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Chapter 1 

Introduction  

Lipodystrophy  

Lipodystrophy is a condition caused by fat deficiency where adipose cells 

are destroyed or barely present (1). The disease exists in genetic and acquired 

forms, the former being very rare. Congenital generalized lipodystrophy (the 

Seip-Berardinelli syndrome) and the familial partial lipodystrophies (the Dunnigan 

type, the Kobberling type and the mandibuloacral dysplasia type) are the genetic 

forms. Acquired partial lipodystrophy (the Barraquer- Simons syndrome), 

acquired generalized lipodystrophy (the Lawrence syndrome) and protease 

inhibitors-induced lipodystrophy (HIV treatment) are the acquired forms. HIV 

related lipodystrophies are observed in about 50% of HIV patients, being the 

most common form of lipodystrophy (2). 

There exist two methods through which dysfunctional adipose tissue may 

play a role in metabolic disease: the first is the reduced capability to store 

triglycerides which in turn leads to an increase in the levels of circulating fat as 

well as the deposition of excess lipids in non-adipose tissues. The second is 

anomalies in the production of hormones and adipokines. In lipodystrophic or 

obesity-mediated metabolically ill patients, these two pathways typically occur 

concurrently, rendering it hard to determine the mechanistic and/or pathogenic 

determinants of these disorders (3).  

These patients also suffer from other anomalies including 

hypertriglyceridemia along with insulin resistance and type II diabetes (4), which 
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in turn lead to further complications: severe hypertriglyceridemia eventually 

causes recurrent acute pancreatitis attacks, and severe hyperglycemia increases 

the risk for diabetic nephropathy and retinopathy. They also develop 

steatohepatitis which may lead to cirrhosis (5).   

Treatment Modalities for Lipodystrophy 

The major characteristics of lipodystrophy, insulin resistance and 

hypertriglyceridemia are usually managed by multiple drugs including lipid-

lowering medications along with insulin therapy and/or oral hypoglycemics (5); 

however, they have been so far resistant to treatment (6). Thiazolidinediones 

have been shown to be an effective therapy, yet not the perfect one (7). Other 

treatment modalities have also been attempted. For instance, Wanke et al 

treated 10 HIV-induced lipodystrophy patients with Recombinant Human Growth 

Hormone (rhGH) for 3 months and found that this short-term rhGH treatment was 

an effective therapy for the body shape alterations that accompany the syndrome 

(8).  

Leptin replacement therapy, so far, seems to be the most effective therapy 

for lipodystrophic patients. This was first demonstrated in 2002 by Oral et al in 

studies where they administered recombinant leptin subcutaneously to nine 

lipodystrophic patients over four months. This treatment resulted in an 

improvement in glycemic control, a decrease in triglyceride levels and a reduction 

in liver volume, as well as decreased food intake and resting energy expenditure 

(5). Similarly, Simha et al found in 2003 that leptin replacement therapy reduced 

intramyocellular and intrahepatic lipid content in three such patients (9). The 
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reduced food intake, decreased energy expenditure and reduced liver volume in 

response to leptin treatment were further demonstrated by Moran et al in 2004 

(10). Javor et al tested the long-term efficacy of leptin treatment in 15 

lipodystrophic patients for 12 months. They also found, in 2005, that leptin 

administration led to marked improvements in glycemia, dyslipidemia and hepatic 

steatosis (estimated by liver volume), announcing leptin as the first effective long-

term treatment for severe lipodsytrophy (11). Ebihara et al confirmed in 2007 that 

leptin administered to generalized lipodystrophy patients improves insulin 

sensitivity as well as lipid metabolism (12).  

What is Leptin? 

Being a triglyceride storage depot and an endocrine tissue, white adipose 

tissue plays an important role in energy metabolism as well as lipid and glucose 

homeostasis. The adipocytes from white adipose tissue produce hormones that 

regulate food intake and metabolism, mainly leptin and adiponectin (13). The 

adipocyte-derived hormone leptin was discovered in 1994 by Zhang et al as a 

protein product of a defective gene in the ob/ob mouse (14). Leptin plays a major 

role in food intake and energy expenditure regulation (15), as it is known to 

reduce food intake and increase metabolism. Several studies have shown that its 

administration to leptin-deficient and normal rodents results in patent reductions 

in food intake, body weight and body fat. The obese population, on the other 

hand, has elevated leptin and does not appear to benefit from leptin therapy, a 

concept typically called “leptin resistance” (16).  
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Leptin receptors, through which leptin regulates energy homeostasis, are 

expressed in the hypothalamus (17) and many peripheral tissues (18). The levels 

of regulation vary: Fatty acid oxidation (19) and glucose uptake in skeletal 

muscle cells (20) are stimulated by leptin, whereas hepatic gluconeogenesis and 

lipogenesis are inhibited by leptin (21, 22). Leptin reduces pancreatic B-cell 

production of insulin (23) and also enhances insulin action (24), which is thought 

to be controlled via a cascade of reactions (25). Leptin's effect on glucose and 

lipid metabolism and insulin sensitivity appears to be mostly independent of its 

regulation of food intake (26). However, various pathways are known to mediate 

its metabolic effects. For instance, leptin represses the gene stearoyl-CoA 

desaturase-1 (SCD-1) which plays a role in leptin-induced metabolic changes 

(27). Leptin also plays a role in growth and reproduction (28), inflammation, 

hematopoiesis (29) and immunity (28, 29). 

Hyperleptinemia is commonly seen in obese patients revealing increased 

adiposity and leptin resistance. This profile may contribute to the hypertension, 

impaired glucose metabolism, and pro-atherogenic condition in obese and 

metabolic syndrome patients (30). 

Mouse Models of Lipodystrophy 

Excess adiposity in obesity and lack of adipose tissue in lipodystrophy are 

both often coupled with insulin resistance and related complications. Strangely 

enough, lipodystrophy shares similar metabolic abnormalities with obesity. For 

treating lipodystrophy-related metabolic disorders, leptin replacement therapy is 

a successful approach, yet it does not appear promising in the treatment of 
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complications associated with obesity (31). However, a well-controlled genetically 

modified lipodystrophy mouse model can help unravel these mechanisms and 

also find therapeutic targets for treating/preventing the metabolic syndrome/ 

metabolic abnormalities related to obesity (3). Mouse models of lipodystrophy are 

very useful in the sense that they may help understand these mechanisms and 

possibly uncover new pharmaceutical targets for managing metabolic disorders 

associated with dysfunctional adipose tissue (31). 

Inducible, late onset and early onset mouse models of lipodystrophy have 

been developed. There are two known inducible models: 1- Fat apoptosis 

through targeted activation of caspase 8 (FAT-ATTAC) mice that are transgenic 

mice suffering from adipose tissue ablation resulting from treatment with a 

chemical dimerizer (32); and 2- Protease inhibitor-induced lipodystrophic mice 

(3).  

There are two late onset models as well: 1- aP2-diphteria toxin A mice 

which are born with a normal phenotype but develop adipose tissue atrophy at 

five to six months of age (33); and 2- Ribosomal S6 kinase 2 knockout mice 

which display partial fat loss, reduced leptin levels, insulin resistance and a 

propensity for liver steatosis (34).  

There exist eight known early onset models: 1- The aP2-SREBP-1c 

mouse is a transgenic mouse model of lipodystrophy expressing an active form 

of the SREBP-1c transcription factor in its adipose tissue, causing remarkably 

reduced body fat, hepatic steatosis, insulin resistance, hyperglycemia, 

hypertriglyceridemia and enlarged organs (35). 2- Mox2-Cre-floxed PPARγ 
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knockout mice are PPARγ deficient mice that are lipodystrophic and insulin 

resistant. Only a small percentage of these mice survive until adulthood (36). 3- 

Adipose-specific PPARγ knockout mice have only a small amount of adipose 

tissue with decreased adipokine concentration. In addition, the adipose tissue 

they have appears prone to inflammation. These mice also have elevated blood 

lipids and a propensity for hepatic steatosis and insulin resistance (37). 4- 

PPARγ-2 knockout mice are more viable than the PPARγ knockout mice, but 

also have markedly reduced adipose tissue and circulating adipokines (38). 5- 

PPARγ hypomorphic mice are PPARγ-1 deficient due to an alteration in a 

PPARγ-2-specific exon. These mice also have markedly reduced body fat (39). 

