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No-Arbitrage Option Pricing and the

Binomial Asset Pricing Model

Nicholas Hurley

May 3, 2015

1 Introduction

Financial markets often employ the use of securities, which are de�ned to
be any kind of tradable �nancial asset. Common types of securities include
stocks and bonds. A particular type of security, known as a derivative security
(or simply, a derivative), are �nancial instruments whose value is derived from
another underlying security or asset (such as a stock). A common kind of
derivative is an option, which is a contract that gives the holder the right
but not the obligation to go through with the terms of said contract. An
example of an option is the European Option, which we will use commonly
throughout the following sections:

DEFINITION 1.1 (European Option). A European call(put) option gives
the holder the right, but not the obligation, to buy(sell) an asset at a speci�ed
time, t, for a speci�ed price, K.
The payout of the option is then max(St−K, 0) (or for a put option, max(K−
St, 0)).

Because options can be traded - bought and sold, a problem arises on how
to value the option (at a particular time, namely when the option is �rst
created). The concept of evaluating an option, typically before the future
values of the underlying security are known, is referred to as option pricing.
The binomial asset pricing model allows us to evaluate options by using
a "discrete-time" model of the behavior of the underlying security. While
the binomial model is rather simplistic, it does provide a powerful tool in
understanding the fundamental aspects of option pricing and no-arbitrage
pricing theory.
Before going into any greater detail on the binomial model, there are several
important �nancial terms that will be used:

• Stock Market: The stock market is where stocks are traded. Stocks
are a type of security that represents partial ownership of a company.
Since stocks tend to �uctuate in value they are generally considered a
risky asset. A unit of stock is known as a share.
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• Short and Long Positions: An investor dealing with a security such
as stocks will be in the long position if he owns shares and will be in
the short position if he owes shares. If an investor owns X amount of
shares he is said to be long X shares, similarly if he sells X amount
of shares ("borrows" them and sells them) he is said to be short X
shares. If the investor is in the short position he must eventually buy
the stock to repay the broker (individual/�rm that organizes buy/sell
orders from investors) he bought the shares through. If the stock has
decreased in value then the investor will have made a pro�t (and if it
increases, a loss). The concept of the short and long position is not
exclusive to stocks, it can also be used with any security, commodity,
or option that makes sense. In the case of options, the person who sells
the option is in the short position, with the buyer in the long position.

• Money Market: The money market includes securities that are prac-
tically risk-less. While the potential long-term payo�s of putting money
in the money market are small in comparison to that of investing in the
stock market, money in the money market accrues interest over time.

• Interest Rate: The interest rate, represented by the letter r ≥ 0, will
be de�ned such that for every dollar put into the money market the
investor will receive (1 + r)t at time t.

• Portfolio: A portfolio is simply a collection of securities. A tool that
we will use with the binomial model in the proceeding sections is that of
a replicating portfolio. Creating a replicating portfolio involves invest-
ing in both the stock and money markets such that the wealth of the
portfolio is equal to the value of the payo� of the option regardless of
the behavior of the stock (underlying asset of the option) at each time
period. A key component of no-arbitrage option pricing is creating a
replicating portfolio.

• Arbitrage: A trading strategy that exhibits arbitrage is one that starts
with no money, has zero probability of losing money, and positive prob-
ability of making money. If arbitrage is possible, then wealth can be
generated from nothing. Real markets will occasionally exhibit arbi-
trage but trading will quickly remove it. The proceeding examples take
a look at simple cases of arbitrage and how an asset can be priced to
avoid it.

EXAMPLE 1.1. Consider two markets, Market A and Market B, where in
Market A a crate of apples is valued at $20 a crate and in Market B they are
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valued at $22 a crate. Taking advantage of a di�erence in price, an investor
looking at these two markets could quickly buy in Market A and sell in Market
B - making a guaranteed risk-free pro�t. Such an event provides an arbitrage
opportunity only for quick investors, as trading will quickly eliminate the price
di�erence. Something to note is that it is possible for there to be transaction
costs (suppose it costs $5 per crate to get a crate of apples from Market A to
Market B), essentially eliminating any arbitrage opportunity.

EXAMPLE 1.2 (Hedging and arbitrage). In the previous example we dealt
with a simple di�erence in market prices, in the following example we discuss
what is known as a hedging transaction. A hedging transaction is when an
investor has a primary security/portfolio position and establishes a secondary
position to counterbalance some or all of the risk of the primary position.
A simple hedging example is as follows:
Suppose an investor owns a stock originally valued at $50 that then increases
to $60. If the investor is worried about a future fall in price he can simply
sell the stock, but what if he can't or doesn't want to? They could protect the
pro�t by selling short the stock for $60, leaving the investor with an overall
gain of $10 while maintaining their established long stock position. Whether
the stock rises or falls the two positions o�set and the investor is locked in
at a $10 pro�t. While the investor's previously gained pro�t is essentially
guaranteed there is no chance of increasing it, given the new position.
Now, consider two hedging examples that exhibit an arbitrage opportunity:

1. Suppose we have a portfolio consisting of a packaged bundle of two
stocks - Stock A valued at $5 and Stock B valued at $6. An investor
would be able to gain a risk-free pro�t if there is an imbalance in price of
the portfolio and the value of a single share of both stocks. If the price
of the portfolio is overvalued at $12 an investor could sell short the
portfolio and buy the stocks individually - gaining an initial cash �ow
of $12− $(6 + 5) = $1. On the other hand, if the price of the portfolio
is undervalued at $10 an investor could sell short the two stocks and
buy the portfolio - gaining an initial cash �ow of $(6 + 5)− $10 = $1.
Note that the hedge is self-�nancing and the net future cash �ow is
zero as the investor owns the stocks to cover the short position. The
above instances exhibit an arbitrage opportunity, and like the previous
two examples, investors will take advantage causing the stock prices to
go up and the price of the portfolio to go down (and vice versa for the
second case) until an arbitrage free price for the portfolio is reached
(the price of the portfolio equals the price of the two stocks).

