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CHAPTER 1

INTRODUCTION

Advances in computer technology have led to the informadga which some people refer
to as “data explosion”. The amount of data available to amggeis increased so much that
it is more than he or she can handle. This increase in bothdhene and variety of data
calls for advance methodology of understanding, procgsam summarizing the data. In my
dissertation, we focus on two important techniques for datalysis in pattern recognition:

clustering and feature selection.

1.1 Data Representation

In pattern recognition perspective, data is the descnpiica set of objects or patterns that
can be processed by a computer. The patterns are supposaetsdme commonalities, such
that the same systematic procedure can be applied to albjbets to generate the description.
Data can be represented in many ways. Most often, an objettssribed by a vector of
measurement results of its various properties. A measurerasult is called a “feature” in
pattern recognition, or a “variable” in statistics. Datatmaof size n by d is formed by
arranging the feature vectors of different objects in défé rows, where: is the number
of patterns and! the number of features. If all the features are numerica,dfita can be
represented as a point in spaké which enables a number of mathematical tools to be used

to analyze the objects.

1.2 Categories of Machine Learning Methods

In pattern recognition, most of the analysis concerned widdictive modeling, i.e., pre-
dicting the behavior of the unseen data (testing data) bas¢loe existing data (training data).
Depending on the feedback one can receive in the learningepsp machine learning meth-

ods can be categorized into three groups: supervised, angs@d (clustering), and semi-
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supervised learning. In supervised learning, labels otrithieing data are available to verify
if the predict is correct or not. In unsupervised learning;hslabel information is missing. In
semi-supervised learning, only some of the data pointsadreléd. This happens frequently
in practice, since data collection and feature extractamlze done automatically, whereas the
labeling has to be done manually which is often expensivenbupervised learning, no label
information is available. The target of machine learnirgktia this scenario is to discover the
natural grouping structure of the data. This is very impadrta many practical applications,
for example, to find different groups of credit card holderd & learn their general behaviors

from a huge dataset collected by a credit card provider.

1.3 Dimensionality Reduction

Dimensionality reduction deals with the transformatiomigh dimensional to low dimen-
sional representation. The underlying assumption is ti&tata points can be exploited in a
certain structure, and the information of the structurelmaeummarized by a small number of
attributes. Intuitively, the more information we have, bedter a learning algorithm is expected
to perform. This seemingly suggests that we use all thefesifor the learning task. However,
this is not the case in practice. Most learning algorithm$goen poorly in high dimensional
space with a small number of samples. This difficulty is kn@asnhe curse of dimensionality
Additionally, datasets often come with noise features Wwhio not contribute to the learning
process. Dimensionality reduction yields simple represt@n of datasets. This can enhance
the generalization capability of the output model, reduee dcomputation time for learning,
and shrink the space occupied by the output model. The lovesinnal model is also easier
for domain experts to interpret, and make it possible toldispisually by transforming it into
two or three dimensions.

The main drawback of dimensionality reduction is the paBgitof information loss. Use-
ful information can be discarded if dimensionality redantis done poorly.

In general, dimensional reduction methods can be categbiito two groups: feature



extraction and feature selection.

1.3.1 Feature Extraction

In feature extraction, a small set of new features is consttlby a general mapping from
the high dimensional data. The mapping often isolate th#adla features. The mapping can
be linear, i.e., Principal Component Analysis (PCA) [2]né&ar discriminant analysis (LDA),
and multiple discriminant analysis (MDA), or non-lineag.i Kernel PCA [3], ISOmap [4],
and Locally Linear Embedding (LLE) [5].

1.3.2 Feature Selection

Feature selection selects a subset of features that is ppsi@iate for the task at hand.
A feature is either selected or discarded. This constraintbe relax by assigning weights to
different features to indicate the saliencies of the irdinal features. This is also referred to as

feature weighting, or feature ranking. The feature sedagbroblem can be formulated as
opt —
T arg max Q(T) (1.1)

whereT°?" is the optimal feature subsef, is the full set of subsets, ar@(-) is the quality
function.

The new features generated by feature extraction algositmmhard to interpret in practice
due to the linear or non-linear transformation. Featureci&n, on the other hand, selects a
subset of the original features by removing most irrelegawtredundant features from the data
and help people to better understand their data by telliegitiwhich are the important features
and how they are related to each other. The new low-dimeaktata set are meaningful and

easy to interpret.

1.4 General Procedure of Feature Selection
A typical feature selection algorithm consists of four bastieps as shown in Figure 1.1,

namely, subset generation, subset evaluation, stopioritand result validation.



Original | Subset Subset_| Subset Goodness top Result
Dataset | Generation Evaluation riterio Validation
No

Figure 1.1: General procedure of feature selection.

1.4.1 Subset Generation

Subset generation is the procedure to create the next @aadehture subset for evalua-
tion. The nature of this process is determined by two isssearch starting point and search
strategy. The process can start with empty subset; thedubfsfeatures; or a random subset
to avoid local optimization. For a dataset with features, there arg” possible candidate
subsets, which exponentially increases with the numbegatfifes. Heuristic search methods
are usually applied, such as sequential search, randorwhsemmplete search, and integral
search.

Sequential Search. This strategy usually employs the greedy hill-climbing huet to
generate feature subset. For example, sequential fong&dt®n, sequential backward elim-
ination, and bidirectional search [6]. These algorithmd adremove one feature at a time.
Another approach is to add or remopdeatures at a time [7]. Sequential search algorithms
avoid navigation over all the subset candidates, thus spedle feature selection procedure.
However, they may risk losing optimal subset.

Complete Search The complete search guarantees to find the optimal sub$etugh
its complexity isO(2P), it does not imply that an exhaustive search is necessarpicaly
algorithms include branch and bound search [8], and bearatsgd.

Random Search The random search can be started with a randomly seledbsetsthen
by adding or removing features by sequential search [7]s@t @an be selecting another totally
random subset for the next evaluation [9]. Simulated ammg$10] and genetic algorithms

[11, 12] also belong to this category.
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Integrated Search. This strategy does not generate feature subset expliditstead, it
introduce quantity of feature importance, namely featatiescy, to achieve the goal of feature

subset generation [1,13].

1.4.2 Subset Evaluation

The candidate feature subsets need to be evaluated by sibenia o that the best feature
subset can be determined according to the goodness med$wevaluation criteria can be
roughly categorized into two groups: independent critand dependent criteria.

Independent Criteria. An independent criterion is typically used in filter algbrt. It
tries to measure the intrinsic characteristics of the @ataghout involving any mining algo-
rithm. Some popular criteria are separability measurésgnmation measures, and dependency
measures [14-18].

Dependent Criteria. A dependent criterion is used by wrapper models. The ooiteis
measured with a specific mining algorithm. The performarfad® mining algorithm is ap-
plied to determine the goodness of the feature subset. lysaalependent criterion yields bet-
ter performance than an independent criterion for the pireet mining algorithm. However,
the selected feature subset may not be suitable for othengnalgorithms, and the computa-
tional cost is often expensive. For classification probleting predicting accuracy of unseen
instances is widely used to select feature subset whicklgieigh testing accuracy [19, 20].
For clustering problems, a wrapper model evaluates the rggssdof a feature subset by the
quality of the clusters obtained by a specific clusteringpatgm. Cluster compactness, scat-
ter separability, and maximum likelihood are some typidaster goodness measures used for
feature selection. Readers can refer to [1, 13,15, 21-23kfment development of dependent

criterion for unsupervised feature selection.

1.4.3 Stopping Criteria
The feature selection process terminates when a stoppiegan is achieved. Some fre-

guently used stopping criteria are as follows:



The search is completed.

Subsequent addition or deletion of any feature does nal Yietter result.

A sufficiently good subset is selected.

Some given bound, i.e. the number of iterations or the nurabselected features, is

reached.

1.4.4 Result Validation

The prior knowledge of the underlying dataset is often usedirectly validate the result
of a feature selection process. For a synthetic dataseaklinant feature subset and irrelevant
feature subset is usually known. The former is expectedpeapin the resulting feature sub-
set, while the later is not. Thus we can validate the resyltsdmparing the known relevant
and/or irrelevant features with the feature subset pradlbgethe feature selection algorithm.
However, in real world applications, such a prior knowledggasually unknown. Validation
of results must occur in an indirect way. A frequently usedhud is to conduct experiments
not only on the selected feature subset, but also the whatarfeset. The resulted validation
is achieved by comparing the performance of these befaleafier feature selection experi-

ments.

1.5 Categories of Feature Selection Algorithms

There are many feature selection algorithms developeceititdrature. They can be cate-
gorized into different groups according to the subset geirar methods, the subset evaluation
methods, or data mining tasks. Under subset generationoaigtthe feature selection algo-
rithms can be categorized into four groups: complete seaetfuential search, random search,
and integral weighting. Under subset evaluation critethay can be categorized into three
groups: filters, wrappers, and hybrids. Under data miniek taiteria, they can be categorized

into two groups: supervised learning and unsuperviseailegr Considering the scope of the
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selected feature subset, they can be categorized into twgpgr global feature selection and
localized feature selection. We will discuss the three gdreategories corresponding to the
subset evaluation criteria, and the two categories cooredipg to the feature scope in this

section.

1.5.1 Filter Approach

For a given dataset, a filter algorithm [16, 17, 24] startsnfr@ initial feature subset, and
navigate the feature space by a particular search stragph generated subset is evaluated
by a measure which is independent to mining algorithm. Tlaecbeiterations continue until
some stopping criteria are reached. The best subset isehened.

A filter approach does not involving any data mining algarittthus it does not inherit any
bias of the mining algorithm. Any mining algorithm can be dsequentially to analyze the
dataset. However, given a particular mining algorithm,dékected feature subset may not be

optimal.

1.5.2 Wrapper Approach

A wrapper approach is similar to the filter approach except thutilizes a predefined
mining algorithm to evaluate the generated feature sulisetl] 23, 25]. Since the goodness
of the feature subset is controlled by the mining algorittihe performance of a wrapper
method is superior, and different mining algorithms wilbguce different feature subsets. The

computation cost is usually higher than a filter method.

1.5.3 Hybrid Approach
A hybrid approach [26] utilizes a independent measure tegbeet a feature subset. A

mining algorithm is used to finally decide the output feasubset.

1.6 Localized Feature Selection for Clustering
Feature selection has been extensively studied in superngsarning scenarios [18, 19,

27-30]. In unsupervised learning, feature selection besoanmore complex problem due to



Figure 1.2: A three-cluster dataset with clustgrembedded in feature sgt,, x-}, clusterCy
embedded in feature subdet, }, and clusteC’; embedded in feature subdet, }.

the unavailability of class labels. It is received reseantantion only recent. This research
dissertation will focus on feature selection problem foswpervised learning tasks.

In general, unsupervised feature selection algorithmsectfeature selection inglobal
sense by producing a common feature subset for all the ctusthis, however, can be invalid
in clustering practice, where the local intrinsic propestydata matters more. In the illustra-
tive example shown in Figure 1.2, the relevant feature dubselusterC is {x, x5}, while
clustersC, andC5 can be grouped usinge, } and{z, }, respectively. A common feature sub-
set, i.e.,{z1,z2}, is unable to reflect the inherent structural propertieshefthree clusters.
Apparently, clustering witlocal features is highly desired.

In general, there are two major research trends that sedatiires locally for clusters,

namely, co-clustering and subspace clustering.



1.6.1 Co-clustering
In a co-clustering problem, data is stored in contingencgaeoccurrence matri’. The

co-clustering process derives sub-matrices from the ldag@ matrix by simultaneously clus-
tering rows and columns of the data matrix. Optimal co-@risg is derived based on the one
that leads to the largest mutual information between thstefed random variables [31]. A
well studied problem of co-clustering in data mining hasrbteat of documents and words.
The goal is to cluster documents based on the common wortisgpaar in them and to cluster
words based on the common documents that they appear ingB2=8-clustering algorithms
attempt to partition the features exclusively. That meafsature can only belong to a par-
ticular cluster. This property limits its application inrggral feature selection for clustering

problems.

1.6.2 Subspace Clustering

Subspace clustering [37] is another extension of tradiliciustering that seeks clusters
in different subspaces within a dataset. Subspace clogtatgorithms localize the search for
relevant features such that clusters which exist in mdtiplossibly overlapping subspaces
are determined. Subspace clustering approaches usuatthder possible feature subsets on

which density regions may occur, then clusters are diseoverthe different subspaces.

1.7 Overview

In this dissertation, we focus on the problem of localizeatdee selection for unsupervised
learning. The rest of the thesis is organized as follows: Hhagier 2, we review related works
in the literature. In Chapter 3, we propose an algorithm oélized feature selection for un-
supervised learning by cross-projection method. In Chiapta probabilistic model of feature
saliency with Gaussian mixture is addressed. The featigetsm with model detection is inte-
grated into Maximal Likelihood (ML) learning scenario. Wpose another algorithm which
performs clustering, feature selection, and cluster nurdbtection simultaneously with Vari-

ational Learning in Chapter 5. The conclusions of this thasid recommendations for future



work are addressed in Chapter 6.
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CHAPTER 2
RELATED WORK IN UNSUPERVISED FEATURE

SELECTION

In Chapter 1, we described the importance of feature seleetnd presented an overall
picture of different approaches for feature selection. sTa¢hiapter continues the discussion
of unsupervised feature selection. We shall survey somkeofdcent feature selection algo-
rithms. Since we are mostly interested in unsupervisechiegy supervised feature selection
algorithms are omitted from this survey. We organize thestlgms based on the scope of the

feature subset (Global/Local), and the type of evaluatrdgeréa (Filter/Wrapper).

2.1 Global Feature Selection

Feature selection algorithms generally process all alsistea common subset. In other
words, an irrelevant featurg,, is irrelevant to all clusters, and a relevant featgirfemplies
that it is relevant to all clusters. The feature selectiggopathm does not distinguish the dif-
ferent response of a specified feature on different clust€éhe output model is simple and

straightforward.

2.1.1 Filters

A filter approach evaluates the quality of a feature subs#towt involving a particular
clustering algorithm. It usually adopts a independentdon, such as the feature similarity
measure, or information measure, and finds the best subbeagtha search strategy.

