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ABTRACT  The transition from an intra- to extra-uterine environment leaves its 
mark in deciduous teeth (and first permanent molars) as an accentuated enamel incremental 
ring called the neonatal line (NL). This prominent microfeature separates the enamel formed 
during intrauterine life from that formed after leaving the womb. However, while the physical 
structure of this scar is well known, the bases of its formation are still a matter of 
investigation. In particular, besides the influence of the birth-related abrupt environmental and 
dietary changes and the role played by physiological factors such as hypocalcaemia, it has 
been suggested a direct relationship between NL thickness variation and the physical trauma 
implied by the birth dynamics, the Caesarean and the operative modes being apparently 
associated to the thinnest and the thickest lines, respectively. 
By using the histological record from a deciduous dental sample (exfoliated crowns) of 100 
modern healthy school-aged children (47 males and 53 females) of reported birth histories 
(normal delivery mode: 55 cases; Caesarean: 40; operative: 5), we investigated the 
relationships between birth dynamics and NL thickness variation. The Tukey Honest 
Significant Difference method has been used to test the differences between the means of the 
grouping levels. 
The results of our histo-morphological investigation do not support the suggestion that 
Caesarean-born children display, on average, a thinner enamel scar compared to children 
associated to a normal delivery mode. Rather, our study points to the influence exerted by 
factors intimately related to gestational length variation on the degree of expression of the 
line. 
 
 

KEY WORDS: HUMAN BIRTH, DELIVERY MODE, GESTATION LENGTH, DECIDUOUS 

TEETH, DENTAL ENAMEL STRUCTURE, INCREMENTAL MARKERS, NEONATAL LINE. 
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The birth process leaves its mark on dental enamel in the form of a ring, an accentuated 

incremental line called the "Neonatal Line" (NL) (Rushton 1933; Schour 1936). This 

prominent microfeature, occasionally visible also in the dentine (Schour 1936; Skinner 1992), 

separates the enamel formed during intrauterine life from that formed after leaving the womb. 

In modern humans, the NL is usually present in all crowns forming at birth, that is, all the 

elements of the primary dentition and the first permanent molars (mesiobuccal cusp) 

(Christensen and Kraus 1965, Deutsch and Pe'er 1982; Deutsch et al. 1985; Kraus 1959; 

Levine et al. 1979). Occasionally, a macroscopic hypoplasia can be detected in 

correspondence with the NL, but it is usually worn away (Massler et al. 1941; Moss-Salentijn 

and Hendricks-Klyvert 1985; Schroeder 1991; Skinner 1992). 

At birth, the enamel is only partially mineralized and continues to increase in thickness 

by apposition of additional centripetal layers secreted by the ameloblasts at the level of the 

enamel-dentine junction (EDJ) to a circadian rhythm of 4-5 µm in extant humans (Antoine et 

al. 2009; Shellis 1984), while in extant great apes and early fossil hominins this rhythm 

accelerates rapidly (Dean 2006, 2010; Dean et al. 2001; Lacruz et al. 2008). The circadian 

growth process produces a repetitive microstructural pattern of the enamel, called prismatic 

cross-striations (short-period lines). In longitudinal crown sections (physical or virtual at high 

resolution) it is possible to identify another enamel striation mode linked to the crown 

formation, but with a longer periodicity (on average, seven days), parallel to the EDJ and 

crossing the prism decussation, called Retzius lines, which terminate on the tooth surface as 

perikymata (Boyde 1989; Guatelli-Steinberg 2009; Hillson 1996; Simmer et al. 2010). Each 

perturbation in "normal" development exceeding a critical individual threshold remains 

imprinted in the enamel as a larger stria of Retzius, called Wilson band (Hillson 1996; Risnes 

2001; Rossi et al. 1999). This accentuated line corresponds to the position of the developing 

enamel (or dentine) front that relates to a stressor experienced during tooth development, as 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



3 
 

opposed to an intrinsic rhythm (Smith et al. 2010a). Marking the transition from an intra- to 

extrauterine environment, the NL can be recorded as the first accentuated enamel 

microstructure (Gustafson and Gustafson 1967; Risnes 2001). 

