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CHAPTER 1

INTRODUCTION

Advances in computer technology have led to the informationage, which some people refer

to as “data explosion”. The amount of data available to any person is increased so much that

it is more than he or she can handle. This increase in both the volume and variety of data

calls for advance methodology of understanding, processing and summarizing the data. In my

dissertation, we focus on two important techniques for dataanalysis in pattern recognition:

clustering and feature selection.

1.1 Data Representation
In pattern recognition perspective, data is the description of a set of objects or patterns that

can be processed by a computer. The patterns are supposed to have some commonalities, such

that the same systematic procedure can be applied to all the objects to generate the description.

Data can be represented in many ways. Most often, an object isdescribed by a vector of

measurement results of its various properties. A measurement result is called a “feature” in

pattern recognition, or a “variable” in statistics. Data matrix of size n by d is formed by

arranging the feature vectors of different objects in different rows, wheren is the number

of patterns andd the number of features. If all the features are numerical, the data can be

represented as a point in spaceR
d, which enables a number of mathematical tools to be used

to analyze the objects.

1.2 Categories of Machine Learning Methods
In pattern recognition, most of the analysis concerned withpredictive modeling, i.e., pre-

dicting the behavior of the unseen data (testing data) basedon the existing data (training data).

Depending on the feedback one can receive in the learning process, machine learning meth-

ods can be categorized into three groups: supervised, unsupervised (clustering), and semi-
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supervised learning. In supervised learning, labels of thetraining data are available to verify

if the predict is correct or not. In unsupervised learning, such label information is missing. In

semi-supervised learning, only some of the data points are labeled. This happens frequently

in practice, since data collection and feature extraction can be done automatically, whereas the

labeling has to be done manually which is often expensive. Inunsupervised learning, no label

information is available. The target of machine learning task in this scenario is to discover the

natural grouping structure of the data. This is very important in many practical applications,

for example, to find different groups of credit card holders and to learn their general behaviors

from a huge dataset collected by a credit card provider.

1.3 Dimensionality Reduction
Dimensionality reduction deals with the transformation ofhigh dimensional to low dimen-

sional representation. The underlying assumption is that the data points can be exploited in a

certain structure, and the information of the structure canbe summarized by a small number of

attributes. Intuitively, the more information we have, thebetter a learning algorithm is expected

to perform. This seemingly suggests that we use all the features for the learning task. However,

this is not the case in practice. Most learning algorithms perform poorly in high dimensional

space with a small number of samples. This difficulty is knownas thecurse of dimensionality.

Additionally, datasets often come with noise features which do not contribute to the learning

process. Dimensionality reduction yields simple representation of datasets. This can enhance

the generalization capability of the output model, reduce the computation time for learning,

and shrink the space occupied by the output model. The low dimensional model is also easier

for domain experts to interpret, and make it possible to display visually by transforming it into

two or three dimensions.

The main drawback of dimensionality reduction is the possibility of information loss. Use-

ful information can be discarded if dimensionality reduction is done poorly.

In general, dimensional reduction methods can be categorized into two groups: feature
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extraction and feature selection.

1.3.1 Feature Extraction

In feature extraction, a small set of new features is constructed by a general mapping from

the high dimensional data. The mapping often isolate the available features. The mapping can

be linear, i.e., Principal Component Analysis (PCA) [2], Linear discriminant analysis (LDA),

and multiple discriminant analysis (MDA), or non-linear, i.e., Kernel PCA [3], ISOmap [4],

and Locally Linear Embedding (LLE) [5].

1.3.2 Feature Selection

Feature selection selects a subset of features that is most appropriate for the task at hand.

A feature is either selected or discarded. This constraint can be relax by assigning weights to

different features to indicate the saliencies of the individual features. This is also referred to as

feature weighting, or feature ranking. The feature selection problem can be formulated as

T opt = argmax
T∈S

Q(T ) (1.1)

whereT opt is the optimal feature subset,S is the full set of subsets, andQ(·) is the quality

function.

The new features generated by feature extraction algorithms are hard to interpret in practice

due to the linear or non-linear transformation. Feature selection, on the other hand, selects a

subset of the original features by removing most irrelevantand redundant features from the data

and help people to better understand their data by telling them which are the important features

and how they are related to each other. The new low-dimensional data set are meaningful and

easy to interpret.

1.4 General Procedure of Feature Selection
A typical feature selection algorithm consists of four basic steps as shown in Figure 1.1,

namely, subset generation, subset evaluation, stop criterion and result validation.
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Figure 1.1: General procedure of feature selection.

1.4.1 Subset Generation

Subset generation is the procedure to create the next candidate feature subset for evalua-

tion. The nature of this process is determined by two issues;search starting point and search

strategy. The process can start with empty subset; the full set of features; or a random subset

to avoid local optimization. For a dataset withD features, there are2D possible candidate

subsets, which exponentially increases with the number of features. Heuristic search methods

are usually applied, such as sequential search, random search, complete search, and integral

search.

Sequential Search. This strategy usually employs the greedy hill-climbing method to

generate feature subset. For example, sequential forward selection, sequential backward elim-

ination, and bidirectional search [6]. These algorithms add or remove one feature at a time.

Another approach is to add or removep features at a time [7]. Sequential search algorithms

avoid navigation over all the subset candidates, thus speedup the feature selection procedure.

However, they may risk losing optimal subset.

Complete Search. The complete search guarantees to find the optimal subset. Though

its complexity isO(2D), it does not imply that an exhaustive search is necessary. Typical

algorithms include branch and bound search [8], and beam search [7].

Random Search. The random search can be started with a randomly selected subset, then

by adding or removing features by sequential search [7]. It also can be selecting another totally

random subset for the next evaluation [9]. Simulated annealing [10] and genetic algorithms

[11,12] also belong to this category.
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Integrated Search. This strategy does not generate feature subset explicitly.Instead, it

introduce quantity of feature importance, namely feature saliency, to achieve the goal of feature

subset generation [1,13].

1.4.2 Subset Evaluation

The candidate feature subsets need to be evaluated by some criteria so that the best feature

subset can be determined according to the goodness measure.The evaluation criteria can be

roughly categorized into two groups: independent criteriaand dependent criteria.

Independent Criteria. An independent criterion is typically used in filter algorithm. It

tries to measure the intrinsic characteristics of the dataset without involving any mining algo-

rithm. Some popular criteria are separability measures, information measures, and dependency

measures [14–18].

Dependent Criteria. A dependent criterion is used by wrapper models. The criterion is

measured with a specific mining algorithm. The performance of the mining algorithm is ap-

plied to determine the goodness of the feature subset. Usually, a dependent criterion yields bet-

ter performance than an independent criterion for the predefined mining algorithm. However,

the selected feature subset may not be suitable for other mining algorithms, and the computa-

tional cost is often expensive. For classification problems, the predicting accuracy of unseen

instances is widely used to select feature subset which yields high testing accuracy [19, 20].

For clustering problems, a wrapper model evaluates the goodness of a feature subset by the

quality of the clusters obtained by a specific clustering algorithm. Cluster compactness, scat-

ter separability, and maximum likelihood are some typical cluster goodness measures used for

feature selection. Readers can refer to [1, 13, 15, 21–23] for recent development of dependent

criterion for unsupervised feature selection.

1.4.3 Stopping Criteria

The feature selection process terminates when a stopping criterion is achieved. Some fre-

quently used stopping criteria are as follows:
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• The search is completed.

• Subsequent addition or deletion of any feature does not yield better result.

• A sufficiently good subset is selected.

• Some given bound, i.e. the number of iterations or the numberof selected features, is

reached.

1.4.4 Result Validation

The prior knowledge of the underlying dataset is often used to directly validate the result

of a feature selection process. For a synthetic dataset, therelevant feature subset and irrelevant

feature subset is usually known. The former is expected to appear in the resulting feature sub-

set, while the later is not. Thus we can validate the results by comparing the known relevant

and/or irrelevant features with the feature subset produced by the feature selection algorithm.

However, in real world applications, such a prior knowledgeis usually unknown. Validation

of results must occur in an indirect way. A frequently used method is to conduct experiments

not only on the selected feature subset, but also the whole feature set. The resulted validation

is achieved by comparing the performance of these before-and-after feature selection experi-

ments.

1.5 Categories of Feature Selection Algorithms
There are many feature selection algorithms developed in the literature. They can be cate-

gorized into different groups according to the subset generation methods, the subset evaluation

methods, or data mining tasks. Under subset generation methods, the feature selection algo-

rithms can be categorized into four groups: complete search, sequential search, random search,

and integral weighting. Under subset evaluation criteria,they can be categorized into three

groups: filters, wrappers, and hybrids. Under data mining task criteria, they can be categorized

into two groups: supervised learning and unsupervised learning. Considering the scope of the
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selected feature subset, they can be categorized into two groups: global feature selection and

localized feature selection. We will discuss the three general categories corresponding to the

subset evaluation criteria, and the two categories corresponding to the feature scope in this

section.

1.5.1 Filter Approach

For a given dataset, a filter algorithm [16, 17, 24] starts from a initial feature subset, and

navigate the feature space by a particular search strategy.Each generated subset is evaluated

by a measure which is independent to mining algorithm. The search iterations continue until

some stopping criteria are reached. The best subset is then returned.

A filter approach does not involving any data mining algorithm; thus it does not inherit any

bias of the mining algorithm. Any mining algorithm can be used sequentially to analyze the

dataset. However, given a particular mining algorithm, theselected feature subset may not be

optimal.

1.5.2 Wrapper Approach

A wrapper approach is similar to the filter approach except that it utilizes a predefined

mining algorithm to evaluate the generated feature subset [1, 21, 23, 25]. Since the goodness

of the feature subset is controlled by the mining algorithm,the performance of a wrapper

method is superior, and different mining algorithms will produce different feature subsets. The

computation cost is usually higher than a filter method.

1.5.3 Hybrid Approach

A hybrid approach [26] utilizes a independent measure to preselect a feature subset. A

mining algorithm is used to finally decide the output featuresubset.

1.6 Localized Feature Selection for Clustering
Feature selection has been extensively studied in supervised learning scenarios [18, 19,

27–30]. In unsupervised learning, feature selection becomes a more complex problem due to
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Figure 1.2: A three-cluster dataset with clusterC1 embedded in feature set{x1, x2}, clusterC2

embedded in feature subset{x2}, and clusterC3 embedded in feature subset{x1}.

the unavailability of class labels. It is received researchintention only recent. This research

dissertation will focus on feature selection problem for unsupervised learning tasks.

In general, unsupervised feature selection algorithms conduct feature selection in aglobal

sense by producing a common feature subset for all the clusters. This, however, can be invalid

in clustering practice, where the local intrinsic propertyof data matters more. In the illustra-

tive example shown in Figure 1.2, the relevant feature subset for clusterC1 is {x1, x2}, while

clustersC2 andC3 can be grouped using{x2} and{x1}, respectively. A common feature sub-

set, i.e.,{x1, x2}, is unable to reflect the inherent structural properties of the three clusters.

Apparently, clustering withlocal features is highly desired.

In general, there are two major research trends that select features locally for clusters,

namely, co-clustering and subspace clustering.
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1.6.1 Co-clustering

In a co-clustering problem, data is stored in contingency orco-occurrence matrixC. The

co-clustering process derives sub-matrices from the largedata matrix by simultaneously clus-

tering rows and columns of the data matrix. Optimal co-clustering is derived based on the one

that leads to the largest mutual information between the clustered random variables [31]. A

well studied problem of co-clustering in data mining has been that of documents and words.

The goal is to cluster documents based on the common words that appear in them and to cluster

words based on the common documents that they appear in [32–36]. Co-clustering algorithms

attempt to partition the features exclusively. That means afeature can only belong to a par-

ticular cluster. This property limits its application in general feature selection for clustering

problems.

1.6.2 Subspace Clustering

Subspace clustering [37] is another extension of traditional clustering that seeks clusters

in different subspaces within a dataset. Subspace clustering algorithms localize the search for

relevant features such that clusters which exist in multiple, possibly overlapping subspaces

are determined. Subspace clustering approaches usually search for possible feature subsets on

which density regions may occur, then clusters are discovered in the different subspaces.

1.7 Overview
In this dissertation, we focus on the problem of localized feature selection for unsupervised

learning. The rest of the thesis is organized as follows: In Chapter 2, we review related works

in the literature. In Chapter 3, we propose an algorithm of localized feature selection for un-

supervised learning by cross-projection method. In Chapter 4, a probabilistic model of feature

saliency with Gaussian mixture is addressed. The feature selection with model detection is inte-

grated into Maximal Likelihood (ML) learning scenario. We propose another algorithm which

performs clustering, feature selection, and cluster number detection simultaneously with Vari-

ational Learning in Chapter 5. The conclusions of this thesis and recommendations for future
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work are addressed in Chapter 6.
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CHAPTER 2

RELATED WORK IN UNSUPERVISED FEATURE

SELECTION

In Chapter 1, we described the importance of feature selection and presented an overall

picture of different approaches for feature selection. This chapter continues the discussion

of unsupervised feature selection. We shall survey some of the recent feature selection algo-

rithms. Since we are mostly interested in unsupervised learning, supervised feature selection

algorithms are omitted from this survey. We organize the algorithms based on the scope of the

feature subset (Global/Local), and the type of evaluation criteria (Filter/Wrapper).

2.1 Global Feature Selection
Feature selection algorithms generally process all clusters in a common subset. In other

words, an irrelevant featurefm is irrelevant to all clusters, and a relevant featurefn implies

that it is relevant to all clusters. The feature selection algorithm does not distinguish the dif-

ferent response of a specified feature on different clusters. The output model is simple and

straightforward.

2.1.1 Filters

A filter approach evaluates the quality of a feature subset without involving a particular

clustering algorithm. It usually adopts a independent criterion, such as the feature similarity

measure, or information measure, and finds the best subset through a search strategy.

The most well-known measure of similarity between two random variablesx andy is the

correlation coefficient, which is defined as

ρ(x, y) =
cov(x, y)√
var(x)var(y)

(2.1)

wherevar(·)) denotes the variance of a variable andcov(·) the covariance between two vari-
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ables. Ifx andy are completely correlated, i.e., exact linear dependency exist, ρ(x, y) is 1 or

−1. If x and y are totally uncorrelated,ρ(x, y) is 0. Hence,1−|ρ(x, y)| can be used as measure

of similarity between two variables. This measure is used asa criterion in [17,38]. The reduced

subset is obtained by discarding correlated features with astepwise clustering scheme.

