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Abstract:

Surnames (family names) show distinctive geographical patterning and remain an

underutilised source of information about population origins, migration and identity. In this

paper we investigate the geographical structure of surnames in 16 European countries

through the use of the Lasker Distance, consensus clustering and multidimensional scaling.

Our analysis is both data rich and computationally intensive, entailing as it does the

aggregation, clustering and mapping of 8 million surnames collected from 152 million

individuals. The resulting regionalisation demonstrates the utility of an innovative inductive

approach to summarising and analysing large population datasets across cultural and
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geographic space, the outcomes of which can provide the basis to hypothesis generation

about social and cultural patterning and the dynamics of migration and residential mobility

in Europe. The research also contributes a range of methodological insights for future

studies concerning spatial clustering of surnames.
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1. Introduction
Family names, also known as surnames, are widely understood to provide good indicators of

the geographic, ethnic, cultural and genetic structure of human populations. This is mainly

because surnames were ‘fixed’ in most populations several centuries ago, and their

transmission over generations (mostly patrilinearly) typically conforms to socio-economic,

religious and cultural characteristics (Smith, 2002) as well as geographical constraints (Manni

et al., 2004). The outcome is a variety of spatial patterns that manifest processes of

biological inheritance (Lasker, 1985) and intergenerational inheritance of culture (Cavalli-

Sforza and Feldman, 1981). The vast literature in this area is principally concerned with

analysing population structure in surname frequency distributions at national or sub-

national levels (for a review see Colantonio et al., 2003). Here we are solely concerned with

how such population structure is manifest across space, rather than between religious,

ethno-cultural or social groups per se. One of the primary methodological concerns of these

studies is the development of: a) adequate measures of surname relatedness - or surname

distance - between localities or regions and b) areal classification algorithms to partition

space according to such distances. In this paper we seek to make two contributions to this

line of research; first we investigate the geographical structure of surnames at a continental

level in 16 European countries, and second we consider a relatively new regional clustering

technique at this pan-European scale. In so doing we draw upon expertise developed

population genetics and geography. The result is a cultural regionalisation of Europe based

purely on the geography of surname frequencies that is key to the search for Europe’s

cultural regions. We use techniques derived from population genetics to devise and cluster

measures of surname distance between populations, and use regionalisation concepts and
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spatial database skills from geography to structure millions of address records and map the

results.

Our analysis is both data rich and computationally intensive, entailing as it does the

aggregation, clustering and mapping of 8 million surnames collected from 152 million

individuals. The resulting regionalisation can be used to infer cultural, linguistic and

genealogical information about the European population over the preceding centuries, for

example with a view to design a genetic sampling framework.

2. Cultural and surname distance between areas

Surnames first appeared in Europe during the Middle Ages (Hanks, 2003) and can be

characterised by frequency distributions within a population that are driven by initial

population size, rate of endogamy between populations and socio-cultural preferences

within a group’s reproduction patterns. Such processes are in turn a product of

demographic, geographic, ethno-cultural and migration factors. One of the most striking and

recurrent findings of surname research is that, in spite of the relative mobility of modern

populations, surnames usually remain highly concentrated in or around the localities in

which they were first coined many centuries ago (e.g. Longley et al., 2011). The size of the

databases available for the study of surnames have been increasing in line with the

computational resources required to process them (see Scapoli et al., 2007, Cheshire et al.,

2010, Longley et al. 2011). Such advances enable the continued progression of surname

research in the context of the many exemplary studies outlined below.

Following the early work of Cavalli-Sforza and colleagues using Italian telephone directories

in magnetic tape form in the 1970s (see Piazza et al. (1987) and Cavalli-Sforza et al., (2004)),
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the increasingly wide availability of digitally encoded names registers has led to a host of

studies of the surname structure of populations of individual countries. Throughout, one

group has dominated this research through the publication of a succession of national-level

surname analyses: their studies include Austria (Barrai et al., 2000); Switzerland (Rodriguez-

Larralde et al., 1998); Germany (Rodriguez-Larralde et al., 1998); Italy (Manni and Barrai,

2001); Belgium (Barrai et al., 2004); the Netherlands (Manni et al., 2005); and France

(Mourrieras et al., 1995, Scapoli et al., 2005). More recently they have amalgamated these

findings for eight countries in Western Europe, analysing a sample of 2094 towns and cities,

grouped into 125 regions (Scapoli et al., 2007). This study found clear regionalisation

patterns in surname frequency distributions, closely matching the national borders for eight

countries, but also highlights anomalies arising from the historical geography of languages.

Whilst being wide-ranging, both geographically and in terms of the number of surnames

sampled, the work by Scapoli et al. (2007) is still limited to the partial sampling of

“representative” locations. The motivation for the work reported here is to expand this work

in methodological terms by including more European countries (16 in this paper), to use

data representing complete populations (i.e. without sampling), and to use new

classification algorithms in the form of consensus clustering to delineate cultural surname

regions and barriers to population interactions over space.

The remainder of this paper is organised as follows: first, we outline the choice of surname

distance metric used in this analysis; second, we review the most commonly used regional

classification algorithms and suggest a new methodological approach; third, we present the

materials and methods used in the analysis; and fourth, we present and discuss the resulting
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surname regionalisation of Europe and the benefits and challenges of the proposed

methodology.

2.1. Measuring surname distance

Interest in the relationship between surnames and genetic characteristics first emerged in

the late 19th century when George Darwin (1875) – son of Charles and himself offspring of

first cousins – used surnames to calculate the probability of first cousin marriages in Britain.