6- PPARγ P465L mice were made to mimic human patients with the dominant 

negative PPARγ P465L mutation who experience partial lipodystrophy, liver 

steatosis, altered lipid metabolism, insulin resistance and hypertension (40). 7- 

Fatty liver dystrophy mice are generated from a lipin1 gene mutation and are also 

lipodystrophic (41). 8- Last but not least, the A-ZIP/F-1 mouse is a transgenic 

mouse that lacks white adipose tissue for life via expressing the AZIP/F protein 

(42).  

The AZIP/F-1 Lipodystrophic Mouse 

The AZIP/F-1 mouse was produced by adipose-selective expression of a 

dominant-negative form of the transcription factor C/EBPα thus expressing the A-

ZIP/F protein, under the control of the adipose-specific aP2 enhancer/promoter. 

C/EBPα normally regulates adipocyte differentiation. A-ZIP/F prevents the DNA 

binding of B-ZIP transcription factors of the C/EBP and Jun families. The mice 
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therefore have little to no white adipose tissue throughout life and minimal 

amounts of brown adipose tissue (42).  

They firstly encounter delayed development that is then caught up by 

week 12 when their body weight exceeds that of their non-transgenic littermates. 

They are also characterized by reduced fertility. They have severe hepatic 

steatosis as well as enlarged organs in general. They tend to develop type II 

diabetes as they are hyperinsulinemic (50- to 400-fold) at 1 week of age and 

hyperglycemic (3-fold) by 4 weeks of age. They have reduced leptin levels (20-

fold) and increased free fatty acids (2-fold) and triglycerides (3- to 5-fold). They 

are finally polyphagic, polydipsic and polyuric (42). 

The phenotype of AZIP/F-1 mice is very similar to that of patients with 

severe lipoatrophic diabetes (1). The A-ZIP/F-1 phenotype therefore may serve 

as a mouse model for human lipoatrophic diabetes (Seip-Berardinelli syndrome), 

where the lack of fat contributes to a diabetic phenotype. According to the 

authors, this model would help tackle the numerous drawbacks of lacking fat 

throughout growth (42).  

General Characteristics of Fatless Mice 

The syndrome observed in lipoatrophic mice is markedly comparable to 

that of lipoatrophic diabetes patients (43). AZIP mice, for instance, have nearly 

no white adipose tissue, which results in hyperglycemia, insulin resistance, 

hyperlipidemia, elevated liver triglycerides and hepatomegaly (44, 45). As it is 

very well known, insulin resistance is the common precursor to type II diabetes 

(46) and impairments in fat metabolism may promote insulin resistance (47, 48). 



8 

Kim et al postulated that insulin resistance in the AZIP fatless mice may be 

attributed to triglyceride accumulation in the liver and muscle due to the lack of 

adipose tissue, which in turn alters insulin signaling and action (49). 

Lipodystrophic mice, such as the AZIP/F-1 mice, are also hypertensive (50). 

They have also been shown to have a high susceptibility to carcinogenesis that is 

thought to be related to their insulin resistance and inflammatory state (51) 

and/or the lack of adipose tissue (52).  

Treatment of Lipodystrophy in Mice: Leptin Replacem ent Therapy 

The metabolic abnormalities associated with lipoatrophy are clearly due to 

the lack of white adipose tissue since surgical implantation of adipose tissue 

reversed diabetes in lipoatrophic mice (53). Transplanting adipose tissue lacking 

leptin into AZIP/F1 fatless mice, however, could not reverse the phenotype of 

these mice. This evidence suggests that neither adiponectin deficiency nor the 

lack of triglyceride accumulation into fat per se is responsible for the metabolic 

abnormalities; it is rather leptin deficiency (54). Ebihara et al produced doubly 

transgenic mice that are lipodystrophic but over-express leptin. The mice showed 

hypophagia, improved insulin sensitivity and reduced hepatic steatosis in 

comparison with pair-fed lipodystrophic mice suggesting that leptin (rather than 

simply reduced food intake) exerted important metabolic benefits (55). In a study 

conducted by Shimomura et al, leptin administration to lipodystrophic mice via 

pumps achieving physiologic levels resulted in a noted improvement in 

hypertriglyceridemia, insulin resistance, hyperglycemia and hepatic steatosis 

(56). In another study, leptin reversed hyperglycemia and hyperinsulinemia in 
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Irs1-/-,Irs3-/- double knockout lipoatrophic mice (57). Furthermore, leptin infused 

centrally over 6 days to streptozotocin-induced diabetic rats (insulin-dependent 

diabetes) promoted euglycemia, an effect that was not due to regulating food 

intake or peripheral insulin levels, it was rather via regulating liver glucose 

production, energy expenditure and peripheral glucose uptake (58). Leptin 

replacement therapy also has other physiologic effects, beyond the control of 

food intake, hypertriglyceridemia, hyperglycemia and liver steatosis. For 

instance, Suganami et al found marked nephropathy in AZIP fatless mice which 

was reversed by leptin administration and prevented in the AZIP 

transgenic/Leptin transgenic mouse that is fatless but produces leptin (59). 

Vascular Function/Thrombosis  

A procoagulant state has been observed in obese patients with insulin 

resistance and in type 2 diabetes (60). In addition, inflammation resulting from 

obesity may play a role in the development of atherosclerosis (61). Plaque 

disruption in atherosclerosis triggers a thrombotic response characterized by the 

formation of a thrombus in the atherosclerotic blood vessel thus potentially 

exposing it to occlusive thrombosis and tissue (e.g. myocardial or cerebral) 

infarction (62). Acute thrombosis, therefore, often mediates the clinical severity of 

cardiovascular disease complications (63).  

Many circulating substances altered in metabolic disease are thought to 

influence thrombosis. Adiponectin, a protein produced by adipose cells, seems to 

be reduced with the increase in adipose stores (64). Thrombus formation is 

increased in adiponectin-deficient mice, a phenotype that was reversed when 
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introducing adiponectin via an adenovirus, suggesting that adiponectin plays an 

antithrombotic role (65). Acute high doses of TNF-α, the inflammatory mediator 

secreted by inflammatory cells (66), were also shown to have an antithrombotic 

effect in mice (67). PAI-1 has a detrimental effect on fibrinolysis being the 

primary inhibitor of tissue plasminogen activator in the blood (68) and it plays a 

prothrombotic role according to arterial thrombosis studies in mice (69). Another 

factor that has been shown to play a role in thrombosis is the adipose-derived 

hormone leptin. 

Leptin and Thrombosis 

Leptin appears to act as a prothrombotic factor. For example, leptin has 

been shown to stimulate platelet aggregation via adenosine diphosphate (70). 

The human platelet has a functional leptin receptor that was identified by 

Maruyama et al in 2000. High concentrations of leptin promoted platelet 

aggregation in vitro (71). Two human studies suggested that leptin is an 

independent risk factor for coronary heart disease (72). Also, plasma leptin levels 

were significantly associated with coronary artery calcification in a cross-

sectional study involving type 2 diabetes patients, after controlling for age, 

gender and other factors such as adiposity and CRP. This finding led to the 

suggestion that leptin may promote the proatherosclerotic risk posed by adiposity 

(73).  

Similar effects were also found in mice. Leptin, and especially exogenous 

leptin, was shown to be positively correlated with vascular thrombosis in various 

mouse models (30). Bodary et al found that daily leptin administration for 4 
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weeks promoted thrombosis and atherosclerosis in apolipoprotein E- deficient 

mice (74). The prothrombotic effect of leptin may be exerted via multiple sites 

including leptin receptors on platelets, centrally-mediated sympathetic effects of 

leptin (e.g. on blood pressure), as well as leptin receptor expression on 

endothelial cells (69).  