Correlation coefficient is invariant to scaling and sensitive to rotation, which are not de-

sirable in many feature selection cases. Mitra et al. [17] suggest another linear dependency

measure,Maximal Information Compression Index (MIC)(λ2), for feature selection. MIC is

defined as follows

2λ2(x, y) = var(x) + var(y)−

√(
var(x) + var(y)

)2
− 4var(x)var(y)

(
1− ρ(x, y)2

)

(2.2)

The value ofλ2 is zero when the features are linearly dependent and increases as the amount

of dependency decreases. Actually,λ2 is equal to the eigenvalue for the direction normal to the

principal component direction of feature pair(x, y). It is also equal to the sum of the squares of

the perpendicular distances of the points(x, y) to the best fit liney = â+ b̂x [39]. Based on the

feature similarity measure, the correlated features can beremoved by some particular search

strategy, such as Branch and Bound Search [40], Sequential Forward Search [40], Sequential

Floating Forward Search [41], Stepwise Clustering [38]. In[17], features are partitioned into a

number of homogeneous subsets based on thek-nearest-neighbor (KNN) principle using MIC.

Among them the features having the most compact subset is selected, and itsk neighboring

features are discarded. The best feature subset is generated by repeating this process until all

of the features are either selected or discarded.

The above feature similarity measures are efficient to detect correlated features. However,

they cannot detect irrelevant features. To overcome this issue, Dash et al. [26] proposed a
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distance-based entropy measure, which is defined as,

E = −
∑

Xi

∑

Xj

[
Dij logDij + (1−Dij) log(1−Dij)

]
(2.3)

whereDij is the normalized distance in the range[0.0, 1.0]. This method assigns a low entropy

to intra- and inter-cluster distances, and assigns a higherentropy to noisy distances. This

measure suffers from two drawbacks. (a) The mean distance of0.5, the meeting point (µ) of

the left and right side of the entropy plot can be an inter-cluster distance, but still it is assigned

the highest entropy. (b) Entropy increases rapidly for verysmall distances thus assigning very

different entropy values for intra-cluster distances. An improved version is proposed in [16] as

follows,

E =
∑

Xi

∑

Xj

Eij (2.4)

Eij =





exp(β∗Dij ) exp(0)

exp(β∗µ) exp(0)
0 ≤ Dij ≤ µ

exp(β∗(1.0Dij))∗exp(0)

exp(β∗(1.0 µ)) exp(0)
µ ≤ Dij ≤ 1.0

(2.5)

whereEij is normalized to the range[0.0, 1.0]. The parameterβ, which is set based on the

domain knowledge, controls the entropy contribution of between intra- and inter-distances.

The parameterµ, which is updated heuristically, shifts the meeting point of the two sides of

the entropy-distance plot. The entropy of a particular feature is calculated by removing it from

the original feature set and computing the entropy change thereby. Features are ranked based

on their entropy. Best feature subset is obtained by selecting the top ranked features.

2.1.2 Wrappers

Filter feature selection approaches can be used by any clustering algorithms. However, the

output is often not optimized for a particular clustering algorithm. On the other hand, a wrap-

per approach utilizes a particular clustering algorithm toevaluate the performance of feature
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subsets, thus usually produces better feature subset than afilter does. Most unsupervised fea-

ture selection algorithms are wrappers. In this section, wereview some wrapper approaches

proposed very recent.

2.1.2.1 Cross-Projection

The quality of clusters can be measured by the within-cluster scatter matrix (Sw) and the

between-cluster scatter matrix (Sb),

Sw =
k∑

j=1

πjE
{
(X − µj)(X − µj)

T |ωj

}
=

k∑

j=1

πjΣj (2.6)

Sb =
k∑

j=1

πj(µj −Mo)(µj −Mo)
T , (2.7)

Mo = E{X} =
k∑

j=1

πjµj (2.8)

whereπj is the probability that an instance belongs to clusterωj ,X is ad-dimensional random

feature vector representing the data,k the number of clusters,µj is the sample mean vector

of clusterωj, Mo is the total sample mean,Σj is the sample covariance matrix of clusterωj,

andE{·} is the expected value operator. Many separability measurescan be obtained based on

scatter matrix [42]. Among them,trace(S−1
w Sb) is widely used in literature [43]. However, this

criterion is biased on dimensionality, which means that themeasure monotonically increases

with dimension, assuming the clustering assignments remain the same. In order to elevate this

bias, Dy et al. [21] proposed a cross-projection method. Given two feature subsetsS1 andS2,

the clustering results areC1 andC2, respectively. LetCRIT (Si, Cj) be the clustering criteria

using feature subsetSi to represent the data andCj as the clustering assignment. The criteria

values for(S1, C1) and(S2, C2) are normalized as,

normalizedV alue(S1, C1) = CRIT (S1, C1)× CRIT (S2, C1) (2.9)

normalizedV alue(S2, C2) = CRIT (S2, C2)× CRIT (S1, C2) (2.10)
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This cross-projection method ensures that the bias of dimensionality is removed, thus it can

be used to compare the clustering quality on two different feature subsets, even though they

may have different dimension. In [21], sequential forward search method is used to navigate

through possible subset candidates. The number of clustersis estimated by merging clusters

one at a time and using a Bayesian Information Criterion (BIC).

2.1.2.2 Law’s E-M Approach

Traditional feature selection algorithms have to search through the possible candidate sub-

sets, which demands heavy computational load, even by greedy search methods. Law et al. [1]

proposed another approach, which selects salient featuresand estimates the number of clusters

simultaneously by Expectation Maximization (EM) algorithm. Assuming that the features are

independent given a mixture component, and following a common distribution up to a prob-

ability, the complement of this probability is defined as feature saliency and estimated by the

Maximum Likelihood (ML) or Maximum A priori (MAP) with EM algorithm using Gaussian

mixture models. The likelihood of such model is defined as follows,

p(y|θ) =
k∑

j=1

αj

d∏

l=1

(
ρlp(yl|θjl) + (1− ρl)q(yl|λl)

)
(2.11)

wherep(·) represents a probability distribution of a component,q(·) representing the common

distribution,θjl andλl denoting the parameters,ρl indicating the saliency of the particular

feature, andθ =
{
{αj}, {θjl}, {λl}, {ρl}

}
. The model selection (estimating the number of

clusters) can be accomplished based on minimum message length (MML) criterion [44, 45].

The algorithm tries to minimize the following cost function,

− log p(Y|θ) +
k + d

2
log n+

r

2

d∑

l=1

k∑

j=1

log(nαjρj) +
s

2

∑
log(n(1− ρl)), (2.12)

wherer ands are the number of parameters inθjl andλl, respectively. This cost function is

minimized through EM method. The advantage of this approachis that it accomplishes feature
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selection with clustering simultaneously, and avoids the navigation over the possible feature

subset candidates which is usually very large.

2.1.2.3 Variational Approach

[13] and [46] employ the same Gaussian mixture model as in [1]to describe feature rele-

vance, but integrate model and feature selection under Bayesian framework. The model param-

eters follow particular distributions instead of fixed values as estimated by EM algorithm. The

learning process is to fit the distributions based on the given dataset. [13,46] utilize variational

learning techniques to estimate the underlying model. Since the cluster number also follows a

distribution, it can be conducted directly.

2.2 Localized Feature Selection
Feature selection algorithms aforementioned are global, which means that the feature sub-

set selected is common to all the clusters. However, in many applications, the natural grouping

structure of a cluster is localized in a particular subspace, which implies that different clus-

ters may have different relevant feature subset. The outputformat of such an algorithm is

{Ck, Fk}, whereCk andFk indicate the cluster assignment and feature subset for a specific

clusterk. Notice that clustering results is required by those algorithms, thus localized feature

selection approaches are wrappers. Co-clustering and subspace clustering are two categories

in this research area.

2.2.1 Co-clustering

Co-clustering (also called Biclustering, Bipartite, or two-mode clustering), is simultane-

ous clustering of both instances and features such that the blocks induced by the row/column

partitions are good clusters.

2.2.1.1 Information-Theoretic Co-Clustering

Let X andY be discrete random variables that take values in the sets{x1, . . . , xm} and

{y1, . . . , yn} respectively. Letp(X, Y ) denote the joint probability distribution betweenX and
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Y . Co-clustering tries to find mapsCX andCY ,

CX : {x1, x2, . . . , xm} → {x̂1, x̂2, . . . , x̂k} (2.13)

CY : {y1, y2, . . . , yn} → {ŷ1, ŷ2, . . . , ŷl} (2.14)

which minimizes the following criterion,

I(X ; Y )− I(X̂; Ŷ ) (2.15)

whereI(X ; Y ) is the mutual information betweenX andY . Dhillon et al. [31] address that

the loss in mutual information can be expressed as,

I(X ; Y )− I(X̂ ; Ŷ ) = D
(
p(X, Y, X̂, Ŷ )‖q(X, Y, X̂, Ŷ )

)

=
∑

X̂

∑

x:CX=x̂

p(x)D (p(Y |x)‖q(Y |x̂)) (2.16)

=
∑

Ŷ

∑

y:CY =ŷ

p(y)D (p(X|y)‖q(X|ŷ)) (2.17)

whereD(·‖·) denotes the Kullback-Leibler (KL) divergence, andq(X, Y, X̂, Ŷ ) is a distribu-

tion of the form:

q(x, y, x̂, ŷ) = p(x̂, ŷ)p(x|x̂)p(y|ŷ). (2.18)

Thus the cost function can be minimized by alternatively improving row clusters (Equation (2.16))

and column clusters (Equation (2.17)). Similar models can be found in [47,48].

2.2.1.2 Graphic Theoretic Co-clustering

Given an undirected bipartite graphG = (M,R,E), whereM andR are two sets of

vertices, andE a set of edges, letB be the graph weight matrix. An entryBij in this matrix
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is the weight of an edge appearing between a vertexri ∈ R and a vertexmj ∈ M . There are

no edges between vertices of the same group. The adjacency matrix of the bipartite graph is

expressed as,

M =




0 B

BT 0


 (2.19)

The bipartite Laplacian matrix is defined as,

L =



DR −B

−BT DM


 (2.20)

whereDR(i, i) =
∑

j Bij andDM(j, j) =
∑

iBij . Co-clustering of the data is achieved by

partitioning the bipartite graph into two subsetV1 andV2. Shi and Malik applied spectral graph

partitioning to the problem of image segmentation in [49] byminimizing the objective function,

min
xTLx

xTDx
(2.21)

wherex is a column vector such thatxi = c1 if i ∈ V1 andxi = −c2 if i ∈ V2. By relaxing

xi from discrete to continuous, it can be shown that the solution to (2.21) is the eigenvector

corresponding to the second smallest eigenvalue of the generalized eigenvalue problem [50,51],

Lx = λDx (2.22)

This eigenvalue problem can be reduced to a much more efficient Singular Value Decomposi-

tion (SVD) [51] problem. Dhillon [52] and Zha et al., [53] employed this Spectral-SVD ap-

proach to partition a bipartite graph of documents and words. Ding [54] performed document-

word co-clustering by extending Hopfield networks [55][58]to partition bipartite graphs and

showed that the solution is the principal component analysis (PCA) [2].

Co-clustering has been found to have applications in document and multimedia grouping
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problems. However, in feature selection prospect, the feature subsets associated to different

clusters are disjointed, which implies that a feature cannot be selected for several clusters. This

restriction is often inflicted in general feature selectionproblems.

2.2.2 Subspace Clustering

Subspace clustering algorithms search for relevant features locally to find clusters that ex-

ist in multiple, possibly overlapping subspaces. There aretwo major branches of subspace

clustering based on their search strategy. Bottom-up approaches find dense regions in low di-

mensional spaces and combine them to form clusters. Typicalalgorithms in this branch are

CLIQUE, ENCLUS, MAFIA, Cell Based Clustering (CBF), CLTree, DOC, and SURFAING.

Top-down algorithms find an initial clustering in the full set of dimensions and evaluate the

subspaces of each cluster, iteratively improving the results. Typical top-down algorithms are

COSA, PROCLUS, ORCLUS, and FINDIT.

2.2.2.1 CLIQUE

CLIQUE [56] combines density and grid based clustering to find low dimensional clusters

embedded in high dimensional space. Each dimension is divided into bins using a static sized

grid. Dense subspaces are sorted by coverage. The subspaceswith the greatest coverage are

kept and the rest are pruned. Adjacent dense grid units are discovered in each selected sub-

space using a depth first search. Clusters are formed by combining these units using a greedy

growth scheme. The hyper-rectangular clusters are then defined by a Disjunctive Normal Form

(DNF) expression. Clusters may be found in the same, overlapping or disjoint subspaces. The

clusters may also overlap each other. CLIQUE requires grid size and density threshold as input

parameters. Tuning these parameters can be difficult.

2.2.2.2 ENCLUS

ENCLUS [57] is another subspace clustering method based heavily on the CLIQUE al-

gorithm. The algorithm is based on the observation that a subspace with clusters typically

has low entropy than a subspace without clusters. Thus ENCLUS computes the entropy mea-
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sure rather than density and coverage (used in CLIQUE) to determine the clusterability of a

subspace. ENCLUS also introducesinterest, which is defined as the difference between the

sum of entropy of measurements for a set of dimensions and theentropy of multi-dimension

distribution, to measure the correlation of a subspace. Large values indicate higher correla-

tion between dimensions. ENCLUS search for interesting subspace whose entropy exceeds a

thresholdω and interest gain exceedsǫ′. Clusters in the interesting subspaces can be identified

by the same methodology as CLIQUE. Parameters required by ENCLUS are grid interval∆,

entropy thresholdω, and interest thresholdǫ′.

2.2.2.3 MAFIA

CLIQUE and ENCLUS are sensitive to the uniform grid interval. MAFIA [58] introduces

an adaptive grid based on the distribution of data to improveefficiency and cluster quality.

MAFIA initially computes the histogram to determine the minimum number of bins for each

feature. The adjacent cells of similar density are merged toform larger cells. In this man-

ner, the dimension is divided into cells based on the data distribution and the resulting cluster

parameters are captured more accurate. Once the bins have been defined, the clusterable sub-

spaces are built up from on dimension as CLIQUE does. MAFIA requires the user to specify

the density threshold and the threshold for merging adjacent windows. The running time grows

exponentially with the number of dimensions in the clusters.

2.2.2.4 Cell-based Clustering Method (CBF)

The number of bins in many bottom-up algorithms increases dramatically as the number of

features increases. To address this scalability issue, CBF[59] introduces a cell creation algo-

rithm by splitting each dimension into a group of sections using a split index. The algorithm

creates optimal partitions by repeatedly examining minimum and maximum values on a given

dimension which results in the generation of fewer bins. CBFrequires two parameters,sec-

tion thresholdwhich determines the bin frequency of a dimension, andcell thresholdwhich

determines the minimum density of data points in a bin. The results are sensitive to these two
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parameters.