Little further research was undertaken until In the 1960s when Crow and Mange (1965)

proposed a probability of relatedness defined as the frequency of repetition of the same

surname, known as isonymy (Lasker, 2002). In addition to applications to the study of

inbreeding between marital partners or social groups, isonymy can be also be used to

establish the degree of relatedness between two or more population groups at different

geographic locations (Smith, 2002). It is this latter, regional, interpretation of isonymy that

has gained greater currency over the last decades and is the one used here. The coefficient

of isonymy extends the idea of monophyly (sharing a single common ancestor) between two

populations and is defined by Lasker (1985) as “the probability of members of two

populations or subpopulations having genes in common by descent as estimated from

sharing the same surnames” (Lasker, 1985:142). This coefficient is based on the similarity of

the surname frequency distribution between two populations. In the two region case,

isonymy is calculated as:


i 2

pp
R

iBiA
AB

(1)
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where piA is the relative frequency of the ith surname in population A and piB is the relative

frequency of the ith surname in population B. In many cases, especially when comparing

international populations, the similarity between population groups is very small and this

creates very small values of RAB. Therefore, a more meaningful transformation of this

measure, termed the Lasker Distance (Rodriguez-Larralde et al., 1994) is used here. It is

defined as:

LAB= -ln(2RAB)

(2)

where RAB = (piA × piB)/2. The inverse natural logarithm creates a more intuitive measure

that can be thought of as distance in surname space such that larger values between

populations suggest greater differences between them (that is, less commonality in their

surnames). Scapoli et al. (2007) suggest that this measure can be used to isolate differences

in cultural inheritance because two populations that are genetically homogenous, yet distant

in Lasker distance terms are likely to exhibit subtle differences in cultural behaviour.

Doubts about the value of isonymy studies are founded upon the fundamental assumptions

that they entail. An implicit assumption is that at some previous generation each male had a

unique (monophyletic) surname, and that all surnames were first coined synchronically in

the same generation (Rogers, 1991). We know this not to be the case in several countries,

for example in Great Britain, where for a multitude of reasons permanent surnames were

acquired gradually in a number of distinctive and separate sub- populations. The name

‘Smith’, for example, describes an occupation found within every community across the

country and hence resulted in a heterophyletic surname. However, it is also the case that
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even if two populations with very similar surname distributions do not share unique

common ancestors, they are nevertheless much more likely to be genetically related to one

another, in comparison with a population that has a very different surname makeup (Lasker,

1985).

One important alternative to the Lasker Distance was proposed by Nei (1973). His measure

of genetic distance, originally intended for the study of allele similarities between

populations (Nei, 1978), has been applied to surnames as Nei’s distance of isonymy in a

number of studies (such as Scapoli et al., 2007). Others have also successfully used the

measure (see Manni et al., 2008 and Manni et al., 2006) and found it less sensitive to

heterophyletic surnames and also likely to be more correlated with geographic distance.

The purpose of this paper is to propose an innovative set of clustering techniques across a

large number of countries. Therefore, it was thought best to avoid comparisons of multiple

established distance measures and focus our clustering efforts on a single surname

(dis)similarity measure so as to keep this aspect of the analysis fixed and concentrate on

clustering and representational issues. On the basis that the work presented here is an

extension of previous national level studies with the Lasker Distance (see Longley et al., 2011

and Cheshire, 2011) the authors felt most comfortable using the measure here. The

intention is to conduct further research into the utility of dissimilarity measures from both

population genetics and demographics more widely and the Nei’s distance will form part of

this.

2.2. Delineating surname regions: consensus clustering and MDS

As the result of the studies outlined above, the similarities between frequency distributions

of surnames and the genetic structure of populations across space are now quite well

known. However, there continues to be an important research gap with respect to the most

appropriate spatial analysis techniques to automatically detect the geographical patterns of

surname distributions at various scales. In population genetics, most studies posit clinal
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transitions in genetic characteristics punctuated by abrupt barriers (Lasker and Mascie-

Taylor, 1985). In contrast, and with a few exceptions, surname geography research is usually

founded upon discrete administrative areal building blocks, and as such produces valid

generalisations for only a presepecified range of scales. We are not the first to apply

clustering and data reduction techniques to surnames (in addition to the studies listed

above, see Chen and Cavalli-Sforza (1983)) but we hope to improve on previous research by

suggesting a good compromise between the continuous and discrete representations of

space by using two areal classification methods: consensus clustering and multidimensional

scaling (MDS). The former creates discrete groupings of prespecified areal units whilst the

latter, when used to inform areal colour values on a map, can produce a more continuous

representation of population change over space.

Indicating the certainty of a clustering outcome is an important aspect of population

geography research, especially in regionalisation. Readers should refer to Kaufman and

Rousseeuw (1990) and also Gordon (1999) for a review of these. Of direct relevance here is

Nerbonne et al.’s (2008) use of the aggregate data matrices produced in dialectometrics as a

basis for identifying linguistic regions. The certainty of such regions were determined

through bootstrapping and composite clustering techniques and visualised both as a

dendrogram and composite cluster maps. In the former, each branch has information about

the number of times a particular grouping between its sub-branches occurred, while in the

latter lines between geographic regions were drawn with increasingly dark shading,

corresponding to the number of times contiguous spatial units on both sides of the line were

assigned to different clusters. Using a different approach but with a similar cartographic

effect, Manni et al. (2004) and Manni et al. (2006) implement Monmonier’s (1973) boundary
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algorithm to detect dissimilarities between contiguous regions. The mapped results of both

methodologies do not require the assignment of all spatial units to a particular cluster, but

the objective is to identify only the most abrupt boundaries.

In this paper consensus clustering (Monti et al. 2003) was chosen as a promising method of

creating a robust cluster outcome, consistent with providing a number of metrics to indicate

the optimal number of clusters and the certainty associated with each cluster assignment.

Such metrics are useful because they give context to the final clustering outcome: in

particular they address the issue that, contrary to what many surname regionalisation maps

suggest, not all resulting clusters are equally probable to occur within the data.

Consensus clustering, first proposed by Monti et al. (2003), is a relatively new method for

class discovery. It has become increasingly popular in the genetics literature - Monti et al.

