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Health sciences research often involves analyses of repeated measurement or longitudinal count data 
analyses that exhibit excess zeros. Overdispersion occurs when count data measurements have greater 
variability than allowed. This phenomenon can be carried over to zero-inflated count data modeling. 
Referred to as zero-inflation, the Zero-Inflated Poisson (ZIP) model can be used to model such data. The 
Zero-Inflated Negative Binomial (ZINB) model is used to account for overdispersion detected in count 
data. The ZINB model is considered as an alternative for the Zero-Inflated Generalized Poisson (ZIGP) 
model for zero-inflated overdispersed count data. Consequently, zero-inflated models have been proposed 
for the situations where the data generating process results are overdispersed. This study considers 
modeling and handling overdispersion data among children with Thalassemia disease using the ZIP, 
ZINB and ZIGP models. 
 
Key words: Count data; zero-inflation models; overdispersion; Thalassemia. 
 
 

Introduction 
Count data with too many zeros are common in 
a number of applications. Ridout, et al. (1998) 
cited examples of data with too many zeros from 
various disciplines including agriculture, 
econometrics, species abundance, medicine and 
recreational facility use. Several models have 
been proposed to handle count data with too 
many zeros. Lambert (1992) described Zero-
Inflated    Poisson    (ZIP)     models    with     an 
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application to defect in manufacturing. Lee, et 
al. (2001) generalized the ZIP model to 
accommodate the extent of individual exposure 
and Hall (2000) described the Zero-Inflated 
Negative Binomial (ZINB) model and 
incorporated random effects into ZIP and ZINB 
models. 

The Poisson model emphasizes count 
data. Overdispersion implies that there is more 
variability around a model’s fitted values than is 
consistent with a Poisson formulation and 
Poisson regression can be useful in the analyses 
of such data. Tsou (2006) demonstrated that a 
Poisson regression model could be adjusted to 
become asymptotically valid for inference about 
regression parameters, even if the Poisson 
assumption fails. Because positive counts may 
still be overdispersed with respect to the zero-
truncated Poisson distribution, in the last decade 
Zero-Inflated Generalized Poisson (ZIGP) 
models have been found useful for the analyses 
of count data with a large amount of zero-
outcomes (Famoye & Singh, 2003). The 
generalized Poisson model has been used to 
model dispersed count data. It is a good 
competitor to the negative binomial model when 
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the count data is over-dispersed. ZIP and ZINB 
models have been proposed for the situations 
where the data generating process results into 
too many zeros (Famoye & Singh, 2006). 
 

Methodology 
Zero-Inflated Poisson Model 

Consider the ZIP model, which is 

denoted by )Pr( ii yY = , in which the response 

variable ),...,2,1( nYi =  has a probability mass 

function (pmf) given by 
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Where 10 <≤ iω  and 0>iθ . The random 

variable iY  has a Poisson )( iθ  distribution 

when 0)( =iω . The parameters iθ  and iω  

depend on vectors of covariates ix
 and iz , 

respectively. The ZIP model is given by 
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and the mean and variance ZIP model are given 
by 
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Zero-Inflated Negative Binomial Model 

For zero-inflated and overdispersed data 
a frequent modeling choice is the Zero-Inflated 
Negative Binomial (ZINB) model. The response 

variable  ),...,2,1( niYi =   has  a  pmf  given  by 
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Where 10 ≤≤ iω  and i 0θ > , κ  is the 

dispersion parameter with 0>κ  and (.)Γ  is 
the gamma function. The mean and the variance 
of the model are defined as 
 

iiiYE θω )1()( −=  

)1()1()( 1
iiiiiiYVar θωκθθω ++−= −  

(5) 
 

The response variable iY  has a negative 

binomial distribution with mean iθ  and 

dispersion parameter κ  when 0=iω  (Garay, et 

al., 2011). Ridout, et al. (2001) fitted various 
models to these data on the basis of the Poisson 
and negative binomial distributions and their 
zero-inflated counterpart. 
 
Zero-Inflated Generalized Poisson Model 

The generalized Poisson model (ZIGP) 
was proposed by Consul & Famoye (1992) and 
Famoye (1993). They emphasized the model to 
count data that are affected by a number of 
known predictor variables. Because positive 
counts may still be overdispersed with respect to 
the zero-truncated Poisson distribution, ZIGP 
models have been found to be useful for the 
analyses of count data with a large number of 
zero-outcomes. The generalized Poisson model 
has been used to model a household fertility data 
set (Wang & Famoye, 1997) and to model injury 
data (Wulu, et al., 2002). The generalized 

Poisson distribution for random variable iY  

takes the pmf given by 
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where 0>iλ  and max 1)4/,1( <<−− κλi . 

The mean and variance of iY  are 
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The term 2)1/(1 κφ −=  is a dispersion 

parameter. When 0=κ , the generalized 
Poisson distribution reduces to a Poisson 

distribution with parameter iλ  and is a case of 

equidispersion in the model, if 0<κ , the 
generalized Poisson model represents count data 
with underdispersion, and if 0>κ , generalized 
Poisson model represents count data with 
overdispersion. When there are more zero 
observations than expected, the generalized 
Poisson model will not provide good fit in 
general. Sampling zeros can be fitted into the 
ZIGP model, but not structural zeros. A good 
alternative to fit zero-inflated count data is a 
ZIGP model. The ZIGP model is defined as 
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where 0>iθ . The mean and variance of the 

ZIGP distribution are given by 
 

iiiYE θω )1()( −=  
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(9) 

The parameters iθ  and iω  depend on vectors of 

covariates ix  and iz , respectively. iω  specifies 

the probability of structural zero status and can 
be modeled using a logit link function in which 
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(10) 
 

where iz  is the ith row vector of the covariate 

matrix and γ  is the parameter vector. 
 