2.2.2.5 CLTree

CLTree [60] uses a decision tree algorithm to partition eachdimension into bins. It evalu-

ates each dimension separately and then uses only those dimensions with areas of high density

in further steps. To build CLTree, uniformly distributed noise data is added to the dataset, and

the tree tries to split the real data from the noise. The density can be estimated for any given

bin under investigation. After the tree is fully constructed, a pruning process is performed

to obtain the final hyper-rectangle clusters. CLTree requires two parameters,min y which is

the minimum number of points that a region must contain, andmin rd which is the minimum

relative density between two adjacent regions before the regions are merged to form a larger

cluster.

2.2.2.6 DOC

Density-based Optimal projective Clustering (DOC) [61] isa hybrid method which blends

the grid based bottom-up approaches and the iterative improvement method of the top-down

approaches. DOC attempts to discover projective clusters which are defined as pairs(C,D)

whereC is a subset of the instances andD is a subset of dimensions of the dataset, such that

C exhibits strong clustering tendency inD. The algorithm first selects a small subsetX by

random sampling. For a given cluster pair(C,D), instancep in C, and instanceq in X, the

following should hold true: for a dimensioni inD, |q(i)−p(i)| ≤ w, wherew is the fixed side

length of a subspace cluster or hyper-cube, given by the user. DOC also requires two additional

parameters,α that specifies the minimum number of instances in a cluster, andβ that specifies

the balance between number of points and the number of dimensions in a cluster.

2.2.2.7 SURFING

SURFING (SUbspaces Relevant For clusterING) [62] computesall relevant subspaces and

ranks them according to the interestingness of the hierarchical clustering structure they ex-

hibit. The quality of a subspace is measured based onk-nearest-neighbor distance (k − nn −
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distance). The algorithm first introduces a new variance measure thatis half of the sum of

the difference of all objects to the mean value ofk-nn-distance. The quality of the subspace

is defined by normalizing this variance to the production of mean value and the number of

objects having a smallerk-nn-distance than the mean value. SURFING evaluates subspaces

from one-dimension tol dimension. At each iteration, irrelevant subspaces (whosequality de-

creases w.r.t its(l− 1)-dimensional subspace below a threshold) are discarded. The remaining

l-dimensional subspaces are joined if they share any(l−1) dimensions. SURFING yields a list

of interesting subspaces ranked by their quality measure. Clusters existing in each subspace

are further discovered by other clustering algorithms suchas hierarchical clustering. SURF-

ING requiresk as the input parameter. The running time complexity isO(2dN2), though [62]

shows only a little percentage of subspaces are navigated inpractice.

2.2.2.8 PROCLUS

PROCLUS [63] is a top-down subspace clustering algorithm. PROCLUS selectsk mediods

from a sampled dataset. Those mediods are improved by randomly choosing new medoids and

replacing the bad ones. Cluster quality is based on the average distance between instances and

the nearest medoid. For each medoid, a set of dimensions is chosen whose average distances

are small compared to statistical expectation. Once the subspaces have been selected for each

medoid, points are assigned to medoids according to the average Manhattan segmental dis-

tance. Clusters with fewer than(N/k) × minDeviation points, whereminDeviation is a

input parameter, are thrown out. Finally, the clusters and the associated dimensions are refined

based to the points assigned to the medoids. PROCLUS also requires the average dimensional-

ity of subspaces as an input parameter. The algorithm is sensitive to the parameters which are

difficult to be determined in advance.

2.2.2.9 COSA

COSA (Clustering On Subsets of Attributes) [64] assigns weights to each dimension for

each instance, instead of each cluster. The algorithm starts with equally weighted dimensions.
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The weights are updated according to thek-nearest neighbors (knn) of each instance. Higher

weights are assigned to those dimensions that have a smallerdispersion within theknn group.

New distances are calculated based on the updated weights. This process repeated until weights

become stable. The neighborhoods for each instance are increasingly enriched with an instance

belonging to its own cluster. The output is a COSA distance matrix based on weighted inverse

exponential distance. Clusters are discovered by other distance based clustering algorithms

such as hierarchical clustering. After clustering, the weight of each dimension for each cluster

is computed based on that of its members. COSA does not need the number of dimensions

in clusters to be specified in advance. Instead, it requires ainput parameterλ to control the

strength of intensive for clustering on more dimensions. Parameterk is also needed but the

author claims that the results are stable over a wide range ofk values.

2.3 Summary
Clustering is a fundamental technique in data mining and machine learning. Feature selec-

tion is essential in many clustering problems, which helps the user focusing on the important

attributes of data groups. Feature selection in unsupervised learning is much harder than that

for supervised learning, due to the fact that the class labels, which are used to guide feature

searching in supervised learning, are unavailable. Feature selection in unsupervised learning

arises research intention only very recent. Most related works concentrate on global feature

selection which select a common feature subset for all the clusters. Searching subsets for indi-

vidual clusters is a new research area. Available localizedfeature selection algorithms can be

found in co-clustering and subspace clustering. Co-clustering yields exclusive feature subsets

for clusters, which is not suitable in many applications. Subspaces clustering algorithms en-

countered difficulties such as heavy computational load, overlapping clusters, and/or requiring

input parameters which are difficult to be determined in advance.



24

CHAPTER 3

NORMALIZED PROJECTION

In this chapter, we propose a heuristic localized feature selection algorithm for unsuper-

vised learning. Our approach [65] computes adjusted and normalized scatter separability for

individual clusters. A sequential backward search is then applied to find the optimal (perhaps

local) feature subsets for individual clusters.

3.1 Introduction
Feature selection involves searching through various feature subsets, followed by the eval-

uation of each of them using some evaluation criteria [18–20, 30]. The most commonly used

search strategies are greedy sequential searches through the feature space, either forward or

backward. Different types of heuristics, such as sequential forward or backward searches,

floating search, beam search, bidirectional search, and genetic search, have been suggested

to navigate the possible feature subsets [11, 20, 41, 66]. Insupervised learning, classification

accuracy is widely used as evaluation criterion [19,20,30,67,68].

However in unsupervised learning, feature selection is more challenging since the class

labels are unavailable to guide the search. Instead, clustering algorithms use some criteria,

such as likelihood, entropy, or cluster separability measure to evaluate clustering quality and

the feature subset quality. Regardless what the evaluationcriteria are, global feature selection

approaches compute them over the entire dataset. Thus, theycan only find one relevant feature

subset for all clusters. However, it is the local intrinsic properties of data that matter counts

during clustering [69]. Such a global approach cannot identify individual clusters that exist in

different feature subspaces. An algorithm that performs feature selection for each individual

cluster separately is highly preferred.

The problem can best be illustrated using a synthetic dataset. We generate400 data points

with 4 clusters{C1, C2, C3, C4} in 4 dimensional space{X1, X2, X3, X4}. Each cluster con-
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Figure 3.1: Synthetic data plotted in different feature sets. Data from different clusters are
marked with different colors.a: in X1 andX2. b: in X2 andX3. c: in X1 andX3.

tains100 points. ClustersC1 andC2 are created in dimensionsX1 andX2 based on a normal

distribution. X3 andX4 are white noise features in these two clusters. The means andstan-

dard deviations are:µC1 = [0.5,−0.5, 0, 0], µC2 = [−0.5,−0.5, 0, 0], andσC1 = σC2 =

[0.2, 0.2, 0.6, 0.6], respectively. ClustersC3 andC4 exist in dimensionsX2 andX3 with white

noise inX1 andX4, and are created in the same manner. The means and standard deviations

are:µC3 = [0, 0.5, 0.5, 0], µC4 = [0, 0.5,−0.5, 0], andσC3 = σC4 = [0.6, 0.2, 0.2, 0.6], respec-

tively. Figure 3.1 shows the data in different subspaces. A general clustering algorithm, such

ask-means or EM, is unable to obtain satisfactory clustering results for this data either on all

features{X1, X2, X3, X4}, or on relevant feature subset{X1, X2, X3} (may be generated by

a global feature selection algorithm) because each clusterstill has one irrelevant feature. For

data in higher dimensional space, this problem becomes moreprominent.

On the other hand, if we further removeX3 from the feature subset{X1, X2, X3}, we

can completely separateC1 andC2, as shown in Figure1a. Similarly,C3 andC4 can be well

separated by removingX1 as shown in Figure1b. In addition, the clustering results of localized

feature selection provides a better understanding of the underlying process that generates the

data. For exampleC1 ∼ {X1, X2} clearly indicates that clusterC1 is mainly generated by

featuresX1 andX2.

Usually, there are two major components for a feature selection algorithm: evaluation crite-

ria and feature subset search methods. In the following, we first discuss the evaluation criterion
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for the localized feature selection algorithm, then the search method.

3.2 Evaluation Criteria
In this section, we first provide a brief introduction to scatter separability criterion, one of

the well-known clustering criteria [21], and then show how this criterion could be adapted to

localized feature selection.

Let Sw andSb denote within-class scatter matrix and between-class scatter matrix, respec-

tively. We have,

Sw =

k∑

i=1

πiE{(X − µi)(X − µi)
T |Ci} =

k∑

i=1

πiΣi, (3.1)

Sb =

k∑

i=1

πj(µi − µ0)(µi − µ0)
T , (3.2)

µ0 = E{X} =
k∑

i=1

πiµi, (3.3)

whereπi is the probability that an instance belongs to clusterCi, X the d-dimensional input

dataset,k the number of clusters,µi the sample mean vector of clusterCi, µ0 the total sample

mean,Σi the sample covariance matrix of clusterCi andE{·} the expected value operator.

SinceSw measures how scattered the samples are from their cluster mean, andSb measures

how scattered the cluster means are from the total mean, the scatter separability is defined as

CRIT = tr(S−1
w Sb) (3.4)

Although there are a bunch of other separability criteria available, the measureCRIT enjoys

a nice property that it is invariant under any non-singular linear transformation [43]. However,

this criteria requires a non-singular within-class scatter matrix Sw. In the case that theSw is
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singular, the following separability criteria can be used instead,

CRIT = tr(Sb)/tr(Sw) (3.5)

In the remainder of this paper, we usetr(S−1
w Sb) in our discussion. However, one should be

aware thattr(Sb)/tr(Sw) is used for a singularSw.

Similar to the definition ofSw, we defineS(i)
w , the within-class matrix of an individual

clusterCi as,

S(i)
w =

1

ni

E{(X − µi)(X − µi)
T |Ci} =

1

ni

Σi (3.6)

whereni is the number of points in clusterCi. Now we are ready to define the scatter separa-

bility of clusterCi.

Definition 1. The scatter separability of clusterCi is defined by,

CRIT (Ci) = tr(S(i)−1
w Sb) (3.7)

Assuming that identical clustering assignments are obtained when more features are added,

the scatter separabilityCRIT prefers higher dimensionality since the criterion value mono-

tonically increases as features are added [43]. The same conclusion could be drawn for the

scatter separability for an individual cluster. Specifically, in [43], it is shown that a criterion

of the formXT
d SdXd, whereXd is d-column vector andSd is ad × d positive definite matrix,

monotonically increases with dimension. Based on this, we have,

Proposition 1. CRIT (Ci) monotonically increases with dimensions as long as the clustering

assignments remain the same.
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Proof. SinceSb can be expressed as
∑k

j=1ZjZ
T
j whereZj is a column vector.

CRIT (Ci) = tr(S(i)−1
w Sb)

= tr(S(i)−1
w

k∑

j=1

ZjZ
T
j )

=
k∑

j=1

tr(S(i)−1
w ZjZ

T
j )

=
k∑

j=1

tr(ZT
j S

(i)−1
w Zj)

=
k∑

j=1

ZT
j S

(i)−1
w Zj (3.8)

Every term of Equation (3.8) monotonically increases with dimension, thus the criterion for an

individual clusterCRIT (Ci) monotonically increases with dimension.

To alleviate this problem, normalization of the separability criterion with respect to di-

mensions is necessary for feature selection [21]. Moreover, for localized feature selection

strategies, each cluster is associated with a distinct feature subset. It is usually impossible to

computeSb without proper normalization.

In the proposed algorithm, the normalization is performed using cross-projection over in-

dividual clusters. Suppose we have a cluster setC,

C = {(C1, S1), . . . (Ci, Si), . . . , (Ck, Sk)} (3.9)

whereSi is the feature subset corresponding to clusterCi. To calculate the scatter separability

of (Ci, Si) in cluster setC, we project all the clusters ofC into feature subsetSi, and extend

the scatter separability of clusterCi as follows,

Definition 2. The scatter separability of clusterCi in cluster setC on feature subsetSi is given
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by,

CRIT (Ci, Si)|C = tr(S(i)−1
w Sb)|C,Si

(3.10)

where|C,Si
denotes the project of cluster setC onto feature subsetSi.

Assume an iteration of search produces a new cluster setC ′ on subspaceS ′
i,

C ′ = {(C ′
1, S

′
i), . . . (C

′
i, S

′
i), . . . , (C

′
k, S

′
i)} (3.11)

Let’s also assume that cluster(C ′
i, S

′
i) corresponds to cluster(Ci, Si), i.e.,(C ′

i, S
′
i) is the cluster

that has the largest overlapping with(Ci, Si) in setC ′. We then generate a new cluster set,C∗,

by replacing(Ci, Si) in C with (C ′
i, S

′
i),

C∗ = {(C1, S1), . . . (C
′
i, S

′
i), . . . , (Ck, Sk)} (3.12)

Note thatCRIT (Ci, Si)|C andCRIT (C ′
i, S

′
i)|C∗ can not be compared directly because of

the dimension bias. We have to cross-project them onto each other,

NV (Ci, Si)|C = CRIT (Ci, Si)|C · CRIT (Ci, S
′
i)|C (3.13)

NV (C ′
i, S

′
i)|C∗ = CRIT (C ′

i, S
′
i)|C∗ · CRIT (C ′

i, Si)|C∗ (3.14)

After the cross-projection, the bias is eliminated and the normalized valueNV can be used

to compare two clusters in different feature subspaces. A larger value ofNV indicates larger

separability, i.e., better cluster structures.

3.2.1 Penalty of Overlapping and Unassigned Points

Localized feature selection implicitly creates overlapping and/or unassigned data points.

Overlapping points are the data which belongs to more than one cluster, while unassigned
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points are the data which belongs to non-cluster. Specifically, the overlapping measureO can

be computed as,

O =
k∑

i 6=j

|Ci ∩ Cj|

mean(|Ci|, |Cj|)
(3.15)

whereCi andCj are two different clusters. And unassigned measureU can be computed as,

U =
nu

n
(3.16)

wheren andnu are the total number of data and the number of unassigned points, respectively.

Overlapping and/or unassigned data are allowed in some applications, and may be forbidden

by other applications. Depending on the domain knowledge, we could adjust the impact of

overlapping and unassigned points by introducing a penaltyand obtain the adjusted normalized

valueANV .

