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Abstract. Suppose that A is a separable C∗-algebra and that G∗ is a (graded)

subgroup of the Z/2-graded group K∗(A). Then there is a natural short exact se-

quence

(*) 0 → G∗ −→ K∗(A) −→ K∗(A)/G∗ → 0.

In this note we demonstrate how to geometrically realize this sequence at the level

of C∗-algebras. As a result, we KK-theoretically decompose A as

0 → A ⊗K −→ Af −→ SAt → 0

where K∗(At) is the torsion subgroup of K∗(A) and K∗(Af ) is its torsionfree quo-

tient. Then we further decompose At: it is KK-equivalent to ⊕pAp where K∗(Ap)
is the p-primary subgroup of the torsion subgroup of K∗(A). We then apply this

realization to study the Kasparov group K∗(A) and related objects.

In Section 1 we produce the basic geometric realization. For any separable C∗-
algebra A and group G∗ we produce associated C∗-algebras As (s for subgroup)
and Aq (q for quotient group) and, most importantly, a short exact sequence of
C∗-algebras

0 → A ⊗K → Aq → SAs → 0

whose associated K∗-long exact sequence is (*). In the case where G∗ is the torsion
subgroup of K∗(A) we use the notation At (t for torsion) and Af (f for torsionfree)
respectively. We further decompose At into its p-primary summands Ap for each
prime p.

Section 2 deals with the following question: may calculations of the Kasparov
groups KK∗(A, B) be reduced down to the four cases (At, Bt), (At, Bf ), (Af , Bt)
and (Af , Bf ) ? We show that this is indeed possible in a wide variety of situations.
Sections 3 and 4 deal with these special cases.
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Geometric realization as a general technique was introduced to topological K-
theory of spaces by M. F. Atiyah [1] in his proof of the Künneth theorem for
K∗(X × Y ). We adapted the technique [6] to prove the corresponding theorem for
the K-theory for C∗-algebras and used it with J. Rosenberg in our proof of the
Universal Coefficient Theorem (UCT) [4].

1. Geometric Realization

In this section we produce the main geometric realization and we extend the result
to give a p-primary decomposition for a C∗-algebra.

Let N denote the bootstrap category [6, 4].

Theorem 1.1. Suppose that A is a separable C∗-algebra. Let G∗ be some subgroup
of K∗(A). Then there is an associated C∗-algebra As ∈ N , a separable C∗-algebra
Aq, and a short exact sequence

(1.2) 0 → A ⊗K → Aq → SAs → 0

whose induced K-theory long exact sequence fits into the commuting diagram

(1.3)

0 −−−−→ K∗(As) −−−−→ K∗(A ⊗K) −−−−→ K∗(Aq) −−−−→ 0




y

∼=





y

∼=





y

∼=

0 −−−−→ G∗ −−−−→ K∗(A) −−−−→ K∗(A)/G∗ −−−−→ 0.

If A is nuclear then so is Aq. If A ∈ N then so is Aq. If A ∈ N and if G∗ is a
direct summand of K∗(A) then A is KK-equivalent to As ⊕ Aq.

Note that we think of As as realizing the subgroup G∗ and Aq as realizing the
quotient group K∗(A)/G∗, hence the notation.

Proof. Let As denote any C∗-algebra in N with

K∗(As) ∼= G∗.

Such C∗-algebras exist and are unique up to KK-equivalence by the UCT [4]. Let

θ : K∗(As) → K∗(A)

be the corresponding homomorphism. Since As ∈ N , the UCT holds for the pair
(As, A), and so θ is in the image of the index map

γ : KK∗(As, A) → HomZ(K∗(As), K∗(A)).

Say that
θ = γ(τ)

for some
τ ∈ KK0(As, A).

As As is nuclear,
KK0(As, A) ∼= Ext(SAs, A)
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and hence τ corresponds to an equivalence class of extensions of C∗-algebras of the
form

0 → A ⊗K → E → SAs → 0.

Define Aq = E. (This choice depends upon the choice of As among its KK-
equivalence class and the choice of τ modulo the kernel of γ ). Note that E is
nuclear/bootstrap if and only if A is nuclear/bootstrap. Then the diagram

Kj(Aq) −−−−→ Kj(SAs)
δ

−−−−→ Kj−1(A ⊗K) −−−−→ Kj−1(Aq)




y

∼=





y

∼=

Kj−1(As)
θ

−−−−→ Kj−1(A)

commutes, and thus δ is mono and the long exact K∗-sequence breaks apart as
shown.