Consistent with the prothrombotic effect of leptin, the absence of leptin 

has been shown to reduce thrombus formation. For example, thrombosis is 

delayed and the thrombi formed are unstable in both leptin-deficient (ob/ob) and 

leptin receptor-deficient (db/db) mice. Leptin administration increased platelet 

aggregation thus enhancing the formation of and stabilizing thrombi in the former, 

but not in the latter, suggesting a receptor-dependent effect of leptin on platelet 

function and hemostasis (75). Mice with leptin receptor-deficient bone marrow 

were protected from photochemical injury-induced arterial thrombosis. Leptin 

administration has a prothrombotic effect following vascular injury in mice, an 

effect that was absent in leptin receptor-deficient mice and seemed to be driven 

by the interaction between leptin and the platelet leptin receptor (76). In addition, 

inhibiting endogenous circulating leptin delayed arterial and venous thrombosis in 

mice and rendered the formed thrombi unstable (77). 
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Chapter 2 

Objectives of this Study  

  Given the background information, the aims of this study were to 1) 

Observe the thrombotic profiles of FVB/B6 Lipodystrophic mice; 2) Observe the 

physiologic development and metabolic profiles of these mice via various 

parameters; and 3) Examine the effect of exogenous leptin on these profiles, 

while comparing to vehicle-treated and non-transgenic controls.  
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Chapter 3 
 

Materials and Methods  
 
Animals 

AZIP/F-1 transgenic (AZIP-TG) mice (strain name: FVB-Tg(Azip/F)1Vsn/J) 

were obtained from The Jackson Laboratory (Bar Harbor, ME) and bred in house 

to produce AZIP/F1 offspring. AZIP-TG mice express the AZIP/F1 gene under 

the control of 7.6 kB of the adipocyte specific Fabp4 promoter and therefore have 

nearly no white adipose tissue and a significantly reduced amount of brown 

adipose tissue (42). AZIP-TG females are infertile or weakly fertile due to the 

necessity of leptin and/or adipose tissue for lactation and fertility. Therefore, to 

obtain a mix of transgenic and wild-type FVB/B6 F1 offspring, several steps were 

followed: AZIP-WT females were crossed with AZIP-TG males. The offspring of 

interest were the AZIP-TG males. C57BL/6J (B6) female mice were purchased 

from Jackson Laboratories as well. The AZIP-TG males were crossed with B6 

females (at sexual maturity, i.e. ~6 weeks of age) to obtain FVB/B6 F1 offspring. 

B6 mice were chosen because they are the best characterized mouse strain for 

metabolic phenotypes and are genetically not close to the FVB strain (78). In 

addition, we had previously found FVB AZIP-TG mice to be sickly and poorly 

viable for use in our photochemical injury model of arterial thrombosis. The FVB 

x B6 offspring were found to be ideal for our studies as this breeding strategy had 

reduced mortality among the AZIP-TG offspring.  

The offspring of interest for the leptin pump study were the FVB/B6 males, 

both transgenic and wild-type. Males were chosen rather than females because 
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they are more biologically stable than the latter and do not encounter estrous 

cycling, providing more controlled conditions for the experiment. Mice were ear-

tagged and tailed (for genotyping purposes) and weaned at two and three weeks 

of age, respectively.  

       All laboratory personnel had completed the required animal-handling 

training offered by the Division of Laboratory Animal Resources (DLAR) under 

the supervision of Wayne State University’s Animal Investigation Committee 

(AIC) for proper handling of mice. The protocols used in the study were also 

approved by the AIC prior to the initiation of the study. All mice were housed in 

an animal room with ~53% relative humidity and a 22˚C ambient temperature.  

Feeding 

Breeders were fed the FormuLabDiet 5008 from LabDiet, which is a high-

energy high-protein formula used in breeding colonies of rodents to maximize 

reproduction. All other mice were fed Laboratory Rodent Diet 5001 from LabDiet, 

which is a constant formula used to diminish nutritional variables in long-term 

studies (PMI Nutrition International, Saint Louis, MO). All mice had access to 

food and water ad libitum. 

Genotyping  

Genotypes of mice were determined via end-point Polymerase Chain 

Reaction (PCR). Tail tip amputations were performed and DNA samples were 

obtained from tail sections. Tail sections were digested using a solution that is 

10% tail digestion buffer (50% 1M KCL, 20% 500mM Tris-HCL, 10% 10% Triton 

X-100, 20% ultra pure water), 4% 10mg/ml Proteinase K enzyme and 86% ultra 
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pure water. One hundred microliters of the solution was added to each tail 

sample and the samples were incubated at 55oC overnight, mixed using the 

Vortex Mixer (Fisher Scientific, Pittsburgh, PA) and spun at 16,100 x g for 10 

minutes at room temperature in the Eppendorf Centrifuge 5415 D (Brinkman 

Instruments, Westbury, NY). PCR reactions were performed using an Eppendorf 

Mastercycler Gradient PCR machine (Brinkman Instruments) and utilizing four 

“Azip” primers from Sigma-Genosys (Sigma-Aldrich, St. Louis, MO): Azip Mutant 

1981 (sequence 5'-CTGTGCTGCAGACCACCATGG), Azip Mutant 1982 r 

(sequence 5'-CCGCGAGGTCGTCCAGCCTCA), Azip Wild-Type 0042 

(sequence 5'-CTAGGCCACAGAATTGAAAGATCT) and Azip Wild-Type 0043 r 

(sequence 5'-GTAGGTGGAAATTCTAGCATCATCC), Go Taq Master Mix and 

Nuclease-Free Water (Promega, Madison, WI). Two and a half percent agarose 

gel was loaded with amplified product and Exactgene 100 BP DNA Ladder 

(Fisher Scientific) and run on a Fisher Biotech Electrophoresis System/ Wide 

Format Horizontal System FB-SB-2318 (Fisher Scientific). Gels were read via the 

DigiDoc-It Imaging System (UVP Inc., Upland, CA). 

Arterial Thrombosis 

  Blood flow was measured in 6 FVB/B6 (3 WT & 3 TG) male mice at 7-10 

weeks of age. The Arterial Thrombosis Protocol described by Bodary et al (76) 

was modified and followed: The procedure starts by anesthetizing the mice with 

~50 mg/Kg body weight intraperitoneal sodium pentobarbital (Meds for Vets, 

Sandy, UT) then securing them in the supine position and placing them under a 

dissecting microscope (Nikon SMZ-645, Mager Scientific Inc, Dexter, MI). A 
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midline cervical incision is then applied in order to isolate the right common 

carotid artery and apply a flow probe (model 0.5 PSB, Transonic Systems, 

Ithaca, NY). A flow meter (Transonic model T402, Transonic Systems) is then 

connected to the probe and blood flow is monitored via the computerized data 

acquisition software DASYLab9 (Measurement Computing Corporation, Norton, 

MA). The photochemical injury protocol described by Eitzman et al (79) was the 

means through which carotid arterial injury and thrombosis were induced. The 

photochemical used in this procedure is rose bengal (Fisher Scientific) which is 

diluted in PBS to 10 mg/mL and then injected into the tail vein via a 27-gauge 

Precision Guide needle with a 1-ml latex-free syringe (Becton Dickinson and Co, 

Franklin Lakes, NJ) at a dose of 50 mg/kg. Rose Bengal is then activated by 

exposing the mid common carotid artery to a 1.5-mW green light laser (540 nm, 

Melles Griot, Carlsbad, CA) from a 6 cm distance. Blood flow in the artery is 

observed from the time of the injection of rose bengal until the end of the 

experiment. Two events would determine the end point for the experiment: the 

cessation of blood flow in the carotid artery for one minute (read via the 

DASYLab9 software) and the visualization of an occlusive thrombus at the injury 

site via the dissecting microscope. The observer of both events would be blinded 

to the mouse group. 

Cell and Platelet Counts 

Blood cell and platelet counts were obtained from seven FVB/B6 F1 males 

(4 TG and 3 WT) at 13 weeks of age. Blood was obtained via a cardiac puncture 

terminal bleed using a 25-gauge Precision Guide needle with a 3-mL latex-free 
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syringe (Becton Dickinson and Co, Franklin Lakes, NJ) loaded with 3.2% Na-

Citrate (Sigma Inc., St. Louis, MO) where fresh circulating blood was obtained 

from the heart (ratio of Na-Citrate to Blood was 1:10) and diluted with PBS to a 

10,000 fold dilution. Ten microliters of diluted blood from each sample was 

placed in the Hausser Levy Hemacytometer (VWR International Inc, Batavia, IL) 

where platelets and total blood cells were counted under a Wilovert S Inverted 

Microscope (Hund Wetzlar, Germany).  

Euglobulin Clot Lysis Assay 

A Euglobulin Assay was performed on blood samples obtained from five of 

the mice (2 WT and 3 TG) mentioned above for the determination of fibrinolysis. 