(2003) is highly cited - and there are a number of papers, such as Grotkjær et al. (2005), that

compare its effectiveness to other more established clustering methods. The underlying

hypothesis states that items consistently grouped together are more likely to be similar than

those appearing in the same group less frequently (Simpson et al. 2010). The method is

designed to increase the stability of the final cluster outcomes by taking the consensus of

multiple runs of a single cluster algorithm. Simpson et al. (2010) have provided an extension

to this approach, called merged consensus clustering, by enabling the cluster assignments to

be the product of multiple runs of multiple algorithms or kinds of data. By merging the

results from different algorithms it is thought that the confidence in the result will increase

because the limitations of one clustering algorithm will be offset by the strengths of another.

For example Ward’s hierarchical clustering is sensitive to outliers in the data, but offers a

stable solution over-all in terms of consistency of cluster outcome; by contrast, the over-all
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arrangement of K-means clusters is relatively unstable, but the solutions are less sensitive to

outliers. In addition to the increased stability of the results, consensus clustering can provide

a range of metrics to help inform the optimum number of clusters as well as the robustness

of the resulting cluster outcome in terms of its structure and the membership of individual

clusters.

Before undertaking the merged consensus clustering procedure, the user has to select the

clustering algorithms to be used. Theoretically there is no limit on the number of algorithms

that contribute to the final result aside from the practical constraints related to computation

time and the degree to which the result will actually improve. Some of the most popular

data classification methods are Ward’s hierarchical clustering (Ward, 1963), K-means

(Hartigan and Wong, 1979), partitioning around medoids (PAM) (see Kaufman and

Rousseeuw (1990)) and self-organising maps (SOM) (Kohonen, 1990). The algorithms

selected for this study are listed under the analysis section below. Table 1 shows the

definitions of the variables and the algorithms used – the latter are adapted from Monti et

al. (2003) to make them more applicable in this context.

<- Table 1 about here ->

Consensus clustering first samples the complete dataset ܦ to create a new subset ()ܦ

before clustering using the specified algorithm(s). The sampling (using methods such as

bootstrapping) and clustering are repeated multiple times in order to gauge sensitivity to

repeat sampling from the total number ܰ of randomly selected geographic units ݁. The

results from each iteration are stored in a consensus matrix ℳ, which records for each

possible pair of ݁the proportion of the clustering runs in which they are both clustered

together. The consensus matrix is derived by taking the average over the connectivity
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matrices of every perturbed dataset (Monti et al., 2003). The entries to the matrix are

defined in the following way:

ܯ ()( ,݅ )݆ = ቄ
1 if�݅�and�݆�belong to the same cluster

0 otherwise

(3).

()ܦ is the (N x N) connectivity matrix, required to keep track of the number of iterations in

which both geographic units are selected by resampling, such that its (i,j)th entry is equal to

1 if both i and j are present in ,()ܦ and 0 otherwise. According to Monti et al. (2003) the

consensus matrix ℳis the normalised sum of the connectivity matrices of all the perturbed

datasets :()ܦ} ℎ = 1,2, … :{ܪ,

ℳ( ,݅ )݆ =
∑ܯ

()( ,݅ )݆

∑ܫ
()( ,݅ )݆

(4).

The i,jth entry in the consensus matrix records the number of times the two items have been

assigned to the same cluster divided by the number of times both items have been selected

(sampled). It therefore follows that a perfect consensus result would produce a matrix

containing only 0s and 1s. ℳ in essence provides a similarity measure to be used in further

clustering or agglomerative hierarchical tree construction (Simpson et al. 2010).

To create a merged result a merge matrix provides a way of combining the outcomes

multiple methods by weighted averaging their respective consensus matrices (Simpson et al.

2010). The weighting can be adjusted to increase or decrease the influence of certain
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clustering methods. The advantage of this approach is that it mitigates the issues associated

with the different classification properties in each of the algorithms discussed above.

Two types of clustering robustness measures can be calculated. The first relates to the

cluster structure (called cluster consensus m(k)) and the second to the cluster membership

(called item consensus mk(i)). In regionalisation problems, the latter is especially useful

because it enables the comparative visualisation of the geographic unit’s cluster allocations

alongside their summary measures of cluster robustness. As is often the case, a geographic

unit may only be assigned to a particular cluster on the basis that all units have to be

assigned to one of the set of clusters. Where allocations are marginal, there will be low

confidence in the allocation and it can therefore be interpreted accordingly. Monti et al.

(2003) first define Ik as the set of indices of items (geographic units in this case) belonging to

cluster k. This can then be used to define the cluster’s consensus as the average

consensus index between all pairs of items belonging to the same cluster.

݉ ( )݇ =
1

ܰ(ܰ − 1)/2
 ℳ( ,݅ )݆
,∈ூೖ
ழ

(5)

The corresponding item consensus for each item ei and each cluster k is defined as:

݉ ( )݇ =
1

ܰ − 1{ ݁∈ {ܫ
 ℳ( ,݅ )݆
∈ೖ
ஷ

(6)
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where 1 {cond} is the indicator function that is equal to 1 when cond is true and 0 when

false. Item consensus mi(k) measures the average consensus index between ei and all other

items (geographic units) in cluster k. In the case of perfect consensus across all runs, the

cluster consensus would be 1 for each cluster. As is demonstrated in the results section, this

measure provides the level of confidence in the final result, expressed as a function of the

number of times a geographic unit has been assigned to a particular cluster.

The use of multiple classification methods across a range of cluster values enables

consensus clustering to provide a number of metrics to help inform the selection of the

optimal number of clusters. Monti et al. (2003) state that the true number of clusters (k) can

be estimated by finding the value of k at which there is the greatest change in the empirical

cumulative density function (CDF) calculated from the consensus matrix ℳ across a range of

possible values of k. If the unique elements of ℳare placed in descending order, it is

possible to define the CDF(c) over a range c=[0,1] using the following equation.

)ܨܦܥ )ܿ =
∑ழ1{ℳ( ,݅ )݆ ≤ }ܿ

ܰ(ܰ − 1)/2

(7).