It has not yet been firmly established how much time is needed for the NL to form. As a 

whole, the NL is observable in over 90% of primary dentitions and 10% of first permanent 

molars of individuals having survived the perinatal stage, i.e. at least the first 3-7 to 10-15 

days ex utero (e.g., Levine et al. 1979; Massler and Schour 1946; Schour 1936; Schour and 

Massler 1937; Weber and Eisenmann 1971; Whittaker and Richards 1978). 

This scar can be distinctly recognised because of the differences in quality between pre- 

and postnatal enamel (Humphrey et al. 2007; Kodaka et al. 1996; Thomas and Lee 2003; 

Wilson and Beynon 1989), as well as due to its characteristic location, specific for each tooth 

class (Skinner 1992; Skinner and Dupras 1993; Rossi et al., 1999). The NL, whose variable 

thickness in humans may reach or even exceed 30 µm (Rossi et al. 1999; Schour 1936; Weber 

and Eisenmann 1971), is distinguishable from a Wilson band because it is more prominent 

and displays a more clearly discernible prism disturbance (Kodaka et al. 1996; Rushton 1939; 

Skinner 1992; Skinner and Dupras 1993; Thomas and Lee 2003; Wilson and Beynon 1989). 

High-resolution histological investigations reveal that it corresponds to an abrupt change in 

prism orientation and to structural changes within each prism (Mishra et al. 2009; Weber and 

Eisenmann 1971; Whittaker and Richards 1978; Wilson and Shroff 1970). 

With regards to its topographic position, which is affected by the gestation length 

(Kronfeld and Schour 1939; Skinner 1992; Skinner and Dupras 1993), in incisors the NL 

usually extends from the cervical third of the EDJ towards the enamel surface, leaving only a 

small portion of postnatally formed enamel, while in canines and molars it is located more 

towards the incisal/occlusal part of the enamel, with only a small portion of prenatally formed 

enamel present (Rossi et al. 1999; Rushton 1939; Schour 1936; Teivens et al. 1996). 
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Besides human and nonhuman primates, such as the chimpanzee (Smith et al 2010b) 

and the macaque (Bowman 1991; Smith 2004), for example, the NL has been reported in 

different terrestrial, semi-aquatic, and also exclusive marine mammals, including the sika deer 

(Cervus nippon; Iinuma et al. 2004), the elephant seal (Mirounga leonina; Laws 1952) and the 

ringed seal (Phoca hispida; Stewart et al. 1998), the bottlenose dolphin (Tursiops sp.; Perrin 

et al. 2008), the harbour porpoise (Phocoena phocoena; Perrin et al. 2008), the sperm whale 

(Physeter macrocephalus; Hillson 2005). 

This marker is routinely used in forensic investigations (e.g., Gustafson 1966; Skinner 

and Dupras 1993; Stavrianos et al. 2010; Whittaker and Richards 1978) and its 

presence/absence, position and variation patterns are also increasingly considered in studies 

on population samples from archaeological sites (e.g., Alexandersen et al. 1998; Antoine et al. 

2009; Bondioli and Macchiarelli 1999; FitzGerald and Saunders 2005; FitzGerald et al. 1999, 

2006; Macchiarelli and Bondioli 2000; Macchiarelli et al. 2006a; Rossi et al. 1997, 1999; 

Schwartz et al. 2010; Smith and Avishai 2005; Smith et al. 2011). However, likely because of 

methodological constraints related to the only recent availability of noninvasive high-

resolution investigative methods in paleobiology (e.g., Macchiarelli et al. 2004, 2008; 

Mazurier et al. 2006; Tafforeau 2004; Tafforeau et al. 2006; Smith and Tafforeau 2008), its 

use in the study of the human fossil record is still very limited (e.g., Macchiarelli et al. 2006b; 

Smith and Tafforeau 2008; Smith et al. 2010a; Tafforeau and Smith 2008; Zanolli et al. 

2011). 