The protocol described by Smith et al (80) was followed with modifications. The 

fresh citrated blood was spun and plasma was separated (described later) and 

mixed with working acetic acid (1.3 ml per 75 ul plasma) in 1.5-2.0 ml 

polypropylene tubes. The tubes were placed on ice for 10 minutes and spun at 

2,000xg for 5 minutes at room temperature. Supernatants were discarded and 

the tubes were inverted to drain for 5 minutes. The "euglobulin fraction" was 

resuspended in 100 ul of a solution of 154 mM NaCl and 26 mM sodium borate, 

stirred, warmed to 37oC for 90 seconds, re-stirred and warmed again to 37oC for 

90 seconds. Samples were then pipetted into a pre-warmed 37oC 96-well 

polystyrene flat-bottom microtiter plate, 90 ul per well. Each sample was pipetted 

in duplicate and read on the ELx800 Absorbance Microplate Reader at 405 nm. 

Ninety microliters of 0.025 M CaCl2 was added to one well of each sample while 

the other served as an individual control. The plate was placed again in the 
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microplate reader and absorbance was read at 405 nm every minute for the first 

10 minutes and then once every 10 minutes for 3 hours. Maximum absorbance 

was defined as the peak absorbance at 405 nm and lysis time was defined as the 

time at which the curve, corrected for the individual blank, reaches an 

absorbance of 0.05 or less.  

CBC and PT Measures 

Obtaining complete blood counts (CBC) and measuring clotting factors 

were also steps followed towards trying to uncover the mechanism behind the 

altered thrombotic profiles of AZIP-TG mice. Seven 28-week-old female FVB/B6 

F1 mice (3 WT & 4 TG) were sent to the Division of Laboratory Animal 

Resources (DLAR) clinical pathology lab (WSU) for CBC and measures of 

prothrombin time (PT) from fresh blood. Each mouse was placed in a CO2 

chamber for 30-45 seconds and blood was drawn via cardiac puncture. CBC 

measures were obtained via Heska CBC-Diff Veterinary Hematology System 

machine (Heska Corporation, Fort Collins, CO) and HeskaView Integrated 

Software Product Version 2.0.2 data acquisition software (Heska Corporation). 

PT was measured on the SCA2000 Veterinary Coagulation Analyzer 

(Symbiotics, San Diego, CA) using IDEXX Coagulation Diagnostics PT 

Cartridges (IDEXX Laboratories, Westbrook, ME). 

a-PTT Measures 

Seven female FVB/B6 F1 mice (4 TG, 3 WT) at 41-47 weeks of age were 

sent to the DLAR clinical pathology lab to obtain levels of activated partial 

thromboplastin time (a-PTT). The same bleeding protocol (as above) was 
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followed. The a-PTT was also measured on the SCA2000 Veterinary Coagulation 

Analyzer (Symbiotics) using IDEXX Coagulation Diagnostics a-PTT Cartridges 

(IDEXX Laboratories).  

Grouping for the Leptin Pump Study 

To study the effect of leptin administration on thrombotic and metabolic 

profiles of fatless mice, leptin was administered to the mice via osmotic pumps. 

Sixteen FVB/B6 mice were divided into four groups as follows: 4 transgenic mice 

that received leptin pumps (TG-Tx), 3 transgenic mice that received control 

pumps (TG-C), 4 wild-type mice that received leptin pumps (WT-Tx) and 5 wild-

type mice that received control pumps (WT-C). Reduced fertility in fatless mice 

along with the difficulty of obtaining healthy male offspring limited the sample size 

to 16 mice. 

Leptin Pumps  

Five µg leptin/day was administered to each mouse via an osmotic pump 

over 12 days. Recombinant mouse leptin was obtained from the National 

Hormone and Peptide Program (NHPP, Torrance, CA) and reconstituted with 

PBS pH 7.4 by GIBCO (Invitrogen, Grand Island, NY) into a 0.83 ug/ul 

concentration. ALZET Osmotic Pumps model 1002, Alza (DURECT Corporation, 

Cupertino, CA) were used to deliver leptin at a rate of ~0.25 ul/hr. Pumps were 

filled and primed following the company's instructions.  

Surgical Procedure for Pump Implantation 

The least invasive procedure, subcutaneous implantation, was used to 

implant leptin and vehicle pumps in the mice at 8 weeks of age, under sterile 
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conditions and following the company’s protocol. The mouse is first anesthetized 

with inhaled Attane Isoflourane, USP (MINRAD, Inc., Bethlehem, PA). The lower 

dorsal area is shaved, slightly posterior to the scapulae and a mid-scapular 

horizontal incision is made in the skin (≈ 1 cm). Using a hemostat or forceps, a 

pocket/path is created for the pump all the way along the spine, just before the 

neck. The filled pump is then inserted in the pocket. Finally, the incision is sealed 

with Oasis surgical adhesive (Oasis, Mettawa, IL) and the mouse is placed in a 

separate cage. The pump contents are delivered into the local subcutaneous 

space and absorbed by local capillaries resulting in systemic administration.  

 (Procedure modified from: Alzet technical Information manual, Durect 

Corporation, Cupertino, CA). 

Blood Samples 

Blood samples were obtained from mice one week prior to inserting 

pumps, i.e. at ~7 weeks of age, via retro-orbital bleeds (orbital sinus 

venipuncture), using Fisherbrand heparinized micro-hematocrit capillary tubes 

cat # 22-362-566 (Fisher Scientific). Two bleeds were done at 7 weeks of age (2-

3 days apart), so that adequate amounts of both plasma and serum could be 

isolated to measure pre-pump parameters. On the 9th day of having the pump in, 

during their 9th week of age, the mice were bled again for serum samples, to 

measure effects of leptin treatment. All blood samples were obtained after a five-

hour fast where the mice would have access to water only. For plasma samples, 

blood was collected in 1.5 ml polypropylene tubes, spun immediately (or kept at 

4oC until spinning) at 5,000 x g for 10 minutes at room temperature and plasma 
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was isolated and stored at -20oC. For serum samples, blood was collected in BD 

Microtainer Serum Separators Ref 365959 (Becton Dickinson and Co), clotted for 

two hours at room temperature, spun at 2,000 x g for 20 minutes at room 

temperature and serum was isolated and stored at -20oC. These bleeding and 

plasma/serum isolation procedures were followed in all other experiments 

requiring blood samples, unless otherwise indicated.  

Measuring Blood Glucose 

On day 9 after pump placement, while bleeding for serum samples, fasting 

blood glucose concentrations (mg/dl) were measured using the Ascensia Elite XL 

glucometer (Bayer, Tarrytown, NY), to monitor differences between groups. 

Monitoring Body Weight Change 

During leptin pump experiments, parameters that were to be measured 

daily were body weight and food intake. The mice were weighed at 10:00 am 

everyday throughout the study using the Adventurer-Pro digital scale (Ohaus 

Corporation, Pine Brook, NJ), to monitor weight change in response to leptin 

treatment. Food remaining in the cage was weighed daily during the first week of 

the experiment and food intake was estimated by subtraction. However, the 

measurement was discontinued because food was being chewed but not 

consumed, making the results very inaccurate. 

Arterial Thrombosis (leptin pump study) 

Blood flow was monitored on the twelfth day following pump placement, at 

10 weeks of age, following the protocol previously described. The maximum 

duration allowed for observing blood flow was 150 minutes in the FVB/B6 leptin 
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pump experiment. Again, the observer was blinded to the mouse group 

(treatment vs control, transgenic vs wild-type). 

Tissue Harvesting 

The above arterial thrombosis procedure is a non-survival protocol. After 

disconnecting the mice from the flow probe, while they were still under the effect 

of anesthesia, they were euthanized via a cardiac puncture terminal bleed for 

plasma isolation and they were then dissected to harvest organs. The liver was 

the primary organ of interest. Tissues were weighed while fresh and sections 

were consistently removed and frozen. Kidneys, hearts, lungs, spleens and fat 

pads (in WT mice) were also isolated and weighed. All isolated tissue/organ 

samples were weighed using the Mettler Toledo digital scale Model XS104 

(Mettler-Toledo, Columbus, OH) and stored in 1.5-2 ml tubes at -20oC. Blood 

obtained from the terminal bleed was spun for plasma isolation, following the 

same isolation technique used in previous bleeds. 