2. Suppose now that we have two assets and one period (time zero and
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time one). Asset A has a current price of $1000 and, in the next
period, a future cash �ow of $1100, and Asset B has a current price of
$2000 and, in the next period, a future cash �ow of $2250. Forming a
portfolio by buying and selling these two assets separately has an initial
cash �ow of $0 - the portfolio created is costless. If an investor wanted
to construct a portfolio to take advantage of an arbitrage opportunity
they could short sell two units of Asset A and buy one unit of Asset B.
The initial cash �ow is −2($1000) + 1($2000) = $0, and at the end of
the period we have an expected cash �ow of −2($1100)+1($2250) = $50.
This constitutes an arbitrage opportunity since it is costless to construct
the portfolio but still produces a positive future cash �ow - the investor
makes a risk-less pro�t. Similar to the previous examples, investors
would take advantage of such an opportunity as much as they can until
the opportunity eventually disappears.

EXAMPLE 1.3 (No-arbitrage price of a forward contract). A forward con-
tract, or simply a forward, is a derivative security in which two parties agree
to buy or sell an asset at a speci�ed time in the future at a speci�ed price,
F , today. There is no cost in entering a forward contract, the price F isn't
payed until the speci�ed time period (when the asset is bought/sold). If at
time 0 the forward contract is created and at time t the asset is traded, then
the no-arbitrage price of the forward is:

F = S0(1 + r)t.

Where S0 is the time 0 price of the asset, and r is the interest rate. The
payo� of the contract, at time t, is St−F for the buyer of the contract (long
position) and F −St for the seller (short position). If the price of the forward
is not S0(1 + r)t, then there is an arbitrage:

• If F > S0(1 + r)t: At time 0, an investor can borrow $S0 and buy the
asset. They can then take the short position on the forward contract.
At time t, the asset is sold for the agreed upon price F and the loan
from time 0 is paid o�. The investor is left with a risk-free pro�t of
F − S0(1 + r)t.

• If F < S0(1 + r)t: At time 0, an investor can short sell one unit of the
asset and lend $S0. They can then take the long position on the forward
contract. At time t, the asset is bought for the agreed upon price F ,
the short sold asset is returned, and the loan is recovered (which has
since grown to S0(1 + r)t). The investor is left with a risk-free pro�t of
S0(1 + r)t − F .

4



2 The Binomial Model

The binomial asset-pricing model provides a simple model for understanding
the no-arbitrage pricing of options. We start with the simple one-period
model and then generalize to a more realistic multi-period model.

2.1 The One-Period Binomial Model

The one-period binomial model has just two times, time zero and time one.
At time zero, we have a stock whose price per share S0 will either increase to
S1(H) or decrease to S1(T ) at time one (all values positive). The H and T
represent either a heads or tails, respectively, of an imagined coin toss. The
probability of a heads will be denoted as p, and the probability of a tails will
be denoted as q = 1− p (with 0 < p < 1 and p + q = 1). We also introduce
two positive numbers u, the up factor, and d, the down factor:

u =
S1(H)

S0

, d =
S1(T )

S0

(1)

where u > d (if u = d, the model is uninteresting, if d > u then one could
just switch the meaning of u and d). The general one-period binomial model
can then be formed:

S0

S1(H) = uS0

S1(T ) = dS0

p

q = 1− p

Figure 1: One-period binomial model

In addition to the above �gure, there is also the interest rate, r ≥ 0, to
consider. With regards to the one-period binomial model, one dollar invested
(borrowed) in the money market at time zero results in a 1 + r return (debt)
at time one.
In order for the binomial model to be a useful model in evaluating options,
it must not exhibit arbitrage. This brings about the following proposition:

PROPOSITION 2.1. In the binomial model, to rule out arbitrage we must
assume:

0 < d < 1 + r < u (2)
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Proof. The �rst inequality, 0 < d, is assumed from the positivity of stock
prices. Looking at a one-period binomial model:

• If d ≥ 1 + r: An investor could, at time zero, borrow $S0 from the
money market and buy one share of stock. The investor's stock is then
worth either uS0 or dS0 at time one, depending on the coin toss (heads,
tails respectively). Even in the worst case scenario, a tails, the investor
has at least a stock worth enough to pay back the money market debt
($(1 + r)S0 at time one) with a positive probability, p > 0, of making
pro�t since u > d ≥ 1 + r.

• If u ≤ 1 + r: An investor could, at time zero, short sell the stock and
invest $S0 in the money market. The short sold stock is then worth
either uS0 or dS0 at time one, depending on the coin toss (heads, tails
respectively). Even in the worst case scenario, a heads, the investor has
at least enough return on the money market loan ($(1 + r)S0 at time
one) to replace the stock with a positive probability, q = 1− p > 0, of
making pro�t since d < u ≤ 1 + r.