While the physical structure of the NL is now well known (rev. in Simmer et al. 2010), 

the bases of its formation are not yet fully understood and, as rightly pointed out by Smith 

(2004), "The study of the NL will benefit from additional longitudinal studies of individuals 

with known records of birth, illness, stress, life history events, and environmental factors" 

(Smith 2004: 77). 
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Goals of the Study. The NL formation was at first assumed to directly result from the 

birth-related abrupt environmental and dietary changes (e.g., Massler et al. 1941). Bouyssou 

and co-workers (1958, cit. by Wilson and Shroff 1970) were probably the first to hypothesise 

that also some systemic influences could affect its appearance, even if the first studies did not 

evidence a clear relationship between NL width and accentuated enamel lines related to 

systemic perinatal disturbances (Godt 1963; Wilson and Shroff 1970). Later on, the role 

played by some physiological parameters, notably by the decrease in plasma calcium 

occurring during the first 48 to 72 hours after birth (hypocalcaemia), has been taken into 

account (Norén 1983, 1984; Ranggard et al. 1994; Seow 1986). In facts, infants born from 

diabetic mothers prone to hypocalcaemia show thicker and less mineralized NLs compared to 

those from healthy mothers (Norén 1984). 

A relationship between NL thickness variation and the physical trauma implied by the 

birth dynamics has been suggested by Gustafson and Gustafson (1967). Eli and co-authors 

(1989) have investigated the relationships between method of delivery and NL thickness in a 

sample of 147 children of known birth history. Their results showed that: a) operative 

deliveries (17 cases) were associated with wider lines (13-24 µm); b) normal deliveries (125 

cases) resulted in intermediate thickness values (7-17 µm); and c) Caesarean sections (5 

cases) resulted in thinner lines (6-9 µm). Even if the last category was the least represented in 

their investigated sample, in principle these results support the conclusion that, in addition to 

the physiological drop in blood serum calcium, both environmental changes and the birth 

process itself significantly contribute to the growth disruption responsible for the formation of 

the NL (Eli et al. 1989). 

By using a series of enamel histological sections from a representative deciduous dental 

sample of modern healthy school-aged children of reported birth histories, here we investigate 
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the relationships between gestation length, delivery mode and NL thickness variation. More 

specifically, because of the composition and characteristics of the available sample, we test 

the hypothesis that, on average, Caesarean sections result into thinner scars. 

 

Materials and Methods 

 

The Fatina Sample. The histological dental sample used in this study consists of 100 

deciduous crown sections representing as many individuals of both sexes (47 males, 53 

females) selected from the so-called Fatina ("tooth fairy") modern human reference 

collection. Fatina includes a whole of 250 exfoliated primary teeth from 225 healthy children, 

most of European (Italian) origin, aged 6-10 years, sampled in 1996-97 in four primary 

schools of Rome ("Agatarco", "C. Corradi", "C. Forlanini", "Pirgotele"). The realization of 

this collection has been conceived and set by the Section of Anthropology of the National 

Prehistoric Ethnographic "L. Pigorini" Museum, Rome, with the specific aim to create a 

modern reference record based on controlled and standardized histological sections to be used 

in paleobiological studies dealing with tooth microstructural growth markers and infant health 

assessment (e.g., Antoine et al. 2009; Dean 2006; FitzGerald and Rose 2000; FitzGerald et al. 

1999, 2006; Geusa et al. 1999; Goodman and Rose 1990; Levine et al. 1979; Rose 1979; Rose 

et al. 1978; Rossi et al. 1999; Shellis 1984). 

In agreement with the school authorities, on voluntary basis, the parents of the children 

available to provide for invasive analysis at least one exfoliated tooth from their primary 

dentition have been requested to fill an anonymous information form about the original 

"owner" of the specimen and his/her mother. In the forms, basic questions concerned: sex, 

gestational age, delivery mode, weight and length at birth, health problems occurred during 

pregnancy and/or along the first six months after birth, lactation, weaning time. Following a 
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preliminary gross screening for preservation quality of the collected specimens (consisting at 

least of the entire crown, even if partially worn), only a portion of the original sample has 

been subsequently considered for histological analysis. However, even in this selected sample 

currently forming the Fatina collection, not all the tooth sections are systematically 

accompanied by an exhaustive individual information record. Besides few exceptions where 

confidentiality was not requested by the interviewed parents, of course in no case a quality 

control on the reliability of the data accompanying the collected specimens was possible. In a 

limited number of cases, more than one tooth (from two to a maximum of 13 specimens) are 

available from a single individual. 

