to automate the inclusion of cross-level 
interactions in the imputation model. This 
difficulty is lamentable because the ability to 
explore cross-level interactions is one of the 
primary advantages of performing an individual 
growth modeling analysis (Holt, 2008). A cross-
level interaction refers the interaction between 
level-two variables and level-one variables, “that 
is, to modification of the effects of lower level 
variables by characteristics of the higher level 
units to which the lower level units belong (or 
vice versa)” (Diez-Roux, 2002, p. 589).  

For example, suppose a study is 
designed to explore the cross-level interaction 
between time or wave (at level-one) and the 
time-invariant variable Wi (at level-two). In the 
absence of an explicit time or wave variable, the 
interaction cannot be computed. Similarly, 
suppose a study is designed to explore the cross-
level interaction between the time-varying 
variable Xti (at level-one) and the time-invariant 
variable Vi (at level-two). Because Xti’s time-
varying values are represented by as many 
variable names (columns) as there are waves, 
there is no way of creating a cross-level product 
term that takes into account the temporal nature 
of Xti while also taking into account the constant 
nature of Vi. 

Alternatively, imagine that the same 
data have been entered into a spreadsheet in 
person-period or long format – wherein each 
individual’s records are entered into as many 
rows as there are waves of data collection (in the 
case of the example presented, three rows per 
individual). 

Although it is shown in Table 2 that 
there is a wave variable, most statistical software 
programs, including Stata, require data to be in 
person format during imputation. If not, the 
software erroneously views separate rows as 
representing separate individuals. Hence, when 
exploring cross-level interactions, it is not 
possible to take into account the within-
individual covariance – the inherently nested or 
clustered structure of the data – whether the data 
are entered in person format or in person-period 
format (Han, 2008). 

von Hippel (2009) recommended any 
centering of the scores of a given variable – a 
practice aimed at reducing collinearity and 
improving interpretation of the intercept 
(Raudenbush & Bryk, 2002) – be carried out 
prior to imputation. What is unclear is which 
problems are introduced if the mean that is being 
subtracted is being skewed by the variable’s 
missing values. The benefit of centering pre-
imputation is also unclear, given that centering 
simply linearly transforms a variable’s scores 
into those different metric. This problem is not 
endemic to complex data sets alone, but 
highlights the questions surrounding multiple 
imputation and the transform-then-impute 
approach specifically. 
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Stata Tutorial 

A step-by-step description of syntax 
used to perform a multiply-imputed growth 
modeling procedure in a longitudinal research 
context is presented (Obradović, et al., 
manuscript in preparation). Although this 
tutorial describes specific imputation and 
analytic choices made with respect to the data at 
hand, there is no ‘one size fits all’ approach to 
addressing the problem of missing data (Johnson 
& Young, 2011; Yuan, 2011). 
 
Software 

Stata Version 11 (StataCorp, 2009) was 
used for the tutorial due to its versatile ability to 
perform data management tasks, multiple 
imputation and complex analyses. Schafer 
(2001) developed a statistical program, PAN, 
which accounts for the clustered nature of 
longitudinal data as part of S-Plus (Schafer, 
2001;  Schafer & Yucel, 2002).   An   imputation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
macro for MLwiN, REALCOM-IMPUTE, was 
developed for multilevel data (Carpenter, et al., 
2011). Although these are exciting 
advancements, PAN’s limited availability and 
accessibility (Graham, 2009) and REALCOM-
IMPUTE’s relative newness (with 
documentation focused only on non-growth 
model examples of nested data) indicate neither 
has made its way into routine use by applied 
longitudinal researchers.  
 
Missing Data Procedure 

Two choices of modern missing data 
procedures were available to implement in this 
study: full information maximum likelihood 
(FIML) or multiple imputation (MI). As Collins, 
et al. (2001) wrote, FIML “chooses parameter 
values that assign the highest possible 
probability or probability density to the data 
values actually seen, under a well-defined family 
of parametric probability models” (p. 334). 