Before going through the process of pricing a European call option using the
binomial model, there are several principal assumptions we must consider:

• shares of stock can be subdivided for sale or purchase,

• the interest rate for investing is the same as the interest rate for bor-
rowing,

• the purchase price of stock is the same as the selling price,

• the stock can take only two possible values in the next period.

In the general one-period binomial model, we de�ne a derivative security to
be a security whose payo� is V1(H) or V1(T ) depending on the coin toss. For
a European call option, the payo� is V1 = max(S1 − K, 0) where S1 is the
value of the stock at time one and K is the strike price. To determine V0,
the price of the derivative security at time zero, we construct a replicating
portfolio. Suppose we begin with a portfolio that has starting wealth X0 and
we buy ∆0 shares of stock, our cash position at time zero is then X0−∆0S0.
The value of our portfolio (contains stock and money market account) at
time one is:

X1 = ∆0S1 + (1 + r)(X0 −∆0S0) = (1 + r)X0 + ∆0(S1 − (1 + r)S0). (3)

6



In order to properly replicate the portfolio we must choose X0 and ∆0 such
that X1(H) = V1(H) and X1(T ) = V1(T ). Note that at time zero we know
the values of V1(H) and V1(T ), we just don't know which one will be realized.
Using this requirement and equation (3) we get the following equations:

X0 + ∆0(
1

1 + r
S1(H)− S0) =

1

1 + r
V1(H), (4)

X0 + ∆0(
1

1 + r
S1(T )− S0) =

1

1 + r
V1(T ). (5)

In order to solve for our two unknowns, X0 and ∆0, we multiply equation (4)
by p̃ and equation (5) by q̃ (where q̃ = 1− p̃) and then adding them together
giving us:

X0 + ∆0(
1

1 + r
[p̃S1(H) + q̃S1(T )]− S0) =

1

1 + r
[p̃V1(H) + q̃V1(T )]. (6)

If we choose p̃ (and thus q̃) so that:

S0 =
1

1 + r
[p̃S1(H) + q̃S1(T )], (7)

the terms cancel and we are left with the equation

X0 =
1

1 + r
[p̃V1(H) + q̃V1(T )]. (8)

By putting (7) in the following form (doing a little substitution),

S0 =
1

1 + r
[p̃uS0 + (1− p̃)dS0] =

S0

1 + r
[(u− d)p̃+ d],

we can solve for p̃ and q̃:

p̃ =
(1 + r)− d
u− d

, q̃ =
u− (1 + r)

u− d
. (9)

To �nd ∆0 we can subtract (5) from (4) to get the delta-hedging formula:

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
. (10)

So, if an investor begins with wealth X0, given by (8), and buys ∆0 shares of
stock, given by (10), then at time one, they will have a portfolio worth either
V1(H) or V1(T ) depending on the coin toss. We have properly constructed a
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replicating portfolio and the derivative security at time zero should be priced
at

V0 =
1

1 + r
[p̃V1(H) + q̃V1(T )], (11)

which is the initial value X0 (of the replicating portfolio). Any other time
zero price would introduce an arbitrage.
The numbers p̃ and q̃ that we arbitrary selected and solved for (equation
(9)) are both positive (no arbitrage assumption, equation (2))and sum to
one. Because of this, we can think of p̃ as the probability of heads and q̃ as
the probability of tails. They are not the actual probabilities, p and q, but
instead what we call the risk-neutral probabilities. With the real probabilities,
the average rate of growth of stock is greater than the rate of growth of an
investment in the money market. If this wasn't the case then no one would
bother investing in the risky stock market (compared to the money market
which has no risk). Therefore, p and q satisfy:

S0 <
1

1 + r
[pS1(H) + qS1(T )], (12)

unlike p̃ and q̃ that satisfy (7). Therefore, the risk-neutral probabilities as-
sume that investors are neutral about risk - they typically are not, which is
why p̃ and q̃ are not the actual probabilities. The risk-neutral probabilities
are chosen so that the mean rate of return of any portfolio (comprised of
stock and money market accounts) equals the rate of growth of the money
market investment. If we consider p̃V1(H) + q̃V1(T ) to be the mean portfo-
lio value under the risk-neutral probabilities (at time one), then rearranging
(11) gives us the following relationship

r =
[p̃V1(H) + q̃V1(T )]− V0

V0

, (13)

where r (the interest rate) is the rate of return from the money market.
Because of this, the equation (11) is called the risk-neutral pricing formula
for the one-period binomial model. Risk-neutral pricing is described further
in section 5.
We illustrate the above replicating portfolio process with a simple example.

EXAMPLE 2.1 (Pricing a European call option). Consider a European
call option that goes through one time period - at time zero the option is
purchased and at time one the option is either exercised or it is not. The
payo� of the option is then max(S1 − K, 0), where K, the strike price, is
the agreed upon price paid for the stock. For the following example we have
S0 = 2, u = 2, d = 1/2, r = 1/4, and K = 2.5. From this we can easily
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calculate S1(H) = uS0 = 4 and S1(T ) = dS0 = 1 and form the following
binomial tree:

S0 = 2

S1(H) = 4

S1(T ) = 1

Figure 2: One-period binomial model using example parameters

So, at time one, if the stock share price increases to S1(H) the option will
be exercised for a pro�t of S1(H) − K = 1.5 and if it decreases to S1(T )
the option will not be exercised - the value of the option is 0. In terms of
the notation above, V1(H) = 1.5 and V1(T ) = 0. Using equation (9) we can
calculate p̃ and q̃:

p̃ =
(1 + .25)− 1

2

2− 1
2

=
1

2
, q̃ =

2− (1 + .25)

2− 1
2

=
1

2
.