It is then possible to calculate the area under the curve (AUC) of CDF as follows:

ܥܷܣ =  −ݔ] ିݔ ଵ]ܨܦܥ(ݔ)



ୀଶ

(8)

where xi is the current element of the CDF and m is the number of elements. If every

iteration from the consensus clustering identifies the same groups then the ℳ elements will
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be either 0 or 1, and thus AUC= 1. This provides the benchmark against which to compare

the clustering results. One can experiment with the number of clusters into which to group

the data, ranging from values between K=2 to Kmax and compare their results with the

benchmark AUC=1 result. The result with the number of groups that comes closest to this

can therefore be considered the optimum number of clusters. To establish the best

outcome the quantity △ ܭ is calculated, which is the change in AUC as k varies. The

optimal k value is broadly considered to coincide with the peak in △ .ܭ Using Simpson et

al.’s (2010) merged method the resulting consensus matrices (one from each cluster

method used) from the optimal k are combined through weighted averaging. The

merged matrix maintains the same properties as a consensus matrix and can therefore

be used as a dissimilarity matrix for re-clustering.

In addition to the identification of discrete surname regions we also use multidimensional

scaling (MDS) to show more subtle and continuous differences that depict trends or surfaces

of closeness or dissimilarity between populations. MDS provides an effective summary of

the degree to which regions are related to each other in ‘surname space’. Following

Golledge and Rushton's (1972) pioneering work, MDS has found many spatial analysis

applications (Gatrell, 1981). MDS reduces the dimensionality of a (dis)similarity matrix of m

rows by n columns with a large value of n, to one with very few values of n. In geographic

applications, the dissimilarity matrix between areas can be converted through MDS into a

space of minimum dimensionality (typically two or three dimensions or number of n) closely

matching the observed (dis)similarities in the data (Gatrell, 1981). MDS can either be metric

or non-metric; both seek a regression of the distances on the (dis)similarity matrix with the

former utilising the numerical values of the (dis)similarities and the latter their rank-order.

For its application in this paper, we acknowledge Manni et al.'s (2004) concerns that MDS
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(like principal components analysis) does not provide a statistical analysis of the pattern of

change, instead portraying an interpolated landscape in geographic space. This, of course,

differs little from the maps produced by Lao et al. (2008), or Cavalli-Sforza (2000), which rely

on spatial interpolation techniques to infer genetic characteristics in areas where samples

have actually not been taken. This, in part, is the reason why we adopt a mixed approach

here by combining MDS with cluster analysis in order that one set of results can provide

context to the other.

3. Materials and methods

3.1. Data and geography

The UCL Worldnames database (see worldnames.publicprofiler.org) contains the names and

addresses of more than 400 million people in 26 countries, derived from a range of publicly

available population registers and telephone directories collected since 2000. For purposes

of this paper, surname data for 16 European countries in Worldnames were extracted –

more than 8 million unique surnames – along with their geographical locations and

frequencies of occurrence. A list of countries, name frequencies and geographical

characteristics is shown in Table 2. The countries used in this study reflect those available in

the Worldnames database, and thus omissions reflect an inability to source the requisite

data, rather than a deliberate exclusion of particular countries.

<- Table 2 about here ->

The ongoing assembly of this database is a major ongoing enterprise, involving the

acquisition, normalisation, cleaning and maintenance of publicly available telephone

directories and commercial versions of public registers of electors. The extract used in this
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paper comprises a commercially enhanced version of the 2001 Electoral Register for the UK

and landline telephone directories from the remaining countries identified as current during

the period 2001-2006. There are many potential sources of bias in these sources, and some

are likely to be systematic in their operation. Non-electors (of different types) are likely to be

under-represented in the UK data, for example, and such individuals are more likely than

average to bear names recently imported from abroad. Landline rental is likely to introduce

some socioeconomic and geographic bias in some European countries, while the bearers of

some names may be more likely to withhold their telephone numbers from public

directories than others. These are all complicated issues to address and thus, in order to

expedite analysis, we have taken the decision to accept the data in the form in which they

were supplied to us. We view the time period as helpful in sustaining this decision, in that it

predated the period of mass mobile phone ownership, which may have reduced the

penetration of land line services amongst some groups, and the heightened privacy

concerns that are leading to attrition in the size of the public version of the UK Electoral

Register.

Selection and calibration of appropriate spatial units is a key problem in geographical

research (Openshaw, 1984) and one that requires much more thorough consideration in the

population genetics literature. In order to analyse Europe’s surname regions we first had to

adopt a geographical unit of analysis that was as consistent as possible throughout the study

area. The international nature of the Worldnames database means that it contains data at

geographic scales ranging from an individual’s address through to name frequencies within

administrative areas. Individual addresses have been carefully geocoded to a set of

geographical coordinates (latitude and longitude) at levels of resolution ranging from the
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building level to the street, postcode, city, metropolitan area and administrative region.

Since this study is concerned with general patterns at the pan European level we are

interested in aggregating detailed locations onto a set of standard geographical regions of

similar size and population. European Union (EU) NUTS regions (Nomenclature d'Unités

Territoriales Statistiques) provide a convenient set of geographic units that broadly conform

to these aims. NUTS are a standard referencing system for the hierarchy of five levels of

administrative sub-divisions of EU countries for statistical purposes, ranging from broad

country regions (NUTS 1) to municipalities (NUTS 5). Initially all surname data were

aggregated to NUTS 3 level (the province or department), but it subsequently became

apparent that some countries with relatively large numbers of NUTS 3 units relative to their

population sizes (such as Germany where these correspond to 429 Kreise or Districts) were

having an undue influence on the results. This was especially evident at the clustering and

MDS stages of the analysis. Therefore, for this study we have opted for a combination of

NUTS 2 and NUTS 3 regions in an attempt to address this problem and to produce a set of

homogeneous areas in terms of population size and geographical extent. In so doing, we

follow common practice in geographical analysis of NUTS data in Europe. Table 2 identifies

the NUTS level selected for each country and the number of areal units. This resulted in a

total number of 685 geographic units across the 16 countries.