The most well-known measure of similarity between two randariablesr andy is the

correlation coefficient, which is defined as

cov(z,y) 2.1)

play) = var(z)var(y)

wherevar(-)) denotes the variance of a variable ang/(-) the covariance between two vari-
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ables. Ifz andy are completely correlated, i.e., exact linear dependexisy, @(z, y) is 1 or
—1. If xandy are totally uncorrelated(x, y) is 0. Hencel — |p(x, y)| can be used as measure
of similarity between two variables. This measure is useal@agerion in [17,38]. The reduced
subset is obtained by discarding correlated features wste@wvise clustering scheme.
Correlation coefficient is invariant to scaling and semsitio rotation, which are not de-
sirable in many feature selection cases. Mitra et al. [1gpsest another linear dependency
measureMaximal Information Compression Index (MIC),), for feature selection. MIC is

defined as follows

2Xo(z,y) = var(z) + var(y) — \/(V&I‘([L’) + var(y))2 — 4var(z)var(y) (1 — p(z,y)?)
(2.2)

The value of)\, is zero when the features are linearly dependent and iresesssthe amount
of dependency decreases. Actualyjs equal to the eigenvalue for the direction normal to the
principal component direction of feature péir, y). It is also equal to the sum of the squares of
the perpendicular distances of the poifitsy) to the best fit line) = a-+ bz [39]. Based on the
feature similarity measure, the correlated features carilm®ved by some particular search
strategy, such as Branch and Bound Search [40], SequentiabFd Search [40], Sequential
Floating Forward Search [41], Stepwise Clustering [38].1A, features are partitioned into a
number of homogeneous subsets based oh-thearest-neighbor (KNN) principle using MIC.
Among them the features having the most compact subsetdsted| and it$: neighboring
features are discarded. The best feature subset is gethésatepeating this process until all
of the features are either selected or discarded.

The above feature similarity measures are efficient to tletacelated features. However,

they cannot detect irrelevant features. To overcome tBiseisDash et al. [26] proposed a
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distance-based entropy measure, which is defined as,

whereD;; is the normalized distance in the rarige), 1.0]. This method assigns a low entropy
to intra- and inter-cluster distances, and assigns a high&opy to noisy distances. This
measure suffers from two drawbacks. (a) The mean distan@eépthe meeting pointu) of

the left and right side of the entropy plot can be an intestdudistance, but still it is assigned
the highest entropy. (b) Entropy increases rapidly for wwnall distances thus assigning very
different entropy values for intra-cluster distances. proved version is proposed in [16] as

follows,

E=2.> By (2.4)
Xl X;
exp B*D” cxp 0< D, <
exp(B#*u) ex S Ui S )
Ej; = p(Bxp) exp(0 J (2.5)
exp(B*(1.0 D;;))*exp(0)
exp(B*(1. O,LLJ )) exp(0) o= Dzy <10

where £;; is normalized to the rang@.0, 1.0]. The parametef, which is set based on the
domain knowledge, controls the entropy contribution ofweetn intra- and inter-distances.
The parametey, which is updated heuristically, shifts the meeting poihth@ two sides of
the entropy-distance plot. The entropy of a particulanfesats calculated by removing it from
the original feature set and computing the entropy changeelly. Features are ranked based

on their entropy. Best feature subset is obtained by salgtiie top ranked features.

2.1.2 Wrappers

Filter feature selection approaches can be used by angdhugtalgorithms. However, the
output is often not optimized for a particular clusteringaithm. On the other hand, a wrap-

per approach utilizes a particular clustering algorithnevaluate the performance of feature
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subsets, thus usually produces better feature subset tiilter does. Most unsupervised fea-
ture selection algorithms are wrappers. In this sectionreveew some wrapper approaches

proposed very recent.

2.1.2.1 Cross-Projection
The quality of clusters can be measured by the within-ciustatter matrix §,,) and the

between-cluster scatter matri&,|,

k k
Suw =Y mE{(X =) (X = ) s} =Y m%, (2.6)
k
Sb = Zﬁj(:uj - MO)(:UJ' - Mo)Tv (27)
’ k
M, = BE{X}=> mu; (2.8)

wherer; is the probability that an instance belongs to clustgrX is ad-dimensional random
feature vector representing the datathe number of clusterg,; is the sample mean vector
of clusterw;, M, is the total sample meat;; is the sample covariance matrix of clustgr,
andE{-} is the expected value operator. Many separability measarebe obtained based on
scatter matrix [42]. Among themyace(S,;1S,) is widely used in literature [43]. However, this
criterion is biased on dimensionality, which means thatrtteasure monotonically increases
with dimension, assuming the clustering assignments rethaisame. In order to elevate this
bias, Dy et al. [21] proposed a cross-projection methodeiwo feature subsets and.Ss,

the clustering results ax€, andC,, respectively. LeCRIT'(S;, C;) be the clustering criteria
using feature subse; to represent the data ad as the clustering assignment. The criteria

values for(S;, C;) and(S,, Cy) are normalized as,

normalizedV alue(Sy, Cy) = CRIT(Sy,Cy) x CRIT(S,, Cy) (2.9)

normalizedV alue(Sy, Co) = CRIT (S, Cs) x CRIT(Sy,Cy) (2.10)
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This cross-projection method ensures that the bias of diraeality is removed, thus it can

be used to compare the clustering quality on two differeatuiee subsets, even though they
may have different dimension. In [21], sequential forwaedrsh method is used to navigate
through possible subset candidates. The number of clustestimated by merging clusters

one at a time and using a Bayesian Information Criterion |BIC

2.1.2.2 Law’'s E-M Approach

Traditional feature selection algorithms have to searobudph the possible candidate sub-
sets, which demands heavy computational load, even by gessich methods. Law et al. [1]
proposed another approach, which selects salient feanckesstimates the number of clusters
simultaneously by Expectation Maximization (EM) algonthAssuming that the features are
independent given a mixture component, and following a comutistribution up to a prob-
ability, the complement of this probability is defined astéea saliency and estimated by the
Maximum Likelihood (ML) or Maximum A priori (MAP) with EM algrithm using Gaussian

mixture models. The likelihood of such model is defined afad,

Ko d
pl0) = a; [ (owl6s) + (1 = p)a(wln)) (2.11)
=1

]:1 =

wherep(-) represents a probability distribution of a componety) representing the common
distribution, §;, and \; denoting the parameterg, indicating the saliency of the particular
feature, and) = {{o;},{0;}, {\}, {p}} . The model selection (estimating the number of
clusters) can be accomplished based on minimum messagé MiIL) criterion [44, 45].

The algorithm tries to minimize the following cost function

d

k
k; r
—logp(V]0) + logn 3 Z ; og(na;p;) Z log(n(1 — pp)) (2.12)

wherer ands are the number of parametersédp and \;, respectively. This cost function is

minimized through EM method. The advantage of this appraatifat it accomplishes feature
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selection with clustering simultaneously, and avoids theigation over the possible feature

subset candidates which is usually very large.

2.1.2.3 Variational Approach

[13] and [46] employ the same Gaussian mixture model as ito[tlescribe feature rele-
vance, but integrate model and feature selection underdsay&amework. The model param-
eters follow particular distributions instead of fixed vedLas estimated by EM algorithm. The
learning process is to fit the distributions based on thergilsgaset. [13, 46] utilize variational
learning techniques to estimate the underlying model. &Sihe cluster number also follows a

distribution, it can be conducted directly.

2.2 Localized Feature Selection

Feature selection algorithms aforementioned are glodaiwmeans that the feature sub-
set selected is common to all the clusters. However, in mppijcations, the natural grouping
structure of a cluster is localized in a particular subspagdech implies that different clus-
ters may have different relevant feature subset. The odgpotat of such an algorithm is
{C}, Fi.}, whereC), and Fy, indicate the cluster assignment and feature subset for @fispe
clusterk. Notice that clustering results is required by those atbors, thus localized feature
selection approaches are wrappers. Co-clustering angpacdslustering are two categories

in this research area.

2.2.1 Co-clustering
Co-clustering (also called Biclustering, Bipartite, oroemode clustering), is simultane-
ous clustering of both instances and features such thatdle&sinduced by the row/column

partitions are good clusters.

2.2.1.1 Information-Theoretic Co-Clustering
Let X andY be discrete random variables that take values in the{ssts. ., z,,} and

{y1,...,yn} respectively. Lep(X,Y") denote the joint probability distribution betwe&hand
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Y. Co-clustering tries to find magsy andCy,

CX Z{Il,xg,...,xm}—){.Ci'l,{i'g,...,i'k} (213)

CY . {yl?y27 A 7y77/} —> {:&17@27 R 7gl} (2'14)

which minimizes the following criterion,

I(X;Y)—I(X;Y) (2.15)

wherel(X;Y) is the mutual information betweeki andY . Dhillon et al. [31] address that

the loss in mutual information can be expressed as,

= p(z)D (p(Y|2)[lq(Y]2)) (2.16)
X =:Cx=z

=> p(y)D (p(X|y)|la(X|9)) (2.17)
vy v:Cy=y

whereD(-||-) denotes the Kullback-Leibler (KL) divergence, and\,Y, X,Y) is a distribu-

tion of the form:

q(z,y,2,9) = p(,9)p(x|2)p(y|7). (2.18)

Thus the cost function can be minimized by alternativelyrnoving row clusters (Equation (2.16))

and column clusters (Equation (2.17)). Similar models cafolnd in [47,48].

2.2.1.2 Graphic Theoretic Co-clustering
Given an undirected bipartite gragh = (M, R, E'), where M and R are two sets of

vertices, andt a set of edges, leB be the graph weight matrix. An entdy,; in this matrix
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is the weight of an edge appearing between a vertex R and a vertexn; € M. There are
no edges between vertices of the same group. The adjacendy ofahe bipartite graph is

expressed as,
0 B
M = (2.19)
BT 0
The bipartite Laplacian matrix is defined as,
Dr -B
I = (2.20)
—BT Dy
where Dg(i, 1) = >, B;; and D (3, j) = >_, Bi;. Co-clustering of the data is achieved by
partitioning the bipartite graph into two subsétandV;. Shi and Malik applied spectral graph

partitioning to the problem of image segmentation in [49hfipimizing the objective function,

2T Lz
i 2.21
min D ( )
wherez is a column vector such that = ¢, if i € V; andz; = —cy if ¢ € V5. By relaxing

x; from discrete to continuous, it can be shown that the saluiio(2.21) is the eigenvector

corresponding to the second smallest eigenvalue of thegéeres eigenvalue problem [50,51],

Lx = \Dx (2.22)

This eigenvalue problem can be reduced to a much more effiSiagular Value Decomposi-
tion (SVD) [51] problem. Dhillon [52] and Zha et al., [53] eloged this Spectral-SVD ap-
proach to partition a bipartite graph of documents and wdbiisg [54] performed document-
word co-clustering by extending Hopfield networks [55][%8]partition bipartite graphs and
showed that the solution is the principal component analfBCA) [2].

Co-clustering has been found to have applications in doatiisned multimedia grouping
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problems. However, in feature selection prospect, thaufeadubsets associated to different
clusters are disjointed, which implies that a feature cabeselected for several clusters. This

restriction is often inflicted in general feature selectiwablems.

2.2.2 Subspace Clustering

Subspace clustering algorithms search for relevant featocally to find clusters that ex-
ist in multiple, possibly overlapping subspaces. Theretaremajor branches of subspace
clustering based on their search strategy. Bottom-up agpes find dense regions in low di-
mensional spaces and combine them to form clusters. Tyaigatithms in this branch are
CLIQUE, ENCLUS, MAFIA, Cell Based Clustering (CBF), CLTreleOC, and SURFAING.
Top-down algorithms find an initial clustering in the fullts#f dimensions and evaluate the
subspaces of each cluster, iteratively improving the tesdlypical top-down algorithms are

COSA, PROCLUS, ORCLUS, and FINDIT.

2.2.2.1 CLIQUE

CLIQUE [56] combines density and grid based clustering td fow dimensional clusters
embedded in high dimensional space. Each dimension isatlvitto bins using a static sized
grid. Dense subspaces are sorted by coverage. The subsyttése greatest coverage are
kept and the rest are pruned. Adjacent dense grid units acevdred in each selected sub-
space using a depth first search. Clusters are formed by oarglithese units using a greedy
growth scheme. The hyper-rectangular clusters are themedfiy a Disjunctive Normal Form
(DNF) expression. Clusters may be found in the same, ovargpor disjoint subspaces. The
clusters may also overlap each other. CLIQUE requires gzeland density threshold as input

parameters. Tuning these parameters can be difficult.

2.2.2.2 ENCLUS
ENCLUS [57] is another subspace clustering method basedhem the CLIQUE al-
gorithm. The algorithm is based on the observation that @mate with clusters typically

has low entropy than a subspace without clusters. Thus ENECtdinputes the entropy mea-
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sure rather than density and coverage (used in CLIQUE) teriohibe the clusterability of a
subspace. ENCLUS also introdudeserest which is defined as the difference between the
sum of entropy of measurements for a set of dimensions andrntnepy of multi-dimension
distribution, to measure the correlation of a subspacegéd.aalues indicate higher correla-
tion between dimensions. ENCLUS search for interestinggate whose entropy exceeds a
thresholdv and interest gain exceeds Clusters in the interesting subspaces can be identified
by the same methodology as CLIQUE. Parameters required IGLEIS are grid interval\,

entropy threshold, and interest threshold.

2.2.2.3 MAFIA
CLIQUE and ENCLUS are sensitive to the uniform grid intervdlAFIA [58] introduces

an adaptive grid based on the distribution of data to impmffieiency and cluster quality.
MAFIA initially computes the histogram to determine the imiiim number of bins for each
feature. The adjacent cells of similar density are mergefdnm larger cells. In this man-
ner, the dimension is divided into cells based on the dataldlision and the resulting cluster
parameters are captured more accurate. Once the bins hawvelékned, the clusterable sub-
spaces are built up from on dimension as CLIQUE does. MAFBfuines the user to specify
the density threshold and the threshold for merging adjaggrdows. The running time grows

exponentially with the number of dimensions in the clusters

2.2.2.4 Cell-based Clustering Method (CBF)

The number of bins in many bottom-up algorithms increasasdtically as the number of
features increases. To address this scalability issue, [68Hntroduces a cell creation algo-
rithm by splitting each dimension into a group of sectionsgs split index. The algorithm
creates optimal partitions by repeatedly examining mimmand maximum values on a given
dimension which results in the generation of fewer bins. G8guires two parametersec-
tion thresholdwhich determines the bin frequency of a dimension, egid thresholdwhich

determines the minimum density of data points in a bin. Tlselts are sensitive to these two
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parameters.