 

Sectioning Procedures. Sectioning of the Fatina sample followed the conventional 

procedures for dental thin-section preparation extensively detailed in Caropreso et al. (2000), 

FitzGerald and Saunders (2005), FitzGerald et al. (1999, 2006), Rossi et al. (1997, 1999). At 

least two longitudinal sections, approximately 70-150 µm thick, passing through the 

buccolingual (labiolingual) plane and cutting the tip of the dentin horn (for the molars, that of 

at least one mesial cusp) were taken from the midsection of each crown preliminary 

embedded in an epoxy resin block using a diamond blade microtome (Leica 1600, Leica AG). 

As noted by Antoine et al. (2009: 46), the exact section plane varies between tooth types; it is 

strictly a radial plane in incisors and canines, while in molars it does not include the axis of 

rotation of the tooth but is a tangential section centred through the tips of both the buccal and 

lingual cusps and the underlying dentine horns. 

 

Digital Image Processing. In order to evaluate the general quality of the enamel 

microfeatures and the presence and position of the NL on both buccal (labial) and lingual 

crown aspects, each section was first scrutinized under polarized light at 100x (Figure 1a) and 
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then the NL was observed at a higher magnification (400x) (Figure 1b). While many teeth had 

two or more sections cut from them, only one slide from each tooth showing the best 

discernibility of the NL was selected for analysis. Images at 100x and 400x were captured 

with a high-resolution digital camera (Polaroid Digital Microscope Camera, DMC 1) attached 

to an optical transmitted light microscope (Laborlux S, Leica AG) and exported into Adobe 

Photoshop, which was used to assemble montages of relevant areas of tooth sections from 

adjacent images. Contrast enhancement convolution filters (3x3 and 5x5 kernels) achieved 

sharper detail and a change in the look-up table function increased site-specific contrasts of 

intensity profiles (Rossi et al. 1999; Schwartz et al. 2010). Depending on individual tooth 

size, each cross-section was reconstructed in a digital photomosaic of ten or so (up to 15) 

partial images. Spatial resolution is 0.971 µm/pixel for the images captured at 100x and 0.241 

µm/pixel for the digital record at 400x. 

The ImageJ 1.43 (National Institutes of Health, USA) software was used for digital 

image processing and measurements. 

 

The Investigated Sample. The sample selected from Fatina for the specific purposes 

of the present study is detailed in Table 1. As a whole, it consists of the sections from 58 

maxillary and 42 mandibular deciduous teeth. Having been originally selected because of 

their relatively good preservation conditions and lack of macroscopic pathological lesions 

(e.g., enamel decay), their tooth class, position and side (not considered here) individual 

attributions have been performed before sectioning on comparative morphological and 

dimensional grounds (Hillson 1996, 2005). In the sample, the central (i1) and lateral (i2) 

incisors are the most represented teeth (57 and 38 crowns, respectively), while only a single 

lower m2 represents the molar tooth class. 
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Information about sex, delivery mode and gestation length are available for all the 

individuals represented in this study (Table 2), while data on weight at birth only concern 61 

cases. Related supplementary information (mostly, medical data) about pregnancy (cases of 

miscarriage threats, pregnancy-induced maternal hypertension and hyperaemia, maternal 

isoxsuprine treatment, temporary myoma) and/or the perinatal period (undernourished 

placenta, placenta abruption or marginally patent at term, asphyxia at birth) are here available 

for 12 individuals, but in no case they have been accurately detailed by the parents and appear 

in the anonymous record as telegraph notes only. 

In order to get from the parents simple and unambiguous answers suitable for reliable 

elaborations, in our record the delivery modes have been schematically categorized as 

follows: "normal", where no special medical care or physical intervention had been necessary; 

"Caesarean", with typical surgical section following anaesthesia; "operative", when some kind 

of active outside intervention had took place (e.g., breech, forceps or vacuum delivery) 

because of labour complications (malpresentation, failure of descent of the foetal head 

through the pelvic brim or the interspinous diameter, poor uterine contraction strength, active 

phase arrest, cephalic-pelvic disproportions, shoulder dystocia, etc.). With this respect, the 

present sample mostly represents normal (55) and Caesarean (40) deliveries, while 

complicated deliveries apparently occurred in 5 cases only (Table 2). 