3.2. Analysis

Our analysis consisted of applying consensus clustering and MDS to the 685 geographic

units. The analysis was implemented using the statistical software R (R Development Core

Team, 2010); in particular the consensus clustering required the clusterCons package,

developed by Simpson et al. (2010). The package is a new release and designed primarily for

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 October 2011 to acquire final version.



gene expression microarray data and we provide its first documented use in the context of

population genetics/ geography.

A matrix of the Lasker Distances between all pairs of NUTS geographic units provided the

input for the clusterCons package. Consensus clustering was performed using three different

algorithms: K-Means, partitioning around medoids (PAM) and Ward’s hierarchical clustering.

These were chosen for their success in previous studies (see Cheshire et al. 2010, Longley et

al. 2011). In order to select the most appropriate number of clusters (K) in which to group

the geographic units, each of these algorithms was run using K values ranging between 5

and 45. For each value of K, subsampling was used to provide 200 selections for each

algorithm in the consensus clustering. The results of this process produced a merged

consensus matrix – an average of the three consensus matrices (one for each clustering

methodology) – for each value of k (resulting in the creation of 40 matrices). The merged

consensus matrices provided the basis for the △ ܭ calculations, the results of which are

shown in Figure 1.

Figure 1 shows a dramatic decrease in △ ܭ values between K=5 and K=12, fluctuating

between 12 and 20 before stabilising after K=21. Solely on the basis of Monti et al.’s (2003)

number of clusters criterion (outlined in Section 1.2.3.) 10 should have provided the best

outcome. It was however decided to relax this criterion and select 14 clusters for a number

of reasons.Firstly, this does not exceed a practical number of clusters for visualising regions

in a choropleth map and secondly it makes intuitive sense as it approximates the number of

countries used in this analysis and hence it is likely to capture the most significant

interactions between countries. We did trial a number of results with more clusters but we

found, as predicted by Monti et al. (2003), that random clusters can be created with the
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consensus clustering methodology if the stopping criterion moves beyond the highest △

.valuesܭ The results with K> 14 thus contained some questionable regional groupings within

countries. The picture at K> 9 but < 14 appeared too generalised when mapped (although

was more stable) for the purposes here.

<- Figure 1 about here ->

Figure 2 shows a box plot with the robustness values associated with the final cluster

structures at 14 clusters (as outlined in Equation 5). In addition to the results from clustering

the final merge matrix, those from the non-merged consensus clustering are also included

for comparison. In agreement with preliminary research using different data (Cheshire and

Adnan, 2011), the merge matrix result produced higher median robustness values across all

algorithms when compared with the non-merged results. Overall, based on Figure 2, it was

thought that PAM on the merge matrix produced the most robust cluster structure.

Although, the PAM inter-quartile range was greater than that for Ward’s algorithm, six of the

‘Ward clusters’ (nearly half) were classified as outliers. The membership robustness values

were also highest, on average, for the PAM clustering result: these have been mapped

alongside the final cluster outcome in Figure 3.

<- Figure 2 about here ->

In this study, guided by the visual interpretability of the results, we also use MDS in two and

three dimensions. MDS undertaken for greater than three dimensions had little impact (see

stress values in Figures 4 and 5) on the positioning of the NUTS regions in relative space and

becomes increasingly hard to visualise effectively in print. Results from the MDS are shown

in two ways. Figure 4 shows a conventional plot of the results from two-dimensional MDS
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for each country, where each dot represents a NUTS region and each axis each of the two

MDS dimensions. Figure 5 is a more novel representation, previously used in linguistics (see,

Nerbonne (2010)) and shows the three-dimensional MDS values on a 2-D map. In this figure

the raw MDS coordinates have been rescaled to values between 0 and 255 in order that they

can be substituted for a value in the Red, Green, Blue (RGB) colour model. Each separate

component is mapped onto one of these colours (Dim. 1= red, Dim. 2=green, Dim. 3= blue)

before all three are combined into a single map to produce the colour map in Figure 5. We

consider this to be a particularly effective, although not perfect, method of visualising MDS

results as it demonstrates both continuous and abrupt changes in structure.

<- Figure 3 about here ->

Finally, in order to measure the effect of ‘isolation by distance’, Figure 6 plots for each of

234,270 possible pairs of spatial units their geographic distance (measured as Euclidean

distance in kilometres from the NUTs centroids) against their Lasker Distance in surname

space (Equation 2). The same type of plots is also separately repeated for each country and

shown in Figure 7.

4. Results

This section presents the key results of the analysis presented above with the general

objective of describing the geographical patterns found and offering some insights into the

performance of the classification and visualisation methods used. The specific

methodological aspects derived from these results will be discussed in the next section.
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4.1. Isolation by distance

The scatterplot in Figure 6 hints at a relationship between Lasker Distance and geographic

distance across Europe, although the strength of this relationship may be less forceful than

could have been expected from general knowledge. This can be attributed to the fact that

Euclidean distance fails to reflect well-known physical barriers to movement, such as

coastlines and mountain ranges that facilitate or impede movement. The mean Lasker

Distance across Europe is 10.45 with the maximum value (19.68) occurring between

Northern Ireland and southern Italy, hinting at a measure of isonymy with a low dispersion

across Europe compared to geographic distances.

<- Figure 4 about here ->

At the country level, the relationship between surname and geographical distance presents

some interesting and particular national trends, as shown in Figure 7. Multilingual countries,

such as Belgium and Switzerland, unsurprisingly show the strongest relationship between

geographic distance and differences in the surname composition of its regions. Counter-

intuitively perhaps, the plot for Norway suggests that surname diversity increases with

proximity. This is most probably because of the greater surname diversity (resulting from

domestic and international migration) in urban areas that are close to one other in the

southwest of the country. This diversity appears to be sufficiently strong and in close

proximity, managing to offset the more distant but more homogenous rural areas. In

countries such as Denmark, a de-facto archipelago, Euclidean distance does not reflect

actual population interaction. Moreover, the plots in Figure 7 provide an important

indication of the sub-national interactions between distance and surname diversity.