2.2.2.5 CLTree

CLTree [60] uses a decision tree algorithm to partition ediomension into bins. It evalu-
ates each dimension separately and then uses only thosesioms with areas of high density
in further steps. To build CLTree, uniformly distributedis®data is added to the dataset, and
the tree tries to split the real data from the noise. The deoan be estimated for any given
bin under investigation. After the tree is fully construtte pruning process is performed
to obtain the final hyper-rectangle clusters. CLTree rexpuiwvo parametersnin.y which is
the minimum number of points that a region must contain,raimdrd which is the minimum
relative density between two adjacent regions before th®ms are merged to form a larger

cluster.

2.2.2.6 DOC

Density-based Optimal projective Clustering (DOC) [614iBybrid method which blends
the grid based bottom-up approaches and the iterative weprent method of the top-down
approaches. DOC attempts to discover projective clustbishnare defined as pai(g’, D)
where(' is a subset of the instances abds a subset of dimensions of the dataset, such that
C' exhibits strong clustering tendency in. The algorithm first selects a small subsétoy
random sampling. For a given cluster pgit, D), instancep in C, and instance in X, the
following should hold true: for a dimensiann D, |q(i) — p(i)| < w, wherew is the fixed side
length of a subspace cluster or hyper-cube, given by the DEEC also requires two additional
parametersy that specifies the minimum number of instances in a clustéerahat specifies

the balance between number of points and the number of diorenis a cluster.

2.2.2.7 SURFING
SURFING (SUbspaces Relevant For clusterING) [62] compalleglevant subspaces and
ranks them according to the interestingness of the hiei@aichlustering structure they ex-

hibit. The quality of a subspace is measured baseklnearest-neighbor distance € nn —
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distance). The algorithm first introduces a new variance measureishiaalf of the sum of
the difference of all objects to the mean valuetefin-distance. The quality of the subspace
is defined by normalizing this variance to the production &am value and the number of
objects having a smalldr-nn-distance than the mean value. SURFING evaluates scéspa
from one-dimension tddimension. At each iteration, irrelevant subspaces (whosdity de-
creases w.r.t it — 1)-dimensional subspace below a threshold) are discardedrerhaining
[-dimensional subspaces are joined if they sharg &ny ) dimensions. SURFING yields a list
of interesting subspaces ranked by their quality measuhasté€ls existing in each subspace
are further discovered by other clustering algorithms saglhierarchical clustering. SURF-
ING requiresk as the input parameter. The running time complexit®{8/N?), though [62]

shows only a little percentage of subspaces are navigay@aatice.

2.2.2.8 PROCLUS

PROCLUS [63] is a top-down subspace clustering algorithROELUS selectd mediods
from a sampled dataset. Those mediods are improved by rdpdboosing new medoids and
replacing the bad ones. Cluster quality is based on the geeliatance between instances and
the nearest medoid. For each medoid, a set of dimensiongsertwhose average distances
are small compared to statistical expectation. Once thspades have been selected for each
medoid, points are assigned to medoids according to thegedvianhattan segmental dis-
tance. Clusters with fewer thamV/k) x minDeviation points, whereninDeviation is a
input parameter, are thrown out. Finally, the clusters &edassociated dimensions are refined
based to the points assigned to the medoids. PROCLUS alswesdthe average dimensional-
ity of subspaces as an input parameter. The algorithm istsen® the parameters which are

difficult to be determined in advance.

2.2.2.9 COSA
COSA (Clustering On Subsets of Attributes) [64] assignsgivts to each dimension for

each instance, instead of each cluster. The algorithnsstétt equally weighted dimensions.
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The weights are updated according to theearest neighborg:4n) of each instance. Higher
weights are assigned to those dimensions that have a siiglb@rsion within thénn group.
New distances are calculated based on the updated weidhisgprbcess repeated until weights
become stable. The neighborhoods for each instance asasiogly enriched with an instance
belonging to its own cluster. The output is a COSA distanciimbased on weighted inverse
exponential distance. Clusters are discovered by othéardie based clustering algorithms
such as hierarchical clustering. After clustering, theghiedf each dimension for each cluster
is computed based on that of its members. COSA does not neeatuthber of dimensions
in clusters to be specified in advance. Instead, it requitiepat parameten to control the
strength of intensive for clustering on more dimensionsa@terk is also needed but the

author claims that the results are stable over a wide rangevalues.

2.3 Summary

Clustering is a fundamental technique in data mining andhinadearning. Feature selec-
tion is essential in many clustering problems, which hefigsuser focusing on the important
attributes of data groups. Feature selection in unsupsEhlearning is much harder than that
for supervised learning, due to the fact that the class $alvehich are used to guide feature
searching in supervised learning, are unavailable. Featelection in unsupervised learning
arises research intention only very recent. Most relatertksvooncentrate on global feature
selection which select a common feature subset for all tingt@ts. Searching subsets for indi-
vidual clusters is a new research area. Available localieatiire selection algorithms can be
found in co-clustering and subspace clustering. Co-dluge/ields exclusive feature subsets
for clusters, which is not suitable in many applicationsb$§haces clustering algorithms en-
countered difficulties such as heavy computational loadrlapping clusters, and/or requiring

input parameters which are difficult to be determined in adea
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CHAPTER 3

NORMALIZED PROJECTION

In this chapter, we propose a heuristic localized featukecien algorithm for unsuper-
vised learning. Our approach [65] computes adjusted anchalared scatter separability for
individual clusters. A sequential backward search is thglied to find the optimal (perhaps

local) feature subsets for individual clusters.

3.1 Introduction

Feature selection involves searching through variousifeaubsets, followed by the eval-
uation of each of them using some evaluation criteria [183@D The most commonly used
search strategies are greedy sequential searches thitweideature space, either forward or
backward. Different types of heuristics, such as sequeftivard or backward searches,
floating search, beam search, bidirectional search, anetigesearch, have been suggested
to navigate the possible feature subsets [11, 20, 41, 663upervised learning, classification
accuracy is widely used as evaluation criterion [19, 2063068].

However in unsupervised learning, feature selection isenobrallenging since the class
labels are unavailable to guide the search. Instead, dingtalgorithms use some criteria,
such as likelihood, entropy, or cluster separability measo evaluate clustering quality and
the feature subset quality. Regardless what the evaluatitamia are, global feature selection
approaches compute them over the entire dataset. Thus;aheynly find one relevant feature
subset for all clusters. However, it is the local intrinsroperties of data that matter counts
during clustering [69]. Such a global approach cannot ifiemtdividual clusters that exist in
different feature subspaces. An algorithm that perfornasuie selection for each individual
cluster separately is highly preferred.

The problem can best be illustrated using a synthetic daté#egeneratd00 data points

with 4 clusters{C, C5, C3, C4} in 4 dimensional spacéX, X», X3, X,}. Each cluster con-
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Figure 3.1: Synthetic data plotted in different featuressddata from different clusters are
marked with different colorsz: in X; and X5. b: in X, and Xs. ¢: in X; and X5.

tains100 points. Cluster€’; andC; are created in dimension§; and X, based on a normal
distribution. X3 and X, are white noise features in these two clusters. The meanstand
dard deviations areyuc, = [0.5,—0.5,0,0], pc, = [—0.5,—0.5,0,0], andog, = o¢, =
[0.2,0.2,0.6,0.6], respectively. Clusters§'s andC, exist in dimensions{, and X3 with white
noise inX; and X,, and are created in the same manner. The means and standiattbde
are: uc, = [0,0.5,0.5,0], ue, = [0,0.5,—0.5,0], ando¢, = o¢, = [0.6,0.2,0.2,0.6], respec-
tively. Figure 3.1 shows the data in different subspaceseregal clustering algorithm, such
ask-means or EM, is unable to obtain satisfactory clusterisglis for this data either on all
features{ X;, X, X3, X4}, or on relevant feature subsgk’;, X,, X3} (may be generated by
a global feature selection algorithm) because each clsstehas one irrelevant feature. For
data in higher dimensional space, this problem becomes proreinent.

On the other hand, if we further remové; from the feature subsdtX;, X,, X5}, we
can completely separate, andC,, as shown in Figuréa. Similarly, C5 andC, can be well
separated by removing; as shown in Figuréb. In addition, the clustering results of localized
feature selection provides a better understanding of tidenlying process that generates the
data. For exampl€;, ~ {X;, X,} clearly indicates that cluster; is mainly generated by
featuresX; and.Xs.

Usually, there are two major components for a feature geteatgorithm: evaluation crite-

ria and feature subset search methods. In the following,mstediiscuss the evaluation criterion
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for the localized feature selection algorithm, then thedeaethod.

3.2 Evaluation Criteria

In this section, we first provide a brief introduction to seaseparability criterion, one of
the well-known clustering criteria [21], and then show hdgtcriterion could be adapted to
localized feature selection.

Let S, andS, denote within-class scatter matrix and between-classeseantrix, respec-

tively. We have,

k k
Sw = ZWZE{(X — ) (X — )TG3} = Zﬁizu (3.1)
i=1 i=1
k
Sp = Z%‘(Mi — pt0) (pi — po)”, (3.2)
k
o= B{X} =) m. (3.3)
=1

wherer; is the probability that an instance belongs to clustgrX the d-dimensional input

datasetk the number of clusterg,; the sample mean vector of clustéy, . the total sample

mean,Y; the sample covariance matrix of clustérand £{-} the expected value operator.
SinceS,, measures how scattered the samples are from their cluséar, imedS, measures

how scattered the cluster means are from the total meanc#tiesseparability is defined as

CRIT = tr(S;'S) (3.4)

Although there are a bunch of other separability criteriailable, the measur€ RI'T" enjoys
a nice property that it is invariant under any non-singufaar transformation [43]. However,

this criteria requires a non-singular within-class scattatrix S,,. In the case that thg,, is
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singular, the following separability criteria can be usestéad,
CRIT = tr(Sy)/tr(Sy) (3.5)

In the remainder of this paper, we us€.S;'S;) in our discussion. However, one should be
aware thatr(S,)/tr(S,,) is used for a singulas,,.
Similar to the definition ofS,,, we defineSff), the within-class matrix of an individual

clusterC; as,

S = niE{(X — i) (X — ,ui)T|Ci} = %Zi (3.6)

wheren; is the number of points in clustér,. Now we are ready to define the scatter separa-

bility of clusterC;.

Definition 1. The scatter separability of clustér; is defined by,
CRIT(C;) = tr(SW715,) (3.7)

Assuming that identical clustering assignments are obthivhen more features are added,
the scatter separability’ RIT prefers higher dimensionality since the criterion valuenoo
tonically increases as features are added [43]. The sanwusion could be drawn for the
scatter separability for an individual cluster. Specificah [43], it is shown that a criterion
of the fordeTSdXd, whereX is d-column vector and,; is ad x d positive definite matrix,

monotonically increases with dimension. Based on this, axeh

Proposition 1. C RIT(C;) monotonically increases with dimensions as long as the el

assignments remain the same.
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Proof. SincesS, can be expressed @?zl Z;7] whereZ; is a column vector.

CRIT(C;) = tr(S¥18,)

k
=tr(SVY " 7,2])
j=1

k
=> tr(SP7'7;2))

j=1
k
=> tr(Z]S0" 7))

i=1

=Y Z[8iz (3.8)

Every term of Equation (3.8) monotonically increases withehsion, thus the criterion for an

individual clusterC' RIT(C;) monotonically increases with dimension. O

To alleviate this problem, normalization of the separ&pitiriterion with respect to di-
mensions is necessary for feature selection [21]. Moredeerlocalized feature selection
strategies, each cluster is associated with a distinaifeaubset. It is usually impossible to
computesS, without proper normalization.

In the proposed algorithm, the normalization is performsithg cross-projection over in-

dividual clusters. Suppose we have a clusterset
C={(C,51),...(C;,8:),...,(Ck, S) } (3.9

wheresS; is the feature subset corresponding to cluéterTo calculate the scatter separability
of (C;, S;) in cluster set”, we project all the clusters @f into feature subset;, and extend

the scatter separability of clustét as follows,

Definition 2. The scatter separability of clustér; in cluster setC on feature subse; is given
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CRIT(C;, Si)|c = tr(SY71S,) | c.s, (3.10)

where|¢ s, denotes the project of cluster s€tonto feature subse;.

Assume an iteration of search produces a new cluster’set subspace’,

' ={(C},S),...(CLS), ... (CLS)Y (3.11)

1 M

Let’s also assume that clustgr!, S!) corresponds to clusté€’;, S;), i.e.,(C!, S!) is the cluster

79 7 1) (3

that has the largest overlapping wiifi;, S;) in setC’. We then generate a new cluster gét,
by replacing(C;, S;) in C with (C}, S}),

77 7

C* = {(C1,S1), ... (CL, S0, . ... (Ch, Si)} (3.12)

77 3

Note thatCRIT'(C;, S;)|c andCRIT(C!, S!)|c+ can not be compared directly because of

77 3

the dimension bias. We have to cross-project them onto gaeln, o

NV(CL, 8!)|e- = CRIT(C, S))

79 7 [ 7

o - CRIT(C!, S;)

o (3.14)

After the cross-projection, the bias is eliminated and tbemalized valueNV can be used
to compare two clusters in different feature subspacesrgetavalue of NV indicates larger

separability, i.e., better cluster structures.

3.2.1 Penalty of Overlapping and Unassigned Points
Localized feature selection implicitly creates overlaygpand/or unassigned data points.