In order to replicate the portfolio, we use equation (8) to calculate the ini-
tial wealth X0 and equation (10) to calculate the number of shares ∆0 to be
purchased. So,

X0 =
1

1.25
[(.5)(1.5) + (.5)(0)] = 0.6,

∆0 =
1.5− 0

4− 1
=

1

2
.

Since the value of the option at time zero, V0, is equal to the value of the repli-
cating portfolio at time zero, X0, we have V0 = X0 = 0.6. Using equations
(4) and (5) we can verify that the values at time one are also equivalent:

V1(H) = X1(H) = (1.25)(0.6) + (1.25)(
1

1.25
(.5)(4)− (.5)(2)) = 1.5,

V1(T ) = X1(T ) = (1.25)(0.6) + (1.25)(
1

1.25
(.5)(1)− (.5)(2)) = 0,

completing the replicating portfolio for this example.

2.2 The Multi-Period Binomial Model

In the previous section we went through the one-period binomial model where
we began with an initial stock price S0, and at time one it went up by a factor
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of u or went down with a factor of d, now we move on to the multi-period
binomial model. In the multi-period model we assume at time two that the
stock price increase or decrease again, also by a factor of u and d respectively.
This gives us the following:

S2(HH) = uS1(H) = u2S0, S2(HT ) = dS1(H) = duS0,

S2(TH) = uS1(T ) = udS0, S2(TT ) = dS1(T ) = d2S0,

This process can be done repeatedly for any number of N times to form an
N-period binomial model - creating a binomial tree of stock prices.

S0

S1(H) = uS0

S1(T ) = dS0

S2(HH) = u2S0

S2(HT ) =
S2(TH) = udS0

S2(TT ) = d2S0

Figure 3: Two-period binomial model

The principal assumptions stated in the previous section hold for the multi-
period binomial model as they do for the one-period model. Before going
into replicating portfolios in the multi-period binomial model, we need to
generalize equation (3) to multiple steps in order to derive the wealth equa-
tion:

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn), (14)

where Xn is the value of the portfolio at time n and ∆n denotes the number
of shares of the stock in the portfolio at time n.
The following theorem is analogous to the replicating portfolio process in the
previous section, namely equations (10) and (11).

THEOREM 2.1 (Replication in the multi-period binomial model). Con-
sider an N-period binomial asset-pricing model, with 0 < d < 1 + r < u, and
with

p̃ =
(1 + r)− d
u− d

, q̃ =
u− (1 + r)

u− d
. (15)

Let VN be a random variable (a derivative security paying o� at time N) de-
pending on the �rst N coin tosses ω1, ω2, ..., ωN . De�ne recursively backward
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in the sequence of random variables VN−1, VN−2, ..., V0 by

Vn(ω1ω2...ωn) =
1

1 + r
[p̃Vn+1(ω1ω2...ωnH) + q̃Vn+1(ω1ω2...ωnT )], (16)

so that each Vn depends on the �rst n coin tosses ω1ω2...ωn, where n ranges
between N − 1 and 0. Next de�ne,

∆n(ω1ω2...ωn) =
Vn+1(ω1ω2...ωnH)− Vn+1(ω1ω2...ωnT )

Sn+1(ω1ω2...ωnH)− Sn+1(ω1ω2...ωnT )
(17)

where again n ranges between 0 and N − 1. If we set X0 = V0 and de�ne
recursively forward in time the portfolio values X1, X2, ..., XN by the wealth
equation in (14), then we will have:

XN(ω1ω2...ωN) = VN(ω1ω2...ωn) ∀ ω1ω2...ωN . (18)

Proof. See pp. 13-14 of [4].

DEFINITION 2.1. For n = 1, 2, ..., N , the random variable Vn(ω1ω2...ωn)
in the previous theorem is de�ned to be the price of the derivative security at
time n if the outcomes of the �rst n tosses are ω1ω2...ωn. The price of the
derivative security at time zero is de�ned to be V0.

Note that ∆n(ω1ω2...ωn) is the number of shares of stock that should be
held at time n. Since ∆n depends on the �rst n coin tosses, we say that
∆0,∆1, ...,∆N−1 is an adapted portfolio process. What this means is that the
number of shares of stock is adjusted at each time period in the replicating
portfolio process. The above theorem works by calculating the value of the
option, considering an N-period binomial model, at timeN (whereN = n+1)
and then working recursively backwards until the value of the option at time
zero is known.

3 Complete and Incomplete Markets

In the binomial model, every option can be replicated by a portfolio consisting
of the underlying asset (the stock) and the money market account. We say
that the binomial model is a complete market.