<- Figure 5 about here ->
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4.2. Consensus Clustering

The clustering results shown in Figure 3A conform to many well-known national and

linguistic divisions across Europe, and most notably, follow linguistic or historical political

boundaries, in some cases reflecting the effects of contemporary global migration to large

urban areas.

The clusters generally follow national borders, with some interesting exceptions: multilingual

countries and those with unique regional patterns. Large parts of Switzerland have been

allocated to the same cluster as the Alsace region in France, Southern Luxembourg and the

Bolzano region in Northern Italy, denoting similar surname characteristics shared by these

multilingual areas with German language heritage. The analysis has also split Belgium along

linguistic lines, assigning Flanders to the same cluster as the Netherlands and Wallonia to

the French cluster, with part of Brussels appearing as a French enclave within Wallonia.

<- Figure 6 about here ->

Denmark, Norway and Sweden have been assigned to the same cluster except for one

sparsely populated area of northern Sweden that is well known to have commonalities with

its Finnish neighbour. This particular area has been grouped together with more “peripheral”

countries such as Poland and Serbia, Montenegro and Kosovo. The robustness values

associated with this area in Sweden are low, suggesting the region shares relatively little in

common with the countries included in this cluster, which is truly a Polish cluster, with the

ex-Yugoslavia region being associated with it because of its small size in relative terms (in

effect an outlier as the aforementioned Northern Swedish region).
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Beyond contemporary national political boundaries there are some interesting within

country regionalisations that derive from the analysis. In the UK, historical linguistic regions

such as Wales, and the Scottish Islands are clearly distinguishable from the rest of the UK. It

is also interesting to see the urban corridor around London suggesting that the surname

composition of these areas is much more diverse and hence disconnected from the national

picture. This demonstrates the uniqueness in the surname composition of contemporary

global migrants to the London area (see also Longley et al., 2011). In the rest of the British

Isles, Ireland (Eire) is grouped under a single cluster, that includes most of Northern Ireland,

except for the Eastern coast reflecting the close migration and trade flows with Great

Britain.

<- Figure 7 about here ->

In France, the mainland except for the Alsace-Lorraine has been allocated to a single cluster

that includes the island of Corsica and the Geneva region in Switzerland, as well as the

Wallonia region in Belgium. This is hence a ‘tight French surnames cluster’ automatically

identified by the clustering algorithm. Italy has been split in two clusters, with a northern

and western cluster separated from the rest of the country. Spain solidly belongs to a single

cluster, despite its strong multilingual cleavages (Mateos and Tucker 2008), perhaps because

of its overall low surname diversity (Scapoli et al, 2007). Most of Germany is allocated to a

single cluster, while most of Austria belongs to a separate cluster, with some spillover

regions between the two.

4.3. Multidimensional Scaling (MDS)

The results from the multidimensional scaling largely support the consensus clustering

outcome. The 2-D MDS plots for individual countries shown in Figure 4 provide an indication
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of the location of each of the spatial units in their multidimensional surname space. Those

countries that have largely homogenous surname distributions form very tight clusters, such

as Germany, Ireland or Denmark. Others such as Switzerland, Luxembourg, France or Spain,

show a greater degree of scatter, reflecting present or historic multilinguism. Of most

interest are the outlier points for each of the countries. For example, the three highlighted

points in Italy’s distribution are spatial units on the island of Sardinia, and those highlighted

in France represent the border region of Alsace-Lorraine.

Figure 5 provides the geographic context to the results of the MDS analysis and is, in many

ways, much more informative as a result. The maps (best viewed electronically at

www.spatialanalysis.co.uk/surnames) create a similar impression to those in Figure 3 in

addition to some more subtle distinctions. For example MDS Dimension 3 suggests a rather

strong north-south split within Germany that is not noticeable in the consensus clustering

results or the three-colour map in the same figure. Multi-lingual countries are also clearly

identified in this figure, as well as some of the diversity within the Netherlands identified by

Barrai et al. (2002). It is clear from Figure 5 that the European map has a number of abrupt

transitions in its surname compositions. There are clear splits between the British Isles and

the Continent, between Romance and Germanic languages, between Scandinavia and the

rest of Europe, and between Poland and Germany. The latter abrupt transition is especially

striking since the current Polish-German border only dates to 1945. This probably reflects

rapid population movement during World War II and the practice of surname change or

forced migration on the Soviet side during the Cold War. Such distinctions are perhaps

unsurprising but these maps show, for the first time, how abrupt boundaries across Europe
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can simply be captured by surname frequencies derived from data assembled from

telephone and other directories.

5. Discussion

5.1. Regionalisation methods

The fact that the outcomes from the two separate regionalisation techniques used in this

paper, consensus clustering and MDS, are in broad agreement with previous research in this

area is encouraging and serves to endorse their use in geographic analysis of population

structure. Clustering the merged matrix provided a more consistent outcome than

consensus clustering, which in turn was more reliable than clustering areas using a single

algorithm. The method does not obviate the need for the selection of a single algorithm to

produce the final result, but it does provide some useful metrics upon which to base this

decision. As Figure 3 demonstrates, the ability to map the cluster membership robustness of

each spatial unit to its respective final cluster provides a powerful way of assessing the

appropriateness of the outcome for each specific area. A key flaw with conventional

clustering routines is the requirement to assign every item to one of a limited set of clusters,

since this may result in questionable cluster allocations. Using robustness measures, such

‘weak’ allocations can be identified and interpreted with an appropriate degree of caution.