Table 1: Hypothetical Example of Data Entered into a Spreadsheet in Person (Wide) Format 

ID Y0 Y1 Y2 X0 X1 X2 V W 

1 4 7 10 13 16 19 22 25 

2 5  11 14  20 23 26 

3 6 9 12 15 18 21  27 

 
 

Table 2: Hypothetical Example of Data Entered into a 
Spreadsheet in Person-Period (Long) Format 

ID Y X Wave V W 

1 4 13 0 22 25 

1 7 16 1 22 25 

1 10 19 2 22 25 

2 5 14 0 23 26 

2   1 23 26 

2 11 20 2 23 26 

3 6 15 0  27 

3 9 18 1  27 

3 12 21 2  27 
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FIML treats the missing data as random 
variables to be removed from the likelihood 
function. This, in a sense, treats the missing data 
as if they were never sampled, rather than 
deleting or filling in the missing cases (Schafer 
& Graham, 2002). Little and Rubin (2002) 
provided detail on FIML estimation. By 
contrast, MI “attempts to handle the missing 
data aspect in advance of the substantive 
analysis” (Collins, et al., p. 335) by combining 
results of parameter estimates and their 
respective standard errors from several imputed 
data sets, pre-analysis. 

According to Carpenter, et al. (2011), 
MI is the leading approach to handling data that 
are missing at random (MAR). It is 
implementable with a larger variety of data and 
statistical models than FIML (Allison, 2002; 
Johnson & Young, 2011). Although FIML 
yields more efficient estimates, it is a more case-
specific (less general) approach to missingness, 
and is computationally more difficult (Allison, 
2002; Schafer, 1999). Allison (2002) and 
Johnson and Young (2011) provided overviews 
of the advantages, disadvantages, and 
applications of both types of modern missing 
data procedures. 
 
Approach to Multiple Imputation 

The syntax features commands related 
to Stata 11’s Imputation by Chained Equations 
(ICE) add-on program. Consider a dataset in 
which some or all of the variables, X1, … , Xk, 
have missing data: 

 
Initially, all missing values are filled in 
at random. The first variable with at 
least one missing value, X1 say, is then 
regressed on the other variables, X2, …, 
Xk. The estimation is restricted to 
individuals with observed X1. Missing 
values in X1 are replaced by simulated 
draws from the posterior predictive 
distribution of X1, an important step 
known as proper imputation. The next 
variable with missing values, say X2, is 
regressed on all the other variables, X1; 
X3; …, Xk. Estimation is restricted to 
individuals with observed X2 and uses 
the imputed values of X1. Again, 
missing values in X2 are replaced by 

draws from the posterior predictive 
distribution of X2. The process is 
repeated for all other variables with 
missing values in turn: one such round is 
called a cycle. To stabilize the results, 
the procedure is [repeated] to produce a 
single imputed dataset. (Royston & 
White, 2011, p. 2) 

 
The posterior predictive distribution 

refers to the predictive distribution of 
unobserved scores, conditional on the observed 
data (Kelly & Smith, 2011). The process begins 
with each variable with missing values being 
imputed using a univariate regression model 
conditional on all of the other variables. The 
process cycles iteratively through the variables 
containing missing values until the procedure is 
stable – a process called regression switching 
(UCLA Academic Technology Services’ 
Statistical Consulting Group, n.d.b). 

Generally, ten to twenty repetitions of 
this cycle are required to produce an imputed 
data set. The procedure is repeated m times to 
yield m imputed data sets (White, Royston & 
Wood, 2011). Because variables may be of 
different types (binary, continuous, etc.), a 
suitable model must be identified for each 
variable. For example, logistic regression is used 
to predict a binary variable’s values and ordinary 
least squares (OLS) regression is used if the 
variable is continuous (Johnson & Young, 
2011). ICE has been lauded for its wide-
reaching capabilities and different estimation 
methods depending on the type of variable (e.g., 
Acock, 2005; White, et al., 2011). In fact, ICE is 
now available by default in the multiple 
imputation module in Stata Version 12 
(StataCorp, 2011). It is described by Royston 
(2004, 2005) and Royston and White (2011). 
White, et al. (2011) provided a tutorial using real 
and simulated datasets. 

The chained equations approach is one 
of two multiple imputation approaches for 
handling missingness. In the second approach, 
called the multivariate normal model approach, 
the joint distribution of all variables in the 
imputation model is assumed to be multivariate 
normal (Little & Rubin, 2002). Information from 
the variables is used to impute all other variables 
based on a single model. In contrast, the chained 
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equation approach is based on each conditional 
density of a variable given other variables. It is 
the multivariate normal model approach used in 
Stata’s mi impute mvn command (UCLA 
Academic Technology Services’ Statistical 
Consulting Group, n.d.b).  