If G∗ is a direct summand of K∗(A) then

K∗(A) ∼= G∗ ⊕ K∗(A)/G∗

∼= K∗(As) ⊕ K∗(Aq) ∼= K∗(As ⊕ Aq)

and, replacing algebras by their suspensions as needed, the KK-equivalence is
obtained.

�

Henceforth we shall regard As and Aq as C∗-algebras associated to A and G∗,
with the understanding that these are well-defined only up to KK-equivalence
modulo the kernel of γ, as explained above.

The next step is to decompose At into its p-primary components.

Theorem 1.4. Let A ∈ N and suppose that K∗(A) is a torsion group, so that
A = At. Then A is KK-equivalent to a C∗-algebra ⊕Ap, where

K∗(Ap) ∼= K∗(A)p

the p-primary torsion subgroup of K∗(A).

Proof. For each prime p, choose N(p) ∈ N with K1(N(p)) = 0 and

K0(N(p)) ∼= Z(p)

the integers localized at p. Define

Ap = At ⊗ N(p).

The Künneth formula [6] implies that

K∗(Ap) ∼= K∗(At ⊗ N(p)) ∼= K∗(At) ⊗ K∗(N(p)) ∼= K∗(At) ⊗ Z(p)
∼= K∗(A)p

as desired. Then

K∗(⊕pAp) ∼= ⊕pK∗(Ap) ∼= ⊕pK∗(A)p
∼= K∗(At)

and another use of the UCT implies that At is KK-equivalent to ⊕pAp.

�
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We summarize:

Theorem 1.5. Suppose that A is a separable C∗-algebra. Then there is an asso-
ciated C∗-algebra At ∈ N , a separable C∗-algebra Af , and a short exact sequence

(1.6) 0 → A ⊗K → Af → SAt → 0

whose induced K-theory long exact sequence fits into the commuting diagram

(1.7)

0 −−−−→ K∗(At) −−−−→ K∗(A ⊗K) −−−−→ K∗(Af ) −−−−→ 0




y

∼=





y

∼=





y

∼=

0 −−−−→ K∗(A)t −−−−→ K∗(A ⊗K) −−−−→ K∗(A)f −−−−→ 0.

If A is nuclear then so is Af . If A ∈ N then so is Af . Further, the C∗-algebra At

has a p-primary decomposition: it is KK-equivalent to a C∗-algebra ⊕pAp, where
Ap ∈ N for all p and

K∗(Ap) ∼= K∗(A)p

the p-primary torsion subgroup of K∗(A). Finally, if A ∈ N and K∗(A)t is a
direct summand of K∗(A) then A may be replaced by the KK-equivalent C∗-algebra
At ⊕ Af

�

2. Splitting the Kasparov Groups

If A and B are in N and their K-theory torsion subgroups K∗(A)t and K∗(B)t

are direct summands then the final conclusion of Theorem 1.5 implies that we may
reduce the computation of KK∗(A, B) to the calculation of the four groups, namely

(1) KK∗(At, Bt)

(2) KK∗(At, Bf )

(3) KK∗(Af , Bt)

(4) KK∗(Af , Bf ) .

We discuss the calculation of those groups in subsequent sections. In this section
we see what can be done without assuming that the torsion subgroups are direct
summands.

Theorem 2.1. Suppose that A ∈ N and K∗(B) is torsionfree. Then there is a
short exact sequence

(2.2) 0 → KK∗(Af , B) → KK∗(A, B) → KK∗(At, B) → 0.

In particular, letting K∗(A) = KK∗(A, C,) there is a short exact sequence

(2.3) 0 → K∗(Af ) → K∗(A) → K∗(At) → 0.

If K∗(B) is not necessarily torsionfree, then sequence 2.2 is exact if and only if the
natural map
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(2.4) θ∗h : HomZ(K∗(A), K∗(B)) → HomZ(K∗(At), K∗(B))

is onto, where θ : K∗(At) → K∗(A) is the canonical inclusion.

Note that the map θ∗h in (2.4) is frequently onto. This is the case, for instance,
if K∗(At) is a direct summand of K∗(A).