In addition the △ ܭ measure is useful for indicating the optimal number of clusters that

should be used as an input to the algorithm. It should be noted that "optimal" in the

quantitative sense, might not be optimal in the practical sense. If the outcomes were to be

mapped, for example, there would be a limit on the number of cluster outcomes that can be

readily discriminated by the map user. A substantial advantage of the methods presented
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here is in the visual outputs that they provide so this limitation should not be

underestimated.

A final consideration relates to the opposite scenario where the △ ܭ measure indicates that

a very low cluster number is optimal but the researchers may wish to identify a greater

number of clusters to highlight diversity. In this case the desired clustering result can be

shown alongside that which is optimal. Merged consensus clustering cannot therefore

entirely remove the need for subjective guidance of cluster analysis, but it does provide

measures upon which researchers can base their decisions. We do not claim that our use of

consensus clustering has provided a panacea to the many issues surrounding the clustering

of surname data. We do hope, however, to have made a substantial empirical contribution

to the debates surrounding such issues through the application of the method to such a

large dataset.

The maps shown in Figure 5 demonstrate the power of mapping MDS values in this context.

The resulting impression of regionalisation is similar to that produced by the

computationally more intensive consensus clustering with the additional advantage that less

discrete phenomena such as isolation by distance is also shown. Assigning discrete groupings

to the visual impressions created by the maps is best left to the sorts of clustering

methodologies shown here, but the relative simplicity (using most widely available statistical

software packages) and speed of the MDS classification makes it a powerful one in this

context.

5.2. Issues of geographical scale and size

The datasets used here contain information at the level of the individual for most countries,

and therefore, they offer the potential for much finer-scale analysis than has been presented
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here for the 685 NUTS2/3 areas. Very fine spatial units will create different regionalisation

outcomes out of the same input dataset as those based at a coarser scale. This effect is

clearly seen if Figure 7 in Scapoli et al. (2007) is contrasted with Figure 3A above. For

example, Scapoli et al. (2007) have clustered the entire region of Lorraine as part of the

Franco-German border area using NUTS 2 regions, while the smaller geographical units

presented in Figure 3 (NUTS 3) suggest that it is only those departments contiguous with the

German border (and not with Belgium or in the interior) that fall into this category.

The issue of scale is partially resolved through the application and context of the surname

research being undertaken. If, for example, surname analysis is used as a proxy for genetic

information at the European level then fine scale analysis may be unnecessary since most

traits are only noticeable at coarse granularity (Cavalli-Sforza, 2000). That said, as Longley et

al. (2011) demonstrate using similar methods for Great Britain, the use of fine granularity

units of analysis will still preserve the large-scale trends if these are legitimate and not just

artefacts of the units used. A major advantage of smaller spatial units is their ability to

highlight detail, such as that arising out of more recent migration events. This may be

especially useful in the context of understanding segregation in global cities such as London,

Paris and other large European cities. Whilst such fine-scale analysis would not be practical

at a European level, it could nevertheless be undertaken within each of the 14 or so

groupings created in this study in order to identify the dynamics within each of these

surname sub-regions.

An issue to be considered alongside the size of spatial unit selected is the size, concentration

and distribution of the populations contained within them. The (dis)similarity between the

surname compositions of populations has been established between areas with the Lasker
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Distance. The subsequent clustering of the measure is sensitive to the different levels of

aggregation and sampling associated with the inconsistent population sizes represented by

each spatial unit. Dissimilarity measures, such as the Lasker Distance, rely on comparisons

between aggregate population groups that are often equally weighted for the analysis. A

spatial unit representing 100 people is therefore treated in the same way as one with 1,000

or even 10,000. A country’s influence on the analysis is in part based on the number of

spatial units it has rather than the size of its population. The likely result is an apparent

increase in diversity for countries partitioned into large numbers of regions, despite

relatively uniform surname compositions. It is therefore the case that the resulting

classification is dependent on the size of the spatial units, the population size per spatial unit

and the surname heterogeneity within and between the spatial units. The use of merged

consensus clustering has helped to accommodate some of these effects, in addition to

minimising the impact of outliers in the cluster analysis. Future work will seek to establish a

number of heuristics around which to base a suitable weighting methodology to account for

the varying populations in each spatial unit across Europe.

A number of approaches could be used to mitigate the drawbacks associated with

inconsistent levels of aggregation within distance measures. The obvious solution would be

the greater standardisation of spatial units across Europe, in order that they better reflect

population density. This, however, leads to complications such as whether the size of the

resulting units should reflect the target population density or the sampled population

density. In addition, more sparsely populated areas are going to require larger units (in terms

of geographic extent) in order to meet a population threshold and this is likely to risk

amalgamating culturally distinct groups as potential surname boundaries are crossed. This
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solution would present a major undertaking at the European level and may not produce

significantly improved results. More practical options could therefore include weighting the

dissimilarity calculation or its subsequent clustering. One possible approach, in this context,

would simply be to multiply the elements of the Lasker Distance matrix by a suitably

normalised population weight. Such an approach may also require some nationally varying

“alpha” value to alter the influence of the population weighting on the cluster outcome.

We consider the disparities in sample size for each population a lesser issue because, as Fox

and Lasker (1983) demonstrate, the relative proportions of each surname tend to be

consistent whatever the percentage of the population is sampled so long as the sample is

representative. We believe that our data sources are broadly representative of their target

populations (with the caveats below) and therefore will have adequate proportions of each

surname to calculate realistic pairwise distances. Finally, an element of uncertainty has also

been introduced in this analysis by the different provenance of the surname frequency data

for each country. While the ultimate data source for most of the countries is the national

telephone directory (except the UK where an enhanced electoral register was used), these

obviously do not present identical characteristics across the 16 countries. These include

national variations in the gender bias towards male registration in telephone directories,

variable penetration of land line rental in the population, different conventions for

subscribers removing their entries from directories, different customs in registering names

to telephone lines and different procedures and conventions by the companies that

commercialised the data. Following from the previous discussion on geographical scale, this

can also be applied to geographical extent. If we had clustered surname distances
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individually within each country the results would have been somewhat different to doing so

for the whole of Europe in a single step.