Overlapping points are the data which belongs to more thanatuster, while unassigned
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points are the data which belongs to non-cluster. Spedificak overlapping measure can

be computed as,

|C; N Oy
A
0= Zmean @R (3.15)

where(C; andC; are two different clusters. And unassigned measuoan be computed as,

=" (3.16)

n

wheren andn,, are the total number of data and the number of unassignetspoaspectively.
Overlapping and/or unassigned data are allowed in somécapiphs, and may be forbidden
by other applications. Depending on the domain knowledgecwould adjust the impact of
overlapping and unassigned points by introducing a peaaltyobtain the adjusted normalized

valueANV.

Definition 3. The adjusted and normalized scatter separability pair aktérC; in cluster set

C on feature subsef; and clusterC; in cluster seCC* on feature subsef! is given by,

ANV (Cy,8:)|c = NV(C;, S))| ¢ - el ~@RO=BAY) (3.17)

ANV(C, )|

77 3

= NV(C}, S))|c- - @20HA0) (3.18)

77 3

whereAO and AU are the changes on the overlapping and unassigned measspgctively,

if cluster (C;, S;) is replaced by clustefC?, S!). « and g are two constants.

) 7

In Definition3, « and are used to control the sensitivity with respect to overiiagpoints
and unassigned points. Large valuesxandj discourage the occurrence of overlapping and
unassigned data. On the other hand, dr /3 is zero, the corresponding effect of overlapping or
unassigned data will be ignored when comparing two clusiére values fory and3 depend

on the given application and have to be determined empyidabr example, if a large portion
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of data is unassigned after clusteripgpeeds to be increased.

When two clustersC;, S;) and(C, S;) are compared, LNV (C;, S;)|c > ANV (CL, S)))

77 3 77 K3

C*s

we choose(C;, ;). If ANV (C;, Si)|c = ANV (CI, S)))

) 7

o+, we prefer the cluster in the lower
dimensional space. In addition, when two identical clistee obtained in two different fea-
ture subsets, they have equal adjusted normalized VvBNIE, which is exactly what we want.

More formally,

Proposition 2. Given two identical clusterS; = (5, and the corresponding feature subspaces

S1 and S,, the adjusted normalized valueNV (Cy, S1) = ANV (Cs, Ss).

Proof. SinceC; = (5, we haveC = C*. Thus

NV(Cy,S,) = CRIT(Cy, ;) - CRIT(C,, Sy)
= CRIT(Cy, Ss) - CRIT(C, S))

= NV(Cy, Ss)

And AO = AU = 0. Thus

ANV(C1, Sy) = ANV (Cy, Ss) (3.19)

3.2.2 Unassigned/New data

In case some new data is obtained or unassigned data is ooedllby an application,
assignments have to be made after clustering for these nasgigned points. The similar-
ity of an instance and a cluster could be measured by eitstardie k-means clustering), or
likelihood (EM algorithm). The additional difficulty intduced by localized feature selection
algorithm is that clusters are associated with differeatuee subsets, making the direct com-

parison among clusters meaningless. For distance basgargyna straightforward solution is
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to normalize the distance measure over its variance witlth eluster, and assign the instance

to a cluster that minimizes the normalized distance,

Xils, — 15
argmind = arg min(w) (3.20)

oF oF g;

whereX; is an unassigned poini, the cluster mean vector 6f;, S; the feature subset df;,
Xils; the projection ofX; into S}, and|| - || is the norm of a vector. A similar method could be

developed for likelihood based similarity measure.

3.3 Search Methods

The cross-projection normalization scheme assumes thatukters to be compared should
be consistent in the structure of the feature space [21].s€qmently, we select sequential
backward search instead of the sequential forward seamptedlin [21]. The trade off is the
slower clustering speed.

Specifically, the data are first clustered based on all edaifeatures. Then, for each clus-
ter, the algorithm determines if there exists a redundanb@y feature based on the adjusted
normalized valuedA NV defined in Equations (3.17) and (3.18). If so, it will be remdvThe
above process is repeated iteratively on all clusters natdhange is made, at which time the
clusters with the associated feature subsets will be retlurithe sequence of steps shown in
Figure 3.2 illustrates our algorithm in detail.

The complexity isO(ndik) for the conventionak-means algorithm, and(nd*ik) for
the GFSk-means algorithm, respectively, whetds the number of points] the number of
featuresj the number of iteration (usually unknown), ahdhe number of clusters. The com-
plexity of our approach, in worst case (nd>k?i) with backward sequential search. It shows
that for data sets with very high dimensions and large nurabelusters, the proposed algo-
rithm is slow compared to generalmeans and global feature selecting algorithms. However

the complexity is in polynomial form, thus is still accep@ain practice.
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input : DatasetX,, .4

output: ClustersC' = {(C;, S;)|li =1,...,k}

initialize C' with all features;

repeat

for i =1tok do

Create a new subsaf by removing one feature frotf, ;
Generate a new cluster sgton 5 ;

Compare clusters i6” with corresponding clusters if;

if Better cluster foundhen
| Replace the corresponding clustelin

end
end
until No change madg

if Desiredthen
| Process unassigned data points

end

Figure 3.2: The proposed localized feature selection dlguar

3.4 Experiment and Results

We evaluate the localized feature selection algorithmgubioth synthetic and real-world
datasets. The experiment results are obtained by chobsgimgans as the clustering algorithm.
However, note that the adjusted normalized vaduéV’ is not restricted td-means. It can be
used together with any general clustering algorithm.

In general, it is difficult to evaluate the performance of astéring algorithm on high
dimensional data. Localized feature selection presengdditional layer of complexity by
associating clusters to different feature subsets. Tberefve take a gradual approach for
our evaluation. We first test the proposed algorithm on aIssyathetic dataset with known
data distribution along each feature dimension. Then, wesitigate five real-world datasets
downloaded from UCI repository [70]. On all UCI datasets, pegform a semi-supervised
learning strategy for evaluation purpose. This makes isibbs for us to compute a pseudo-
accuracy measure for easy comparison among differentitiges. However, one should be
aware that the “true” class labels are not always consistéhtthe nature grouping of the

underlying dataset. Thus, the quality of clusters shoultubtber analyzed in addition to the
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pseudo-accuracy. For this purpose, we also illustrate esults by visually examining the
clusters in the selected feature subspace on synthetiaddthis data.

On each dataset, we compare our localized feature seledggonthm (withk-means, de-
noted by LFSk-means) with global feature selection algorithm (also witmeans, denoted
by GFS4-means), and-means without feature selection. GESneans is implemented in a
similar fashion as [21]. The only difference is that we a@opthe backward search strategy
due to the reason discussed in Secfich

On the above experiments, the number of clustassset to the “true” number of classes.
This is not always applicable in real world applications.wHo determine the value df is a
common problem in unsupervised learning. It may stronglgract with the predicted clus-
ter structures, as well as the selected feature subsetturdéeselection algorithms [1]. There
are several algorithms available to determine.e., [1, 43, 71]. Another common problem
that a clustering algorithm usually faces is how to initialcluster centroids. Bad initial clus-
ters/centroids might lead to low quality clusters. In ttetal clustering algorithms, some
techniques, such as randomly picking kipatterns over the dataset, preliminary clustering,
or choosing the best from several iterations, are frequessttd to alleviate the chance of bad
initial clusters. In our approach, bad initial clusters fackward searching may occur more
often when many noise features presented, and might affedtrtal clusters and feature sub-
sets largely. This problem can be alleviated by prelimindugstering with a global feature
selection, i.e., [1].

We incorporate another experiment as an example solutraimicnownk and preliminary
clustering in Section 3.4.4. In this section, we evaluateadgiorithm over another three UCI
datasets with unknowh. We first employ the algorithm proposed in [1] to estimateriben-
ber of clusters, global feature saliencies and clustercelst Then we use them as initial
parameters and run our algorithm on the particular dat&@$esters obtained are labeled to its

majority portion of true classes. Errors are calculatesetiogly.
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Table 3.1: Confusion matrix and error rate on the synthetia.dC1 - C4 are the output cluster
labels, and T1 - T4 are the true cluster labels

Algo k-means | k-means w/aX, | GFS4-means| LFS-%-means
Label| CI1C2C3C4/ C1C2C3 C4 |C1C2C3cCc4|Cc1c2c3¢C4
T1 | 7722 1 0[5940 1 0 |371746 099 0 0 1
T2 376 021{4549 0 6 | 332245 0 100 0 O

0
T3 1 78 3]0 369 28 1261658 0] 0 1 981
T4 |23 0 968 3 045 52 |351451 0] 2 0 0 99

Error 0.225 0.428 0.708 0.01

Table 3.2: Feature subset distribution on the synthetia.d@tl - C4 are the output cluster
labels.

. Feature Subset(s)
Algorithm o1 [ co | c3 | ca
k-means {1,2,3,4
GFS+-means {4}
LFS-k-means| {1,2} | {1,2} | {2,3} | {2,3}

3.4.1 Synthetic data

The synthetic data is described in Section 3.1 and illustra&t Figure 3.1. Penalties of
overlapping and unassigned poinisgnd ) are set at.

Table 3.1 shows the confusion matrix and error raté-ofieans with full feature set;-
means without the totally irrelevant featuré,, GFS4-means, and LF$-means, and Ta-
ble 3.2 shows the selected feature subsets. Clearly, byogmglall four available features,
k-means performs poorly with a error rate @225, which indicates that irrelevant features
greatly reduce the clustering performance. Meanwhile,-GffS$eans does a terrible job with
an unacceptable error rate @708. The output feature subset contains only the noisy feature
X! This surprising result could be explained as follows. 8ieach feature is irrelevant to at
least two clusters and each cluster has at least two irrelégatures, NO feature subset are
relevant to all clusters. We also evaluatetheans algorithm on the feature sub&egt X5, X3,

which are the globally relevant features that could propdid obtained by amart global



Table 3.3: Confusion matrix and error rate on iris data. CB-a@ the output cluster labels,

and T1 - T3 are the true cluster labels
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Algo k-means | GFS4-means| LFS-+%-means
Label| C1 C2 C3|Cl1 C2 C3/Cl C2 C3
TL |50 0 0|5 O O0}|5 o0 O
T2 0O 39 11| 0 46 4| 0 48 2
T3 0O 14 36| 0 3 47, 0 4 46
Error 0.167 0.0467 0.04

Table 3.4: Feature subset distribution on iris data. C14€3f&e output cluster labels.

Feature Subset(s)
Cl| cC2 C3
{1,2,3,4

{3}

{3, 4}

Algorithm

k-means
GFS4-means
LFS-k-means

{4} 3.4

feature selection algorithm, as shown in Table 3.2. Thereate is as high as 0.428, indi-
cating that the group structures can not be recognized vatbadly relevant feature subset.
The reason is that the structures are buried not only by tekevwant featureX,, but also by
the relevant featured’; and X3. On the other hand, the proposed localized feature sefectio
algorithm produces an excellent result with a error rat8.0f. From Table 3.2, we can see
clearly that the relevant features for each cluster aretaeorrectly, and the clusters are well
separated in the corresponding feature subspaces (Fibaessd 1b). This result confirms that

selecting features locally is meaningful and necessariustering.

3.4.2 Iris data

Iris data from UCI is a widely used machine learning benchnuataset for both super-
vised learning and unsupervised learning. This data hae ttlasses, four features, ansl)
instances. In this experiment, we seandj to bel and6, respectively.

Table 3.3 shows the confusion matrix and error raté-aieans, GF3-means, and LFS-

k-means, respectively, and Table 3.4 show the corresporidatgre subsetsk-means, with
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Figure 3.3: Scatterplots on iris data using features 1 ateftdo@nel), and using features 3 and
4 (right panel). Data from different classes are marked difierent colors.
all four features, is able to successfully identify clustgfiris-setosa”. However it does not
perform well on clustee, “iris-versicolor”, with a error rate of 0.22, and clust&y “iris-
virginica”, with a error 0f0.28. The GFSk-means discards featute2, and4, and recognizes
the structure of the dataset much better with only featuiéhe proposed LF%-means results
in the best pseudo-accuracy. The selected feature sulbsstdisat clusted can be separated
along featurel, clusters2 and3 can be separated along featuseand4. The right panel of
Figure 3.3 shows the scatter plot of iris data along featBrasd4. Clearly, clusterl can be
separated either by featudeor by featuret. In other words, one of the features is redundant
to clusterl. The proposed algorithm keeps featdrand removes featurefrom the subset.
The selected features for clust@rand3 (features3 and4) are also consistent with our visual
inspection. The left panel of Figure 3.3 clearly shows tleattdres 1 and 2 are not helpful to
differentiate these two clusters.

The experiment results on iris dataset show that the prapalgmrithm is capable of re-
ducing redundant/noisy features for each individual eusit can also provide us a better

understanding of the date generation.
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Table 3.5: Comparison df-means, GFS~means and LF%-means on other UCI data sets

Data Set Subfeature Error
Name| Patt. | Feat. | Clas. k:-means| GFS | LFS k-means| GFS | LFS
Wine | 178 | 13 3 13 {12345689101112C1:{13457810111213 0.034 | 0.039| 0.023
13} C2:{12345678910111213
C3:{345910111213
lon | 351 | 32 2 32 {37111315 C1: {13} 0.288 | 0.296| 0.296
171929303} C2:{371113151719293031
Glass| 214 | 9 5 9 {2356789} Cl1: {4579 0.192 | 0.201| 0.196
C2:{2345789%
C3: {3579
C4: {6 8}
C5: {5 6}
Sonar| 208 | 60 2 60 {3536373841424446C1: {9 10 49 50 51 56 5B 0.452 | 0.466| 0.375
4751555657 5859 80| C2: {91049 5051 56 58

3.4.3 Other UCI data

We also evaluated LF8-means, and compared the results witlhmeans and GF$&-
means, on four other UCI datasets, Wine, lon, Sonar, ands@ldsch are more complicated
than Iris data set in terms of number of features and numbelasges. From Wine to lon to
Sonar, the number of features increases from 13 to 32 to 60twi or three classes. From
lon to Wine to Glass data set, the number of classes incréase2 to 3 to 5. Table 3.5 shows
the experiment results.

For Wine data set, GFS-means kept 12 out 13 features with accuracy of 0.039. On the
other hand, LFS~means selected 10, 13 and 8 features for different clystespectively,
with better accuracy of 0.023.