With reference to the gestational age, the deliveries have been categorized has follows: 

at "term", when occurred within 37-41 weeks after fertilization; "preterm", before the 

beginning of the 37th week; and "post-term", over the beginning of the 42th week. In our 

sample, the first category is largely the most represented (71 cases), while the remaining cases 

are almost equally distributed between preterm (14) and post-term (15) deliveries (Table 2). 

A synthetic picture of the investigated sample in terms of sex, delivery mode and 

gestational age representativeness is provided by the mosaic plot shown in Figure 2. A mosaic 
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plot is basically an area-proportional visualization of observed frequencies, composed of tiles 

(corresponding to the cells) created by recursive vertical and horizontal splits of a rectangle. 

Thus, the area of each tile in Figure 2 is proportional to the corresponding cell entry given the 

dimensions of previous splits (Friendly 1994). 

 

Neonatal Line Thickness. The NL is an optical phenomenon due to alterations in 

height and degree of mineralization of the enamel prisms (Sabel et al. 2008). In all cases used 

in present work, its identification and outline assessment at 100x was unambiguous, as this 

scar clearly divides the smooth course of prenatal enamel matrix formation from the "normal" 

structure of postnatal enamel matrix (Antoine et al. 2009; FitzGerald et al. 2006; Kodaka et al. 

1996; Mishra et al. 2009; Risnes 2001; Rossi et al. 1999; Rushton 1939; Sabel et al. 2008; 

Schour 1936; Schour and Massler 1937; Skinner 1992; Skinner and Dupras 1993; Szpringer-

Nodzak 1984; Weber and Einsenmann 1971; Whittaker and Richards 1978). To measure the 

NL width, three images were originally taken at 400x in three different positions, preferably 

along the buccal (labial) aspect: 1) close to the EDJ; 2) in the middle of the dental crown; and 

3) close to the apex. After having carefully marked the outline of the NL on the digital 

photomontages, at least six measurements were realized at each spot by two to three 

independent expert observers, and the site-specific average thickness value calculated. 

However, as the enamel secretion rate slightly varies depending on crown topography (Birch 

and Dean 2009; Mahoney 2008), here we specifically used the mean estimates pertaining only 

to the middle portions (Figure 1b). Following a quantitatively significant experience 

developed in the NL assessment on recent and archaeological samples and the realization of 

repeated tests for intra- and interobserver concordance in analysing the histomorphometric 

dental record (e.g., FitzGerald et al. 2006; Macchiarelli and Bondioli 2000; Rossi et al. 1999; 
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Schwartz et al. 2010), in none among the 100 thin sections used here the discrepancy among 

the repeated measures exceeded 6% . 

 

Statistical Analyses. To compare the NL width and the weight at birth means among the 

groups defined by the delivery mode, the sex, and the gestation length, we used the analysis 

of variance with an incomplete model with three factors (sex, delivery mode, gestation length) 

and two interactions (sex by gestation length and sex by delivery mode). The Tukey Honest 

Significant Difference (HSD) method was used to test the differences between the means of 

the grouping levels. This because, when comparing the means for the levels of a factor in an 

analysis of variance, a simple comparison using t-tests will inflate the probability of declaring 

a significant difference when it is not in fact present (Yandell 1997). 

Statistical analyses and graphs were realized with the R v.2.13.1 language (R 

Development Core Team 2011), with the support of the package vcd (Meyer et al. 2006). The 

box-and-whisker plots in Figures 3, 4, and 5, systematically show (from bottom to top): the 

minimum value, the 1st quartile, the median, the 3rd quartile, and the maximum value recorded 

in our series of observations. 