The map θ is, up to isomorphism, the boundary homomorphism in the K∗-
sequence associated to the short exact sequence

0 → A ⊗K → Af → SAt → 0

and hence
θ(x) = x ⊗At

δ

where δ ∈ KK1(At, A) by [9]. Thus the map θ∗h of (2.4) is induced from a KK-
pairing.

Proof. Consider the commuting diagram

HomZ(K∗(At), K∗(B)) KK∗−1(At, B) 0

β





y





y





y

0 −→ Ext1
Z
(K∗(Af ), K∗(B)) −→ KK∗(Af , B) −→ HomZ(K∗(Af ), K∗(B)) −→ 0





y





y





y

0 −→ Ext1
Z
(K∗(A), K∗(B)) −→ KK∗(A, B) −→ HomZ(K∗(A), K∗(B)) −→ 0

θ∗

e





y

θ∗





y

θ∗

h





y

0 −→ Ext1
Z
(K∗(At), K∗(B)) −→ KK∗(At, B) −→ HomZ(K∗(At), K∗(B)) −→ 0





y





y

β





y

0 KK∗+1(Af , B) Ext1
Z
(K∗(Af ), K∗(B))

The three middle rows are exact by the UCT, the middle column is exact by the
exactness of KK, and the two outer columns are exact by the standard Hom-Ext-
sequence.

Suppose that K∗(B) is torsionfree. Then

(2.5) HomZ(K∗(At), K∗(B)) = 0

since K∗(At) is a torsion group, and the surjectivity of θ∗e implies the surjectivity
of θ∗.

If K∗(B) is not necessarily torsionfree, then the Snake Lemma [11] implies that
there is an exact sequence

0 = Coker(θ∗e) −→ Coker(θ∗) −→ Coker(θ∗h) → 0

and hence θ∗h is onto if and only if θ∗ is onto. The theorem then follows immediately,
for the middle column of the diagram degenerates to (2.2) if and only if θ∗ is
onto. �

Next we consider the dual situation, when K∗(A) is a torsion group.
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Theorem 2.6. Suppose that A ∈ N and that K∗(A) is a torsion group. Then
there is a natural exact sequence

(2.7) 0 → KK∗(A, Bt) → KK∗(A, B) → KK∗(A, Bf) → 0.

If K∗(A) is not a torsion group then sequence (*) is exact if and only if the natural
map

π∗ : HomZ(K∗(A), K∗(B)) → HomZ(K∗(A), K∗(Bf ))

is onto, where π : B ⊗K → Bf is the natural map.

The proof of this result is dual to that of Theorem 2.1 and is omitted for
brevity. �

3. Computing KK∗(Af , B)

In this section we consider the case where K∗(A) is torsionfree (so that A = Af ).
Recall [2, 12] that a subgroup H of an abelian group K is pure if for each positive
integer n,

nH = H ∩ nG,

and an extension of groups

0 → H → K → G → 0

is pure if H is a pure subgroup of K. For abelian groups G and H, Pext1
Z
(G, H) is

the subgroup of Ext1
Z
(G, H) consisting of pure extensions.

Recall [5, 8] that there is a natural topology on the Kasparov groups and that
with respect to this topology the UCT sequence splittings constructed in [4] are
continuous, so that the splitting is a splitting of topological groups [9].

Theorem 3.1. Suppose that A ∈ N and that K∗(A) is torsionfree. Then there is
a natural sequence of topological groups

0 → Pext1
Z
(K∗(A), K∗(B)) → KK∗(A, B) → HomZ(K∗(A), K∗(B)) → 0

The group Pext1
Z
(K∗(A), K∗(B)) is the closure of zero in the natural topology on

the group KK∗(A, B) and thus the group
HomZ(K∗(A), K∗(B) ) is the Hausdorff quotient of KK∗(A, B).

Proof. The UCT gives us the sequence

0 → Ext1
Z
(K∗(A), K∗(B)) → KK∗(A, B) → HomZ(K∗(A), K∗(B)) → 0

which splits unnaturally. If K∗(A) is torsionfree then

Pext1
Z
(K∗(A), K∗(B)) ∼= Ext1

Z
(K∗(A), K∗(B)).