For the lon data set, GF&means selected 10 features for both clusters. Comparing to
GFS+-means, our proposed algorithm results in 1 feature fortetuS1 and 10 features for
the other cluster C2. Notice that these 10 features for CRlargical to those selected by GFS-
k-means. This implies that localized feature selectingraigm performs at least the same as
global feature selecting algorithm. Furthermore, it alsoves that it is often unsuitable to only
select one feature subset for all the clusters in unsuphEarning.

Experiments on Glass and Sonar data sets give similar sesnlsummary, LFS=means

leads to variant feature subsets for different clusterd, @ovide best (on Wine and Sonar)
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or similar (on lon and Glass) pseudo-accuracy comparing@tventionalt-means algorithm

and GFSk-means. In addition, the feature subsets selected byA-Ffe@ans are usually much

shorter than GF$-means. These results confirm that clusters do exist onitechfeature

subsets for certain problems.

3.4.4 UCI data with estimation of &k and initial clusters

Table 3.6: UCI datasets with estimated number of clustedsiztial centroids. GFS: Global
feature selection and clustering by algorithm of [&].Estimated number of clusters by GFS.

LFS: Local feature selection by the proposed algorithm Wwitind initial centroids obtained

by GFS.

Data Set

GFS

LFS

Error

Name | Patt. | Feat.| Clas.

k | Salient Feat.

Feat. Subset

GFS| LFS

WDBC | 576 | 30 2

8

{29 feature}

C1: {24 feature}

C2: {25 feature}
C3:{131416 17 2326 29
C4: {26 feature}

C5: {25 feature}

C6: {41314 16 23 2p
C7:{4131416 2326 2P
C8: {41416 23 26 29

0.09

0.10

Image | 2310| 18 7

18

{17 feature}

C1{78141%

C2:{12 13
C3:{2391113141516 18
C4:{3459101316 18
C5: {518}

C6: {18}

C7: {18}

C8: {17 feature}

0.19

0.28

Zernike | 2000| 47 10

17

{45 feature}

C1:{16 feature$
C2: {22 feature}
C3: {13 feature}
C4: {13 feature}
C5: {2 feature$

C6: {44 feature}
C7: {16 feature}
C8: {44 feature}

0.49

0.48

In this section, we evaluate our algorithm on another thr€¢ datasets, WDBC, Image,
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and Zernike. WDBC is the Wisconsin diagnostic breast cadata set with 30 features and

576 patterns from 2 classes (benign or malignant). Imagecisniage segmentation data set
with 2310 patterns and 19 features (18 of them are non-saangiubm seven categories (brick-

face, sky, foliage, cement, window, path and grass). Zerointains 47 Zernike moments

extracted from 2000 handwriting numerals (0-9), 200 forhedigit. Those datasets contain

many features and enough numbers of patterns to perfornigbetam proposed in [1].

We suppose that the number of clusters unknown for those datasets. We run global
feature selection algorithm presented by Law et. cl. [1v@0 initial clusters, and obtain the
estimated value of, cluster centroids, and global feature saliencies. We milgorithm over
those parameters. Only features with saliency greaterQtarcalled global salient features,
are kept. The experiment results are presented in TableFd6lmage and Zernike datasets,
we only show the first 8 clusters.

On WDBC, the GFS algorithm lead to 29 salient features oufofCur approach produces
different feature subset for each cluster. The size of featubsets varies from 6 to 26, with
average value of 15.8, which is much less than the size aiffieaubset obtained by GFS. The
same results are observed on both Image and Zernike dafaséhage dataset, feature subset
size varies from 1 to 17 with average value of 6.3, while the sif GFS’s is 17. On Zernike
dataset, feature subset size varies from 2 to 45 with averalge of 22.7, while the size of
GFS's is 45.

The error rates of GFS and LFS on WDBC are almost the same én@®.10, respec-
tively), as well as the error rate on Zernike (0.49 and 0.4®eetively), which implies that
our clustering results are comparative to GFS over thosesdtd. Note that the error rate on
Image is different: 0.19 for GFS and 0.28 for LFS. However caienot thereby conclude that
the clustering quality of LFS are much worse than that of GR81 dataset, since the cluster
structures may be ambiguous between the true classes uetfaiset. The benefit of LFS here

is relatively small subset of features for individual ckrst
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3.5 Summary

In order to identify individual clusters that exist in difeat feature subspaces, we propose a
localized feature selection algorithm. We develop adpisted normalized scatter separability
(ANYV) for individual clusters, based on which our algorithm ipable of reducing redun-
dant/noisy features for each cluster separately. The gexpalgorithm can also provide us
better understanding of the underlying process that gasetlhae data. Our experiment results
on both synthetic and real-world datasets show the nee@#&burfe selection in clustering and
the benefits of selecting features locally.

In this chapter we employ cross-projection method to evaltlge quality of an individual
cluster, which makes it impracticable to change the numbelusters during clustering and
feature selection process. Thus a fixeelstimated in advance is required to perform localized
feature selection with our approach. However in the areansfipervised learning with feature
selection, algorithms with simultaneously computing tlhenber of clusters and the feature
subset will be more elegant and desirable. We will try to edhis problem in our future

research work.
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CHAPTER 4
LOCALIZED FEATURE SELECTION WITH MAXIMAL

LIKELIHOOD METHOD

The localized feature selection algorithm we present ing@#eB utilizes normalized cross-
projection methods to evaluate the quality of clustering feature subsets, and backward
search to find the best subspaces. The draw back of this agbpsoidnat the computation cost is
high, and the number of clustetdhas to be specified in advance. In this chapter, we introduce
a probabilistic model based on Gaussian mixture to tackdeethssues [72]. Particularly, the
feature relevance for an individual cluster is treated aso@ability, which is represented by
localized feature saliency and estimated through Expeatdflaximization (EM) algorithm
during the clustering process. In addition, the number uédtelrs is determined by integrating

a Minimum Message Length (MML) criterion.
4.1 Background on EM-based Clustering and Global Fea-

ture Selection
From amodel-basegerspective, each cluster can be mathematically repesdbgta para-
metric distribution. The entire dataset is therefore meddly a mixture of these distributions.
The most widely used model in practice is the mixture of Gaunss The clustering process
thereby turns to estimating the parameters of the Gaussienne, usually by the EM algo-
rithm.

Traditionally, a finite mixture of densities witk- components is represented by,
K
p(y) = > a;p(yld;), (4.1)
j=1

whereq; is thea priori probability, and; is a set of parameters of compongniThe param-
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eters are estimated by maximizing the likelihood as,
Orr = arg max [log p()]0)] . (4.2)

Let Z = {z;; } v« be a set of missing (latent) cluster labels, wheye= 1 if y; is a sample of
p(-|6;), andz;; = 0 otherwise.Z can be also written as a vectsr = (z, ..., zy) such that

z; = j if y; is a sample op(-|¢,). The log-likelihood wherg is observed is,

N K
logp(Y, Z|6) = ZZZU log[a;p(yil0;)] (4.3)

i=1 j=1

Let W = E[Z|),0(t)] represent the expected value &f whered(t) is the estimate of at

iterationt. The parameters can be estimated by the following updatiteg r
Ot +1) = argmax{log p(V, WI0(t))} (4.4)

Assuming features are conditionally independent, theungxof densities can be described as,

K D
p(yl0) = Zajp vlo;) => o [ p(wlbn) (4.5)
j=1 =1

whereD is the number of features. Define the global feature salignty be the probability
that feature is salient to all the components. Then,— p;) is the probability that is not
salient to any of the components. L&t= (¢4,...,¢p) be the feature relevance vector with
¢ = 1, if featurel is relevant andg, = 0, otherwise. Thenp, = Pr(¢, = 1). Finally, the

likelihood function can be rewritten as [1],

K D
p(ylo) = Z% H pep(wi]050) + (1 — po)a(yi| M) (4.6)

j=1 =1

whereq(-()\;)) is a common density, which defines the distribution of anléuant featurd.
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If we treat® as missing variables, the feature saliency veptoan be estimated by the EM

algorithm [1].

4.2 Detecting Clusters Embedded in Feature Subspace

In this section, we present a probabilistic model based ars&an mixture to detect clus-
ters embedded in feature subspace. First, we define a ledd&ature saliency and show how
it could be integrated into EM clustering. Then, we estintaeenumber of clusters with the

MML criterion.

4.2.1 Localized Feature Saliency

In our approach, the importance of a feature can be diffdmrdifferent clusters, which
implies that the feature relevance takes a matrix fabra; {¢;; } x < p, Whereg;; = 1 indicates
that feature is associated with componept otherwisep,;, = 0. Letp; = Pr(¢; = 1) be
the probability that featuréis relevant to component Then, the likelihood can be obtained

based on the following proposition.

Proposition 3. Let p(-|0;;) represent the distribution of a salient featurdor a particular
componeni, andq(-|\;;) the distribution if featuré is non-salient to the particular component.
Assuming that the features are conditionally independbatijkelihood function can be written

as,
D

K
pl6) = a; [T(pip(wil6;0) + (1 = pi)a(wl \n)) (47

j=1  I=1
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Derivation. Let ¢; = (¢;1, ..., ¢;p). For a particular componerit we have

p(ylz = j, ¢J H yl‘ejl q(y ‘)‘Jl))l_d)jl
p(y: 95,2 = j) = plylz = j, ¢;)p(¢;|z = j) P(z = j)
D
= H( (yl|9ﬂ)) gl M) B %HP%Z 1— pjp)t =%

=1
D 1
= H(Palp(yl|9gl)) (1= pi)a(ylAn) it (4.8)
=1
Marginal density ony gives
K
(y|9) = Zp(y7 (bju = j)
7,®
K D
= > ST (eapwil6s)™ (1 = piyalunlA)' =
j=1 ¢ I=1
K D
= Z a; H (Pip(yilbi) + (1 = pi)g(yilAjn)) (4.9)
7j=1 =1
whered = {{a;},{0:},{pii}, {\;i}} is the set of all the parameters. O

Taking {z;;} and{¢;,} as latent variables, we derive the E-step and M-step of the EM
algorithm to estimate the parameter set.

E-Step: Compute the expectation of the log-likelihood.
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From Equation (4.8), the expected complete log-likelihobthe dataset based éff) is

EG(t) [IOg P(yv 2, (b)]

_ZP _]>(I>|yz (loga] +Z¢jl 1ng]l +10gp(yzl|9jl))

2,5,P

+(1— ijl) (log(1 — le) + log Q(yilp\jl)))

_Z ZP i = Jlyi)) log o
+3 ) P(zi = j, é = y) (log p(yalfi1) +log pjr)
i

+ Z Z P(z; = 3, ¢ = 0|y;) (log q(yar| Aj1) + log(1l — pji)) (4.10)

The probabilities are computed as follows,

a; [Tilpup(yl05) + (1 = pj)q(yl \ji)] (4.11)
> o TTileap(yil0) + (1 = pj)q(yil )] '
pitP(y;1|051) il
szp(yjl|9jz) +(1 - le)Q(yij\jl)P( = ) #12)

. (1 — pi)a(ysl M) :
PZZ‘: ,(b' =0 i) — PZZ': 4 4.13
( 7> Pji |y ) pjlp(:yjl|9jl> + (1 _ pjl)g(:gjlp‘jl) ( j‘y ) ( )

P(z = jly;) =

P(zi=j, 05 =1y) =

M-step: Maximize the log-likelihood.

The three parts of Equation (4.10) can be maximized sepatateipdating the following
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guantities,

~ _ > Plzi = jly)

YT PG = ) (@14
> Plzi=g,950 = 1y)yu
Fon =5 et = Jy o1 = L) (449
;g\ :Zi P(zi = j, ¢ = Uyi) (v — He,,)” (4.16)
a > Plzi=J, 0= 1lys)
> P(zi=j, 05 = Oly)yi
P =55 P = Gy o = Oly) (@47
;;\ :Zi P(zi = j, o5 = Olys) (v — fin,,)? (4.18)
& > P(zi=J, 05 = Oly;)
—~ > Plzi=j, 0 = 1) (4.19)

Pt = Z P( =7, ijl = 1|yi) +EZ~P(% :j>¢jl = 0|yi)

The EM algorithm alternates between the E-step, which coespan expectation of the
likelihood by including the latent variables as if they weteserved, and the M-step, which
maximizes the expected likelihood found in the E-step. Tamameters found in the M-step
are then used to begin another iteration of the E-step, angribcess is continued until the
algorithm converges to a finite mixture model with featuleesay associated with each cluster.

Thus, clustering and localized feature saliency deted¢ti@chieved simultaneously.

4.2.2 Model Selection Based on Minimum Message Length (MML)
Alternation of E and M steps in the above algorithm evenyuedsults in a maximum

likelihood estimate of Gaussian mixtures, which requites number of cluster&” as prior

knowledge. To overcome this difficulty, we employ the MMLterion to detect the optimal

number of clusters [1]. The MML criterion for our model witbspect td@ is as follows,

(K + DK)log(N)

N~

J(0) = —log(Y]0) +

R D K S D K
+5 2D Joa(Nayp) + 5 ; g og(Nay(1 = pjr)) (4.20)

=1 j=1
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In the above equation? and S are the number of parameters;df) andq(-), respectively,
which for a Gaussian distribution 5 Also, —log()|¢) corresponds to log-likelihood, and
%(K +DK)log(N) represents the code-length of standard Message Desorigigth (MDL)

of parameters;;s andp;;s. While N, pj; indicates the effective number of data for estimating
O, 30 Zjil log(Na;pj) computes the code-length corresponding to the paramgters
Similarly, 2 3>7, 5% | log(Nay(1 — p;1)) represents the code-length for parametersThe

optimal mixture model is the one that minimizes the cost fiomc/(#) in Equation (4.20),
0 = arg min(J(6)) (4.21)

The algorithm introduced above works well in general cas¢é®wvever, extreme bad ini-
tialization may lead to some clusters with singular covasematrices, and thus adversely
affect the cost functior/(#). Those clusters can be pruned based on a modification of Equa-

tion (4.14) [1],

o max (3, P(z = jly:) — %2, 0)
Ty max (3, Pz = jlyi) — £2,0)

(4.22)

The effect of Equation (4.22) is that some small trivial caments are quickly eliminated at

an early stage. Similarly, Equation (4.19) is modified to,

max (3, P(zi = j, 6 = 1ly:) — %,0)
max (ZZ—P(%‘ = 7,05 = 1|yi) - §,0) + max (ZZ—P(%‘ = 7,05 = O|yi) - %0)
(4.23)

Pjt =

The above Equation can prupeg to eitherl or 0.
In summary, the proposed EM clustering with localized featsaliency consists of the

following steps,

1. Initialize the algorithm with a large value &, minimal number of components,,,;,,,
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and the parameter sgt

2. Alternate between E-step and M-step until the model cgregeto a local maximum.

During this step, components withy = 0 are pruned.
3. Record the parameter geaind the message length based on Equation (4.20).