Liver Homogenization  

Frozen liver tissue was thawed and homogenized in order to be used in 

assays to measure parameters of interest. Fifty milligrams of each liver sample 

was homogenized in a BD Falcon Polypropylene Round Bottom Tube (Becton 

Dickinson and Co) in 2 ml of lysis buffer (150 mM NaCl, 0.1% Triton X-100, 10 

mM Tris) using a Model Pro200 Double-Insulated Homogenizer (PRO Scientific, 

Oxford, CT). The resulting 5-fold diluted livers were spun and supernatants were 

used in assorted assays as described. 
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Measuring Leptin Levels 

Leptin levels were measured in serum samples of mice pre and post pump 

treatment, via a leptin ELISA. The Mouse Leptin ELISA Kit Catalog # 90030 

(Crystal Chem, Downers Grove, IL) was used with provided standards and 

controls. 

Measuring Insulin Levels 

To test the effect of leptin administration on insulin sensitivity in our 

samples, serum insulin levels were measured by ELISA as well. The Ultra 

Sensitive Mouse Insulin ELISA Kit Catalog # 90080 (Crystal Chem) was utilized 

with the provided wide range standards. 

Measuring Triglyceride Levels 

Plasma and liver triglyceride levels were measured using the Serum 

Triglyceride Determination Kit Catalog # TR0100 (Sigma-Aldrich, Saint Louis, 

MO) with provided reagents. Liver triglyceride concentrations were then 

normalized for liver protein concentrations. Liver samples used in the assay were 

diluted 40-fold with deionized water. 

Measuring Cholesterol Levels  

Plasma and liver cholesterol levels were measured using a cholesterol 

assay following the Wako Cholesterol E Microtiter Procedure Catalog # 439-

17501 (Wako Diagnostics, Richmond, VA). Liver cholesterol concentrations were 

also normalized to liver protein concentrations. Livers samples used were diluted 

five-fold with deionized water.  
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Measuring Liver Protein Concentration 

Liver protein concentration was measured using Bio-Rad RD DC Protein 

Assay dye reagent (Bio-Rad, Hercules, CA) and bovine serum albumin 

standards. Absorbance was read at 570 nm. Livers were 2000x diluted for this 

purpose. 

All assays were read using the ELx800 Absorbance Microplate Reader 

(Bio-Tek Instruments, Winooski, VT) and the KC4 Software (Bio-Tek). 

Statistical Analyses 

Results were analyzed via SPSS 15.0 for Windows (SPSS Inc., Chicago, 

IL) using one way Analysis of Variance (ANOVA), two way ANOVA, paired 

samples t-test and independent samples t-test. Post-hoc analyses were also 

used to compare outcomes using p≤0.05 as a cutoff point for statistical 

significance (significant effect). Due to the limited mice available for these 

analyses (and the high risk of a type 2 statistical error), a p≤0.1 is noted to 

identify comparisons that should be examined more closely in the future. Mean 

and standard error of the mean were calculated for each dependent variable. 
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Chapter 4 

Results  

A- Prior to Leptin Pump Study    

Preliminary Thrombosis Data 

   Our thrombosis trial reveals a tendency of lipodystrophic mice to have a 

delayed clotting in response to photochemical arterial injury. When compared to 

WT littermates, TG mice had significantly longer time to arterial occlusion 

(p<0.05) revealing delayed formation of a thrombus (Figure 1 ). This observation 

prompted us to conduct several investigations. 

Hematology 

   Aiming towards finding factors responsible for the altered thrombotic 

profile observed in fatless mice, blood cell and platelet counts were obtained 

from TG mice and WT controls. The small differences observed were not 

statistically significant: blood cell counts (x 109/L) were 8.95 + 0.34 and 8.03 + 

0.21 in TG and WT mice, respectively. Platelet counts (x 109/L) were 1.93 + 0.13 

in TG mice and 1.53 + 0.21 in WT mice. 

   Also within the search for underlying factors behind delayed clotting in 

fatless mice, a Euglobulin Assay was performed on blood samples obtained from 

the same mice mentioned above for the determination of plasma fibrinolytic 

activity. As shown in Figure 2 , the TG and WT mice had similar trends and 

therefore no significant differences in fibrinolysis. 

   Furthermore, PT and a-PTT were measured in lipodystrophic mice and 

wild-type controls and also, no significant differences were observed. PT (sec) 
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was 21.75 + 0.63 in the TG group and 20 + 1.53 in the WT group. a-PTT (sec) 

was 59.5 + 9.56 and 59.66 + 1.45 in TG and WT mice, respectively.  

   CBC measures were obtained from TG mice and WT littermates and no 

significant differences were found between the two groups, as shown in Table 1 .  

   The above findings, therefore, reveal no significant differences between 

WT and TG mice in hematologic and fibrinolytic factors that might explain the 

unexpected anti-thrombotic trend of the AZIP-TG mice. We thus proceeded to 

leptin administration. 

B- Leptin Pump Study 

Arterial Thrombosis 

   The arterial thrombosis data are tabulated in Table 2 . A major 

complication was encountered during the arterial thrombosis protocol: death of 4 

TG mice before occlusion (> 50% of the TG mice). The TG Tx mice that survived 

(2 mice), however, did not have the faster clotting that was hypothesized. An 

occlusive thrombus was not formed and the experiment was discontinued at 150 

minutes. The same non-clotting phenotype was observed in the only TG C 

mouse that survived, consistent with the preliminary data of the TG mice. The TG 

group had a significantly prolonged time to clotting when compared to the WT 

group (p<0.05), as demonstrated in Figure 3 . As for WT mice, the difference in 

clotting time between the treated and the untreated groups was not significant.  
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Body Weights 

   At baseline, TG mice were significantly heavier than their WT littermates 

(p=0.01). Leptin treatment significantly reduced the body weight of both the TG 

mice (p<0.005) and the WT mice (p<0.05) (Figure 4 ).  

   Figure 5  depicts the percent body weight change in response to 

treatment. The values obtained reveal a significant difference in the changes in 

body weight between the TG C and the TG Tx groups (p=0.001).  

Blood Parameters 

   Baseline leptin differences between WT mice and TG mice were huge. 

WT mice had remarkably higher levels, as leptin levels in TG mice were nearly 

undetectable. Figure 6  shows that serum leptin concentration increased with 

treatment in both the TG mice (p<0.01) and the WT mice (p<0.05). Control TG 

mice had no change in leptin concentration. 

   Even though the leptin-treated TG mice had lower blood glucose 

concentration (88.5 + 30.1) compared to the vehicle-treated TG mice (139.6 + 

42.5), this difference (p=0.1) did not reach statistical significance. Values for WT 

mice were also not significantly different (C: 126.4 + 6.9; Tx: 106.8 + 7.5).  

   Figure 7  refers to the change in serum insulin concentration observed in 

the WT and TG groups. At baseline, the TG mice had remarkably higher insulin 

concentration than the WT mice (p=0.001), as expected. The treatment of TG 

mice with leptin resulted in a significant reduction in insulin concentration 

(p<0.05). The same effect was seen in the WT mice. No significant changes were 

observed in control mice.   
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   Homeostasis Model Assessment for estimated insulin resistance (81), 

HOMA-IR, was computed to analyze the difference in insulin resistance between 

the groups. HOMA-IR scores revealed a significantly higher insulin resistance in 

the TG C group when compared to the TG Tx group (p=0.01) and either of the 

WT groups (p=0.005), as follows: TG C 131.2 + 65.9 > TG Tx 17.4 + 15.1 = WT 

C 6.65 + 2.15 = WT Tx 3.39 + 1.68. 

   Prior to treatment, TG mice had significantly higher levels of triglyceride 

in their plasma when compared to WT mice (p=0.005). Plasma triglyceride 

concentration did not change significantly after treating the mice with leptin, in 

either the TG or WT mice, as shown in Figure 8 . However, there was an 

unexpected increase in triglyceride in the WT control group.  

   Plasma cholesterol concentration, as Figure 9  reveals, significantly 

dropped in the TG mice upon treatment with leptin (p<0.05). In addition, both the 

treatment and control WT mice had a reduction in plasma cholesterol (p<0.05). 