The remaining part of the theorem holds since we have shown in general [10]
that the group Pext1

Z
(K∗(A), K∗(B)) is the closure of zero in the natural topology

on KK∗(A, B) in the presence of the UCT.

�

We note that the resulting algebraic problems are frequently very difficult. If
G is a torsionfree abelian group then HomZ(G, H) is unknown in general, though
there is much known in special cases (cf. [2, 3]). The group Pext1

Z
(G, H) is also

difficult, though the case Pext1
Z
(G, Z) is known (cf. [3]). We discuss Pext in detail

in [12].



GEOMETRIC REALIZATION OF C*-ALGEBRAS 7

4. Computing KK∗(At, B)

In this section we concentrate upon the situation when K∗(A) is a torsion group.
Before beginning, we digress slightly to recall [7] in more detail how one introduces
coefficients into K-theory.

Given a countable abelian group G, select some C∗-algebra NG ∈ N with

K0(NG) = G K1(NG) = 0.

The C∗-algebra NG is unique up to KK-equivalence, by the UCT. Then for any
C∗-algebra A, define

(4.1) Kj(A; G) ∼= Kj(A ⊗ NG).

The Künneth Theorem [6] implies that there is a natural short exact sequence

(4.2) 0 → Kj(A) ⊗ G
α

−→ Kj(A; G) → TorZ

1 (Kj−1(A), G) → 0

which splits unnaturally. If G is torsionfree then α is an isomorphism

α : Kj(A) ⊗ G
∼=

−→ Kj(A; G).

Let X(G) = Hom(G, R/Z) denote the Pontryagin dual of the group G.

Theorem 4.3. Suppose that A ∈ N with K∗(A) a torsion group and suppose that
K∗(B) is torsionfree, so that A = At and B = Bf . Then:

(1)
KK∗(A, B) ∼= Ext1

Z
(K∗(A), K∗−1(B)).

(2)
KK∗(A, B) ∼= HomZ(K∗(A), K∗−1(B) ⊗ Q/Z).

(3) The group KK∗(A, B) is reduced and algebraically compact.

(4)
Kj(A) ∼= X(Kj−1(A))

.

(5) More generally, if K∗(B) is finitely generated free, then

KKj(A, B) ∼= ⊕nX(Kj−1(A))

where n is the number of generators of K∗(B).

Proof. Part 1) follows at once from the UCT and the fact that there are no non-
trivial homomorphisms from a torsion group to a torsionfree group. Part 2) follows
from Part 1) by elementary homological algebra. Part 3) follows easily from a deep
result of Fuchs and Harrison [cf. 2, 46.1]: if G is a torsion group then any group of
the form HomZ(G, H) is reduced and algebraically compact. Part 4) follows from
part 3) by setting B = C and observing that for any torsion group G, we have

X(G) = HomZ(G, Q/Z.)

�

There is one additional case that fits into the present discussion and which
partially overlaps with the result above.
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Theorem 4.4. Suppose that A ∈ N and that K∗(A) has no free direct summand.
Then there is a natural short exact sequence of topological groups

(4.5) 0 → HomZ(K∗(A), R) → X(K∗(A))
χ

−→ K∗(A) → 0.

The map χ : X(K∗(A)) → K∗(A) is a degree one continuous open surjection. It is
a homeomorphism if and only if K∗(A) is a torsion group.

To be explicit about the grading,

χ : X(Kj(A)) → Kj−1(A)

which is the usual parity shift as torsion phenomena move from homology to coho-
mology.

Proof. The UCT for K∗(A) has the form

0 → Ext1
Z
(K∗(A), Z)

δ
→ K∗(A) → HomZ(K∗(A), Z) → 0

with δ of degree one, so it suffices to compute Ext. In general the short exact
sequence

0 → Z → R → R/Z → 0

yields a long exact sequence

HomZ(K∗(A), Z) → HomZ(K∗(A), R) → X(K∗(A)) → Ext1
Z
(K∗(A), Z) → 0.

The fact that K∗(A) has no free direct summand implies that HomZ(K∗(A), Z) = 0,
so the sequence degenerates to

0 → HomZ(K∗(A), R) → X(K∗(A)) → Ext1
Z
(K∗(A), Z) → 0.

Applying the UCT one obtains the sequence 4.5 as desired. The map χ is the
composite of the UCT map and a natural homeomorphism. The rest of the Theorem
is immediate.

�
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