4. Terminate the iterations K equalsk,,;,. Otherwise, reduc& to K — 1 by removing

the smallest component, and repeat steps (2) and (3).

5. Output the model with the smallest message length.

4.2.3 Computational Complexity

The computational load of the proposed algorithm is mainlg tb the E and M steps. For
every iteration, the complexity of both the step€I§K' N D). The total computational time is
dependent on the number of iterations required for conmgrgConventional feature selection
algorithms usually seek optimal features by trying outéamgmber of combinations. On the
other hand, the proposed algorithm computes the localigatufe saliency simultaneously
with clustering, thus avoiding the navigation over all pbksfeature subsets. It only needs to

search over a small set of possilies.

4.3 Experimental Results

In general, the performance of an unsupervised featurets®iealgorithm is hard to be
evaluated. Localized feature selection makes it even miffreutt as we have an additional
layer of complexity brought by the association of clusterslifferent feature subsets. In this
section, we provide a thorough evaluation of the proposgoréhm by comparing it with the
global feature selection approach [1] on both syntheticraatiworld datasets. In addition, we
show the need for feature selection in clustering and thefiisrof selecting features locally

through a case-study on Boston housing dataset.
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Table 4.1: Summary of the synthetic datasets, wherepresents the number of pattefsthe
number of features; the number of clusterd); the number of relevant feature respecting to
the j-th cluster, andV; the size of thg-th cluster.

Datase{ N |D|[c| D; | N; |
synl| 600 | 15| 3| 3/3/3 200/200/200
syn2 | 600 | 20| 3| 3/4/5 200/200/200
syn3 | 1000| 20 | 5 | 3/4/5/4/2| 200/200/200/200/200
syn4 | 900 | 30| 3| 3/3/3 200/300/400

4.3.1 Synthetic Data

First, we applied both our method and the global featurecielealgorithm to several syn-
thetic datasets. As we know the underlying models from wthehpatterns were sampled, the
performance of an algorithm is interpreted as: can the dhgorfind the given model? The
synthetic datasets are created by a data generator. It éingrgtes: Gaussian components
N(p,25), 5 =1,--- , ¢, separately, wherg; is restricted to a diagonal matrix. Components
can have different number of featur®s, and different number of patteri$;. Those Gaus-
sians are then embedded into subsets @f-dimensional background with Gaussian noise
N(0,1). Finally, aD-dimensional dataset consistingoGaussian mixtures, with each com-
ponent corresponding to an individual relevant featuresstiis generated. The total number of
patterns igV = 2521 N;. Table 4.1 shows a summary of the four synthetic datasetrgtel.

In the experiments, we initialized the parameters as falawmber of clusterk is set to
20, thea priori probabilitiesa; are set equally at/20, the feature saliencigs; are set a0.5,
and the common components are set to cover the entire datésean the proposed algorithm
10 times independently with stopping threshold 06f”. The clustering error rates and cluster
numbers are computed as the average over the 10 runs, addrstaieviations are calculated
accordingly. The feature saliency for each cluster at eaclisrmapped to a Gray-scale image,
where each column represents a feature, and each row refge@seindividual run, as shown
in Table 4.2. For all the four datasets, the proposed algorguccessfully detected the number

of clusters. Each cluster and its relevant feature subsedlao detected correctly. The Rey-
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Table 4.2: Results on the synthetic datasets. Saliencgiratige [0, 1] is mapped to gray-scale
[0, 255] linearly. For the clustering with localized feagigaliency, each image is a mapping of
feature saliency of one cluster, where rows and columnsxa@iprepresent runs and features,
respectively. The separated row pixels above an imagegepréhe true relevant features. The
global feature saliency is illustrated in the same way.

Localized feature selection

Global feature selectio

Data (st [ Saliency (std)|  Saliency
m = = ] = ] mm = ] 2
2 2 2 4
4 4 4 6
10 10 10 10
5 10 15 5 10 15 5 10 15 5 10 15
2 2 2 j
4 4 4 6
10 10 10 - 1 5 10 15 20
10 20 10 20 10 20
5.5 1 1§ (I 5 5 | |5 & |
] ] ] ] i :
syn3 | 5(0) | i s s ; s 50) |
10 10 10 10 10 .
10 20 10 20 10 20 10 20 5 10 15 20
2 2 2 2
4 4 4 é
10 10 10 10
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Table 4.3: Summary of UCI datasets

| data | Description | N |[D] c|
wine | wine recognition 178 | 13| 3

wdbc | Wisconsin diagnostic breast cangeb69 | 30| 2

vehicle | vehicle classification 846 | 18| 4

zernike| Zernike moments of digitimages| 2000| 47 | 10

scale image is steady vertically, indicating that the atbor is stable in different runs. In
Table 4.2, we also show the performance of the global featelextion algorithm [1] on each
of the datasets. We can see that the union of the localizédréeaubsets is equivalent to the
relevant features selected by the global approach. Morga¥se global algorithm is able to
detect the number of clusters correctly, it cannot deteenfim salient feature really plays a
critical role for a particular cluster. On the other hand; approach yields more informative
models, which not only provides information about whethdeature is relevant or not, but

also about which cluster the feature is relevant or irrelet@

4.3.2 Real-world datasets

For the evaluation on real-world datasets, we utilized ftatasetswine, wdbg vehicle
andzernike from the UCI machine learning repository [70], having vagmumber of features,
patterns, and categories. Thene dataset is used to recognize different wine typesl®y
characters of chemical analysis. It consistd of patterns and categories. Thevdbcdataset
is used to diagnose if a breast cancer is benign or maligreeseicoors0 features and contains
576 data points. Thevehicledataset contain846 samples withl8 features extracted from
vehicle silhouettes. The purpose is to classify a giverosidfite as one of four types of vehicles.
The zernikedataset records$7 zernike moments extracted froe000 images of handwriting
digits. Summary of these four datasets is shown in Table¥h8.parameters are initialized in
the same way as for the synthetic datasets, excepfihatet at 30 for theernikedataset.

The datasets are provided with class labels for superviessuhihg, which are excluded

during the clustering process. We assign a class label tofead cluster afterward so that a
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Table 4.4: Cluster numbers and pseudo error rates for UGkdts.

Localized feature selection Global feature selection
data | error (std)(%)| ¢(std) | error (std)(%)| ¢ (std)
wine 2.1(1.2) 3(0) 2.4(1.2) 3.3(0.5)
wdbc 7.6 (0.6) 7.1(0.7) 75(1.2) | 7.4(0.8)

vehicle| 44.6 (1.3) 9.2(1.3) 45.4(2.6) |10.5(1.3)

zernike| 44.9(2.2) | 15.3(1.9)| 47.6(2.8) | 16.7 (1.3)

pseudo error rate can be computed for evaluation purposecliikter label is simply selected
as the class to which majority of patterns in the clustergto In other words, we assume
that each cluster consists of patterns from the same classp&ing the cluster labels of all
the patterns with the true class labels yields the pseudo exte.

The estimated cluster numbers and pseudo error rates ava gindable 4.4 for both local
and global methods. It is clear that the proposed EM clusgesiith localized feature saliency
generally outperforms the global one with lower error rated variances. We also compared
the feature saliency of the two algorithms as Frey-scalgésan Table 4.5. Obviously, differ-
ent clusters have different relevant feature subsets,hndrie usually smaller than the globally
relevant feature subset. This result indicates that a globaevant feature can be irrelevant
to some clusters. Our experiments also show that a locdkyast feature might be treated
as globally irrelevant. For example, the third featurenhe dataset is relevant to the first
cluster (bright column), but, it has been ignored by the gldéature selection algorithm (dark
column). Thus, EM clustering with localized feature satieprovides users more accurate
knowledge regarding the underlying model from which thestdu component is generated.
Moreover, the vertical belt patterns in the Gorey-scalegesademonstrate the stability of the

proposed algorithm over different runs.

4.3.3 Boston Housing Dataset
In this section, we present a case study of the proposedithigoon the Boston housing

data from UCI [70], which contain306 neighborhoods in the Boston metropolitan area with
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Figure 4.1: Localized feature saliency on the Boston hapdataset. The number of objects
grouped together are listed with the group ID.
14 attributes, as described in Table 4.6. This dataset is ofted as a test bed to compare the
performance of prediction methods by estimating the vaftleelast attribute MEDV from the
other13 attributes. In our experiment, we remove the binary attélEHAS, and consider the
rest of thel3 attributes on an equal basis. Our goal is to find groups oftiieidhoods based
on these attributes, and to identify the saliency of attabdior each individual group.

In our experiment, the number of clusters are initialize@@pand other parameters are

initialized in the same way as for the synthetic datasetsshsvn in Figure 4.1]0 clusters
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are identified. Notice that the attribute saliency varigsefach cluster. For example, attributes
{CRIM, RAD, TAX, PTRT} are important to Group A but not to Group E, while attribute B
is important to Group E but not to Group A. Figure 4.1 cleatipws that the distribution of
feature saliency over the3 attributes is quite different across clusters. Traditimhastering
algorithms without feature selection or with global featgelection is not able to reveal these
properties of the dataset. Our method, on the other handyroade this vital information to

users through cluster-wise feature selection.

4.4 Summary

In this chapter, we proposed a EM clustering algorithm waitalized feature saliency. In
our approach, unsupervised feature selection is perfobypedtimating feature saliency of in-
dividual clusters simultaneously with the EM clusterindpeldetermination of cluster number
is also integrated in our method by adopting an MML criteridExperimental results show
that the cluster model produced by the proposed algorithmpcavide users more accurate

understanding of the underlying process which generateddta.
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Table 4.5: Feature saliency. Each image is a mapping ofrieatliency for a cluster, with ex-
ception that the highlighted one represents the globalifeaaliency. Saliency values [0,1] are
linearly mapped to gray-scale [0,255]. Each row represgnis, and each column represents
a feature.

| data | Feature saliency |

]
2 2 o[ ] E T
4 4 4 . 4
. 6 6 6| LT sl NN
wine 8 8 8 o 5l T
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24681012 24681012 24681012 2 4681012
-
oy SR i
6 | nl | 6 [ ] L I 6
108 - E ! F' L 10
wdbc 10 20 30 10 20 30 10 20 30
2 L 2 |
2 2
i 1 1 AL |
8 L - g 8 |
10 10
10 20 30 20 30 020 30 1020 30
2[R 2 2 2 2
4 aft 4 4 4
sk ™ g 6 ' 6 ol
sfff I* & flom 8 wl ] 8 A 8 |
. 10 10 10 ull 10 | 10
vehicle

zernike




57

Table 4.6: Attributes for the Boston housing data.

Num. Var. Description

1 CRIM  per capita crime rate by town

2 ZN land zoned for lots over 25,000 sq.ft.

3 INDS  proportion of non-retail business acres per town
4 CHAS Charles River dummy variable

5 NOX  nitric oxides concentration

6 RM number of rooms per dwelling

7 AGE proportion of units built prior to 1940

8 DIS distances to five Boston employment centers

9 RAD accessibility to radial highways

10 TAX full-value property-tax rate

11 PTRT  pupil-teacher ratio by town

12 B (Bk — 0.63)* where Bk is the proportion of blacks
13 LSTT % lower status of the population

14 MEDV Median value of owner-occupied homes in $1000’s
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CHAPTER 5
SIMULTANEOUS LOCALIZED FEATURE SELECTION
AND MODEL DETECTION FOR GAUSSIAN MIXTURES

VIA VARIATIONAL LEARNING

The maximal likelihood (ML) with EM inference approach peaged in Chapter 4 assumes
that the parameters of Gaussian mixture are unknown butfixgld value. Those unknown
parameters are estimated through EM iterations. The clast@berk has to be estimated
by introducing some information criteria, for example, imal message length (MML), or
Bayesian information criterion (BIC). In this chapter, w®pose a novel Bayesian inference
approach [73] for simultaneous localized feature selactichere the parameters of Gaussian
mixture are assumed following some particular probabdistributions, instead of fixed val-
ues in ML approach. The distributions are estimated by tianial Bayesian learning (VB)
method. With a proper choice of prior probability over mixicoefficients, the cluster number
k can be estimated through clustering process. Another @mleincountered in ML is that

singular components lead to infinite likelihood, which does happen in VB.

5.1 Variational Approximation
We follow the Gaussian mixture model, with localized featsaliency, used in Chapter 4.

Recall that the likelihood function is presented as,

N K D
pVI0) = H ij H (s (yalO50) + (1 — pi)a(yal M), (5.1)

i=1 j=1 =1

wheref = {{m;},{0;:},{pii}, {\;i}} is the set of all the parameters. In general, to evaluate

the likelihood of mixtures, conditioned on the mixing coefnts, we must marginalize the
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parameters as follows,

PO = [ P.010)de. (5.2)

where® = {0, z, 7, S} denotes all the parameters and latent variables. The aitegmn
represents the joint integral oveand the summation overandsS. This integral is analytically
intractable. Therefore, we use variational methods to filwver bound forP (Y |r).