 

Results and Discussion 

 

The descriptive statistics of the NL thickness variation in our tooth sample of 100 individuals 

(data pooled and distinct per sex) is summarized in Table 3, which also details the results 

distinctly for each delivery mode and gestational age category. As a whole, NL width widely 

varies from 6.5 to 28.4 µm (av. thick. = 15.2 ± 5.19 µm), a range which approximates the 

estimates provided for other recent and archaeological population samples (Macchiarelli et al. 

2006a; Rossi et al. 1997, 1999). In the series, no significant differences appear between males 
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and females (14.7 ± 5.28 vs. 15.7 ± 5.12 µm) nor, as expected (cf. Rossi et al. 1999), between 

the average values from the upper and lower crowns, or between those of the central and 

lateral incisors, which are the most represented tooth elements (95/100). 

As shown in Figure 3, the results indicate a substantial overlap among the thickness 

distributions of the normal (av. thick. = 15.9 ± 5.74 µm), Caesarean (14.4 ± 4.26 µm), and 

operative delivery modes (14.2 ± 5.47 µm), even if the last category is only represented by 

5/100 cases (Table 3). With this regard, it is noteworthy that, according to our record, the 

individuals showing a NL width ≥ 24 µm (7 cases, 3 males/4 females) were apparently all 

born without active external intervention ("normal" delivery). However, two among them, a 

preterm and a post-term child, correspond to a case of asphyxia at birth and of marginally 

patent placenta, respectively. Among the 11 cases of minimal (≤ 9 µm) NL thickness 

measured in our series (7 m/4 f), none being associated to a particular condition or medical 

record available to us, all three delivery categories are represented (6 normal, 2 Caesarean, 2 

operative). 

The results illustrated above differ from the analytical figures reported by Eli et al. 

(1989) in their study of a similar sample of school-aged children, where a distinct trend of 

relative NL thickness increase has been found from the category elective Caesarean sections 

(6-9 µm vs. 8.4-23.8 µm in Fatina) to that operative (13-24 µm vs. 7.8-19.0 µm) through the 

normal delivery pattern (7-17 µm vs. 6.5-28.4 µm). One reason responsible for these 

differences likely relates to the heterogeneous proportions of delivery modes represented in 

the two samples. In fact, while in Fatina the normal and the Caesarean are the most 

represented modes (55 and 40 individuals, respectively), the sample examined by Eli and co-

workers (1989) mostly includes normal (125) and operative (17) cases. In other words, while 

our results clearly do not support the existence of a statistically significant difference in NL 

width between children born "normally" and those having left the uterus following a typical 
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Caesarean intervention, the poor representativeness in our Fatina's subsample of the operative 

category (5 cases) does not legitimate any conclusion on comparative basis. In our view, the 

same should be the case for the sample of five teeth representing the category "elective 

Caesarean sections" measured by Eli et al. (1989). However, the different nature of the two 

original records should be also evoked among the additional factors potentially responsible 

for such discrepancies. In fact, while in Eli and co-workers (1989) all technical and medical 

information about the birth histories, including type of delivery and condition of the newborn, 

were obtained from hospitals, in Fatina they are from parental sources, which makes 

problematic a direct comparison of the two records, notably in the cases of "normal" and 

"complicated" (operative) deliveries. Additionally, no systematic information is available in 

Fatina about the causal factors related to the Caesarean surgical sections. 

Differently from the picture offered by the delivery pattern, in the Fatina series some 

difference in NL thickness emerges when gestational weeks are considered (Figure 4, Table 

3). In particular, here the estimates for the preterm-born children (av. thick. = 18.5 ± 4.78 µm) 

clearly exceed those associated to both term (14.5 ± 4.78 µm) and post-term (15.8 ± 6.45 µm) 

subsamples. In this case, however, only one preterm individual is included among those 

showing a NL width ≥ 24 µm (the already mentioned case of asphyxia at birth), while none is 

found among the 11 cases of minimal (≤ 9 µm) NL thickness. So, in our investigated sample, 

gestational age apparently more strictly relates to NL width than delivery modalities. 