The vehicle-treated TG mice did not encounter any significant changes. 

Liver Parameters 

    Protein concentration in livers of the mice was computed for the purpose 

of normalizing liver parameters to protein levels.  

   The liver triglyceride to protein ratio, shown in Figure 10 , reveals a 

significant difference in triglyceride concentrations between the control TG mice 

and the control WT mice (p<0.05), with the former being higher as expected for 

“fatless mice”.  A trend was evident (p=0.089) for the leptin-treated TG mice to 

have a lower liver triglyceride to protein ratio than the vehicle-treated TG mice.
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   No significant differences were observed in liver cholesterol to protein 

ratios (mg:mg) between groups (TG C 0.0046 + 0.0016 = TG Tx 0.0031 + 0.001 

= WT C 0.0041 + 0.001 = WT Tx 0.0042 + 0.001). 

Harvested Organ and Tissue Weights 

   Weights of livers of the mice involved in the study are displayed in 

Figure 11  which shows that leptin-treated TG mice had significantly smaller 

livers than vehicle-treated TG mice (p<0.05). Moreover, TG-C mice had 

significantly larger livers than WT-C mice did (p<0.0001). Livers of the leptin-

treated TG mice were still significantly heavier than either of those of the WT 

mouse groups (p<0.01) i.e. the control WT mice and the treated WT mice. The 

differences observed were significantly affected by both the genotypes of the 

mice (p<0.0001) and the treatment they received (p<0.05).  

   Results for the other organs that were weighed are shown in Figure 12 : 

Organ weights were significantly affected by genotype. However, the difference 

in these weights between the control TG mice and the treated TG mice was not 

significant. TG mice had heavier spleens, hearts and kidneys than WT mice 

(p<0.05), consistent with previous observations. Neither genotype nor treatment 

showed a significant effect on differences in lung weights. 

   Figure 13  graphs the fat pad weights obtained from the mice. Upon 

dissection, fat pads from different areas of the mouse body were acquired, i.e. 

dorsal, perirenal and gonadal fat. The weight obtained is a combination of all the 

above mentioned fat pads weighed together. No visible adipose tissue was found 

in the TG mice, whether treated or untreated. The leptin-treated WT mice had 
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significantly less fat following the intervention than their control littermates 

(p=0.005).  

   Figure 14  displays two livers, one obtained from a TG mouse and 

another obtained from a WT mouse. The evident difference lies mostly in the size 

of the liver where that of the TG mouse is radically larger than that of the WT 

mouse (hepatomegaly). A difference in the liver color can also clearly be seen 

with the fatty TG mouse liver having a lighter color (due to increased fat 

deposition). 

   Figure 15  shows a dorsal view of 2 skinned mice: a TG and a WT.  

Hepatomegaly which is a characteristic property of lipodystrophic mice is evident 

in this TG mouse, in addition to the absence of fat pads. The WT mouse, on the 

contrary, has a normal dorsal appearance. 
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Chapter 5 

Discussion  

Significant Findings Prior to the Leptin Pump Study  

  The absence of adipose tissue results in several detrimental effects on 

the metabolic and physiological profiles of patients with lipodystrophy, most of 

which have been explored. However, even though “better” treatments exist, the 

“ideal” or “ultimate” treatment is yet to be found (5-12). Moreover, the 

mechanisms underlying the observed alterations need to be more clearly 

understood, which may be a key to advancing treatment options. The AZIP/F-1 

mouse model, as mentioned previously, shares many characteristics with 

lipodystrophic patients and therefore provides an animal model of severe 

lipodystrophy on which studies can be performed to unlock the mysteries of this 

disease and assist in finding better treatment options (1, 42). It is a mouse model 

with a complex phenotype. The metabolic aspects of this phenotype have been 

fairly well studied; however, we were curious about other aspects, such as 

thrombotic function.  

  Our arterial thrombosis trial revealed a remarkable and surprising 

phenotype in the fatless mice: prolonged time to arterial occlusion/clotting when 

exposed to photochemical arterial injury, compared to wild-type littermate mice. 

Impaired vascular function has been previously seen in these mice though in a 

different way. According to Takemori et al, A-ZIP/F1 lipoatrophic mice are 

hypertensive, likely secondary to the lack of perivascular fat tissue and an 

upregulation of vascular Ang II type 1 receptors (82). Lamounier-Zepter et al later 
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suggested that the high blood pressure observed in these mice may be due to 

metabolic-vascular alterations including changes in adrenocortical cells and the 

hypercorticosteronemia seen in the mice (83). Thrombosis, however, has not 

been examined in these mice. The fatless mice phenotype described above, 

therefore, prompted us to investigate about the etiology through examining blood 

counts and clotting factors in these mice compared to WT controls. We first 

started with the blood cell and platelet counts that were not significantly different 

between the TG and WT mice. This meant that there must be a factor beyond 

cell and platelet counts that may still be related to blood/thrombotic profiles of the 

mice. The next step was determining fibrinolysis that we thought might be altered 

in the transgenic mice. However, the euglobulin clot lysis assay that we 

performed resulted in similar fibrinolysis trends between the TG and the WT 

mice, although the baseline absorbance was different between the groups. We 

rendered that to the turbidity that we observed in the plasma samples of the TG 

mice, which in turn can be explained by the previously demonstrated 

hyperlipidemia in the blood of these mice (42, 44, 45). We then proceeded to 

obtaining CBC’s and PT tests from TG mice and WT controls where again, 

differences between the two groups were not evident. Our last step in evaluating 

hematologic and fibrinolytic differences was measuring a-PTT which also was not 

different in the TG mice when compared to their WT littermates. Our conclusion 

was that the delayed clotting observed in these mice must be the result of a 

mechanism or an anomaly that is not related to hematologic and fibrinolytic 

factors but rather to a different characteristic of lipodystrophic mice. 
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Arterial thrombosis trials performed in the past have shown a positive 

correlation between leptin and blood clotting, i.e. in other words, leptin has been 

shown to promote platelet aggregation and therefore blood clotting in humans 

(70, 71) as well as in mice (74-77). Leptin is very low or undetectable in AZIP-TG 

mice (42) and at the same time our mice had normal blood counts and clotting 

factor profiles as previously stated. These findings combined led to the 

hypothesis that the absence of leptin may be behind the altered thrombotic 

phenotype seen in our lipodystrophic mice. By providing these mice with leptin, 

we could test the above hypothesis and examine the metabolic effects of leptin 

administration specifically on the FVB/B6 lipodystrophic mice. We therefore 

provided our four mouse groups with leptin or control solutions exogenously and 

compared the parameters and changes of interest at different time intervals. 

Arterial Thrombosis  

 Although we had a minimal number of successful thrombotic 

experiments to rigorously test our hypothesis, our data do not support an effect of 

leptin on thrombosis in the A-ZIP mice. Regardless of whether or not they were 

receiving leptin, we observed an extremely delayed occlusion time after 

photochemical injury to the carotid artery of A-ZIP TG mice. We have not been 

able to attribute this surprising alteration to enhanced fibrinolysis, deficient 

clotting factors, or abnormal blood/platelet counts. Although we regret that we 

were unable to obtain an adequate number of animals to carefully test our 

hypothesis, we feel relatively confident that leptin does not “rescue” the altered 

thrombotic phenotype of the A-ZIP mice. Our poor success in attaining the 
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arterial thrombosis endpoint in these studies (with mortality of more than half of 

our TG mice during the procedure), is a function of the difficulty in delivering 

anesthesia to these mice. Maintaining their depth of anesthesia at an adequate 

level (without overdose) is very difficult, as previously mentioned in studies of the 

AZIP-TG mouse (42). 

Body and Organ/Tissue Weights 

  TG mice weighing more than WT mice was not surprising. This was seen 

previously (42) and can be explained by organ enlargement that fatless mice 

encounter as they mature, especially hepatomegaly (42, 44, 45). As expected, 

treatment with leptin led to a decrease in body weight in both the TG and WT 

mice. This finding is not surprising since leptin is known to control weight via 

controlling energy intake and metabolism (15, 16). The reduction in body weight 

may further be attributed to increasing energy expenditure in the WT mice though 

this may be unlikely in the TG mice since leptin therapy has been associated with 

a reduction in energy expenditure in lipodystrophic subjects (5, 10). 