Consider the following transformation applied to the loggiaal likelihood,

P, 016)

Q@)d@:a@. (5.3)

mmﬂmz/Q@ml

The functionZ(Q) forms a rigorous lower bound on the true log marginal liketitl. Through

a suitable choice of th@ distribution, the quantity”(Q)) may be tractable to compute. From
Equation (5.3), the difference between the true log lil@ithin P()|7) and the bound:(Q)

is given by Kullback-Leibler divergence KR||P). Q(©) is chosen from some family of

distributions such that the lower boudd() is sufficiently simplified for evaluation. Since the
true log likelihood is independent @f, we approximate®(©) with Q(©) by minimizing the

KL divergence. Assuming tha@}(©) factorizes over subse{®, } of the variables ir®,

Q) = H Qi(©:), (5.4)

the KL divergence can then be minimized over all possiblefé distributions by performing

free-form minimization ove@);,

0:(0,) = exp(In P(Y, 0)) ki

= f exp<ln P(y, @)>k7éi d@i’ (55)

where (-),»; denotes an expectation with respect to the distributiQp®,,) for all & # 1.
Equation (5.5) shows that the sufficient statistics of eastridution ); depends on the mo-

ments of other distribution§;..;, which implies an iterative solution for the estimation loét
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variational variables. In other words, with a sufficientgraeter initialization, the statistics
can be updated by taking each factor in turn and replacinguificient statistics with the re-
vised estimates. In each iteration of the re-estimatiorcgss, the KL divergence is reduced,
while both the lower bound? (@), and the likelihood are increased. Hence, the convergence

is guaranteed.

5.2 Local feature saliency with variational learning
We now apply Bayesian variational approach to the mixtur&afissians with localized
feature saliency. Given the sets of hidden variailes {=\"} andsS = {s\}, the distribution

of the Gaussian mixture is

KD 0 EROEPR
pV|Z, S, 1, T, €,7) :HH[H (yalwsi, 7)™ (Q(yiz\ejlﬁjl))l ”} ; (5.6)

i=1 j=1 I=1

wherep = {p;;} andT = {r;} denote the means and inverse variances of the “useful”
subcomponents, while = {¢;;} andvy = {v;;} are the sets of parameters for the “noisy”
subcomponents. The distribution of the hidden varigblgiven the mixing probabilities =
{m;}) and the distribution of the hidden variabfe(given the mixing probabilitiep = {p;i})

are governed as,

N K

P(zlm)=[[1]=" (5.7)
i=1 j=1
N Do 1_s®

P(slp) = [TTTTLeit (0 = o). (5.8)

In order to accomplish model selection, the above Bayesmaaetris augmented with con-
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jugate priors over the means and inverse covariances,

K D
HHN ,Ujl|mla

=1 =

K D
HHF le|Oz

=1 1=1

.
[y

<

(5.9)

(5.10)

wherel'(-) is the gamma distributiomy,, ¢, o, andj are hyperparameters that control the prior

distributions. The hyperparameters are chosen such thgtritbr distribution is broad enough

to cover the whole dataset. Since the actual model parasraterepresented by the means of

the corresponding distributions, they are not sensititbése hyperparameters. For conjugate

hierarchical models, the expressions on the right side ofaign (5.5) will have the same

functional forms as in the priors.

In the following, we show the derivations &f;(Z2), Q,.(1), Qr(T"), andQs(S).

Proposition 4. Suppose&)(©) can be factorized aQ(0) = Q2(2)Qs(S)Q,.(1)Qr(T), the

update functions o) z(2),Qs(S) Q.(1), andQ¢(T), are given by

(5.11)

(5.12)

(5.13)

(5.14)

wherer;;, mi, ¢, oy, Bl andw;;; are variational parameters for maximization and determin-
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ing the density involved iy, defined by

Py =— (5.15)
> = 17Tﬂ"z‘j
Oé})l 7 v \2 1
=eXp wal (af) —log B — —-((yy —m5)" + )| ¢ (5.16)
ﬁjl Cii
cm; + ; ; i=1 TijWij ;
m};l _ ( jl/ Zl) Zn 17 ]lyl (517)
c+ (ajl/ jl) > im1 TijWil
v N
ol
¢y =c+ == > Wi, (5.18)
gl =1
v 1
ajl = + 5 Z Tijwiﬂ, (519)
9 1
=0+ wamz my)” + C—,,], (5.20)
1
Wiji = Pt (L= ps), (5.21)
pjlwljl
~ ]- v v a;}l 7 v\2 1
Wiji = €Xp § 5745 1?(%’1) —log B}, — — (= mjl) + =) ¢ (5.22)
2 il Gt
1 ; , 1
§iji = eXP{—i“le(yl —€1)" + 5 log vji}, (5.23)

wherey(z) is thedigammafunctiony(z) = dlogI'(z)/dz.

Proof. Applying Equation (5.5) o), (Z) and taking logarithm on both sides yields

nQ.(Z) = (Ilnp(Y,S,0)) + const., (5.24)

where(-) represents the expectation®findd. Absorbing any terms that do not dependon

into the additional normalization constant, we have

nQ.(Z) = (Inp(Z|n))x + (Inp(Y|Z, S, 0)) + const. (5.25)
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Substituting the two terms on the right side by Equation)(autd (5.7), and absorbing any

term that are independent gf we get

nQz(Z <Z 2ij lnﬂj> <ZZZ [ﬂp yal0j1) + (1—8( )q (y2l|)\]l)]> + const.

=1 ]:1 =1 j=1

= Z Z 25 In 75 + const., (5.26)

i=1 j=1

wherer;; has the form of

} . (5.27)

Note that for each value af the quantitiesz;;) are binary and sum to 1Q,(Z) can be

Oﬂl % v
—exp{ E Wi [ O‘ IOg BZ, ((y — mjl)z + C_”)
il

4l

normalized to
Qz(2) =111 (5.28)

wherer;;’ is computed by

erij

=K _
> i1 T

Tij =

(5.29)
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Similarly, applying Equation (5.14) to Equation (5.5), wa/k

InQs(S) =(np(S|p)), + (Inp((Y|Z,S,8))s + const.

i=1 j=1 o

N K
ZZZ |:jlp yalfq) + (1 _S%))Q(yil‘)\jl>:|> + const.

=1 j=1 0

N K D
=> > {8 ) I pjcy + (1 - s4)) In(1 — py)(1 - aziﬂ)} + const., (5.30)

i=1 j=1 I=1

wherew,;; has the form of

~ ]- v v O{;)l 7 v\2 1
Wijt = €Xp § 57 Y(aj) —log B — = ((y; —mf)” + c_”>
ji i

Thus,Qs(.S) has the form of

N K Do “
@s(S) :HHH%;; (1 — wy) '

(5.31)
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Applying Equation (5.5) t@), (1) yields

InQ,(p) =const. + <ZZlnp Ll > (Inp(Z|m)), +

Jj=11=1

<ZZZZ’ 57 Pl ) + (1 = s >1np<ym|m}>

i=1 j=1 I=1

This leads to a Gaussian distribution

K D
= TTTIV (ulms, e, (5.32)

j=11=1

wherem?, andc;; have the form of

emg 4 (o) B3)) iy Tiwiniyi

mY =
gt — v /A N
e+ (af,/B5) Y iy TijwWisi
N
v g 3
le =c+ 0 rz-jwijl
gl =1

For further details on the derivation of variational leaghireaders may refer to [74]. O

The model parameters;, p;;, €, and~;; are given by the mean values of corresponding

variational factors:

1 N
%, (5.33)
N i=1
1 N
=S (5.34)
i=1
N 7
e —Ami=L Wit (5.35)
D im1 Wijt
1Y wialyi —en) (5.36)
Vit e Wijl

The above steps iterate alternatively until convergenckis model has a property that
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the components with similar parameters fitting the same Slasvill compete with each
other, yielding a dominant cluster. Thus, we can initializZe model with a large number of
clusters, and eliminate the trivial clusters during itenat Finally, the algorithm will produce
a model with localized feature saliency representegpynd identify the number of clusters
simultaneously.

One should notice that seeking the feature saliency foviddal clusters introduces more
parameters than global feature selection approaches.eGoastly, this increases the poten-
tial risks posed by local extrema. To this end, variatioeakhing is a better choice for the
optimization than EM. Unlike EM, which assumes an unknownfixed value for a parame-
ter, variational learning formulates the model paramedsrdistributions. Chandan et al. [75]
showed that EM might yield poor clusters with improperlytislized parameters. In our pro-
posed algorithm, the variational parameters are inigalibased on broad distributions. In
addition, the estimated model parameters are represeptdeimeans of the corresponding
approximation functions. Therefore, variational leaghgan provide robust and stable opti-

mization results, and can also alleviate the overfittindfmm, often suffered by EM.

5.3 Computational Complexity

The computational complexity of the proposed algorithn®iSVDK) in each iteration.
The total computational time depends on the number of ieratrequired for converging.
Specifically, in each iteration, we have to compute measaréguations (5.15)-(5.36). Com-
puting&;;; is O(1). There arg NDK) ¢s so that it require®(NDK). Similarly, w and@
requireO(NDK). Computinga, requires to navigate through all the samples, resulting in
the complexityO(NDK). Similar results can be obtained fgt, ¢, m”, andr. Forr, the
complexity isO(N K), since the summation of Equation (5.15) can be re-used. dimplex-
ity for p, ¢, andy is O(NDK). Forp, itis O(NK). In summary, the overall computational

complexity for one iteration i©® (NDK).
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5.4 Advantages of the proposed approach
The proposed method integrates localized feature sefectiodel detection and clustering

into a unified framework. Its major advantages are summaasdollows,

1. Compared with global methods, our method can revealargse feature relevance,

hence providing users more accurate information aboutridenlying model which gen-

erates the data.

2. Compared with subspace clustering methods, our methesl mat require users to pro-
vide values of the parameters that are critical but almopbssible to be set in advance,

for example, the number of clusters, the density threslwlthe desired dimensionality.

3. Our method avoids heuristic navigation through the laay# of possible feature subsets.
The computational cost for each iteration of the proposgarahm isO(NDK). It does

not grow exponentially wittD or N. Therefore, our method is scalable to large datasets.

5.5 Experimental Results

In general, the performance of an unsupervised featuretsmlealgorithm is difficult to
be evaluated. Localized feature selection makes it evere mifficult as we have an addi-
tional layer of complexity brought by the association ofstirs with different feature subsets.
To thoroughly evaluate the proposed Localized FeaturecBetewith Variational Bayesian
(LFSVB) algorithm, we have compared it with the leading (pewised feature selection meth-
ods on both synthetic and real-world datasets. Specificalllhe comparison, we choose a
global method proposed in [13], which is also based on theeBiay framework with varia-
tional learning (GFSVB). In addition, we have selected &ndly published and well-accepted
subspace clustering method, viz., COSA [64]. Unlike othdyspace clustering approaches
that usually yield only hard-decisions (either accept geatea feature), COSA can produce

soft feature saliency (feature importance), similar to approach, and thus make the com-
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parison more meaningful. Note that COSA software is puplsiailable!. Finally, we also

compare our approach with the parsimonious model with Ganssixtures (PMGM) [76].
5.5.1 Synthetic Data

5.5.1.1 Synthetic datasets with hard feature saliency

First, we have applied the four algorithms (LFSVB, GFSVB,&0and PMGM) to 100
synthetic datasets with 0-1 (hard) feature saliency (aifeas either relevant or irrelevant). As
we know the underlying model from which the patterns weread) the performance of an
algorithm is assessed through whether the algorithm cartlidiven model. The synthetic
datasets are created by a data generator. It first gener@asssian componentg (;, 3;),
Jj = 1,--- ¢, separately, wher&; is restricted to a diagonal matrix. The values;gfare
chosen randomly from -4 to 4 and from 0.1 to 0.3X¥gr Components can have different num-
bers of feature®;, and different numbers of pattern§. Those Gaussians are then embedded
into subsets of a-dimensional background with Gaussian nalg€0,I). Specifically, we
randomly selecD; features from the background data, and replace the/Nirgtositions with
component 1. This embeds the first component into the baakgtdSimilarly, we can embed
all the rest clusters into the background. Finalljp-alimensional dataset consistingcdbaus-
sian mixtures, with each component corresponding to awithaial relevant feature subset, is
generated. The total number of patternsVis= 2521 N;. In our experiment, one hundred
datasets are generated with dimensionali?y yarying from 10 to 200, the number of salient
features(D,) from 1 to 8, the cluster siz@V,) from 100 to 500, and the number of clusters
from3to 7.

We initialize LFSVB withk = 20. The global feature selection approach is initialized & th
same manner. COSA is initialized with default settings. @Qlsstance matrix is computed,
and then processed by hierarchical clustering. Clustersramually selected based on the

visual inspection of the dendrogram. Feature importanoerisialized so that the value of the

Ihttp://www-stat.stanford.edu/ ~jhf/ICOSA.html
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Figure 5.1: Histograms of feature saliency on 100 syntluztiasets for GFSVB (upper panel),
COSA (middle panel), and LFSVB (lower panel), respectively
top-rank-feature is 1.

Note that, PMGM produces binary feature weights (either Q)pwhile the other three
algorithms vyield feature weight in the range of [0,1]. To leede the performance of the
algorithms for feature selection, we need to find a cut-oféshold of feature saliency for
LFSVB, GFSVB, and COSA. Figure 5.1 shows the histogramsefeature saliency obtained
by GFSVB, COSA, and LFSVB, respectively, for all the clusterthe 100 datasets. Clearly,
the saliency values are mainly distributed in the range @f.f) and [0.8,1]. In the following
experiments, we simply choose 0.5 as the cut-off threslwlthe three algorithms.