The results of the analysis of variance of the NL thickness variation globally run with 

respect to the sex, delivery mode, and gestational age factors (Table 4) show a statistically 

significant contrast (p = 0.03) for this latter variable only (pooled sexes). More precisely, as 

revealed by the Tukey HSD method used to test the differences between the means of the 

grouping levels, a statistically significant difference exists between the average values of the 

preterm and term male subsamples (Table 5). Accordingly, preterm-born children, notably of 
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males sex, tend to have a thicker enamel NL, independently from their experienced delivery 

dynamics. However, sample size of our currently available preterm subsample (14 cases, 6 

m/8 f) does not allow for any reliable conclusion about a possible sex-related influence of the 

number of gestational weeks on NL thickness, a subject which certainly deserves additional 

investigations. 

While in this study we did not use scanning electron microscopy to detail variations in 

porosity between pre- and postnatal enamel or prism disruption patterns, some studies on 

primary teeth from low-birth-weight preterm individuals have reported the occurrence of a 

high frequency of mineralization disturbances, notably the presence of a distinct 

hypomineralized postnatal zone (Norén 1983; Rythén et al. 2008), a condition compatible 

with the evidence from Fatina of a sometime thicker NL. However, in evaluating the possible 

relationships between NL width and the variables considered in Table 4, it has to be taken 

into account that the deciduous tooth sections used in the present histo-morphological study 

have been selected from the Fatina collection exactly because of the unambiguous presence 

of the NL. In other words, the present sample is unable to provide any information about a 

possible differential lack of this mark, for example, in individuals distributed according to the 

categories assessed here, nor to any other additional variable available to us. 

Another parameter intimately related to gestational age, thus of possible relevance in 

such kind of studies dealing with NL thickness variation, is represented by the weight at birth. 

With this respect, our record concerns only 61/100 cases (31 m/30 f). The individual values 

range from 2.35 to 4 kg (av. = 3.33 ± 0.41 kg), with no significant differences between males 

(av. = 3.44 ± 0.43 kg) and females (av. = 3.23 ± 0.36 kg), nor among the groups referred here 

as normal (35 cases: 3.30 ± 0.45 kg), Caesarean (25 cases: 3.39 ± 0.35 kg), and operative (one 

single case: 3.25 kg). As expected and shown in Figure 5, preterm children (11 cases) on 

average display the lowest weights (2.97 ± 0.49 kg), while a substantial overlap exists 
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between the figures available to us for the term (42 cases) and post-term (8 cases) subsamples 

(3.39 ± 0.35 vs. 3.56 ± 0.26 kg, respectively). Of course, given the evidence that at least a few 

days of life ex utero are necessary for the NL to leave its imprint in the enamel (Levine et al. 

1979; Massler and Schour 1946; Schour 1936; Schour and Massler 1937; Weber and 

Eisenmann 1971; Whittaker and Richards 1978), it is possible, or even likely, that 

physiological weight fluctuations along the first week may affect NL thickness variation. 

Nonetheless, again, the heterogeneous quality of our record does not authorize any conclusive 

statement on this matter. 

 

Conclusions 

 

The physical trauma implied by the birth dynamics is commonly listed among the factors 

having a direct impact on the degree of expression (thickness variation) of the neonatal line, 

the enamel growth disruption marker usually found in all deciduous crowns and the first 

permanent molars of the individuals having survived at least a few days the perinatal stage. 

This has been corroborated by the quantitative results of the study realized by Eli and co-

authors (1989) on a large sample of healthy children of known birth history. Their work 

suggests an intimate association between operative deliveries and thicker lines, on one side, 

and Caesarean sections and thinner lines, on the other one, normal deliveries apparently 

resulting into intermediate values. Accordingly, Eli et al. (1989) have tentatively estimated at 

about 37% the proportional weight of the birth process itself on the determinism of the NL 

width. However, it should be noted that their investigated sample only included five cases 

associated to elective Caesarean section. 