  The trends of organ and tissue weights were also as we had expected. 

Livers of TG mice were significantly larger than those of WT mice, which has 

been previously shown (42, 44, 45). This difference in size is attributed to several 

factors, mainly the fact that the liver in lipodystrophic animals is acting as a 

storage depot that also stores what would normally be stored in adipose cells, i.e. 

triglycerides (42), which leads to the previously proven hepatic steatosis in 

lipodystrophic mice (34-37, 42, 84). Moreover, the inflammatory state that is seen 

in these animals (51) may be playing a role in contributing to organomegaly, 
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mainly hepatomegaly, knowing that hepatic steatosis and inflammation have 

generally been shown to be associated (84). The livers of leptin-treated TG mice, 

on the other hand, were significantly smaller than those of the control TG mice, a 

result that was also predictable and supported by the literature (42, 44, 45). 

Leptin administration clearly ameliorated the hepatomegaly through enhancing 

metabolism. It attenuated the steatotic state, an effect that has been seen in both 

lipodystrophic patients (11) and mice (56). This may partly explain the described 

alterations in body weight observed in our TG mice. 

  Spleens, hearts and kidneys were heavier in TG mice than in WT mice. 

This is consistent with previous findings that reported organomegaly in 

lipodystrophic mice (42, 44, 45). These organs were not lighter in leptin-treated 

TG mice when compared to vehicle-treated TG mice. This may imply that some 

of the anomalies caused by lipodystrophy are irreversible. 

  The most exciting part of the dissections was the extensive search for fat 

pads. None were found in the TG mice. This coincides with previous findings (42, 

49) and explains most of the physiological and metabolic abnormalities. 

Importantly, leptin-treated WT mice had less fat than control WT mice did. This 

implies that leptin treatment was effective and that these WT mice were “leptin 

sensitive”. 

Blood and Liver Parameters 

At baseline, TG mice had very low levels of leptin (< 0.5 ng/ml), i.e. below 

normal physiological levels (85). This was anticipated due to the lack of fat in TG 

mice and therefore a lack of this adipocyte-derived hormone. Consistent with 
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this, serum leptin concentration has been observed to be directly proportional to 

fat mass (5). As expected, the WT mice had significantly higher leptin 

concentrations at baseline, which were in the normal physiologic range. Upon 

treatment, serum leptin levels in the leptin-treated TG mice increased robustly 

(almost 7-fold), while vehicle-treated TG littermates encountered no change in 

leptin concentration. These findings demonstrate that our leptin treatment (via 

osmotic pump) of TG mice effectively increased the serum leptin concentration 

into a normal physiologic range.  

Blood glucose (BG) levels of untreated TG mice were higher than those of 

treated mice where the former met the criteria for hyperglycemia and the latter 

fell within the normoglycemia range; however, these differences were not 

significant. This is likely due to the variability of the measure, the limited number 

of mice, and the modest elevation of glucose in this relatively young cohort. In 

future studies, it will be helpful to obtain BG levels at several time points to more 

accurately observe the effect of treatment on the mice. This was not done in this 

study in order to avoid excessive blood withdrawal from the mice and therefore 

additional stress.  

  TG mice, which were expected to be diabetic/ insulin resistant at the time 

of the blood draw, did have significantly more circulating insulin than did their WT 

controls, at baseline. In addition, compared to the TG control-treated mice (which 

became worse during the intervention period), the TG leptin-treated mice had 

significantly reduced fasting insulin concentration. This is consistent with 

previous findings where insulin resistance became progressively worse from 4 
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weeks of age to 10 weeks of age in the Azip fatless mice (49), and where leptin 

enhanced insulin sensitivity in fatless mice (55-57). We also observed a 

reduction in insulin concentration in leptin-treated WT mice suggesting that a 

deficit of leptin at baseline was not required for a decrease in fasting insulin 

during leptin treatment. 

  HOMA-IR scores confirmed that the TG C group was extremely insulin 

resistant and that this effect was ameliorated following leptin treatment. This is 

also consistent with the known insulin resistant phenotype of lipodystrophic mice 

(44, 45) that is improved with leptin therapy (56). 

  High circulating levels of lipids in the blood are expected in fatless mice 

that lack the normal mammalian fat storage depot (42). This was confirmed in our 

study when comparing these mice to controls at baseline. Triglyceride levels 

obtained from plasma samples did not change significantly in the TG mice. They 

seemed to remain almost the same upon treatment, which might imply that 

treatment at least prevented further increase in triglyceride concentration in the 

blood. The only significant change that was seen is an increase in triglyceride 

levels in the untreated WT mice. This may be a normal trend related to age. As 

for liver triglyceride measures, as expected, levels were higher in TG mice than 

in WT mice (vehicle-treated). This has been previously documented (49) as 

AZIP-TG mice are known to develop hepatic steatosis (42). Moreover, the leptin-

treated TG group had lower levels than did the vehicle group, which is supported 

by previous studies both in humans (5, 9) and in mice (56). These results are 

explained by 1) the fact that the liver in the TG mice acts as the major triglyceride 
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storage depot in the absence of adipose cells, causing triglyceride accumulation 

and hepatic steatosis; and 2) the fact that leptin improves triglyceride metabolism 

and thereby reduces hepatic triglyceride accumulation. 

  In both plasma and liver, there were no significant differences in 

cholesterol levels of TG versus WT mice. This was surprising as previous studies 

have reported hyperlipidemia in lipodystrophic mice (42, 44, 45). What was 

expected, however, is the reduction in plasma cholesterol concentration in the 

leptin-treated TG mice. This coincides with previous suggestions that leptin 

improves lipid metabolism in both lipodystrophic humans (11, 12, 86) and mice 

(55, 56). 

  Of interest, the A-ZIP phenotype has been demonstrated to be affected 

by genetic background. For example, A-ZIP mice on the FVB background have 

higher circulating triglyceride and fatty acid levels and more hyperglycemia than 

those on the B6 background according to Colombo et al in 2003 (43). This may 

explain some of the unexpected findings listed above. 
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Chapter 6 

Conclusion  

  The United States has been facing a remarkable increase in obesity over 

the last two decades, associated with several disorders (87-92). Nonalcoholic 

fatty liver disease is rapidly spreading mainly in the form of hepatic steatosis 

which in turn is a known component of obesity and the metabolic syndrome along 

with insulin resistance and hyperlipidemia (93). Insulin resistance and 

dyslipidemia can be caused by either excessive adiposity or lack of adipose 

tissue (94). Lipodystrophy, therefore, carries many of the same characteristics as 

more common metabolic diseases. This disease is being actively researched and 

effective mouse models have been produced, with the Azip-transgenic model 

being very similar in physiology and metabolism to some lipodystrophic patients 

(1, 42). Ongoing and future studies using these models should help explore the 

vague aspects of lipodystrophy and provide more effective treatment options for 

lipodystrophic patients.  

Adipose tissue serves as an endocrine organ through secreting several 

bioactive compounds (adipokines) whose dysregulation is thought to contribute 

to insulin resistance and metabolic disease (94). Leptin, a major adipokine, has 

an essential role in energy homeostasis (5). Low leptin levels appear to be a 

characteristic abnormality in lipodystrophic patients that can serve as an effective 

therapy for reducing their metabolic disease.  However, as previously introduced, 

there are many forms of lipodystrophy, so a clear mechanistic understanding of 

each disease will lead to the most effective treatment strategies.  
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In addition, the administration of adipokines other than leptin might be a 

promising future research option since these adipokines may turn out to be key 

players in many of the metabolic and physiological aspects of lipodystrophy, 

obesity and/or the metabolic syndrome. 

Aside from the metabolic and physiological characteristics, the transgene 

possessed by the fatless mice may be leading to an altered thrombotic function 

via mechanisms that are unrelated to the lipodystrophy or metabolic disturbances 

of this model. Therefore, adipose tissue transplantation in the A-ZIP 

lipodystrophic mice may help determine whether it is truly the absence of adipose 

tissue that induces the observed thrombotic alterations or whether the effect is a 

by-product of the transgenic strategy. Additionally, transplanting adipose tissue 

that lacks leptin may further aid in understanding and dissociating these factors. 