We compute four quantities to evaluate the performance efathorithms: (1) accuracy
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Table 5.1: Statistical summary on 100 synthetic datasdter@viC'N is the average accuracy
of cluster number(’'A is the average clustering accuragy; is the average feature precision,
and F'R; is the average feature recall. For COSA, the number of alsi§te is set manually

with visual inspection of the dendrogram (denoted by *).

algorithm ACN CA FP; FR;

GFSVB | 0.952 (0.015) 0.922 (0.020) 0.384 (0.086) 0.941 (0.022)
COSA 0.992* (0.03)| 0.933 (0.011) 0.892 (0.015) 0.897 (0.021)
LFSVB || 0.980 (0.017) 0.910 (0.023) 0.925 (0.017) 0.950 (0.025)
PMGM || 0.983 (0.017) 0.914 (0.026) 0.920 (0.022) 0.945 (0.018)

Table 5.2: Experimental results on synthetic dataset (9ywith hard feature saliency. For
COSA, the number of clusteg) is set manually with visual inspection of the dendrogram
(denoted by *).Truth indicates the actual model which generates the datase€2Cand C3
represent different clusters.

| Data | Algo. ¢ | accuracy| Feature subset |
Truth | 3 - CL:[8, 19, 30],C2:[5, 23, 24], C3:[7, 16, 26|
LFSVB | 3 | 99.2% | CL.[8, 19, 30], C2:[5, 23, 24], C3:[7, 16, 26]
syn0 |[COSA [3*| 985% | CL[8, 19, 30], C2:[5, 23, 24], C3:[7, 16]
D =30 | GFSVB| 3 98.3% | [5, 8, 16, 23, 24, 26, 30]
PMGM | 3 | 99.0% | CL[8, 19, 30], C2:[5, 23, 24], C3:[7, 16, 26]

le=
c

of cluster numbeACN = C', wherec is the estimated number of clusters ang the

true value; (2) clustering accuracyA = 1 — % where N is the number of mis-clustered

_ 1DiN Dy
|D; U Djl’

feature subset for clustgr respectively, and- | represents the set length; and (4) feature recall

samples; (3) feature precisidng; Whereﬁj and D; are the estimated and true

FR; = %jf“. The statistical summary over the 100 synthetic dataseteeported in Table
5.1, while an example is provided in Table 5.2, showing tlseilte for the synthetic dataset
(syn.0) with 30 features and 3 clusters.

Compare to global feature selectionFrom the example in Table 5.2, we can see clearly
that the proposed algorithm correctly detects the undeglglusters as well as the feature
subsets corresponding to each cluster. On the other han8YBlyields a feature subset

which is close to the union of feature subsets identified b§\VB, except that feature 19 is

missing. Table 5.1 shows that, over the 100 synthetic distdseSVB yields higher accuracy
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than GFSVB on cluster number estimation. The cluster acguwbGFSVB is slightly higher
than that of LFSVB. However, both the algorithms can discdkie clusters very well. The
feature recall measure of GFSVB is high, but the featureipi@cmeasure of GFSVB is low,
while both values of LFSVB are high. This indicates that tlubgl feature selection algorithm
can detect if a feature is relevant to the dataset, howeéwaminot determine if a salient feature
really plays a critical role on a particular cluster. On thlees hand, the proposed model not
only provides information on whether a feature is relevamtat, but also shows which cluster
the feature is relevant or irrelevant to.

Compare to subspace clusteringAs an example, Table 5.2 shows that localized feature
subsets folC’1 and C2 are correctly identified by COSA. It misses a salient feafteature
26) for cluster 3, while LFSVB can recognize all three clusteith the corresponding fea-
ture subsets. The overall cluster accuracy of COSA is dligtgtter than that of LFSVB,
while LFSVB outperforms COSA on feature precision and featecall, as shown in Table
5.1. Moreover, COSA only produces a COSA-distance matrdk raéquires other clustering
algorithms for subsequent processing. The number of chuiEealso required as an input. On
the other hand, our method provides a fully-automated wwidty integrating localized feature
selection, model detection, and clustering into a unifiachigwork.

Compare to parsimonious model with Gaussian mixture.The example results shown in
Table 5.2 and the statistical measures shown in Table 5Sidatedthat the proposed algorithm
performs equivalently to PMGM. Notice that PMGM vyields bipdeature weight (either 0
or 1), while our algorithm produces feature saliency as dabdity measure in the range of
[0,1]. Subsequently, the proposed method can be applidubtbrfeature selection and feature

evaluation.

5.5.1.2 Synthetic dataset with soft feature saliency
The feature saliency in real-world datasets is usually, sdfich means that it can be any

value between 0 or 1. To approximate this situation, we gdaea 20-dimensional dataset
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where the feature saliency is distributed in the rang®.df|. This dataset contains 2 Gaussian
componentsV (i1, X1) andN (uz, X2), wherep; = (0.5,...,0.5), pa = (=0.5,...,—0.5),

3}, andX, are both diagonal, havin@.2, . . ., 0.2) on the diagonal terms. The feature saliency
of clusters 1 and 2 ar®.05,0.10, ..., 1) and(1,0.95, ..., 0.05), respectively. Each component
contains00 points. We generate the data based on the procedure dekicriection Il with

a common distribution o/ (0, T).

We run the four algorithms on this dataset 10 times. Both LBSwd PMGM detect
two clusters successfully, while GFSVB yields 3 clusterar EOSA, we manually select
the clusters. Table 5.3 shows the feature saliency obtdigdd-SVB, COSA, PMGM, and
GFSVB, respectively. We can see that GFSVB determines thigadure saliency is greater
than 0.5. PMGM can discover that the two clusters have differelevant feature subsets.
However, it does not obtain the true feature saliency duestbinary coding scheme. On the
other hand, LFSVB and COSA correctly discover that featalevance associated to cluster 1
is different from that of cluster 2. Specifically, the relaga of features increases with feature
index for cluster 1, but decreases for cluster 2. This pewiddditional and more accurate

information than GFSVB and PMGM.

5.5.2 Real-world datasets

For the evaluation on real-world datasets, we utilized sitasets:Heart, lon, Vehicle
Wine WDBGC andYeast from the UCI machine learning repository [70], with varginumber
of features, patterns, and categories, as summarized ie Bah Class labels are provided
in the datasets for supervised learning, which are excluldeithg the clustering process. A
confusion matrix is computed according to the true classeltand the cluster index. Based

on confusion matrix, mutual information is calculated as

Ay - ) log PEY)
[(X;Y) = %j%jp( )log oS (5.37)



73

Table 5.3: Average feature saliency on the synthetic datasle soft feature saliency. The
feature saliency is in a decreasing order for cluster 1, aradimcreasing order for cluster 2.

| Algo. | Cluster 1 | Cluster 2 |
1 1
S g
LFSVB || £ 05 £ 05
& &
0 0 : : :
0 5 10 15 20 0 5 10 15 20
Feature index Feature index
1 1
> >
COSA || £ 05 205
n o
0 , , , , 0
0 5 10 15 20 0 5 10 15 20
Feature index Feature Index
1 KKK KKK H K,
g . R
7)) =
0 kkxxx% n 9 SRR
0 5 10 15 20 0 10 20
Feature index Feature index
1
0.8
oy
S 06
GFSVB =
n 04
0.2
0
0 5 10 15 20
Feature Index
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Table 5.4: Summary of the UCI datasets, wharés the number of sampleg) the number of
attributes, and the number of classes.
data | Description | N [D]c
Heart | Heart Disease of Statlog| 270 | 13| 2
lon lonosphere Database 351 34| 2
Vehicle || vehicle classification 846 | 18| 4
3
2

Wine | wine recognition 178 | 13
WDBC || Diagnostic breast cancef 569 | 30
Yeast || Protein Localization Sites 1484 | 8 | 10

wherez andy are true labels and cluster index respectively, v) is the joint probability, and
p(z) andp(y) are the marginal probability distribution &f and), respectively. The mutual
information measures the dependence betweend)). Thus, a higher value af indicates

that the clustering results are closer to the true classpgrou

Table 5.5 shows the mean and standard deviation of the clustebers and mutual infor-
mation over 10 runs of the four algorithms. Again, clustemiers for COSA are set manually
based on the dendrogram. On the average mutual informatie®BlyB outperforms GFSVB
on five (out of six) datasets (Heart, lon, Vehicle, Wine, ar&f). On WDBC, it is as good
as GFSVB. LFSVB also outperforms COSA on five (out of six) data (lon, Vehicle, Wine,
WDBC and Yeast). The proposed algorithm outperforms PMGMwmmdatasets (Heart, Ve-
hicle). On the other datasets, those two algorithms haviesiperformance.

LFSVB shows that different relevant feature subsets arecested with different clusters,
whose sizes are usually smaller than the global relevatirieaubset. PMGM also selects a
feature subset for each component. The difference betweSB and PMGM is that LFSVB
evaluates the relevance of a feature with a saliency valtigeimange of [0, 1] while PMGM
uses a binary one. In addition, model detection is fullygné¢ed in LFSVB through variational

learning. A separate measure such as BIC is not required.
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Table 5.5: Mutual informatiod and the estimated cluster numlaerepresented by mean and
standard deviation over 10 different runs, on UCI dataseis COSA, the number of clusters
is determined manually (denoted by *).

Data | Algo | ¢(std) | I(std)

Heart | LFSVB | 2.8(0.8) | 0.15(0.07)
COSA 2* 0.21(0.01)
GFSVB | 3.0(0.7) | 0.09(0.06)
PMGM | 3.1(0.6) | 0.11 (0.05)
lon LFSVB | 3.8(1.1) | 0.330.1)
COSA 4* 0.30(0.01)
GFSVB | 3.4(0.9) | 0.21(0.05)
PMGM | 3.3(0.8) | 0.31 (0.05)
Vehicle | LFSVB | 9.9(1.7) | 0.630.05)
COSA o* 0.48(0.01)
GFSVB | 10.5(1.5)| 0.58(0.09)
PMGM | 9.5(1.6) | 0.60 (0.04)
Wine | LFSVB | 3.1(0.3) | 1.440.07)
COSA 3* 1.26(0.01)
GFSVB | 3.4(0.7) | 1.42(0.06)
PMGM | 3.2(0.6) | 1.42 (0.07)
WDBC | LFSVB | 6.3(0.8) | 0.680.02)
COSA 10* 0.59(0.01)
GFSVB| 7.6 (0.9) | 0.67(0.02)
PMGM | 8.1(0.6) | 0.68(0.03)
Yeast | LFSVB | 11.4(2.1)| 0.40(0.06)
COSA 13* 0.15(0.02)
GFSVB | 6.8(0.8) | 0.36(0.01)
PMGM | 8.2(1.5) | 0.39(0.05)
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5.6 Summary

In this chapter, we developed a novel approach of simultambsxalized feature selection
and model detection for unsupervised learning. Our apprpaavides a fully-automated so-
lution to identify useful patterns embedded in feature pabes by integrating local feature
selection, model detection, and clustering into a unifiegd8an framework. We have demon-

strated the advantages of our algorithm over global featalection and subspace clustering

methods on both synthetic and real-world datasets.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

6.1 Conclusions
The objective of this dissertation is to identify individudusters that exist in different
feature subspaces. We designed three algorithms to adhis\goal. The contributions of this

dissertation are summarized as follows:

e We developed an adjusted and normalized scatter sepgrabéasure (ANV) for indi-
vidual clusters. Based on this measure, A normalized-guogiection (NCP) method is
designed to perform unsupervised localized feature setecThe algorithm identifies
the feature subsets for each individual cluster by seqaidrdckward search. Our exper-
imental results on both benchmark datasets and image tasdgsv the need for feature

selection in clustering and the benefits of selecting festlocally.

e We formulated the problem of unsupervised localized feas@lection as a probability
problem based on Gaussian mixture. the feature relevamanfandividual cluster is
treated as a probability, which is represented by localfeature saliency and estimated
through Expectation Maximization (EM) algorithm duringistering process. In addi-
tion, the number of clusters is determined by integratinginifdum Message Length

(MML) criterion.

¢ In the most recent work of this dissertation, we address thelpm of simultaneous
localized feature selection and model detection for unsuged learning. We proposed
anovel localized Bayesian inference approach of Gaussnres, which computes the
local feature saliency, the number of clusters, and othearpaters of a mixture model

through variational learning.
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6.2 Future work
There are many research interests in localized featuretgaiefor data mining. We list

some, but not all, among them for future research guidance:

e Feature dependence in localized feature selection in usrsiged learning.
The algorithms in Chapters 3, 4, and 5 assume that featigesaditionally independent
when cluster labels are known. However, this assumptiontirae in general practice.

The algorithms need to be designed to cope with this sitoatio

e Constraints in localized feature selection for unsupesditearning.
Unsupervised feature selection encounters difficulty wélastering is in ill-posed na-
ture. To this end, user defined constrains can improve trstaring accuracy. In many
applications, limited supervision is available to resdhis issue. This leads to a research
field as known as semi-supervised learning. One could appiyas idea to localized
feature selection. Remark that the optimal number of ctastan be inferred by mini-
mizing the constraint violations. A desirable algorithnosld also detect the number of

clusters automatically.
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ABSTRACT

LOCALIZED FEATURE SELECTION FOR UNSUPERVISED LEARNING
by
YUANHONG LI
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Clustering is the unsupervised classification of data abjeto different groups (clusters)
such that objects in one group are similar together andndikssi from another groupFea-
ture selectiorfor unsupervised learning is a technique that choosebelteature subset for
clustering. In general, unsupervised feature selectigardhms conduct feature selection in
aglobal sense by producing a common feature subset for all the ctust@is, however, can
be invalid in clustering practice, where the local intraygroperty of data matters more, which
implies thatlocalized feature selectios more desirable.

In this dissertation, we focus on cluster-wise featurecigle for unsupervised learning.
We first propose a Cross-Projection method to achieve kexhlieature selection. The pro-
posed algorithm computes adjusted and normalized scaparability for individual clusters.
A sequential backward search is then applied to find the @b{jperhaps local) feature subsets
for each cluster. Our experimental results show the neef@ébure selection in clustering and
the benefits of selecting features locally.

We also present another approach based on Maximal Likelilndth Gaussian mixture.
We introduce a probabilistic model based on Gaussian nextlihe feature relevance for an
individual cluster is treated as a probability, which isresgented by localized feature saliency
and estimated through Expectation Maximization (EM) althon during the clustering pro-

cess. In addition, the number of clusters is determined tggnating a Minimum Message
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Length (MML) criterion. Experiments carried out on both #yatic and real-world datasets
illustrate the performance of the approach in finding embdddusters.

Another novel approach based on Bayesian framework is ssftdly implemented. We
place prior distributions over the parameters of the Ganssiixture model, and maximize
the marginal log-likelihood given mixing co-efficient arebture saliency. The parameters are
estimated by Bayesian Variational Learning. This appraawohputes the feature saliency for

each cluster, and detects the number of clusters simuliahgo
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