DEFINITION 3.1. A market is said to be complete if every contingent
claim (derivative) can be replicated by a portfolio consisting of the tradable
assets in the market.
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We will now consider a market that has N �nite number of tradable assets
and, for now, is restricted only to single-period models - only observable at
time zero and at time t.
The initial values of the N assets will be represented as a column vector:

A0 =


A1

0

A2
0
...
AN

0


At time t, the market is in one of a �nite number of states 1, 2, ..., n. We can
then construct a N × n matrix D, where Dij is the value of the ith asset at
time t, if the market is in state j. The portfolio can then be represented as
a vector θ:

θ =


θ1

θ2
...
θn

 ∈ RN ,

where θi is the quantity of the ith asset in the portfolio. The market value
of the portfolio at time zero is the scalar product:

A0 · θ = A1
0θ1 + A2

0θ2 + ...+ AN
0 θN

Note: The symbol ′ represents the operation of taking the transpose of the
vector (or matrix).
Then, the value of the portfolio at time t is the vector:

D
′
θ =


D11θ1 +D21θ2 + · · ·+DN1θN
D12θ1 +D22θ2 + · · ·+DN2θN

...
D1nθ1 +D2nθ2 + · · ·+DNnθN

 ∈ Rn,

where the ith entry is the value of the portfolio if the market is in state i.
We can now state a proposition about complete markets using this notation.

PROPOSITION 3.1. A market consisting of N tradable assets, evolving
according to a single period model in which at the end of the time period the
market is in one of n possible states, is complete if and only if N ≥ n and
the rank of the matrix, D, of security prices is n.
Rank, in linear algebra, is the size of the largest collection of linearly inde-
pendent columns of a matrix.
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Proof. Any contingent claim in our market can be expressed as a vector v ∈
Rn. A replication for these claims at time t will be a portfolio θ = θ(v) ∈ RN

for which D
′
θ = v. Finding such a θ amounts to solving n equations in N

unknowns. Thus a replicating portfolio exists for every choice of v if and
only if N ≥ n and the rank of D is n, as required.

Note: For a vector x ∈ Rn we write x ≥ 0 if x = (x1, ..., xn) and xi ≥ 0 for
all i = 1, ..., n. We write x > 0 to mean x ≥ 0, x 6= 0, in this case x need not
be strictly positive in all its coordinates. In this notation, an arbitrage is a
portfolio θ ∈ RN with either

S0 · θ ≤ 0, D
′
θ > 0 or S0 · θ < 0, D

′
θ ≥ 0. (19)

If the value of the portfolio at time zero is less than or equal to 0 and the
payo� is nonnegative for all states and strictly positive for some state, then
there is an arbitrage. Also, if the value of the portfolio at time zero is strictly
negative and the payo� is greater than or equal to 0, there is an arbitrage.
The proceeding example goes through the one-period binomial model using
the above market notations.

EXAMPLE 3.1. As stated previously, a contingent claim/derivative in the
binomial model can be replicated by a portfolio consisting of the stock and
the money market account. The following vectors represent the single-period
binomial model,

A0 =

[
1
S0

]
, θ =

[
θ1

θ2

]
, A0 · θ = θ1 + S0θ2, D =

[
(1 + r) (1 + r)
S1(H) S1(T )

]
where θ1 is the amount in the money market account and θ2 is the number
of stocks at time zero. Calculating A0 · θ gives the value of the derivative
(such as a European call option) at time zero (as well as the starting wealth
required to replicate). Now, the vector representing the value of the portfolio
at time t,

D
′
θ =

[
(1 + r)θ1 + S1(H)θ2

(1 + r)θ1 + S1(T )θ2

]
.

Setting this vector equal to the payo� vector of the derivative will allow you to
solve for θ1 and θ2, the portfolio θ can then be used to replicate the derivative's
payo� in the �nal states (construct a replicating portfolio).
Clearly the one-period binomial model is a complete market as N = 2 (number
of assets) and n = 2 (possible �nal states). Using proposition 3.1, N ≥ n
and it can be checked (using equation (2)) that rank(D) = n.
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The market described thus far has only one period, now we brie�y turn our
attention to a market with multiple periods.

Based on how we've de�ne the above market one would think that a multi-
period model would not be complete. Suppose for example we have a ten-
period binomial model, at time ten we would have 210 = 1024 �nal states for
our stock price. By proposition 3.1, we would need at least that many inde-
pendent assets for our market to be complete. This isn't as big of a problem
as it may seem as in Theorem 2.1 (replication of the multi-period binomial
model) we de�ned ∆n to be an adapted portfolio process. What this means
is that the replicating portfolio is rebalanced after each time period - using
only the two assets (in our case the stock and money market account). The
rebalancing can only involve the purchasing more of one asset and the sale
of the other asset - no money can be added or taken out. This is known as
the self-�nancing property of the replicating portfolio.

So far we've considered markets that are complete, but what about an ex-
ample of an incomplete market?

4 The Trinomial Model

The one-period trinomial model di�ers from the binomial model in that the
underlying asset, the stock, can take an intermediate price between uS0 and
dS0, we will refer to this value as mS0. Note that only d < m < u needs
to be true, it may not be the case that m = 1. In the binomial model we
used H and T to represent an imaginary coin toss, for the trinomial model
we introduce M to indicate that the stock at time one took the intermediate
path. The following �gure shows the one-period trinomial model:

S0

S1(H) = uS0

S1(M) = mS0

S1(T ) = dS0

Figure 4: One-period trinomial model

Another major di�erence between the binomial and trinomial models is that
the trinomial model is an incomplete market - the �nal states of a contingent
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claim cannot all be replicated by the underlying asset and the money market
account. The following example works through it.