In the context of this study, the chained 
equations approach was implemented because it 
does not assume a multivariate joint distribution 
and, therefore, can accommodate variables of 
different types. It also has lower sample size 
requirements than the multivariate normal 
approach (UCLA Academic Technology 
Services’ Statistical Consulting Group, n.d.b). 
 
Data 

The data in the tutorial are a subset of 
the Athena Studies of Resilient Adaptation 
(AStRA) project, which focuses on the 
adaptation of immigrant youth living in Greece 
(Motti-Stefanidi, et al., 2008ab; Motti-Stefanidi 
& Asendorpf, 2012; Motti-Stefanidi, Asendorpf 
& Masten, 2012). This subset contained records 
for 793 youth participants across nine schools in 
Athens, Greece. Participants either were of 
Albanian origin (306 or 38.6%) or were native 
Greek youth (487 or 61.4%). 

As shown in Table 3, participants were 
measured on five outcomes across three annual 
waves: self-esteem, self-efficacy, behavior 
problems, school grades, and school engagement 
– all of which are continuous variables. Also 
collected were five time-invariant predictors: 
participants’ immigrant status (0 = non-
immigrant, 1 = immigrant), sex (0 = male, 1 = 
female), initial adversity, initial socioeconomic 
risk, and initial adaptability – the latter three of 
which were continuously scored. In addition, 
information for a time-varying variable, 
adaptability, which was also continuously 
scored, was collected. Note that in some of the 
growth models, adaptability was treated as a 
time-invariant predictor (initial adaptability at 
Wave 0), whereas, in other analyses it was 
treated as time-varying predictor (adaptability). 
Because the interest in the study was in 
exploring differences between immigrants and 
their native peers, growth models were stratified 
by immigrant status. The three waves were 
coded as 0, 1 and 2, respectively. 
 

Three waves of data were obtained for 
most of the 793 participants. For 165 
participants (20.8%) in two schools, however, 
data collection stopped after Wave 0; therefore, 
68 immigrants (22.2% of 306) and 97 non-
immigrants (19.9% of 487) were missing data 
for Waves 1 and 2. 

Because the missingness had to do with 
administrative reasons and not with the 
participants themselves, the missingness was 
treated as MAR – which is an assumption of MI 
(Schafer & Graham, 2002). Rather than deleting 
the participants missing Waves 1 and 2 from the 
sample, MI was performed to fill in the 
missingness, first, in order to avoid selection 
bias and, second, because these participants 
were considered to be a part of the population of 
interest (J. W. Graham, personal 
communication, January 14, 2011). 
 

Methodology 
Data were analyzed using two linear individual 
growth models. Although growth models allow 
for time-unstructured data (different data 
collection schedules for different individuals) 
and unbalanced data (different numbers of 
waves for each individual) (Holt, 2008), if it is 
suspected that growth curves are non-linear, 
large amounts of missing data may prohibit 
departures from linearity – even though 
intercepts and slopes can still be estimated 
(Bickel, 2007). Either complete or imputed data 
are required at higher levels of the analyses 
(Holt, 2008). An assumption underlying growth 
analyses is that there is a correctly specified 
level-one submodel.  

Model specification refers to the process 
of choosing an appropriate functional form for, 
and variables to include in, the growth models. 
If the model is not correctly specified, growth 
models lose their ability to handle missing data 
well. A growth model’s ability to handle 
incomplete data rests, in part, on the model’s 
being correctly specified (B. D. Zumbo, personal 
communication, March 18, 2012). If the model 
is not correctly specified, conclusions may be 
distorted by the various missing data 
mechanisms (Zaidman-Zait & Zumbo, 2013). As 
with any type of analysis, “the nature and 
number  of  missing data may badly compromise  
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[the] analysis, so that inferences from sample to 
population become dubious” (Bickel, 2007, p. 
301). It is therefore necessary to pay heed to 
data missingness even when using methods of 
analysis that otherwise allow for some degree of 
time-unstructured and unbalanced data.  
 
Models 

Each of the growth models in this study 
was stratified by immigrant/non-immigrant 
status to allow for comparisons between 
immigrants and their native peers. Two growth 
models per outcome (esteem, efficacy, behavior, 
grades, engage) were run. Model 1 was designed 
to examine main effects of adaptability on initial 
levels and rate of change of adaptation, over and 
above sex, initial adversity, and initial SES risk. 
Model 2 was designed to examine whether 
changes in adaptability across the three annual 
waves were associated with changes in the 
participants’   adaptation,   which   is   known  as  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dynamic covariation (Long & Pellegrini, 2003; 
Murray-Close, Ostrov & Crick, 2007). 
 