Results 
To show the utility of the developed approach, 
the Zero-Inflated count models was applied to a 
real data set of underlying Thalassemia disease 
among children. Thalassemia is a genetic blood 
disorder in which the body makes an abnormal 
form of hemoglobin, the protein in red blood 
cells that carries oxygen. Thalassemia are 
common autosomal recessive disorders (Thursz, 
2007). This study involved a sample of 930 for 
children age between 1-12 years. To build this 
dataset, the numbers of diagnoses among 
children aged 1-12 years who suffer from 
Thalassemia were counted. The data were 
collected at the Medical Record Unit in Hospital 
Universiti Sains Malaysia (HUSM), Kubang 
Kerian, Kelantan in north-east Malaysia  2005 to 
2010. For the purpose of this study, the count 
data is used. The diagnosis is considered as the 
response variable and the selected variables are: 
disease of blood, health services, heart failure, 
Influenza, Anemia, Pneumonia, acute bronchitis, 
Asthma, Acute Tonsillitis, Jaundice and 
Tuberculosis.  

To handle overdispersion in a zero-
inflated dataset, a one-sided test was used and 
the level of significance was set as 05.0=α . 
The data analyses were performed in SAS 9.3, 
using proc genmod and proc nlmixed. In 
counting the number of responses to an exposure 
a patient may have no diagnosis response 
because of their immunity or resistance to a 
disease. 

In the dataset, there were 930 patients 
and among these, 635 patients had no diagnosis 
(see Table 1); thus, there are 68% zero counts in 
the data. The overdispersion might have been 
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due to many excess zeros for the case when 
0=y  because 68% of observed counts are 

zeros. Frequency (percent) of patients who 
received a different type of diagnosis is a total of 
125 (13.4%), while patients who received two 
different types of diagnosis was 95 (10.2%). For 
patients who received three different types of 
diagnosis the frequency (percent) was 58 (6.2%) 
and patients who received four different types of 
diagnosis was 17 (1.8%). Mean (standard 
deviation) of the variables diagnosis showed a 
value of 600 (1019), while the variance of 1039. 
Because the data has too many zeros and is over-
dispersed the zero-inflation model can be 
applied.  

The dispersion parameters of all models 
correspond to 0.599 for the dispersion index. 
This value indicates that the dispersion in the 
data is not large and could be corrected by the 
use of a model that incorporates a dispersion 
parameter such as ZIP, ZINB or ZIGP. The 
models of ZIP, ZINB and ZIGP are positively 
associated )0001.0( <p  by implementing each 
of the models to the data using Proc Nlmixed 
(see Table 2). The analyses of fitting zero-
inflated models variable include: Disease of 
Blood, Health Services, heart failure, Influenza, 
Anemia, Pneumonia, acute bronchitis, Asthma, 
Acute Tonsillitis, Jaundice and Tuberculosis.  

A fit of these models gives a deviance of 
1137.4476 on 930 d.f. The deviance (D) is 
equivalent to the likelihood-ratio test statistic G2 
that is defined as: 
 

 =
= n

i
i

i
i

y
yG

1

2 )log(2
μ

            (11) 

 
Consequently, a test of overdispersion of the 
data, which is measured by the ratio of 
deviance/d.f. = 1.233. Because this value is 
greater than 1, there is strong evidence that the 
data is overdispersed and therefore

)()( ii YVarYE ≠ . All three models fit the data 

well with corresponding log-likelihoods of: 
−559.8034 (ZIP), −568.7238 (ZINB) and 
−558.3192 (ZIGP) obtained from output 
ProcGenmod  (see Table 3).  Clearly,  the  ZIGP  
 

model seems to fit the data best as it has the 
smallest Akaike Information Criterion 
(AIC=1148.6384). Although the ZIP, ZINB and 
ZIGP all fit the data well, the effect of having a 
diagnosis in patients does not appear to have any 
significant effect on the number of diagnoses 
under these models. 
 

Conclusion 
This article focused on handling overdispersion 
data that involves zero-inflation models. 
Overdispersion can be modeled when counts 
show more variability than previously assumed 
models. However, the consideration of zero-
inflation for sample size less than 50 is not 
encouraged, it is recommended to evaluate 
scores for sample sizes 100≥ . The parametric 
bootstrap method is recommended for sample 
size between 50 and 100 for a reliable 
performance (Jung, Jhun & Lee, 2005). 

Three different methods were used in 
this study: (i) ZIP model, (ii) ZINB model and 
(iii) ZIGP model with covariate dependence. 
The ZIP model described in Lambert’s (1992) 
seminal work provides a sufficient fit to data 
when overdispersion in raw data is caused by 
zero-inflation. The ZINB model should be 
considered if data continue to suggest additional 
overdispersion (overdispersion can be the result 
of excess zeroes): The ZIP model is not 
appropriate for these data, because the Poisson 
model does not accommodate the remaining 
overdispersion and not accounted for through 
zero-inflation. The ZIGP model is applied in 
different fields to model zero-inflated and 
overdispersed data. The ZIGP could provide a 
better fit than the ZINB when there is a large 
zero-fraction; this implies that the ZIGP model 
could be a reasonable alternative to the ZINB 
model. 

It is surprising that in all these models, it 
appears that the ZIGP model provided a good fit 
to the data because it had the smallest value of 
Akaike Information Criterion (AIC). Although 
the ZIGP model appears to be a good competitor 
to the ZIP and ZINB models, it is unknown 
under what conditions, if any, which model 
would perform best. 
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Parameters ZIP ZINB ZIGP 
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*significant at level 0.05, a = Akaike’s information criteria (AIC), b = Bayesian information 
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