EXAMPLE 4.1. Using the same vector notation as in the last section,

A0 =

[
1
S0

]
, θ =

[
θ1

θ2

]
, A0 · θ = θ1 + S0θ2, D =

[
(1 + r) (1 + r) (1 + r)
S1(H) S1(M) S1(T )

]
where again, θ1 is the amount in the money market account and θ2 is the
number of stocks at time zero. The vector representing the value of the port-
folio at time t is,

D
′
θ =

(1 + r)θ1 + S1(H)θ2

(1 + r)θ1 + S1(M)θ2

(1 + r)θ1 + S1(T )θ2

 (20)

If you tried to set this vector equal to the payo� vector of a derivative (such
as a European call option) you would notice that solving for θ1 and θ2 is
generally not possible (as it is a system of three linear equations with two
unknowns) - thus solving for A · θ and constructing a replicating portfolio for
this model is also not possible.
In the case of the one-period trinomial model, N = 2 (number of assets),
n = 3 (possible �nal states), and the rank of matrix D obviously can't be
greater than 2. Checking proposition 3.1, N < n and rank(D) < n - indicat-
ing that the trinomial model is not in fact a complete market. This means
that we can't �nd a portfolio that exactly replicates a derivative under this
model (as is) nor can we obtain a unique no-arbitrage price for the deriva-
tive.
A "solution" to this problem would be to simply add one additional inde-
pendent asset to the market in order to make it complete (N = 3, and
rank(D) = n is possible).

5 Probability Theory and Option Pricing

In the previous sections we've discussed pricing options using the assumptions
of the binomial model. Now we will combine these previous concepts with
some basic probability theory in order to formulate a more uni�ed theory on
option pricing.

5.1 Probability Theory on Coin-Toss Space

We begin with a few basic de�nitions:
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DEFINITION 5.1. A �nite probability space consists of a sample space Ω
and a probability measure P. The sample space Ω is a nonempty �nite set
and the probability measure P is a function that assigns to each element ω of
Ω a number in [0, 1] so that ∑

ω∈Ω

P(ω) = 1. (21)

An event is a subset of Ω, and we de�ne the probability of an event A to be

P(A) =
∑
ω∈A

P(ω). (22)

DEFINITION 5.2. Let (Ω,P) be a �nite probability space. A random vari-
able is a real-valued function de�ned on Ω.

DEFINITION 5.3. Let X be a random variable de�ned on a �nite prob-
ability space (Ω,P). The expectation (or expected value) of X is de�ned to
be

EX =
∑
ω∈Ω

X(ω)P(ω). (23)

When we compute the expectation using the risk-neutral probability measure
P̃, we use the notation

ẼX =
∑
ω∈Ω

X(ω)P̃(ω). (24)

In the proceeding sections, the symbol P denotes the probability measure as-
sociated with the actual probabilities p and q, while the symbol P̃ denotes the
probability measure associated with the risk-neutral probabilities p̃ and q̃.

5.2 Conditional Expectation

Conditional expectation is crucial in proving some of the results in the pro-
ceeding section.
The following de�nition is how we will represent the expectation of a random
variable X, depending on the �rst N coin tosses, conditioned on a particular
sequence of n ≤ N coin tosses. This will allow us to estimate X based on
information available at an earlier time.

DEFINITION 5.4. Let n satisfy 1 ≤ n ≤ N , and let ω1...ωn be given and be
�xed. There are 2N−n possible continuations ωn+1...ωN of the sequence �xed

16



ω1...ωn. Denote by #H(ωn+1...ωN) by the number of heads in the continuation
ωn+1...ωN and by #T (ωn+1...ωN) the number of tails. We de�ne

En[X](ω1...ωn) =
∑

ωn+1...ωN

p#H(ωn+1...ωN )q#T (ωn+1...ωN )X(ω1...ωnωn+1...ωN)

(25)
and call En[X] the conditional expectation of X based on the information at
time n (under the actual probabilities).
The two extreme cases of conditioning are E0[X], the conditional expectation
of X based on no information, which reduces to:

E0[X] = EX, (26)

and EN [X], the conditional expectation of X based on knowledge of all N
coin tosses, which reduces to:

EN [X] = X. (27)

The fundamental properties of conditional expectation will also be important
in proving future results:

THEOREM 5.1 (Fundamental properties of conditional expectations). Let
N be a positive integer, and let X and Y be random variables depending on
the �rst N coin tosses. Let 0 ≤ n ≤ N be given. The following properties
hold.

1. Linearity of conditional expectations. For all constants c1 and c2,
we have

En[c1X + c2Y ] = c1En[X] + c2En[Y ]. (28)

2. Taking out what is known. If X actually depends only on the �rst
n coin tosses, then

En[XY ] = XEn[Y ]. (29)

3. Iterated conditioning. If 0 ≤ n ≤ m ≤ N , then

En[Em[X]] = En[X]. (30)

In particular, E[Em[X]] = EX.

4. Independence. If X depends only on tosses n+ 1 through N , then

En[X] = EX. (31)

Proof. See pp. 177-179 of [4].
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5.3 Martingales and Option Pricing

Using the binomial pricing model described in the previous sections, we chose
our risk-neutral probabilities based on the formulas in (9):

p̃ =
(1 + r)− d
u− d

, q̃ =
u− (1 + r)

u− d
.