Model 1, Level 1: 

 

( )0 1  ti i titi
Y Wave eπ π= + +  

 
Model 1, Level 2: 
 

( ) ( )
( ) ( )

( ) ( )
( )

0 00 01 02

03 04 0
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       β β
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π β + β β

       β
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Female Adapt0
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Adapt0 Advers0

SESRisk0 r
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Model 2, Level 1: 
 

( ) ( )0 1 2 π π πti i titi ti
Y Wave Adapt e= + + +  

Table 3: Variable Descriptions and Names 

Variable Description 
Outcome 

Variable Name 
Time-Invariant 
Variable Name 

Time-Varying 
Variable Name 

Self-esteem Esteem   

Self-efficacy Efficacy   

Behavior Behavior   

School grades Grades   

School engagement Engage   

Immigrant status (0 = non-immigrant, 1 = immigrant)  Immigrant  

Sex (0 = male, 1 = female)  Female  

Initial adversity (Adversity at Wave 0)  Advers0  

Initial socioeconomic risk (SES risk at Wave 0)  SESRisk0  

Initial adaptability (Adaptability at Wave 0)  Adapt0  

Adaptability (Adaptability across Waves 0, 1, 2)   Adapt 

Period of data collection   Wave 

Participant identification number  ID  
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Model 2, Level 2: 
 

0 00 0
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2 20
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=
=
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Tutorial 

A step-by-step description of syntax 
used to perform a multiply-imputed growth 
modeling procedure is provided in panels 1 - 5. 
Syntax commands conveniently outlined by 
UCLA Academic Technology Services’ 
Statistical Consulting Group (n.d.a) for 
longitudinal data are used as a framework 
around which to organize the syntax used in this 
study. Stata command language is identified in 
bold face. 
 

Conclusion 
Due to the well-documented problems 
associated with missing data, researchers have 
long been cautioned to investigate data 
missingness closely and to carefully select a 
missing data technique that will assist in filling 
in their data’s missing values. Even so, there 
continues to be uncertainty about how to deal 
with the problem of incomplete complex data. 

There is a paucity of empirical studies 
centered on this problem, a lack of conclusive 
recommendations about precisely how to deal 
with the problem, and limited statistical software 
resources that allow users to resolve the problem 
(Allison, 2002). These factors, combined with 
recent decline in statistics, measurement and 
research methodology training in North 
American universities (Aiken, et al., 2008; 
Aiken, et al., 1990; Merenda, 2003) means that 
finding a solution to dealing with the problem of 
incomplete complex data is not an easy task. 

This article served as a pedagogical tool 
for applied longitudinal researchers who are 
dealing with this problem in their own research 
contexts. By explaining why complex data pose 
special challenges with respect to missingness, 
as well as providing readers with a step-by-step 
description of syntax created to perform a 
multiply-imputed individual growth modeling 
procedure in a real-life longitudinal research 

context, it is hoped that readers have a clearer 
sense of the methodological challenges and 
realities posed by incomplete complex data. 

Once again, it is not claimed that the 
syntax outlined herein fully takes into account 
the within-individual dependencies among the 
study variables; however, the conspicuous lack 
of information available on this topic means 
that, from a practical perspective, researchers 
have little choice but to simply deal with 
missingness as best they can with available 
resources (Collins, et al., 2001). After all, it is 
likely better to fill in missing complex data 
using a modern missing data technique than it is 
to do nothing at all. 
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PANEL 1 
set seed 123 
 
Data were first entered in person (wide) format. Records for both immigrant and non-immigrant 
participants were included in the one dataset so that Stata had the fullest information possible 
about the data prior to imputation. 
 
A command that set the seed for the random number generator was then written, so that the 
results of the imputation could be replicated if needed. 

(1) 

 
 
ice immigrant sex esteem0 esteem1 esteem2 efficacy0 efficacy1 
efficacy2 behavior0 behavior1 behavior2 grades0 grades1 grades2 
engage0 engage1 engage2 adapt0 adapt1 adapt2 advers0 sesrisk0, 
saving(imputed_dataset) m(5) cmd(sesrisk0:regress)  
 
The ICE procedure began with this step. All time-varying and time-invariant predictors and 
outcomes in the two growth models were included in this imputation. To ensure that the 
imputation model had the most information possible, participants’ immigrant flag was also 
included, rather than running separate imputations for each of the two groups.  
 