Definition 3. The adjusted and normalized scatter separability pair of clusterCi in cluster set

C on feature subsetSi and clusterC ′
i in cluster setC∗ on feature subsetS ′

i is given by,

ANV (Ci, Si)|C = NV (Ci, Si)|C · e(−α∆O−β∆U) (3.17)

ANV (C ′
i, S

′
i)|C∗ = NV (C ′

i, S
′
i)|C∗ · e(α∆O+β∆U) (3.18)

where∆O and∆U are the changes on the overlapping and unassigned measure, respectively,

if cluster(Ci, Si) is replaced by cluster(C ′
i, S

′
i). α andβ are two constants.

In Definition3, α andβ are used to control the sensitivity with respect to overlapping points

and unassigned points. Large values ofα andβ discourage the occurrence of overlapping and

unassigned data. On the other hand, ifα orβ is zero, the corresponding effect of overlapping or

unassigned data will be ignored when comparing two clusters. The values forα andβ depend

on the given application and have to be determined empirically. For example, if a large portion
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of data is unassigned after clustering,β needs to be increased.

When two clusters(Ci, Si) and(C ′
i, S

′
i) are compared, ifANV (Ci, Si)|C > ANV (C ′

i, S
′
i))|C∗,

we choose(Ci, Si). If ANV (Ci, Si)|C = ANV (C ′
i, S

′
i))|C∗, we prefer the cluster in the lower

dimensional space. In addition, when two identical clusters are obtained in two different fea-

ture subsets, they have equal adjusted normalized valueANV , which is exactly what we want.

More formally,

Proposition 2. Given two identical clustersC1 = C2, and the corresponding feature subspaces

S1 andS2, the adjusted normalized valueANV (C1, S1) = ANV (C2, S2).

Proof. SinceC1 = C2, we haveC = C∗. Thus

NV (C1, S1) = CRIT (C1, S1) · CRIT (C1, S2)

= CRIT (C2, S2) · CRIT (C2, S1)

= NV (C2, S2)

And∆O = ∆U = 0. Thus

ANV (C1, S1) = ANV (C2, S2) (3.19)

3.2.2 Unassigned/New data

In case some new data is obtained or unassigned data is not allowed by an application,

assignments have to be made after clustering for these new/unassigned points. The similar-

ity of an instance and a cluster could be measured by either distance (k-means clustering), or

likelihood (EM algorithm). The additional difficulty introduced by localized feature selection

algorithm is that clusters are associated with different feature subsets, making the direct com-

parison among clusters meaningless. For distance based similarity, a straightforward solution is
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to normalize the distance measure over its variance within each cluster, and assign the instance

to a cluster that minimizes the normalized distance,

argmin
Cj

d = argmin
Cj

(
‖Xi|Sj

− µj‖

σ2
j

) (3.20)

whereXi is an unassigned point,µj the cluster mean vector ofCj, Sj the feature subset ofCj,

Xi|Sj
the projection ofXi intoSj , and‖ · ‖ is the norm of a vector. A similar method could be

developed for likelihood based similarity measure.

3.3 Search Methods
The cross-projection normalization scheme assumes that the clusters to be compared should

be consistent in the structure of the feature space [21]. Consequently, we select sequential

backward search instead of the sequential forward search adopted in [21]. The trade off is the

slower clustering speed.

Specifically, the data are first clustered based on all available features. Then, for each clus-

ter, the algorithm determines if there exists a redundant ornoisy feature based on the adjusted

normalized valueANV defined in Equations (3.17) and (3.18). If so, it will be removed. The

above process is repeated iteratively on all clusters untilno change is made, at which time the

clusters with the associated feature subsets will be returned. The sequence of steps shown in

Figure 3.2 illustrates our algorithm in detail.

The complexity isO(ndik) for the conventionalk-means algorithm, andO(nd2ik) for

the GFS-k-means algorithm, respectively, wheren is the number of points,d the number of

features,i the number of iteration (usually unknown), andk the number of clusters. The com-

plexity of our approach, in worst case, isO(nd3k2i) with backward sequential search. It shows

that for data sets with very high dimensions and large numberof clusters, the proposed algo-

rithm is slow compared to generalk-means and global feature selecting algorithms. However

the complexity is in polynomial form, thus is still acceptable in practice.
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input : DatasetXn×d

output: ClustersC = {(Ci, Si)|i = 1, . . . , k}
initializeC with all features;
repeat

for i = 1 to k do
Create a new subsetS ′

i by removing one feature fromSi ;
Generate a new cluster setC ′ onS ′

i ;
Compare clusters inC ′ with corresponding clusters inC;
if Better cluster foundthen

Replace the corresponding cluster inC
end

end
until No change made;
if Desiredthen

Process unassigned data points
end

Figure 3.2: The proposed localized feature selection algorithm.

3.4 Experiment and Results
We evaluate the localized feature selection algorithm using both synthetic and real-world

datasets. The experiment results are obtained by choosingk-means as the clustering algorithm.

However, note that the adjusted normalized valueANV is not restricted tok-means. It can be

used together with any general clustering algorithm.

In general, it is difficult to evaluate the performance of a clustering algorithm on high

dimensional data. Localized feature selection presents anadditional layer of complexity by

associating clusters to different feature subsets. Therefore, we take a gradual approach for

our evaluation. We first test the proposed algorithm on a small synthetic dataset with known

data distribution along each feature dimension. Then, we investigate five real-world datasets

downloaded from UCI repository [70]. On all UCI datasets, weperform a semi-supervised

learning strategy for evaluation purpose. This makes it possible for us to compute a pseudo-

accuracy measure for easy comparison among different algorithms. However, one should be

aware that the “true” class labels are not always consistentwith the nature grouping of the

underlying dataset. Thus, the quality of clusters should befurther analyzed in addition to the
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pseudo-accuracy. For this purpose, we also illustrate our results by visually examining the

clusters in the selected feature subspace on synthetic dataand Iris data.

On each dataset, we compare our localized feature selectionalgorithm (withk-means, de-

noted by LFS-k-means) with global feature selection algorithm (also withk-means, denoted

by GFS-k-means), andk-means without feature selection. GFS-k-means is implemented in a

similar fashion as [21]. The only difference is that we adopted the backward search strategy

due to the reason discussed in Section2.3.

On the above experiments, the number of clustersk is set to the “true” number of classes.

This is not always applicable in real world applications. How to determine the value ofk is a

common problem in unsupervised learning. It may strongly interact with the predicted clus-

ter structures, as well as the selected feature subset in feature selection algorithms [1]. There

are several algorithms available to determinek, i.e., [1, 43, 71]. Another common problem

that a clustering algorithm usually faces is how to initialize cluster centroids. Bad initial clus-

ters/centroids might lead to low quality clusters. In traditional clustering algorithms, some

techniques, such as randomly picking upk patterns over the dataset, preliminary clustering,

or choosing the best from several iterations, are frequently used to alleviate the chance of bad

initial clusters. In our approach, bad initial clusters forbackward searching may occur more

often when many noise features presented, and might affect the final clusters and feature sub-

sets largely. This problem can be alleviated by preliminaryclustering with a global feature

selection, i.e., [1].

We incorporate another experiment as an example solution for unknownk and preliminary

clustering in Section 3.4.4. In this section, we evaluate our algorithm over another three UCI

datasets with unknownk. We first employ the algorithm proposed in [1] to estimate thenum-

ber of clusters, global feature saliencies and cluster centroids. Then we use them as initial

parameters and run our algorithm on the particular dataset.Clusters obtained are labeled to its

majority portion of true classes. Errors are calculated accordingly.
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Table 3.1: Confusion matrix and error rate on the synthetic data. C1 - C4 are the output cluster
labels, and T1 - T4 are the true cluster labels

Algo k-means k-means w/oX4 GFS-k-means LFS-k-means

Label C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

T1 77 22 1 0 59 40 1 0 37 17 46 0 99 0 0 1
T2 3 76 0 21 45 49 0 6 33 22 45 0 0 100 0 0
T3 1 7 89 3 0 3 69 28 26 16 58 0 0 1 98 1
T4 23 0 9 68 3 0 45 52 35 14 51 0 2 0 0 99

Error 0.225 0.428 0.708 0.01

Table 3.2: Feature subset distribution on the synthetic data. C1 - C4 are the output cluster
labels.

Feature Subset(s)
Algorithm C1 C2 C3 C4

k-means {1, 2, 3, 4}

GFS-k-means {4}

LFS-k-means {1, 2} {1, 2} {2, 3} {2, 3}

3.4.1 Synthetic data

The synthetic data is described in Section 3.1 and illustrated in Figure 3.1. Penalties of

overlapping and unassigned points (α andβ) are set at1.

Table 3.1 shows the confusion matrix and error rate ofk-means with full feature set,k-

means without the totally irrelevant featureX4, GFS-k-means, and LFS-k-means, and Ta-

ble 3.2 shows the selected feature subsets. Clearly, by employing all four available features,

k-means performs poorly with a error rate of0.225, which indicates that irrelevant features

greatly reduce the clustering performance. Meanwhile, GFS-k-means does a terrible job with

an unacceptable error rate of0.708. The output feature subset contains only the noisy feature

X4! This surprising result could be explained as follows. Since each feature is irrelevant to at

least two clusters and each cluster has at least two irrelevant features, NO feature subset are

relevant to all clusters. We also evaluatedk-means algorithm on the feature subsetX1, X2, X3,

which are the globally relevant features that could probably be obtained by asmart global
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Table 3.3: Confusion matrix and error rate on iris data. C1 - C3 are the output cluster labels,
and T1 - T3 are the true cluster labels

Algo k-means GFS-k-means LFS-k-means

Label C1 C2 C3 C1 C2 C3 C1 C2 C3

T1 50 0 0 50 0 0 50 0 0
T2 0 39 11 0 46 4 0 48 2
T3 0 14 36 0 3 47 0 4 46

Error 0.167 0.0467 0.04

Table 3.4: Feature subset distribution on iris data. C1-C3 are the output cluster labels.

Feature Subset(s)
Algorithm C1 C2 C3

k-means {1, 2, 3, 4}

GFS-k-means {3}

LFS-k-means {4} {3, 4} {3, 4}

feature selection algorithm, as shown in Table 3.2. The error rate is as high as 0.428, indi-

cating that the group structures can not be recognized with globally relevant feature subset.

The reason is that the structures are buried not only by the irrelevant featureX4, but also by

the relevant featuresX1 andX3. On the other hand, the proposed localized feature selection

algorithm produces an excellent result with a error rate of0.01. From Table 3.2, we can see

clearly that the relevant features for each cluster are selected correctly, and the clusters are well

separated in the corresponding feature subspaces (Figures1a and 1b). This result confirms that

selecting features locally is meaningful and necessary in clustering.

3.4.2 Iris data

Iris data from UCI is a widely used machine learning benchmark dataset for both super-

vised learning and unsupervised learning. This data has three classes, four features, and150

instances. In this experiment, we setα andβ to be1 and6, respectively.

Table 3.3 shows the confusion matrix and error rate ofk-means, GFS-k-means, and LFS-

k-means, respectively, and Table 3.4 show the correspondingfeature subsets.k-means, with
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Figure 3.3: Scatterplots on iris data using features 1 and 2 (left panel), and using features 3 and
4 (right panel). Data from different classes are marked withdifferent colors.

all four features, is able to successfully identify cluster1, “iris-setosa”. However it does not

perform well on cluster2, “iris-versicolor”, with a error rate of 0.22, and cluster3, “iris-

virginica”, with a error of0.28. The GFS-k-means discards feature1, 2, and4, and recognizes

the structure of the dataset much better with only feature3. The proposed LFS-k-means results

in the best pseudo-accuracy. The selected feature subsets show that cluster1 can be separated

along feature4, clusters2 and3 can be separated along features3 and4. The right panel of

Figure 3.3 shows the scatter plot of iris data along features3 and4. Clearly, cluster1 can be

separated either by feature3 or by feature4. In other words, one of the features is redundant

to cluster1. The proposed algorithm keeps feature4 and removes feature3 from the subset.

The selected features for clusters2 and3 (features3 and4) are also consistent with our visual

inspection. The left panel of Figure 3.3 clearly shows that features 1 and 2 are not helpful to

differentiate these two clusters.

The experiment results on iris dataset show that the proposed algorithm is capable of re-

ducing redundant/noisy features for each individual cluster. It can also provide us a better

understanding of the date generation.
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Table 3.5: Comparison ofk-means, GFS-k-means and LFS-k-means on other UCI data sets

Data Set Subfeature Error

Name Patt. Feat. Clas. k-means GFS LFS k-means GFS LFS

Wine 178 13 3 13 {1 2 3 4 5 6 8 9 10 11 12
13}

C1: {1 3 4 5 7 8 10 11 12 13}
C2: {1 2 3 4 5 6 7 8 9 10 11 12 13}
C3: {3 4 5 9 10 11 12 13}

0.034 0.039 0.023

Ion 351 32 2 32 {3 7 11 13 15
17 19 29 30 31}

C1: {13}
C2: {3 7 11 13 15 17 19 29 30 31}

0.288 0.296 0.296

Glass 214 9 5 9 {2 3 5 6 7 8 9} C1: {4 5 7 9}
C2: {2 3 4 5 7 8 9}
C3: {3 5 7 9}
C4: {6 8}
C5: {5 6}

0.192 0.201 0.196

Sonar 208 60 2 60 {35 36 37 38 41 42 44 46
47 51 55 56 57 58 59 60}

C1: {9 10 49 50 51 56 58}
C2: {9 10 49 50 51 56 58}

0.452 0.466 0.375

3.4.3 Other UCI data

We also evaluated LFS-k-means, and compared the results withk-means and GFS-k-

means, on four other UCI datasets, Wine, Ion, Sonar, and Glass, which are more complicated

than Iris data set in terms of number of features and number ofclasses. From Wine to Ion to

Sonar, the number of features increases from 13 to 32 to 60 with two or three classes. From

Ion to Wine to Glass data set, the number of classes increasesfrom 2 to 3 to 5. Table 3.5 shows

the experiment results.

For Wine data set, GFS-k-means kept 12 out 13 features with accuracy of 0.039. On the

other hand, LFS-k-means selected 10, 13 and 8 features for different clusters, respectively,

with better accuracy of 0.023.

For the Ion data set, GFS-k-means selected 10 features for both clusters. Comparing to

GFS-k-means, our proposed algorithm results in 1 feature for cluster C1 and 10 features for

the other cluster C2. Notice that these 10 features for C2 areidentical to those selected by GFS-

k-means. This implies that localized feature selecting algorithm performs at least the same as

global feature selecting algorithm. Furthermore, it also shows that it is often unsuitable to only

select one feature subset for all the clusters in unsupervised learning.