Rearranging these two formulas and using the fact that p̃+ q̃ = 1 gives:

p̃u+ q̃d

1 + r
= 1. (32)

Consequently, multiplying both sides by Sn(ω1...ωn) and using the fact that
Sn+1(H) = uSn and Sn+1(T ) = dSn, we have:

Sn(ω1...ωn) =
1

1 + r

[
p̃Sn+1(ω1...ωnH) + q̃Sn+1(ω1...ωnT )

]
(33)

What this equation means is that the stock price at time n is the discounted
weighted average of the two possible stock prices at time n + 1, using the
risk-neutral probabilities as weights. Rewriting the equation using De�nition
5.4 gives us:

Sn =
1

1 + r
Ẽn[Sn+1]. (34)

If we divide this equation by (1 + r)n, we get:

Sn

(1 + r)n
= Ẽn

[ Sn+1

(1 + r)n+1

]
. (35)

The term 1
(1+r)n+1 can be written either inside or outside the conditional

expectation because it is constant (property 1 of Theorem 5.1). Also, we
refer to Sn

(1+r)n
as the discounted stock price since $1 at time zero is worth

$(1 + r)n at time n. Equation (35) asserts that the risk-neutral probabilities
are chosen so that the best estimate, based on the information at time n of
the value of the discounted stock price at time n+ 1, is the discounted stock
price at time n. A process that satis�es this condition is called a martingale.
The formal de�nition of a martingale is given below:

DEFINITION 5.5. Consider the binomial asset-pricing model. Now let
M0,M1, ...,MN be a sequence of random variables, with each Mn depending
only on the �rst n coin tosses (and M0 constant). Such a sequence of random
variables is called an adapted stochastic process.
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1. If
Mn = En[Mn+1], n = 0, 1, ..., N − 1, (36)

we say this process is a martingale.

2. If
Mn ≤ En[Mn+1], n = 0, 1, ..., N − 1,

we say the process is a submartingale (even though it may have a ten-
dency to increase);

3. If
Mn ≥ En[Mn+1], n = 0, 1, ..., N − 1,

we say the process is a supermartingale (even though it may have a
tendency to decrease).

The following are a few useful properties of martingales:

REMARK 5.1. The martingale property in (36) of the previous de�nition
is a "one-step-ahead" condition. However, it implies a similar condition for
any number of steps. If M0,M1, ...,MN is a martingale and n ≤ N − 2, then
the martingale property (36) implies

Mn+1 = En+1[Mn+2].

Taking conditional expectation on both sides based on the information at time
n and using property 3 of Theorem 5.1, we get

En[Mn+1] = En[En+1[Mn+2]] = En[Mn+2]

Because of (36), we have the "two-step-ahead" property

Mn = En[Mn+2].

Iterating this, argument, whenever 0 ≤ n ≤ m ≤ N , we have the "multistep-
ahead" property,

Mn = En[Mm]. (37)

REMARK 5.2. The expectation of a martingale is constant over time, i.e.,
if M0,M1, ...,MN is a martingale, then

M0 = EMn, n = 0, 1, ..., N. (38)
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Proof. If M0,M1, ...,MN is a martingale, we may take expectations on both
sides of (36), using property 3 of Theorem 5.1, and obtain EMn = E[Mn+1]
for every n. It follows that

EM0 = EM1 = ... = EMN−1 = EMN .

M0 isn't random, so EM0 = M0, and thus M0 = EMn, n = 0, 1, ...N follows.

The following theorem formalizes the process at the beginning of the section.

THEOREM 5.2. Consider the general binomial model with 0 < d < 1+r <
u. Let the risk-neutral probabilities be given by

p̃ =
(1 + r)− d
u− d

, q̃ =
u− (1 + r)

u− d
.

Then, under the risk-neutral measure, the discounted stock price is a martin-
gale, i.e., equation (35) holds at every time n and for every sequence of coin
tosses.

Proof. Using Theorem 5.1 and that Sn+1

Sn
only depends on the (n+ 1)st coin

toss (Sn+1

Sn
takes the value u or d depending on whether the (n + 1)st coin

toss is a heads or tails),

Ẽn

[ Sn+1

(1 + r)n+1

]
= Ẽn

[ Sn

(1 + r)n+1
· Sn+1

Sn

]
=

Sn

(1 + r)n
Ẽn

[ 1

1 + r
· Sn+1

Sn

]
(Taking out what is known)

=
Sn

(1 + r)n
· 1

1 + r
Ẽ
[Sn+1

Sn

]
(Linearity)

=
Sn

(1 + r)n
p̃u+ q̃d

1 + r

(by (32))

=
Sn

(1 + r)n
.
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At the end of the binomial section, we discussed how under the risk-neutral
probabilities, the average rate of growth of a portfolio consisting of assets in
the stock and money markets equals the rate of growth of the money market
account. So, as stated previously, the average rate of growth of an investors
wealth is equal to the interest rate, r.
This result is explained in the following theorem, which states that the wealth
process is also a martingale.

THEOREM 5.3. Consider the binomial model with N periods.
Let ∆0,∆1, ...,∆N−1 be an adapted portfolio (as mentioned previously), let X0

be a real number, and let the wealth process X1, ..., XN be generated recursively
by (14), the wealth equation:

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn).