Although the within-individual covariation among the variables could not be accounted for 
perfectly, as previously noted, an attempt was made to partially deal with the collinearity of the 
repeated measures nested within individuals by including all variables in the analytic models in 
the imputation model. This decision was made in an effort to account for as much variation as 
possible within and between individuals. A similar approach was taken by Han (2008).  
 
With respect to certain segments of this command: 
• m(5) = the number of imputations 

• saving(imputed_dataset)= the name for the final outputted data set (containing all 

five imputation datasets, plus the original data, merged into one master file)  

• cmd(sesrisk0:regress)= ICE automatically decides what type a variable is, 

based on the variable’s number of values it takes on. Stata’s default was overridden to 
treat SESRisk0 as an ordinal variable, so it could instead be treated as continuous. 

(2) 
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PANEL 2 
use imputed_dataset, clear 
 
After imputation, ice saved a copy of the new dataset (imputed_dataset) in the current working 
directory. This command told Stata to open the new file. The new dataset contained all of the 
variables, plus two new variables: _mi, an identifier for each observation, and _mj, which indicated 
which imputed data file each row of the data belongs to (0 for the original data, and 1-5, 
respectively for each of the five new imputed data sets).  

(3) 

 
drop if _mj==0 
 
This command instructed Stata to drop the original data that still contained missing values (_mj 
==0), keeping only the five newly-imputed data sets. Before running this command, check the 
descriptive statistics generated for the imputed data sets against the original data. Doing so will 
ensure that the imputed data indeed have no missing cases and that the descriptive statistics for the 
each of the variables in the imputed datasets make sense. 

(4) 

 
gen adapt0b = adapt0 
 
Because a later step involved restructuring the data from person (wide) format to person-period 
(long) format, a copy (adapt0b) of the initial adaptability variable (adapt0) was created.  
 
The adaptation variables were tricky in that they served either as time-invariant or time-varying 
variables, depending on the growth model. It was therefore necessary to ensure that, during the 
restructuring, the initial adaptability would be preserved and, in turn, treated as a time-invariant 
predictor alongside the time-varying adaptability variables. 

(5) 

 
reshape long adapt esteem efficacy behavior grades engage, i(id 
_mj) 
 
The data were restructured to person-period (long) format, because such a format is required for the 
growth modeling analyses (described in a later step). 
 
With respect to a certain segment of this command: 

• i(id _mj)= here, id and _mj served as our index variables. As UCLA Academic 
Technology Services’ Statistical Consulting Group (n.d.a) notes, “Returning the data to 
long format has an added complication: we already have [multiple] rows of data for each 
[participant], one for each of the imputations. As a result, the variable id no longer uniquely 
identifies an observation. However, including both id and _mj as identifiers will uniquely 
identify each case.”  

(6) 

 
recode _j (3=2) (2=1) (1=0)  
 
In restructuring the data to person-period (long) format, Stata automatically assigned the codes 1, 2, 
and 3 to represent each of the waves of data collection. This command allowed the recoding of 
waves as 0, 1, and 2, respectively.  

(7) 
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PANEL 3 
rename _j wave 
 
In restructuring the data to person-period (long) format, Stata automatically named the wave 
variable _j; however, the variable name wave was used for this study. 

(8) 

 
* Immigrants 
summarize advers0 sesrisk0 if _mj == 1 & immigrant==1 
summarize advers0 sesrisk0 if _mj == 2 & immigrant==1 
summarize advers0 sesrisk0 if _mj == 3 & immigrant==1 
summarize advers0 sesrisk0 if _mj == 4 & immigrant==1 
summarize advers0 sesrisk0 if _mj == 5 & immigrant==1 
gen ci_advers0 = (advers0 - 5.665472) if _mj==1 & immigrant==1 
replace ci_advers0 = (advers0 - 5.552334) if _mj==2 & immigrant==1 
replace ci_advers0 = (advers0 - 5.475183) if _mj==3 & immigrant==1 
replace ci_advers0 = (advers0 - 5.494476) if _mj==4 & immigrant==1 
replace ci_advers0 = (advers0 - 5.399577) if _mj==5 & immigrant==1 
gen ci_sesrisk0 = (sesrisk0 - 1.11306) if _mj==1 & immigrant==1  
replace ci_sesrisk0=(sesrisk0 - 1.115054) if _mj==2 & immigrant==1 
replace ci_sesrisk0=(sesrisk0 - 1.127323) if _mj==3 & immigrant==1 
replace ci_sesrisk0=(sesrisk0 - 1.13331) if _mj==4 & immigrant==1 
replace ci_sesrisk0=(sesrisk0 - 1.126777) if _mj==5 & immigrant==1 
 