Experiments on Glass and Sonar data sets give similar results. In summary, LFS-k-means

leads to variant feature subsets for different clusters, and provide best (on Wine and Sonar)
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or similar (on Ion and Glass) pseudo-accuracy comparing to conventionalk-means algorithm

and GFS-k-means. In addition, the feature subsets selected by LFS-k-means are usually much

shorter than GFS-k-means. These results confirm that clusters do exist on localized feature

subsets for certain problems.

3.4.4 UCI data with estimation ofk and initial clusters

Table 3.6: UCI datasets with estimated number of clusters and initial centroids. GFS: Global
feature selection and clustering by algorithm of [1].k̂: Estimated number of clusters by GFS.
LFS: Local feature selection by the proposed algorithm withk̂ and initial centroids obtained
by GFS.

Data Set GFS LFS Error
Name Patt. Feat. Clas. k̂ Salient Feat. Feat. Subset GFS LFS

WDBC 576 30 2 8 {29 features} C1: {24 features} 0.09 0.10
C2: {25 features}
C3: {13 14 16 17 23 26 29}
C4: {26 features}
C5: {25 features}
C6: {4 13 14 16 23 26}
C7: {4 13 14 16 23 26 29}
C8: {4 14 16 23 26 29}

Image 2310 18 7 18 {17 features} C1:{7 8 14 17} 0.19 0.28
C2: {12 13}
C3: {2 3 9 11 13 14 15 16 18}
C4: {3 4 5 9 10 13 16 18}
C5: {5 18}
C6: {18}
C7: {18}
C8: {17 features}
...

Zernike 2000 47 10 17 {45 features} C1:{16 features} 0.49 0.48
C2: {22 features}
C3: {13 features}
C4: {13 features}
C5: {2 features}
C6: {44 features}
C7: {16 features}
C8: {44 features}
....

In this section, we evaluate our algorithm on another three UCI datasets, WDBC, Image,
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and Zernike. WDBC is the Wisconsin diagnostic breast cancerdata set with 30 features and

576 patterns from 2 classes (benign or malignant). Image is the image segmentation data set

with 2310 patterns and 19 features (18 of them are non-singular) from seven categories (brick-

face, sky, foliage, cement, window, path and grass). Zernike contains 47 Zernike moments

extracted from 2000 handwriting numerals (0-9), 200 for each digit. Those datasets contain

many features and enough numbers of patterns to perform the algorithm proposed in [1].

We suppose that the number of clustersk is unknown for those datasets. We run global

feature selection algorithm presented by Law et. cl. [1] with 30 initial clusters, and obtain the

estimated value ofk, cluster centroids, and global feature saliencies. We run our algorithm over

those parameters. Only features with saliency greater than0.5, called global salient features,

are kept. The experiment results are presented in Table 3.6.For Image and Zernike datasets,

we only show the first 8 clusters.

On WDBC, the GFS algorithm lead to 29 salient features out of 30. Our approach produces

different feature subset for each cluster. The size of feature subsets varies from 6 to 26, with

average value of 15.8, which is much less than the size of feature subset obtained by GFS. The

same results are observed on both Image and Zernike dataset:On Image dataset, feature subset

size varies from 1 to 17 with average value of 6.3, while the size of GFS’s is 17. On Zernike

dataset, feature subset size varies from 2 to 45 with averagevalue of 22.7, while the size of

GFS’s is 45.

The error rates of GFS and LFS on WDBC are almost the same (0.09and 0.10, respec-

tively), as well as the error rate on Zernike (0.49 and 0.48 respectively), which implies that

our clustering results are comparative to GFS over those datasets. Note that the error rate on

Image is different: 0.19 for GFS and 0.28 for LFS. However onecannot thereby conclude that

the clustering quality of LFS are much worse than that of GFS on this dataset, since the cluster

structures may be ambiguous between the true classes in thisdataset. The benefit of LFS here

is relatively small subset of features for individual clusters.
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3.5 Summary
In order to identify individual clusters that exist in different feature subspaces, we propose a

localized feature selection algorithm. We develop adjusted and normalized scatter separability

(ANV ) for individual clusters, based on which our algorithm is capable of reducing redun-

dant/noisy features for each cluster separately. The proposed algorithm can also provide us

better understanding of the underlying process that generates the data. Our experiment results

on both synthetic and real-world datasets show the need for feature selection in clustering and

the benefits of selecting features locally.

In this chapter we employ cross-projection method to evaluate the quality of an individual

cluster, which makes it impracticable to change the number of clusters during clustering and

feature selection process. Thus a fixedk estimated in advance is required to perform localized

feature selection with our approach. However in the area of unsupervised learning with feature

selection, algorithms with simultaneously computing the number of clusters and the feature

subset will be more elegant and desirable. We will try to solve this problem in our future

research work.
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CHAPTER 4

LOCALIZED FEATURE SELECTION WITH MAXIMAL

LIKELIHOOD METHOD

The localized feature selection algorithm we present in Chapter 3 utilizes normalized cross-

projection methods to evaluate the quality of clustering and feature subsets, and backward

search to find the best subspaces. The draw back of this approach is that the computation cost is

high, and the number of clustersk has to be specified in advance. In this chapter, we introduce

a probabilistic model based on Gaussian mixture to tackle those issues [72]. Particularly, the

feature relevance for an individual cluster is treated as a probability, which is represented by

localized feature saliency and estimated through Expectation Maximization (EM) algorithm

during the clustering process. In addition, the number of clusters is determined by integrating

a Minimum Message Length (MML) criterion.

4.1 Background on EM-based Clustering and Global Fea-

ture Selection
From amodel-basedperspective, each cluster can be mathematically represented by a para-

metric distribution. The entire dataset is therefore modeled by a mixture of these distributions.

The most widely used model in practice is the mixture of Gaussians. The clustering process

thereby turns to estimating the parameters of the Gaussian mixture, usually by the EM algo-

rithm.

Traditionally, a finite mixture of densities withK components is represented by,

p(y) =
K∑

j=1

αjp(y|θj), (4.1)

whereαj is thea priori probability, andθj is a set of parameters of componentj. The param-
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eters are estimated by maximizing the likelihood as,

θ̂ML = argmax
θ

[log p(Y|θ)] . (4.2)

LetZ = {zij}N×K be a set of missing (latent) cluster labels, wherezij = 1 if yi is a sample of

p(·|θj), andzij = 0 otherwise.Z can be also written as a vectorZ = (z1, . . . , zN ) such that

zi = j if yi is a sample ofp(·|θj). The log-likelihood whenZ is observed is,

log p(Y ,Z|θ) =
N∑

i=1

K∑

j=1

zij log[αjp(yi|θj)] (4.3)

Let W = E[Z|Y , θ̂(t)] represent the expected value ofZ, whereθ̂(t) is the estimate ofθ at

iterationt. The parameters can be estimated by the following updating rule,

θ̂(t + 1) = argmax
θ

{log p(Y ,W|θ̂(t))} (4.4)

Assuming features are conditionally independent, the mixture of densities can be described as,

p(y|θ) =
K∑

j=1

αjp(y|θj) =
K∑

j=1

αj

D∏

l=1

p(yl|θjl) (4.5)

whereD is the number of features. Define the global feature saliencyρl to be the probability

that featurel is salient to all the components. Then,(1 − ρl) is the probability thatl is not

salient to any of the components. LetΦ = (φ1, . . . , φD) be the feature relevance vector with

φl = 1, if featurel is relevant and,φl = 0, otherwise. Then,ρl = Pr(φl = 1). Finally, the

likelihood function can be rewritten as [1],

p(y|θ) =
K∑

j=1

αj

D∏

l=1

[ρlp(yl|θjl) + (1− ρl)q(yl|λl)] (4.6)

whereq(·(λl)) is a common density, which defines the distribution of an irrelevant featurel.
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If we treatΦ as missing variables, the feature saliency vectorρ can be estimated by the EM

algorithm [1].

4.2 Detecting Clusters Embedded in Feature Subspace
In this section, we present a probabilistic model based on Gaussian mixture to detect clus-

ters embedded in feature subspace. First, we define a localized feature saliency and show how

it could be integrated into EM clustering. Then, we estimatethe number of clusters with the

MML criterion.

4.2.1 Localized Feature Saliency

In our approach, the importance of a feature can be differentfor different clusters, which

implies that the feature relevance takes a matrix form,Φ = {φjl}K×D, whereφjl = 1 indicates

that featurel is associated with componentj, otherwiseφjl = 0. Let ρjl = Pr(φjl = 1) be

the probability that featurel is relevant to componentj. Then, the likelihood can be obtained

based on the following proposition.

Proposition 3. Let p(·|θjl) represent the distribution of a salient featurel for a particular

componentj, andq(·|λjl) the distribution if featurel is non-salient to the particular component.

Assuming that the features are conditionally independent,the likelihood function can be written

as,

p(y|θ) =
K∑

j=1

αj

D∏

l=1

(
ρjlp(yl|θjl) + (1− ρjl)q(yl|λjl)

)
(4.7)
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Derivation. Let φj = (φj1, . . . , φjD). For a particular componentj, we have

p(y|z = j, φj) =

D∏

l=1

(
p(yl|θjl)

)φjl
(
q(yl|λjl)

)1−φjl

p(y, φj, z = j) = p(y|z = j, φj)p(φj|z = j)P (z = j)

= αj

D∏

l=1

(
p(yl|θjl)

)φjl
(
q(yl|λjl)

)1−φjl

D∏

l=1

ρ
φjl

jl (1− ρjl)
1−φjl

= αj

D∏

l=1

(
ρjlp(yl|θjl)

)φjl
(
(1− ρjl)q(yl|λjl)

)1−φjl (4.8)

Marginal density ony gives

p(y|θ) =
K∑

j,Φ

p(y, φj, z = j)

=

K∑

j=1

αj

∑

φjl

D∏

l=1

(ρjlp(yl|θjl))
φjl ((1− ρjl)q(yl|λjl))

1−φjl

=

K∑

j=1

αj

D∏

l=1

(ρjlp(yl|θjl) + (1− ρjl)q(yl|λjl)) (4.9)

whereθ = {{αj}, {θjl}, {ρjl}, {λjl}} is the set of all the parameters.

Taking {zij} and{φjl} as latent variables, we derive the E-step and M-step of the EM

algorithm to estimate the parameter set.

E-Step: Compute the expectation of the log-likelihood.
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From Equation (4.8), the expected complete log-likelihoodof the dataset based onθ(t) is

Eθ(t)[logP (Y , z,Φ)]

=
∑

i,j,Φ

P (zi = j,Φ|yi)(logαj +
∑

l

φjl (log ρjl + log p(yil|θjl))

+ (1− φjl) (log(1− ρjl) + log q(yil|λjl)))

=
∑

j

(
∑

i

P (zi = j|yi)) logαj

+
∑

jl

∑

i

P (zi = j, φjl = 1|yi)(log p(yil|θjl) + log ρjl)

+
∑

jl

∑

i

P (zi = j, φjl = 0|yi) (log q(yil|λjl) + log(1− ρjl)) (4.10)

The probabilities are computed as follows,

P (zi = j|yi) =
αj

∏
l[ρjlp(yjl|θjl) + (1− ρjl)q(yjl|λjl)]∑

j αj

∏
l[ρjlp(yjl|θjl) + (1− ρjl)q(yjl|λjl)]

(4.11)

P (zi = j, φjl = 1|yi) =
ρjlp(yjl|θjl)

ρjlp(yjl|θjl) + (1− ρjl)q(yjl|λjl)
P (zi = j|yi) (4.12)

P (zi = j, φjl = 0|yi) =
(1− ρjl)q(yjl|λjl)

ρjlp(yjl|θjl) + (1− ρjl)q(yjl|λjl)
P (zi = j|yi) (4.13)

M-step: Maximize the log-likelihood.

The three parts of Equation (4.10) can be maximized separately by updating the following
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quantities,

α̂j =

∑
i P (zi = j|yi)∑

j

∑
i P (zi = j|yi)

(4.14)

µ̂θjl =

∑
i P (zi = j, φjl = 1|yi)yjl∑
i P (zi = j, φjl = 1|yi)

(4.15)

σ̂2
θjl

=

∑
i P (zi = j, φjl = 1|yi)(yjl − µ̂θjl)

2

∑
i P (zi = j, φjl = 1|yi)

(4.16)

µ̂λjl
=

∑
i P (zi = j, φjl = 0|yi)yjl∑
i P (zi = j, φjl = 0|yi)

(4.17)

σ̂2
λjl

=

∑
i P (zi = j, φjl = 0|yi)(yjl − µ̂λjl

)2∑
i P (zi = j, φjl = 0|yi)

(4.18)

ρ̂jl =

∑
i P (zi = j, φjl = 1|yi)∑

i P (zi = j, φjl = 1|yi) +
∑

i P (zi = j, φjl = 0|yi)
(4.19)

The EM algorithm alternates between the E-step, which computes an expectation of the

likelihood by including the latent variables as if they wereobserved, and the M-step, which

maximizes the expected likelihood found in the E-step. The parameters found in the M-step

are then used to begin another iteration of the E-step, and the process is continued until the

algorithm converges to a finite mixture model with feature saliency associated with each cluster.

Thus, clustering and localized feature saliency detectionis achieved simultaneously.

4.2.2 Model Selection Based on Minimum Message Length (MML)

Alternation of E and M steps in the above algorithm eventually results in a maximum

likelihood estimate of Gaussian mixtures, which requires the number of clustersK as prior

knowledge. To overcome this difficulty, we employ the MML criterion to detect the optimal

number of clusters [1]. The MML criterion for our model with respect toθ is as follows,

J(θ) =− log(Y|θ) +
1

2
(K +DK) log(N)

+
R

2

D∑

l=1

K∑

j=1

log(Nαjρjl) +
S

2

D∑

l=1

K∑

j=1

log(Nαj(1− ρjl)) (4.20)
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In the above equation,R andS are the number of parameters ofp(·) andq(·), respectively,

which for a Gaussian distribution is2. Also, − log(Y|θ) corresponds to log-likelihood, and

1
2
(K+DK) log(N) represents the code-length of standard Message Description Length (MDL)

of parametersαjs andρjls. WhileNαjρjl indicates the effective number of data for estimating

θjl, R
2

∑D

l=1

∑K

j=1 log(Nαjρjl) computes the code-length corresponding to the parametersθjl.