The results from the present histo-morphological investigation performed on a 

deciduous dental sample of 100 modern school-aged children selected from the so-called 
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Fatina collection do not support the suggestion that Caesarean-born children (40 cases in our 

sample) display, on average, a thinner enamel scar compared to children associated to a 

"normal" delivery mode (55 cases). Rather than delivery modalities, our study supports the 

view of an influence exerted by factors intimately related to gestational length variation on the 

degree of expression of the line (review in Rythén et al. 2008). 
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Table 1. The Fatina deciduous dental sample 
 

 tooth type N males females 
maxillary teeth i1 38 16 22 

 i2 18 7 11 
 c 2 1 1 
  58 24 34 

mandibular teeth i1 19 13 6 
 i2 20 9 11 
 c 2 - 2 
 m2 1 1 - 
  42 23 19 
     

total sample  100 47 53 
 
 
Table 2. Delivery mode and gestational age categories represented in the Fatina sample 
 

delivery mode N males females 
normal 55 26 29 

Caesarean 40 18 22 
operative 5 3 2 

gestational age    

preterm 14 6 8 
term 71 34 37 

post-term 15 7 8 
    

total sample 100 47 53 
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Table 3. Neonatal line thickness (width) variation (in µm) in the Fatina sample 
 

 N Mean s.d. min. max. 
total sample 100 15.2 5.19 6.5 28.4 

males 47 14.7 5.28 6.5 28.4 
females 53 15.7 5.12 7.8 26.8 

delivery mode      

normal 55 15.9 5.74 6.5 28.4 
males 26 15.3 5.80 6.5 28.4 

females 29 16.5 5.71 7.8 26.8 
Caesarean 40 14.4 4.26 8.4 23.8 

males 18 14.5 4.42 8.4 23.8 
females 22 14.4 4.24 9.0 21.6 

operative 5 14.2 5.47 7.8 19.0 
males 3 11.6 - 7.8 18.2 

females 2 18.2 - 17.3 19.0 
gestational age      

preterm 14 18.5 4.78 11.9 28.4 
males 6 20.0 5.72 13.1 28.4 

females 8 17.3 3.92 11.9 22.4 
term 71 14.5 4.78 6.5 26.8 

males 34 13.4 4.53 6.5 24.3 
females 37 15.5 4.86 8.3 26.8 

post-term 15 15.8 6.45 7.8 26.6 
males 7 16.4 5.71 8.4 26.6 

females 8 15.2 7.38 7.8 24.8 
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Table 4. 
Analysis of variance (F) of the neonatal thickness in the Fatina sample with respect to sex, 
delivery mode (DM), and gestational age (GA) 
 

 d.f. F p 

sex 1 0.90 0.35 
GA 2 3.63 0.03* 
DM 2 0.70 0.50 

sex by GA 2 2.02 0.14 
sex by DM  2 0.64 0.53 

d.f.: degrees of freedom. 
 
 
Table 5. 

Results of the Tukey Honest Significant Difference (HSD) method used to test the differences 
between the means of the grouping levels for the analysis of variance presented in Table 4. 
Only the significant differences (p < 0.05) are reported 
 

 diff. lower upper p adj 
GA     

preterm - term 3.92 0.40 7.43 0.03 
sex by GA     

males preterm - males term 6.72 0.22 13.22 0.04 
GA: gestational age; diff.: difference in the observed means; lower: the lower end point of the 
confidence interval; upper: the upper end point of the confidence interval; p adj: the 
probability value after adjustment for the multiple comparisons. 
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Figure 1. (a) Labiolingual section of a poorly worn lower lateral deciduous incisor (Li2) 
from the Fatina collection (100x), and (b) detail of the middle portion of the enamel on the 
labial aspect of the crown showing a distinct neonatal line (dark, to the right) and the enamel-
dentine junction (white, to the left) (400x). 
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Figure 2. Mosaic plot describing the composition of the investigated deciduous dental 
sample from the Fatina collection in terms of sex, delivery mode (normal, Caesarean, 
operative) and gestational age representativeness (preterm, term, post-term). m: males; f: 
females. 
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Figure 3. Box-and-whisker plot of the neonatal line thickness (NL width) variation in the 
Fatina sample according to the delivery mode. 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



32 
 

 

 
 
Figure 4. Box-and-whisker plot of the neonatal line thickness (NL width) variation in the 
Fatina sample according to the gestational age. 
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Figure 5. Box-and-whisker plot of the weight variation at birth in the Fatina sample 
according to the gestational age. 
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