* Non-Immigrants 
summarize advers0 sesrisk0 if _mj == 1 & immigrant==0 
summarize advers0 sesrisk0 if _mj ==== 2 & immigrant==0 
summarize advers0 sesrisk0 if _mj ==3 & immigrant==0 
summarize advers0 sesrisk0 if _mj ==4 & immigrant==0 
summarize advers0 sesrisk0 if _mj ==5 & immigrant==0 
gen cn_advers0 = (advers0 - 4.600149) if _mj==1 & immigrant==0 
replace cn_advers0 = (advers0 - 4.554) if _mj==2 & immigrant==0 
replace cn_advers0 = (advers0 - 4.492291) if _mj==3 & immigrant==0 
replace cn_advers0 = (advers0 - 4.600816) if _mj==4 & immigrant==0 
replace cn_advers0 = (advers0 - 4.477417) if _mj==5 & immigrant==0 
gen cn_sesrisk0 = (sesrisk0 - .6087394) if _mj==1 & immigrant==0  
replace cn_sesrisk0=(sesrisk0 - .6195851) if _mj==2 & immigrant==0 
replace cn_sesrisk0=(sesrisk0 - .6162503) if _mj==3 & immigrant==0 
replace cn_sesrisk0=(sesrisk0 - .6182393) if _mj==4 & immigrant==0 
replace cn_sesrisk0=(sesrisk0 - .6137863) if _mj==5 & immigrant==0 

 
von Hippel (2009) recommended that centering of scores for a given variable be conducted prior to 
imputation in order to reduce collinearity and improve interpretation of the intercept. What is 
unclear is which problems, if any, are introduced if the mean that is being subtracted from the given 
value of a variable is being skewed by the variable’s missing values. 
 
For this reason, the scores of the moderating variables (initial adversity and initial SES risk) were 
grand-mean centered post-imputation, rather than pre-imputation. For brevity, specifics of each line 
of command in this step are not presented; the commands demonstrate that the respective variables’ 
scores were centered for each immigrant group (x 2) and each imputed data file (x 5), separately. 

(9) 
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PANEL 4 
gen waveadapt0b = wave*adapt0b 
gen waveadvers0 = wave*advers0 
gen wavesesrisk0 = wave*sesrisk0 
 

Cross-level product terms were computed for subsequent growth modeling (i.e., Model 1). 

(10) 

 

* Model 1 / IMMIGRANTS  
mim: xtmixed esteem wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==1, || id: wave, 
covariance(un) variance 
mim: xtmixed efficacy wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==1, || id: wave, 
covariance(un) variance 
mim: xtmixed behavior wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==1, || id: wave, 
covariance(un) variance 
mim: xtmixed grades wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==1, || id: wave, 
covariance(un) variance 
mim: xtmixed engage wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==1, || id: wave, 
covariance(un) variance 
 

* Model 2 / IMMIGRANTS  
mim: xtmixed esteem wave adapt if immigrant==1, || id: wave, 
covariance(un) variance 
mim: xtmixed efficacy wave adapt if immigrant==1, || id: wave, 
covariance(un) variance 
mim: xtmixed behavior wave adapt if immigrant==1, || id: wave, 
covariance(un) variance 
mim: xtmixed grades wave adapt if immigrant==1, || id: wave, 
covariance(un) variance 
mim: xtmixed engage wave adapt if immigrant==1, || id: wave, 
covariance(un) variance 
 

* Model 1 / NON-IMMIGRANTS  
mim: xtmixed esteem wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==0, || id: wave, 
covariance(un) variance 
mim: xtmixed efficacy wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==0, || id: wave, 
covariance(un) variance 
mim: xtmixed behavior wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==0, || id: wave, 
covariance(un) variance 
mim: xtmixed grades wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==0, || id: wave, 
covariance(un) variance 
mim: xtmixed engage wave female adapt0b advers0 sesrisk0 
waveadapt0b waveadvers0 wavesesrisk0 if immigrant==0, || id: wave, 
covariance(un) variance 

(11)
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