. Then the discounted wealth process Xn

(1+r)n
, n = 0, 1, ..., N, is a martingale

under the risk-neutral measure; i.e,

Xn

(1 + r)n
= Ẽn

[ Xn+1

(1 + r)n+1

]
, n = 0, 1, ..., N − 1. (39)

Proof.

Ẽn

[ Xn+1

(1 + r)n+1

]
= Ẽn

[ ∆nSn+1

(1 + r)n+1
+
Xn −∆nSn

(1 + r)n

]
= Ẽn

[ ∆nSn+1

(1 + r)n+1

]
+ Ẽn

[Xn −∆nSn

(1 + r)n

]
(Linearity)

= ∆nẼn

[ Sn+1

(1 + r)n+1

]
+
Xn −∆nSn

(1 + r)n

(Taking out what is known)

= ∆n
Sn

(1 + r)n
+
Xn −∆nSn

(1 + r)n

(Theorem 5.2)

=
Xn

(1 + r)n
.

COROLLARY 5.1. Under the conditions of Theorem 5.3, we have

Ẽ
[ Xn

(1 + r)n

]
= X0, n = 0, 1, ..., N. (40)
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Proof. The corollary follows from Remark 5.2, the expected value of a mar-
tingale cannot change with time and so must always be equal to the time
zero value of the martingale, and then applying that fact to the P̃-martingale

Xn

(1+r)n
, n = 0, 1, ..., N .

So, under a risk-neutral measure, the discounted wealth process has constant
expectation - it is impossible for it to begin at zero and later be strictly
positive with positive probability unless it can also be strictly negative with
positive probability.
Theorem 5.3 and its corollary have two important consequences, the �rst of
which is the following proposition:

PROPOSITION 5.1. There can be no arbitrage in the binomial model.

Proof. Proof by contradiction. If there were an arbitrage, we could begin
with X0 = 0 and �nd a portfolio process whose corresponding wealth pro-
cess X1, X2, ..., XN satis�ed XN(ω) ≥ 0 for all coin toss sequences ω and
XN(ω∗) > 0 for at least one coin toss sequence ω∗. But then we would have

X0 = 0 and Ẽ
[

XN

(1+r)N

]
> 0, which contradicts the corollary.

This leads to the following:

The First Fundamental Theorem of Asset Pricing

A model has a risk-neutral measure if and only if there is no arbitrage in the
model.

The second consequence of Theorem 5.3 is the following version of the risk-
neutral pricing formula. Let VN be a random variable (derivative security
payo� at time N) depending on the �rst N coin tosses. Based on Theorem
2.1, we know there is an initial wealth X0 and a replicating portfolio process
∆0, ...,∆N−1 that generates a wealth process X1, ..., XN satisfying XN = VN ,
regardless of the coin tosses. Because Xn

(1+r)n
, n = 0, 1, ..., N , is a martingale,

Remark 5.1 implies:

Xn

(1 + r)n
= Ẽn

[ XN

(1 + r)N

]
= Ẽn

[ VN
(1 + r)N

]
. (41)

From De�nition 2.1, we de�ned the price of the derivative security at time n
to be Xn and denote this price by the symbol Vn. Therefore equation (41)
can be rewritten as:

Vn
(1 + r)n

= Ẽ
[ VN

(1 + r)N

]
(42)
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or, equivalently,

Vn = Ẽ
[ VN

(1 + r)N−n

]
(43)

This is summarized in the following theorem.

THEOREM 5.4 (Risk-neutral pricing formula). Consider an N-period bi-
nomial asset-pricing model with 0 < d < 1 + r < u and with risk-neutral
probability measure P̃. Let VN be a random variable (the payo� of a derivative
security at time N) depending on the coin tosses. Then, for n between 0 and
N , the price of the derivative security at time n is given by the risk-neutral
pricing formula (43). Furthermore, the discounted price of the derivative
security is a martingale under P̃; i.e,

Vn
(1 + r)n

= Ẽn

[ Vn+1

(1 + r)n+1

]
, n = 0, 1, ..., N − 1. (44)

The random variables Vn de�ned above are the same as the random variable
Vn de�ned in Theorem 2.1.

Proof. Let VN be the payo� at time N of a derivative, and de�ne VN−1, ..., V0

as they are in Theorem 2.1. Then,

Ẽn

[ Vn+1

(1 + r)n+1

]
(ω1ω2...ωn) =

1

(1 + r)n+1
Ẽn[Vn+1](ω1ω2...ωn)

=
1

(1 + r)n+1
[p̃Vn+1(ω1..ωnH) + q̃Vn+1(ω1...ωnT )]

(Theorem 2.1)

=
1

(1 + r)n+1
(1 + r)Vn(ω1ω2...ωn)

=
Vn

(1 + r)n
(ω1ω2...ωn).

6 Conclusion

Through the use of the binomial asset-pricing model, we have explored
the problem of pricing derivatives, namely options. Additionally, we went
through the importance of the no-arbitrage assumption in determining the
value of an option as well as the process of constructing a replicating portfo-
lio. An introduction to the completeness of markets and the natural relating
of option pricing with probability theory gives us further insights into no-
arbitrage option pricing. We conclude with the discussion of martingales
and a statement of the First Fundamental Theorem of Asset Pricing.
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