In the future, in a study like ours, a larger sample size and a longer 

duration would likely produce more significant outcomes with a reduced 

variability. These study-design improvements combined with the above research 

suggestions may help solve unanswered questions about the lipodystrophies and 

possibly find treatment targets not only for these disorders, but also for other 

chronic metabolic conditions such as diabetes. 
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Figure 1 
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Figure 1- Formation of Occlusive Thrombus in Wild-t ype (WT) and 
Transgenic Fatless (TG) FVB/B6 Mice. TG mice have a delayed time 
to arterial occlusion, compared to WT mice. 
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Figure 2 
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Figure 2 - Euglobulin Clot Formation and Lysis in FVB/B6 Mice . 
Similar trends in fibrinolysis are observed in TG and WT mice.  
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Figure 3 
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Figure 3- Time to Formation of Occlusive Thrombus p er Group. TG 
mice have a prolonged time to arterial occlusion, compared to WT mice. 
When comparing TG mice that survived, TG C (n=1) and TG Tx (n=2) 
are not different. 
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Figure 4 
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Figure 4- Day by Day Body Weights per Group. TG mice are 
heavier than WT mice at baseline. Following the intervention, both TG 
and WT leptin-treated mice lost weight, comparing pre-treatment to 
post-treatment weights.  
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Figure 5 
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Figure 5- Percent Body Weight Change per Group. TG C mice 
continued to gain weight as they mature while leptin-treated mice (TG 
and WT) lost weight. 
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Figure 6 
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* Asterisks indicate significant pre-post change; Letters indicate  
  significant TG vs WT baseline difference (p <0.05) 
 
Figure 6- Change in Mean Serum [Leptin] per Group. Baseline 
serum leptin levels are higher in WT mice where TG mice have nearly 
undetectable levels. Both the TG and the WT leptin-treated groups 
had an increase in circulating leptin. 
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Figure 7 
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  significant TG vs WT baseline difference (p <0.05) 
 
Figure 7- Change in Mean Serum [Insulin] per Group.  Baseline 
serum insulin levels are higher in TG mice compared to WT mice. 
Both the TG and the WT leptin-treated groups had a reduction in 
insulin levels. 
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Figure 8 
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Figure 8- Change in Mean Plasma [Triglyceride] per Group. 
Baseline plasma triglyceride levels are higher in TG mice compared to 
WT mice. No significant reductions were observed upon treatment 
with leptin.   
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Figure 9 
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Figure 9- Change in Mean Plasma [Cholesterol] per G roup. 
A significant reduction was observed in all groups except in the 
TG C group.    
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Figure 10 
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Figure 10- Mean Liver [Triglyceride:Protein] per Gr oup. TG C 
mice have higher levels of liver triglyceride than WT C mice.  
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Figure 11 
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Figure 11- Mean Liver Weight as % Total Body Weight  per Group. 
Livers of TG mice are heavier than those of WT mice. Livers of leptin-
treated TG mice are lighter than those of vehicle-treated TG mice. 
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Figure 12 
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Figure 12- Mean Organ/Tissue Weights as % Total Bod y 
Weight per Group. TG mice have larger organs compared to 
WT mice. No significant effect of treatment is seen. 
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Figure 13 
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Figure 13- Total Adipose Tissue Weight as % Total B ody Weight per 
Group. Both groups of TG mice lack visible adipose tissue. WT Tx mice 
have less fat than WT C mice. 
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Figure 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure 14 - Mouse Livers Following Dissection . A TG mouse liver 
with hepatomegaly and steatosis (left) vs a healthy WT littermate liver 
(right). 
 



55 

Figure 15 
 

 
 
 

 
  

 
 
 
 
 
 
 
 
 
 
  
 

 
 

  
 

 

Figure 15 - Dorsal View of Skinned Mice with Intact Organs and 
Tissues.  (a) The TG mouse has a large liver occupying most of the 
abdominal cavity and lacks visible fat pads. (b) The WT mouse has a 
normal dorsal view with the absence of organomegaly and the 
presence of fat pads. 
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Table 1: Complete Blood Counts (CBC) in Wild-Type Vs 
Transgenic FVB/B6 Mice (Mean ±SEM)   
 

Blood Parameter  Genotype  

  Wild-type Transgenic 

Plt (10 3/ul) 492.33 + 65.9 567.25 + 55.1 

WBC (103/ul) 4.87 +  0.67 4.825 + 0.85 

RBC (106/ul) 9.77 + 0.44 9.70 + 0.66 

MCV (fl) 43.93 + 0.88 46.08 + 0.27 

RDW  18.67 + 0.59 17.9 + 0.34 

MCHC (g/dl) 35.2 + 0.75 34.78 + 0.28 

MCH (pg) 15.4 + 0.10 16 + 0.04 

MPV (fl) 6.33 + 0.07 6.4 + 0.04 

HGB (g/dl) 15.07 + 0.73 15.53 + 1.08 

% HCT 42.97 + 2.63 44.73 + 3.24 

% Lym 81.33 + 3.37 78.35 + 2.29 

% Mon 6.4 + 1.07 6.6 + 0.31 

% Gra 12.27 + 2.44 15.05 + 1.99 
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Table 2:  Leptin Pump Thrombosis Data: Time to Occlusion  

Mouse Group Time to Occlusion (m) Status 

TG C 48 Expired 

TG C 150+ Discontinued 

TG C 60 Expired 

TG Tx 150+ Discontinued 

TG Tx 87 Expired 

TG Tx 150+ Discontinued 

TG Tx 19 Expired 

WT C 53 Completed 

WT C 17 Completed 

WT C 47 Completed 

WT C 52 Completed 

WT C 80 Completed 

WT Tx 29 Completed 

WT Tx 31 Completed 

WT Tx 46 Completed 

WT Tx 59 Completed 
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ABSTRACT  

EFFECT OF EXOGENOUS LEPTIN ON THROMBOTIC AND  
  METABOLIC PROFILES OF FVB/B6 LIPODYSTROPHIC MICE 

by 
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May 2010 

Advisor:  Dr. Peter F. Bodary 

Major:  Nutrition and Food Science 

Degree:  Master of Science 

Lipodystrophy caused by fat deficiency contributes to metabolic disease 

for which several treatment modalities have been implemented, with leptin 

therapy being the most effective to date. In addition to playing a role in energy 

homeostasis and metabolism, leptin was also shown to play a pro-thrombotic role 

in mice. This role was not examined in fatless mice, neither was thrombosis 

measured. The AZIP/F-1 (FVB) lipodystrophic mouse appeared to have a 

prolonged arterial occlusion time (p<0.05) in a trial done in our lab, with clotting 

factors being normal. The present study was designed to observe the thrombotic 

and metabolic characteristics of fatless mice and examine the effect of leptin 

therapy on these traits. 16 FVB/B6 mice were produced in-house for the study, to 

receive recombinant mouse leptin or saline via osmotic pumps over 12 days. 

Transgenic (TG) mice were randomly divided into two groups: Treatment (Tx, 

n=4) and control (C, n=3); and their wild-type (WT) littermates were similarly 
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divided into Tx (n=4) and C (n=5). TG mice had a prolonged time to formation of 

occlusive thrombus compared to WT mice (p<0.05). Leptin treatment did not 

have an effect on arterial thrombosis in our mice. At baseline/control, TG mice 

were heavier than WT mice (p<0.05), had larger livers (p<0.0001), larger kidneys 

(p=0.01), higher serum insulin (p<0.01), higher plasma and liver triglyceride 

(p<0.01 and p<0.05, respectively) and less leptin (p<0.0001). TG-Tx mice 

decreased in weight (p<0.05) and had smaller livers than those of TG-C mice 

(p<0.05) while having higher levels of circulating leptin (p=0.01) and reduced 

levels of serum insulin (p<0.05) and plasma cholesterol (p<0.05). TG C mice had 

higher HOMA-IR scores (p<0.05) than all other groups verifying insulin resistance 

that is ameliorated by leptin therapy. These findings confirm the hepatomegaly, 

hyperinsulinemia/ insulin resistance and hyperlipidemia seen in fatless mice and 

the effectiveness of leptin therapy while also suggesting that lipodystrophy, at 

least in the AZIP/F-1 mouse, is associated with delayed thrombosis independent 

of the lack of leptin. Lipodystrophic mice remain a useful model to study current 

epidemic metabolic disorders. 
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