Similarly, S
2

∑D

l=1

∑K

j=1 log(Nαj(1− ρjl)) represents the code-length for parametersλjl. The

optimal mixture model is the one that minimizes the cost function J(θ) in Equation (4.20),

θ̂ = argmin
θ
(J(θ)) (4.21)

The algorithm introduced above works well in general cases.However, extreme bad ini-

tialization may lead to some clusters with singular covariance matrices, and thus adversely

affect the cost functionJ(θ). Those clusters can be pruned based on a modification of Equa-

tion (4.14) [1],

α̂j =
max

(∑
i P (zi = j|yi)−

RD
2
, 0
)

∑
j max

(∑
i P (zi = j|yi)−

RD
2
, 0
) (4.22)

The effect of Equation (4.22) is that some small trivial components are quickly eliminated at

an early stage. Similarly, Equation (4.19) is modified to,

ρ̂jl =
max

(∑
i P (zi = j, φjl = 1|yi)−

R
2
, 0
)

max
(∑

i P (zi = j, φjl = 1|yi)−
R
2
, 0
)
+max

(∑
i P (zi = j, φjl = 0|yi)−

S
2
, 0
)

(4.23)

The above Equation can pruneρjl to either1 or 0.

In summary, the proposed EM clustering with localized feature saliency consists of the

following steps,

1. Initialize the algorithm with a large value ofK, minimal number of componentsKmin,
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and the parameter setθ.

2. Alternate between E-step and M-step until the model converges to a local maximum.

During this step, components withαj = 0 are pruned.

3. Record the parameter setθ and the message length based on Equation (4.20).

4. Terminate the iterations ifK equalsKmin. Otherwise, reduceK toK − 1 by removing

the smallest component, and repeat steps (2) and (3).

5. Output the model with the smallest message length.

4.2.3 Computational Complexity

The computational load of the proposed algorithm is mainly due to the E and M steps. For

every iteration, the complexity of both the steps isO(KND). The total computational time is

dependent on the number of iterations required for converging. Conventional feature selection

algorithms usually seek optimal features by trying out large number of combinations. On the

other hand, the proposed algorithm computes the localized feature saliency simultaneously

with clustering, thus avoiding the navigation over all possible feature subsets. It only needs to

search over a small set of possibleKs.

4.3 Experimental Results
In general, the performance of an unsupervised feature selection algorithm is hard to be

evaluated. Localized feature selection makes it even more difficult as we have an additional

layer of complexity brought by the association of clusters to different feature subsets. In this

section, we provide a thorough evaluation of the proposed algorithm by comparing it with the

global feature selection approach [1] on both synthetic andreal-world datasets. In addition, we

show the need for feature selection in clustering and the benefits of selecting features locally

through a case-study on Boston housing dataset.
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Table 4.1: Summary of the synthetic datasets, whereN represents the number of patters,D the
number of features,c the number of clusters,Dj the number of relevant feature respecting to
thej-th cluster, andNj the size of thej-th cluster.

Dataset N D c Dj Nj

syn 1 600 15 3 3/3/3 200/200/200
syn 2 600 20 3 3/4/5 200/200/200
syn 3 1000 20 5 3/4/5/4/2 200/200/200/200/200
syn 4 900 30 3 3/3/3 200/300/400

4.3.1 Synthetic Data

First, we applied both our method and the global feature selection algorithm to several syn-

thetic datasets. As we know the underlying models from whichthe patterns were sampled, the

performance of an algorithm is interpreted as: can the algorithm find the given model? The

synthetic datasets are created by a data generator. It first generatesc Gaussian components

N (µj,Σj), j = 1, · · · , c, separately, whereΣj is restricted to a diagonal matrix. Components

can have different number of featuresDj, and different number of patternsNj . Those Gaus-

sians are then embedded into subsets of aD-dimensional background with Gaussian noise

N (0, I). Finally, aD-dimensional dataset consisting ofc Gaussian mixtures, with each com-

ponent corresponding to an individual relevant feature subset is generated. The total number of

patterns isN =
∑c

j=1Nj. Table 4.1 shows a summary of the four synthetic datasets generated.

In the experiments, we initialized the parameters as follows: number of clustersK is set to

20, thea priori probabilitiesαj are set equally at1/20, the feature salienciesρjl are set at0.5,

and the common components are set to cover the entire dataset. We ran the proposed algorithm

10 times independently with stopping threshold of10−7. The clustering error rates and cluster

numbers are computed as the average over the 10 runs, and standard deviations are calculated

accordingly. The feature saliency for each cluster at each run is mapped to a Gray-scale image,

where each column represents a feature, and each row represents an individual run, as shown

in Table 4.2. For all the four datasets, the proposed algorithm successfully detected the number

of clusters. Each cluster and its relevant feature subset are also detected correctly. The Rey-
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Table 4.2: Results on the synthetic datasets. Saliency in the range [0, 1] is mapped to gray-scale
[0, 255] linearly. For the clustering with localized feature saliency, each image is a mapping of
feature saliency of one cluster, where rows and columns of pixels represent runs and features,
respectively. The separated row pixels above an image represent the true relevant features. The
global feature saliency is illustrated in the same way.

Localized feature selection Global feature selection
Data ĉ(std) Saliency ĉ(std) Saliency

syn 1 3(0) 3(0)

syn 2 3(0) 3(0)

syn 3 5(0) 5(0)

syn 4 3(0) 3(0)
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Table 4.3: Summary of UCI datasets

data Description N D c

wine wine recognition 178 13 3
wdbc Wisconsin diagnostic breast cancer569 30 2

vehicle vehicle classification 846 18 4
zernike Zernike moments of digit images 2000 47 10

scale image is steady vertically, indicating that the algorithm is stable in different runs. In

Table 4.2, we also show the performance of the global featureselection algorithm [1] on each

of the datasets. We can see that the union of the localized feature subsets is equivalent to the

relevant features selected by the global approach. Moreover, while global algorithm is able to

detect the number of clusters correctly, it cannot determine if a salient feature really plays a

critical role for a particular cluster. On the other hand, our approach yields more informative

models, which not only provides information about whether afeature is relevant or not, but

also about which cluster the feature is relevant or irrelevant to.

4.3.2 Real-world datasets

For the evaluation on real-world datasets, we utilized fourdatasets:wine, wdbc, vehicle,

andzernike, from the UCI machine learning repository [70], having varying number of features,

patterns, and categories. Thewine dataset is used to recognize different wine types by13

characters of chemical analysis. It consists of178 patterns and3 categories. Thewdbcdataset

is used to diagnose if a breast cancer is benign or malignant based on30 features and contains

576 data points. Thevehicledataset contains846 samples with18 features extracted from

vehicle silhouettes. The purpose is to classify a given silhouette as one of four types of vehicles.

The zernikedataset records47 zernike moments extracted from2000 images of handwriting

digits. Summary of these four datasets is shown in Table 4.3.The parameters are initialized in

the same way as for the synthetic datasets, except thatK is set at 30 for thezernikedataset.

The datasets are provided with class labels for supervised learning, which are excluded

during the clustering process. We assign a class label to each final cluster afterward so that a
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Table 4.4: Cluster numbers and pseudo error rates for UCI datasets.

Localized feature selection Global feature selection
data error (std)(%) ĉ (std) error (std)(%) ĉ (std)

wine 2.1 (1.2) 3 (0) 2.4 (1.2) 3.3 (0.5)
wdbc 7.6 (0.6) 7.1 (0.7) 7.5 (1.2) 7.4 (0.8)

vehicle 44.6 (1.3) 9.2 (1.3) 45.4 (2.6) 10.5 (1.3)
zernike 44.9 (2.2) 15.3 (1.9) 47.6 (2.8) 16.7 (1.3)

pseudo error rate can be computed for evaluation purpose. The cluster label is simply selected

as the class to which majority of patterns in the cluster belongs. In other words, we assume

that each cluster consists of patterns from the same class. Comparing the cluster labels of all

the patterns with the true class labels yields the pseudo error rate.

The estimated cluster numbers and pseudo error rates are shown in Table 4.4 for both local

and global methods. It is clear that the proposed EM clustering with localized feature saliency

generally outperforms the global one with lower error ratesand variances. We also compared

the feature saliency of the two algorithms as Frey-scale images in Table 4.5. Obviously, differ-

ent clusters have different relevant feature subsets, which are usually smaller than the globally

relevant feature subset. This result indicates that a globally relevant feature can be irrelevant

to some clusters. Our experiments also show that a locally relevant feature might be treated

as globally irrelevant. For example, the third feature ofwine dataset is relevant to the first

cluster (bright column), but, it has been ignored by the global feature selection algorithm (dark

column). Thus, EM clustering with localized feature saliency provides users more accurate

knowledge regarding the underlying model from which the cluster component is generated.

Moreover, the vertical belt patterns in the Gorey-scale images demonstrate the stability of the

proposed algorithm over different runs.

4.3.3 Boston Housing Dataset

In this section, we present a case study of the proposed algorithm on the Boston housing

data from UCI [70], which contains506 neighborhoods in the Boston metropolitan area with
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Figure 4.1: Localized feature saliency on the Boston housing dataset. The number of objects
grouped together are listed with the group ID.

14 attributes, as described in Table 4.6. This dataset is oftenused as a test bed to compare the

performance of prediction methods by estimating the value of the last attribute MEDV from the

other13 attributes. In our experiment, we remove the binary attribute CHAS, and consider the

rest of the13 attributes on an equal basis. Our goal is to find groups of neighborhoods based

on these attributes, and to identify the saliency of attributes for each individual group.

In our experiment, the number of clusters are initialized to20, and other parameters are

initialized in the same way as for the synthetic datasets. Asshown in Figure 4.1,10 clusters
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are identified. Notice that the attribute saliency varies for each cluster. For example, attributes

{CRIM, RAD, TAX, PTRT} are important to Group A but not to Group E, while attribute B

is important to Group E but not to Group A. Figure 4.1 clearly shows that the distribution of

feature saliency over the13 attributes is quite different across clusters. Traditional clustering

algorithms without feature selection or with global feature selection is not able to reveal these

properties of the dataset. Our method, on the other hand, canprovide this vital information to

users through cluster-wise feature selection.

4.4 Summary
In this chapter, we proposed a EM clustering algorithm with localized feature saliency. In

our approach, unsupervised feature selection is performedby estimating feature saliency of in-

dividual clusters simultaneously with the EM clustering. The determination of cluster number

is also integrated in our method by adopting an MML criterion. Experimental results show

that the cluster model produced by the proposed algorithm can provide users more accurate

understanding of the underlying process which generates the data.
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Table 4.5: Feature saliency. Each image is a mapping of feature saliency for a cluster, with ex-
ception that the highlighted one represents the global feature saliency. Saliency values [0,1] are
linearly mapped to gray-scale [0,255]. Each row representsa run, and each column represents
a feature.

data Feature saliency

wine

wdbc

vehicle

zernike
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Table 4.6: Attributes for the Boston housing data.

Num. Var. Description
1 CRIM per capita crime rate by town
2 ZN land zoned for lots over 25,000 sq.ft.
3 INDS proportion of non-retail business acres per town
4 CHAS Charles River dummy variable
5 NOX nitric oxides concentration
6 RM number of rooms per dwelling
7 AGE proportion of units built prior to 1940
8 DIS distances to five Boston employment centers
9 RAD accessibility to radial highways
10 TAX full-value property-tax rate
11 PTRT pupil-teacher ratio by town
12 B (Bk − 0.63)2 whereBk is the proportion of blacks
13 LSTT % lower status of the population
14 MEDV Median value of owner-occupied homes in $1000’s
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CHAPTER 5

SIMULTANEOUS LOCALIZED FEATURE SELECTION

AND MODEL DETECTION FOR GAUSSIAN MIXTURES

VIA VARIATIONAL LEARNING

The maximal likelihood (ML) with EM inference approach presented in Chapter 4 assumes

that the parameters of Gaussian mixture are unknown but withfixed value. Those unknown

parameters are estimated through EM iterations. The cluster numberk has to be estimated

by introducing some information criteria, for example, minimal message length (MML), or

Bayesian information criterion (BIC). In this chapter, we propose a novel Bayesian inference

approach [73] for simultaneous localized feature selection, where the parameters of Gaussian

mixture are assumed following some particular probabilitydistributions, instead of fixed val-

ues in ML approach. The distributions are estimated by variational Bayesian learning (VB)

method. With a proper choice of prior probability over mixing coefficients, the cluster number

k can be estimated through clustering process. Another problem encountered in ML is that

singular components lead to infinite likelihood, which doesnot happen in VB.

5.1 Variational Approximation
We follow the Gaussian mixture model, with localized feature saliency, used in Chapter 4.

Recall that the likelihood function is presented as,

p(Y|θ) =
N∏

i=1

K∑

j=1

πj

D∏

l=1

(
ρjlp(yil|θjl) + (1− ρjl)q(yil|λjl)

)
, (5.1)

whereθ = {{πj}, {θjl}, {ρjl}, {λjl}} is the set of all the parameters. In general, to evaluate

the likelihood of mixtures, conditioned on the mixing coefficients, we must marginalize the
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parameters as follows,

P (Y|θ) =

∫
P (Y ,Θ|θ) dΘ, (5.2)

whereΘ ≡ {θ, z, Z, S} denotes all the parameters and latent variables. The integral sign

represents the joint integral overθ and the summation overz andS. This integral is analytically

intractable. Therefore, we use variational methods to find alower bound forP (Y|π).

Consider the following transformation applied to the log marginal likelihood,

lnP (Y|θ) ≥

∫
Q(Θ) ln

P (Y ,Θ|θ)

Q(Θ)
dΘ = L(Q). (5.3)

The functionL(Q) forms a rigorous lower bound on the true log marginal likelihood. Through

a suitable choice of theQ distribution, the quantityL(Q) may be tractable to compute. From

Equation (5.3), the difference between the true log likelihood lnP (Y|π) and the boundL(Q)

is given by Kullback-Leibler divergence KL(Q||P ). Q(Θ) is chosen from some family of

distributions such that the lower boundL(Q) is sufficiently simplified for evaluation. Since the

true log likelihood is independent ofQ, we approximateP (Θ) with Q(Θ) by minimizing the

KL divergence. Assuming thatQ(Θ) factorizes over subsets{Θi} of the variables inΘ,

Q(Θ) =
∏

i

Qi(Θi), (5.4)

the KL divergence can then be minimized over all possible factorial distributions by performing

free-form minimization overQi,

Qi(Θi) =
exp〈lnP (Y ,Θ)〉k 6=i∫
exp〈lnP (Y ,Θ)〉k 6=i dΘi

, (5.5)

where〈·〉k 6=i denotes an expectation with respect to the distributionsQk(Θk) for all k 6= i.

Equation (5.5) shows that the sufficient statistics of each distributionQi depends on the mo-

ments of other distributionsQk 6=i, which implies an iterative solution for the estimation of the
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variational variables. In other words, with a sufficient parameter initialization, the statistics

can be updated by taking each factor in turn and replacing itssufficient statistics with the re-

vised estimates. In each iteration of the re-estimation process, the KL divergence is reduced,

while both the lower bound,L(Q), and the likelihood are increased. Hence, the convergence

is guaranteed.