6. Conclusions

This research has offered a number of important contributions to our understanding of the

spatial distributions of surnames. It has combined a commonly used method of establishing

the similarities in the surnames composition between different populations or areas

(isonymy) with novel forms of data clustering and geographic visualisation (consensus

clustering and MDS). It has created the most comprehensive surname regionalisation of

Europe to date by examining the 8 million surnames of over 150 million people who can

reasonably be deemed representative of the entire populations of each of the 16 countries

included here. The unprecedented size and comprehensiveness of the dataset used has

provided new insights into the problem of identifying the regionalisation of European

populations using surname distributions as a proxy for cultural and genetic structure. The

introduction of a new method – merged consensus clustering – in this context has greatly

increased the stability and consistency of traditional clustering algorithms. In addition the

mapping of a measure of cluster robustness alongside the final results provides important

context about the strength of the resulting regions. This information is augmented by the

results of MDS analysis that, as shown in Figure 5, capture both the abrupt transitions in

surname composition as well as more gradual trends. This goes some way towards

combining the traditionally continuous models of genetic diversity with the discrete

transitions commonly established in surname analysis.
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In conclusion, this paper has sought to demonstrate the utility of an inductive approach to

summarising and analysing large population datasets across cultural and geographic space,

the outcomes of which can provide the basis to hypothesis generation about social and

cultural patterning and the dynamics of migration and residential mobility.
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Figure 1: The delta K plot used to inform the decision to cluster the Lasker Distance matrix into 14
groups. It shows the change in AUC values as calculated in Equation 8.
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Figure 2: Box-plots showing the robustness values associated with the structures of each of the

cluster outcomes. White boxes are produced from direct clustering of the distance matrix and grey

boxes are produced from clustering the merged consensus matrix. For reasons outlined in the text,

PAM provides the best solution in this instance.
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Figure 3: Maps showing the spatial distributions of each of the 14 cluster allocations (left) and their respective
robustness values (right). Higher robustness values represent a better result. On the left hand plot each cluster
has been assigned a unique pattern. A full colour version can be found at spatialanalysis.co.uk/surnames.
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Figure 4: Plots illustrating the results of the 2-dimensional MDS analysis on the Lasker Distance matrix. Each
country has been separated for ease of comparison and each point represents a NUTS region. Stress value=
17.089.

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 October 2011 to acquire final version.



Figure 5: Maps showing the spatial distributions of each dimension produced from the 3 dimensional MDS.
Each dimension has been rescaled to a value of between 0 and 255 to facilitate the creation of RGB colours
(best viewed online: spatialanalysis.co.uk/surnames). Stress values for 3 dimensions= 11.064 and 4 dimensions=
9.838.

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 October 2011 to acquire final version.



Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 October 2011 to acquire final version.



Figure 6: A plot showing the relationships between the Lasker Distance and log geographic distance (km).
Taking the log of each axis creates a greater spread of points in the plot window. Every possible region-pair is
represented. Point 1 is between a pair of neighbouring areas in northern Wales; Point 2 is between the areas of
Asturias and Ourense in northern Spain; Point 3 is between Salamanca and Tenerife; Point 4 is between Crotone
in the far south of Italy and Crotone in Northern Island.
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Figure 7: A plot showing the relationships between the Lasker Distance measures and log geographic

distance (km) within each European country studied here. Every possible region-pair is represented.
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Table 1: Variables and definitions used in merged consensus clustering. Adapted from Monti
et al. (2003).

Symbol Description

ࡰ = ,ࢋ} … {ࡺࢋ, Data, in this case surname distance matrix with geographic units ( ݁’s)

to be clustered.

ࡺ The number of geographic units (or number of rows) in distance

matrix.

ࡼ = ,ࡼ} … ࡷࡼ, Partition of ܦ into ܭ clusters.

ࡷ ࡷ, ࢞ࢇ Number of clusters, maximum number of clusters.

ࡺ Number of items in cluster .݇

ࡴ Number of resampling iterations.

ࡰ (ࢎ) Dataset obtained by resampling ܦ (ℎ-th iteration).

ࡹ ࡹ, (ࢎ) Connectivity matrix, corresponding to ℎ-th iteration.

ग ,ग (ࡷ) Consensus matrix, corresponding to ܭ clusters.

(ࢎ)ࡵ N x N indicator matrix.
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Country
Data

Year

Total

Population

Worldnames

Population

No. Unique

Surnames

NUTS

Level

No.

Spatial

Units

Poland
2007 38,518,241 8,015,455 339,339 2 16

Serbia,
Montenegro and

Kosovo

2006 10,159,046 1,704,559 69,977 2 4

Austria
1996 8,316,487 2,520,012 81,387 2 98

Belgium
2007 10,511,382 3,489,068 852,492 3 11

Denmark
2006 5,457,415 3,074,871 153,134 2 15

France
2006 64,102,140 20,280,551 1,197,684 3 96

Germany
2006 82,314,900 28,541,078 1,226,841 2 39

Great Britain
2001 60,587,300 45,690,258 1,612,599 3 131

Rep. of Ireland
2007 4,239,848 2,916,744 46,507 3 26

Italy
2006 59,131,282 15,927,926 1,305,554 3 103

Luxemburg
2006 480,222 117,619 75,267 3 12

Netherlands
2006 16,570,613 4,672,344 531,970 2 12

Norway
2006 4,770,000 3,536,524 123,240 3 19

Spain
2004 45,116,894 9,545,104 260,469 3 50

Sweden
2004 9,142,817 791,143 135,830 3 24

Switzerland
2006 7,508,700 1,565,098 19,270 3 26

Totals 426,927,287 152,388,352 8,031,560

Table 2: The countries and their data used in this study. “NUTS Level” refers to the

geographic unit of analysis used. There are 495,059 hapax (occurring only once) surnames in

the data.
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