5.2 Local feature saliency with variational learning
We now apply Bayesian variational approach to the mixture ofGaussians with localized

feature saliency. Given the sets of hidden variablesZ = {z(i)j } andS = {s(i)jl }, the distribution

of the Gaussian mixture is

p(Y|Z, S, µ, T, ǫ, γ) =
N∏

i=1

K∏

j=1

[ D∏

l=1

(
p(yil|µjl, τjl)

)s(i)
jl
(
q(yil|ǫjl, γjl)

)1−s
(i)
jl

]z(i)j

, (5.6)

whereµ = {µjl} andT = {τjl} denote the means and inverse variances of the “useful”

subcomponents, whileǫ = {ǫjl} andγ = {γjl} are the sets of parameters for the “noisy”

subcomponents. The distribution of the hidden variableZ (given the mixing probabilitiesπ =

{πj}) and the distribution of the hidden variableS (given the mixing probabilitiesρ = {ρjl})

are governed as,

P (Z|π) =
N∏

i=1

K∏

j=1

π
zij
j , (5.7)

P (S|ρ) =
N∏

i=1

K∏

j=1

D∏

l=1

ρ
s
(i)
jl

jl (1− ρjl)
1−s

(i)
jl . (5.8)

In order to accomplish model selection, the above Bayesian model is augmented with con-
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jugate priors over the means and inverse covariances,

P (µ) =
K∏

j=1

D∏

l=1

N (µjl|ml, c), (5.9)

P (T ) =

K∏

j=1

D∏

l=1

Γ(τjl|α, β), (5.10)

whereΓ(·) is the gamma distribution,ml, c, α, andβ are hyperparameters that control the prior

distributions. The hyperparameters are chosen such that the prior distribution is broad enough

to cover the whole dataset. Since the actual model parameters are represented by the means of

the corresponding distributions, they are not sensitive tothese hyperparameters. For conjugate

hierarchical models, the expressions on the right side of Equation (5.5) will have the same

functional forms as in the priors.

In the following, we show the derivations ofQZ(Z),Qµ(µ),QT (T ), andQS(S).

Proposition 4. SupposeQ(Θ) can be factorized asQ(Θ) = QZ(Z)QS(S)Qµ(µ)QT (T ), the

update functions ofQZ(Z),QS(S) Qµ(µ), andQT (T ), are given by

QZ(Z) =

N∏

i=1

K∏

j=1

r
zij
ij , (5.11)

Qµ(µ) =
K∏

j=1

D∏

l=1

N (µjl|m
v
jl, c

v
jl), (5.12)

QT (T ) =
K∏

j=1

D∏

l=1

Γ(τjl|α
v
jl, β

v
jl), (5.13)

QS(S) =

N∏

i=1

K∏

j=1

D∏

l=1

ω
s
(i)
jl

ijl (1− ωijl)
1−s

(i)
jl , (5.14)

whererij, mv
jl, c

v
jl, α

v
jl, β

v
jl, andωijl are variational parameters for maximization and determin-



62

ing the density involved inQ, defined by

rij =
πj r̃ij∑K

j=1 πj r̃ij
, (5.15)

r̃ij =exp

{
1

2

d∑

l=1

ωijl

[
ψ(αv

jl)− log βv
jl −

αv
jl

βv
jl

((yil −mv
jl)

2 +
1

cvjl
)

]}
, (5.16)

mv
jl =

cmi + (αv
jl/β

v
jl)

∑n

i=1 rijωijly
i
l

c+ (αv
jl/β

v
jl)

∑n

i=1 rijωijl

, (5.17)

cvjl =c+
αv
jl

βv
jl

N∑

i=1

rijωijl, (5.18)

αv
jl =α +

1

2

N∑

i=1

rijωijl, (5.19)

βv
jl =β +

1

2

N∑

i=1

rijωijl[(y
i
l −mv

jl)
2 +

1

cvjl
], (5.20)

ωijl =
ρjlω̃ijl

ρjlω̃ijl

+ (1− ρjl), (5.21)

ω̃ijl =exp

{
1

2
rij

[
ψ(αv

jl)− log βv
jl −

αv
jl

βv
jl

((yil −mv
jl)

2 +
1

cvjl
)

]}
, (5.22)

ξijl =exp{−
1

2
γjl(y

i
l − ǫjl)

2 +
1

2
log γjl}, (5.23)

whereψ(x) is thedigammafunctionψ(x) = d log Γ(x)/dx.

Proof. Applying Equation (5.5) onQZ(Z) and taking logarithm on both sides yields

lnQz(Z) = 〈ln p(Y ,S, θ)〉+ const., (5.24)

where〈·〉 represents the expectation ofS andθ. Absorbing any terms that do not depend onZ

into the additional normalization constant, we have

lnQz(Z) = 〈ln p(Z|π)〉π + 〈ln p(Y|Z, S, θ)〉θ + const. (5.25)
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Substituting the two terms on the right side by Equation (5.6) and (5.7), and absorbing any

term that are independent ofZ, we get

lnQZ(Z) =

〈
N∑

i=1

K∑

j=1

zij lnπj

〉

π

+

〈
N∑

i=1

K∑

j=1

zij

[
s
(i)
jl p(yil|θjl) + (1− s

(i)
jl )q(yil|λjl)

]〉

θ

+ const.

=

N∑

i=1

K∑

j=1

zij ln r̃ij + const., (5.26)

wherer̃ij has the form of

r̃ij =exp

{
1

2

d∑

l=1

ωijl

[
ψ(αv

jl)− log βv
jl −

αv
jl

βv
jl

((yil −mv
jl)

2 +
1

cvjl
)

]}
. (5.27)

Note that for each value ofi, the quantities〈zij〉 are binary and sum to 1.QZ(Z) can be

normalized to

QZ(Z) =

N∏

i=1

K∏

j=1

r
zij
ij , (5.28)

whererzijij is computed by

rij =
πj r̃ij∑K

j=1 πj r̃ij
(5.29)
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Similarly, applying Equation (5.14) to Equation (5.5), we have

lnQS(S) =〈ln p(S|ρ)〉ρ + 〈ln p((Y |Z, S, θ)〉θ + const.

=

〈
N∑

i=1

K∑

j=1

D∑

l

[
s
(i)
jl ln ρjl + (1− s

(i)
jl ) ln(1− ρjl)

]〉

ρ

+

〈
N∑

i=1

K∑

j=1

zij

[
s
(i)
jl p(yil|θjl) + (1− s

(i)
jl )q(yil|λjl)

]〉

θ

+ const.

=
N∑

i=1

K∑

j=1

D∑

l=1

{
s
(i)
jl ln ρjlω̃ijl + (1− s

(i)
jl ) ln(1− ρjl)(1− ω̃ijl)

}
+ const., (5.30)

whereω̃ijl has the form of

ω̃ijl =exp

{
1

2
rij

[
ψ(αv

jl)− log βv
jl −

αv
jl

βv
jl

((yil −mv
jl)

2 +
1

cvjl
)

]}

Thus,QS(S) has the form of

QS(S) ∝
N∏

i=1

K∏

j=1

D∏

l=1

[ρjlω̃ijl]
s
(i)
jl [(1− ρjl)(1− ω̃ijl)]

1−s
(i)
jl . (5.31)

NormalizingQS(S) yields to

QS(S) =

N∏

i=1

K∏

j=1

D∏

l=1

ω
s
(i)
jl

ijl (1− ωijl)
1−s

(i)
jl

ωijl =
ρjlω̃ijl

ρjlω̃ijl

+ (1− ρjl)
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Applying Equation (5.5) toQµ(µ) yields

lnQµ(µ) =const.+

〈
K∑

j=1

D∑

l=1

ln p(µjl)

〉
+ 〈ln p(Z|π)〉Z +

〈
N∑

i=1

K∑

j=1

D∑

l=1

z
(i)
j

[
s
(i)
jl ln p(yijl|µjl, θjl) + (1− s

(i)
jl ) ln p(yijl|λjl)

]〉

This leads to a Gaussian distribution

Qµ(µ) =
K∏

j=1

D∏

l=1

N (µ|mv
jl, c

v
jl), (5.32)

wheremv
jl andcvjl have the form of

mv
jl =

cmi + (αv
jl/β

v
jl)

∑n

i=1 rijωijly
i
l

c+ (αv
jl/β

v
jl)

∑n

i=1 rijωijl

,

cvjl =c+
αv
jl

βv
jl

N∑

i=1

rijωijl

For further details on the derivation of variational learning, readers may refer to [74].

The model parametersπj , ρjl, ǫjl, andγjl are given by the mean values of corresponding

variational factors:

πj =
1

N

N∑

i=1

rij, (5.33)

ρjl =
1

N

N∑

i=1

ωijl, (5.34)

ǫjl =

∑N

i=1 ωijly
i
l∑N

i=1 ωijl

, (5.35)

1

γjl
=

∑N

i=1 ωijl(y
i
l − ǫjl)

2

∑N

i=1 ωijl

. (5.36)

The above steps iterate alternatively until convergence. This model has a property that
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the components with similar parameters fitting the same Gaussian will compete with each

other, yielding a dominant cluster. Thus, we can initializethe model with a large number of

clusters, and eliminate the trivial clusters during iteration. Finally, the algorithm will produce

a model with localized feature saliency represented byρjl and identify the number of clusters

simultaneously.

One should notice that seeking the feature saliency for individual clusters introduces more

parameters than global feature selection approaches. Consequently, this increases the poten-

tial risks posed by local extrema. To this end, variational learning is a better choice for the

optimization than EM. Unlike EM, which assumes an unknown but fixed value for a parame-

ter, variational learning formulates the model parametersas distributions. Chandan et al. [75]

showed that EM might yield poor clusters with improperly initialized parameters. In our pro-

posed algorithm, the variational parameters are initialized based on broad distributions. In

addition, the estimated model parameters are represented by the means of the corresponding

approximation functions. Therefore, variational learning can provide robust and stable opti-

mization results, and can also alleviate the overfitting problem, often suffered by EM.

5.3 Computational Complexity
The computational complexity of the proposed algorithm isO(NDK) in each iteration.

The total computational time depends on the number of iterations required for converging.

Specifically, in each iteration, we have to compute measuresin Equations (5.15)-(5.36). Com-

puting ξijl is O(1). There are(NDK) ξs so that it requiresO(NDK). Similarly, ω and ω̃

requireO(NDK). Computingαv
jl requires to navigate through all the samples, resulting in

the complexityO(NDK). Similar results can be obtained forβv, cv, mv, and r̃. For r, the

complexity isO(NK), since the summation of Equation (5.15) can be re-used. The complex-

ity for ρ, ǫ, andγ is O(NDK). For p, it is O(NK). In summary, the overall computational

complexity for one iteration isO(NDK).
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5.4 Advantages of the proposed approach
The proposed method integrates localized feature selection, model detection and clustering

into a unified framework. Its major advantages are summarized as follows,

1. Compared with global methods, our method can reveal cluster-wise feature relevance,

hence providing users more accurate information about the underlying model which gen-

erates the data.

2. Compared with subspace clustering methods, our method does not require users to pro-

vide values of the parameters that are critical but almost impossible to be set in advance,

for example, the number of clusters, the density threshold,or the desired dimensionality.

3. Our method avoids heuristic navigation through the largepool of possible feature subsets.

The computational cost for each iteration of the proposed algorithm isO(NDK). It does

not grow exponentially withD orN . Therefore, our method is scalable to large datasets.

5.5 Experimental Results
In general, the performance of an unsupervised feature selection algorithm is difficult to

be evaluated. Localized feature selection makes it even more difficult as we have an addi-

tional layer of complexity brought by the association of clusters with different feature subsets.

To thoroughly evaluate the proposed Localized Feature Selection with Variational Bayesian

(LFSVB) algorithm, we have compared it with the leading unsupervised feature selection meth-

ods on both synthetic and real-world datasets. Specifically, in the comparison, we choose a

global method proposed in [13], which is also based on the Bayesian framework with varia-

tional learning (GFSVB). In addition, we have selected a recently published and well-accepted

subspace clustering method, viz., COSA [64]. Unlike other subspace clustering approaches

that usually yield only hard-decisions (either accept or reject a feature), COSA can produce

soft feature saliency (feature importance), similar to ourapproach, and thus make the com-
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parison more meaningful. Note that COSA software is publicly available1. Finally, we also

compare our approach with the parsimonious model with Gaussian mixtures (PMGM) [76].

5.5.1 Synthetic Data

5.5.1.1 Synthetic datasets with hard feature saliency

First, we have applied the four algorithms (LFSVB, GFSVB, COSA and PMGM) to 100

synthetic datasets with 0-1 (hard) feature saliency (a feature is either relevant or irrelevant). As

we know the underlying model from which the patterns were sampled, the performance of an

algorithm is assessed through whether the algorithm can findthe given model. The synthetic

datasets are created by a data generator. It first generatesc Gaussian componentsN (µj,Σj),

j = 1, · · · , c, separately, whereΣj is restricted to a diagonal matrix. The values ofµj are

chosen randomly from -4 to 4 and from 0.1 to 0.3 forΣj . Components can have different num-

bers of featuresDj, and different numbers of patternsNj. Those Gaussians are then embedded

into subsets of aD-dimensional background with Gaussian noiseN (0, I). Specifically, we

randomly selectD1 features from the background data, and replace the firstN1 positions with

component 1. This embeds the first component into the background. Similarly, we can embed

all the rest clusters into the background. Finally, aD-dimensional dataset consisting ofcGaus-

sian mixtures, with each component corresponding to an individual relevant feature subset, is

generated. The total number of patterns isN =
∑c

j=1Nj . In our experiment, one hundred

datasets are generated with dimensionality (D) varying from 10 to 200, the number of salient

features(Dj) from 1 to 8, the cluster size(Nj) from 100 to 500, and the number of clusters

from 3 to 7.

We initialize LFSVB withk = 20. The global feature selection approach is initialized in the

same manner. COSA is initialized with default settings. COSA-distance matrix is computed,

and then processed by hierarchical clustering. Clusters are manually selected based on the

visual inspection of the dendrogram. Feature importance isnormalized so that the value of the

1http://www-stat.stanford.edu/ ˜ jhf/COSA.html
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Figure 5.1: Histograms of feature saliency on 100 syntheticdatasets for GFSVB (upper panel),
COSA (middle panel), and LFSVB (lower panel), respectively.

top-rank-feature is 1.

Note that, PMGM produces binary feature weights (either 0 or1), while the other three

algorithms yield feature weight in the range of [0,1]. To evaluate the performance of the

algorithms for feature selection, we need to find a cut-off threshold of feature saliency for

LFSVB, GFSVB, and COSA. Figure 5.1 shows the histograms of the feature saliency obtained

by GFSVB, COSA, and LFSVB, respectively, for all the clusters in the 100 datasets. Clearly,

the saliency values are mainly distributed in the range of [0,0.2] and [0.8,1]. In the following

experiments, we simply choose 0.5 as the cut-off threshold for the three algorithms.

We compute four quantities to evaluate the performance of the algorithms: (1) accuracy
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Table 5.1: Statistical summary on 100 synthetic datasets, whereACN is the average accuracy
of cluster number,CA is the average clustering accuracy,FPj is the average feature precision,
andFRj is the average feature recall. For COSA, the number of clusters (ĉ) is set manually
with visual inspection of the dendrogram (denoted by *).

algorithm ACN CA FPj FRj

GFSVB 0.952 (0.015) 0.922 (0.020) 0.384 (0.086) 0.941 (0.022)
COSA 0.992* (0.03) 0.933 (0.011) 0.892 (0.015) 0.897 (0.021)
LFSVB 0.980 (0.017) 0.910 (0.023) 0.925 (0.017) 0.950 (0.025)
PMGM 0.983 (0.017) 0.914 (0.026) 0.920 (0.022) 0.945 (0.018)

Table 5.2: Experimental results on synthetic dataset (syn0) with hard feature saliency. For
COSA, the number of clusters(ĉ) is set manually with visual inspection of the dendrogram
(denoted by *).Truth indicates the actual model which generates the dataset. C1,C2, and C3
represent different clusters.

Data Algo. ĉ accuracy Feature subset

Truth 3 - C1:[8, 19, 30],C2:[5, 23, 24], C3:[7, 16, 26]
LFSVB 3 99.2% C1:[8, 19, 30], C2:[5, 23, 24], C3:[7, 16, 26]

syn 0 COSA 3* 98.5% C1:[8, 19, 30], C2:[5, 23, 24], C3:[7, 16]
D = 30 GFSVB 3 98.3% [5, 8, 16, 23, 24, 26, 30]

PMGM 3 99.0% C1:[8, 19, 30], C2:[5, 23, 24], C3:[7, 16, 26]

of cluster numberACN = |ĉ−c|
c

, where ĉ is the estimated number of clusters andc is the

true value; (2) clustering accuracyCA = 1 − Ñ
N

, whereÑ is the number of mis-clustered

samples; (3) feature precisionFPj =
|D̂j

⋂
Dj |

|D̂j

⋃
Dj |

, whereD̂j andDj are the estimated and true

feature subset for clusterj, respectively, and| · | represents the set length; and (4) feature recall

FRj =
|D̂j

⋂
Dj |

|Dj |
. The statistical summary over the 100 synthetic datasets are reported in Table

5.1, while an example is provided in Table 5.2, showing the results for the synthetic dataset

(syn 0) with 30 features and 3 clusters.

Compare to global feature selection.From the example in Table 5.2, we can see clearly

that the proposed algorithm correctly detects the underlying clusters as well as the feature

subsets corresponding to each cluster. On the other hand, GFSVB yields a feature subset

which is close to the union of feature subsets identified by LFSVB, except that feature 19 is

missing. Table 5.1 shows that, over the 100 synthetic datasets, LFSVB yields higher accuracy
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than GFSVB on cluster number estimation. The cluster accuracy of GFSVB is slightly higher

than that of LFSVB. However, both the algorithms can discover the clusters very well. The

feature recall measure of GFSVB is high, but the feature precision measure of GFSVB is low,

while both values of LFSVB are high. This indicates that the global feature selection algorithm

can detect if a feature is relevant to the dataset, however, it can not determine if a salient feature

really plays a critical role on a particular cluster. On the other hand, the proposed model not

only provides information on whether a feature is relevant or not, but also shows which cluster

the feature is relevant or irrelevant to.

Compare to subspace clustering.As an example, Table 5.2 shows that localized feature

subsets forC1 andC2 are correctly identified by COSA. It misses a salient feature(feature

26) for cluster 3, while LFSVB can recognize all three clusters with the corresponding fea-

ture subsets. The overall cluster accuracy of COSA is slightly better than that of LFSVB,

while LFSVB outperforms COSA on feature precision and feature recall, as shown in Table

5.1. Moreover, COSA only produces a COSA-distance matrix and requires other clustering

algorithms for subsequent processing. The number of clusters is also required as an input. On

the other hand, our method provides a fully-automated solution by integrating localized feature

selection, model detection, and clustering into a unified framework.

Compare to parsimonious model with Gaussian mixture.The example results shown in

Table 5.2 and the statistical measures shown in Table 5.1 indicate that the proposed algorithm

performs equivalently to PMGM. Notice that PMGM yields binary feature weight (either 0

or 1), while our algorithm produces feature saliency as a probability measure in the range of

[0,1]. Subsequently, the proposed method can be applied forboth feature selection and feature

evaluation.

5.5.1.2 Synthetic dataset with soft feature saliency

The feature saliency in real-world datasets is usually soft, which means that it can be any

value between 0 or 1. To approximate this situation, we generate a 20-dimensional dataset
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where the feature saliency is distributed in the range of[0, 1]. This dataset contains 2 Gaussian

componentsN (µ1,Σ1) andN (µ2,Σ2), whereµ1 = (0.5, . . . , 0.5), µ2 = (−0.5, . . . ,−0.5),

Σ1 andΣ2 are both diagonal, having(0.2, . . . , 0.2) on the diagonal terms. The feature saliency

of clusters 1 and 2 are(0.05, 0.10, . . . , 1) and(1, 0.95, . . . , 0.05), respectively. Each component

contains500 points. We generate the data based on the procedure described in Section III with

a common distribution ofN (0, I).

We run the four algorithms on this dataset 10 times. Both LFSVB and PMGM detect

two clusters successfully, while GFSVB yields 3 clusters. For COSA, we manually select

the clusters. Table 5.3 shows the feature saliency obtainedby LFSVB, COSA, PMGM, and

GFSVB, respectively. We can see that GFSVB determines that all feature saliency is greater

than 0.5. PMGM can discover that the two clusters have different relevant feature subsets.

However, it does not obtain the true feature saliency due to its binary coding scheme. On the

other hand, LFSVB and COSA correctly discover that feature relevance associated to cluster 1

is different from that of cluster 2. Specifically, the relevance of features increases with feature

index for cluster 1, but decreases for cluster 2. This provides additional and more accurate

information than GFSVB and PMGM.

5.5.2 Real-world datasets

For the evaluation on real-world datasets, we utilized six datasets:Heart, Ion, Vehicle,

Wine, WDBC, andYeast, from the UCI machine learning repository [70], with varying number

of features, patterns, and categories, as summarized in Table 5.4. Class labels are provided

in the datasets for supervised learning, which are excludedduring the clustering process. A

confusion matrix is computed according to the true class labels and the cluster index. Based

on confusion matrix, mutual information is calculated as

I(X ;Y) = −
∑

X

∑

Y

p(x, y) log
p(x, y)

p(x)p(y)
, (5.37)
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Table 5.3: Average feature saliency on the synthetic dataset with soft feature saliency. The
feature saliency is in a decreasing order for cluster 1, and in a increasing order for cluster 2.

Algo. Cluster 1 Cluster 2

LFSVB

COSA

PMGM

GFSVB
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Table 5.4: Summary of the UCI datasets, whereN is the number of samples,D the number of
attributes, andc the number of classes.

data Description N D c

Heart Heart Disease of Statlog 270 13 2
Ion Ionosphere Database 351 34 2

Vehicle vehicle classification 846 18 4
Wine wine recognition 178 13 3

WDBC Diagnostic breast cancer 569 30 2
Yeast Protein Localization Sites 1484 8 10

wherex andy are true labels and cluster index respectively,p(x, y) is the joint probability, and

p(x) andp(y) are the marginal probability distribution ofX andY , respectively. The mutual

information measures the dependence betweenX andY . Thus, a higher value ofI indicates

that the clustering results are closer to the true class group.

Table 5.5 shows the mean and standard deviation of the cluster numbers and mutual infor-

mation over 10 runs of the four algorithms. Again, cluster numbers for COSA are set manually

based on the dendrogram. On the average mutual information,LFSVB outperforms GFSVB

on five (out of six) datasets (Heart, Ion, Vehicle, Wine, and Yeast). On WDBC, it is as good

as GFSVB. LFSVB also outperforms COSA on five (out of six) datasets (Ion, Vehicle, Wine,

WDBC and Yeast). The proposed algorithm outperforms PMGM ontwo datasets (Heart, Ve-

hicle). On the other datasets, those two algorithms have similar performance.

LFSVB shows that different relevant feature subsets are associated with different clusters,

whose sizes are usually smaller than the global relevant feature subset. PMGM also selects a

feature subset for each component. The difference between LFSVB and PMGM is that LFSVB

evaluates the relevance of a feature with a saliency value inthe range of [0, 1] while PMGM

uses a binary one. In addition, model detection is fully integrated in LFSVB through variational

learning. A separate measure such as BIC is not required.
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Table 5.5: Mutual informationI and the estimated cluster numberĉ, represented by mean and
standard deviation over 10 different runs, on UCI datasets.For COSA, the number of clusters
is determined manually (denoted by *).

Data Algo ĉ(std) I(std)

Heart LFSVB 2.8(0.8) 0.15(0.07)
COSA 2* 0.21(0.01)
GFSVB 3.0(0.7) 0.09(0.06)
PMGM 3.1(0.6) 0.11 (0.05)

Ion LFSVB 3.8(1.1) 0.33(0.1)
COSA 4* 0.30(0.01)
GFSVB 3.4(0.9) 0.21(0.05)
PMGM 3.3(0.8) 0.31 (0.05)

Vehicle LFSVB 9.9(1.7) 0.63(0.05)
COSA 9* 0.48(0.01)
GFSVB 10.5(1.5) 0.58(0.09)
PMGM 9.5(1.6) 0.60 (0.04)

Wine LFSVB 3.1(0.3) 1.44(0.07)
COSA 3* 1.26(0.01)
GFSVB 3.4(0.7) 1.42(0.06)
PMGM 3.2(0.6) 1.42 (0.07)

WDBC LFSVB 6.3(0.8) 0.68(0.02)
COSA 10* 0.59(0.01)
GFSVB 7.6 (0.9) 0.67(0.02)
PMGM 8.1(0.6) 0.68(0.03)

Yeast LFSVB 11.4(2.1) 0.40(0.06)
COSA 13* 0.15(0.02)
GFSVB 6.8(0.8) 0.36(0.01)
PMGM 8.2(1.5) 0.39(0.05)
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5.6 Summary
In this chapter, we developed a novel approach of simultaneous localized feature selection

and model detection for unsupervised learning. Our approach provides a fully-automated so-

lution to identify useful patterns embedded in feature subspaces by integrating local feature

selection, model detection, and clustering into a unified Bayesian framework. We have demon-

strated the advantages of our algorithm over global featureselection and subspace clustering

methods on both synthetic and real-world datasets.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

6.1 Conclusions
The objective of this dissertation is to identify individual clusters that exist in different

feature subspaces. We designed three algorithms to achievethis goal. The contributions of this

dissertation are summarized as follows:

• We developed an adjusted and normalized scatter separability measure (ANV) for indi-

vidual clusters. Based on this measure, A normalized-cross-projection (NCP) method is

designed to perform unsupervised localized feature selection. The algorithm identifies

the feature subsets for each individual cluster by sequential backward search. Our exper-

imental results on both benchmark datasets and image datasets show the need for feature

selection in clustering and the benefits of selecting features locally.

• We formulated the problem of unsupervised localized feature selection as a probability

problem based on Gaussian mixture. the feature relevance for an individual cluster is

treated as a probability, which is represented by localizedfeature saliency and estimated

through Expectation Maximization (EM) algorithm during clustering process. In addi-

tion, the number of clusters is determined by integrating a Minimum Message Length

(MML) criterion.

• In the most recent work of this dissertation, we address the problem of simultaneous

localized feature selection and model detection for unsupervised learning. We proposed

a novel localized Bayesian inference approach of Gaussian mixtures, which computes the

local feature saliency, the number of clusters, and other parameters of a mixture model

through variational learning.
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6.2 Future work
There are many research interests in localized feature selection for data mining. We list

some, but not all, among them for future research guidance:

• Feature dependence in localized feature selection in unsupervised learning.

The algorithms in Chapters 3, 4, and 5 assume that features are conditionally independent

when cluster labels are known. However, this assumption is not true in general practice.

The algorithms need to be designed to cope with this situation.

• Constraints in localized feature selection for unsupervised learning.

Unsupervised feature selection encounters difficulty whenclustering is in ill-posed na-

ture. To this end, user defined constrains can improve the clustering accuracy. In many

applications, limited supervision is available to resolvethis issue. This leads to a research

field as known as semi-supervised learning. One could apply similar idea to localized

feature selection. Remark that the optimal number of clusters can be inferred by mini-

mizing the constraint violations. A desirable algorithm should also detect the number of

clusters automatically.
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Clustering is the unsupervised classification of data objects into different groups (clusters)

such that objects in one group are similar together and dissimilar from another group.Fea-

ture selectionfor unsupervised learning is a technique that chooses thebestfeature subset for

clustering. In general, unsupervised feature selection algorithms conduct feature selection in

a global sense by producing a common feature subset for all the clusters. This, however, can

be invalid in clustering practice, where the local intrinsic property of data matters more, which

implies thatlocalized feature selectionis more desirable.

In this dissertation, we focus on cluster-wise feature selection for unsupervised learning.

We first propose a Cross-Projection method to achieve localized feature selection. The pro-

posed algorithm computes adjusted and normalized scatter separability for individual clusters.

A sequential backward search is then applied to find the optimal (perhaps local) feature subsets

for each cluster. Our experimental results show the need forfeature selection in clustering and

the benefits of selecting features locally.

We also present another approach based on Maximal Likelihood with Gaussian mixture.

We introduce a probabilistic model based on Gaussian mixture. The feature relevance for an

individual cluster is treated as a probability, which is represented by localized feature saliency

and estimated through Expectation Maximization (EM) algorithm during the clustering pro-

cess. In addition, the number of clusters is determined by integrating a Minimum Message
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Length (MML) criterion. Experiments carried out on both synthetic and real-world datasets

illustrate the performance of the approach in finding embedded clusters.

Another novel approach based on Bayesian framework is successfully implemented. We

place prior distributions over the parameters of the Gaussian mixture model, and maximize

the marginal log-likelihood given mixing co-efficient and feature saliency. The parameters are

estimated by Bayesian Variational Learning. This approachcomputes the feature saliency for

each cluster, and detects the number of clusters simultaneously.
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