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Abstract:  

With a 5-year survival rate of less than 20%, lung cancer is a leading cause of cancer-

related deaths worldwide. Considering the treatments currently in place, this statistic is frankly 

shocking. A possible explanation for the disconnect between sophisticated treatments and the 

survival rate can be found in the Cancer Stem Cell (CSC) hypothesis. The CSC hypothesis 

suggests the idea of a subpopulation of tumor cells with the abilities of self-renewal, cancer 

initiation, and further maintenance of tumors. Lung CSCs have been associated with resistance to 

radiation and chemotherapeutic treatments. CSCs have also been implicated in recurrent cancers; 

if the CSCs are not completely killed off after treatment, the cancer tends to reemerge.  Extensive 

investigation of CSCs to determine their responsibility in recurrent and drug-resistant cancers 

heavily relied on the use of specific markers present in CSCs, including CD133, ALDH, 

ABCG2, and Nanog. Yet another method that results in increased resistance to treatment is 

epithelial mesenchymal transition, or EMT. Through this process, epithelial cells lose the 

epithelial phenotype and gain mesenchymal properties. One of these properties is increased drug-

resistance, rendering EMT culpable – at least in part – for drug-resistance in cancer cells . 

Furthermore, since miRNA-based therapies are coming to light, various miRNAs will be 

discussed in terms of their relationship to chemoresistance as well as CSCs in general. Finally, a 

discussion of the natural and synthetic anti-cancer compounds curcumin, CDF, and BR-DIM will 

ensue. 

 
 
 
 
 
 
 
 



1. Introduction:  

Lung cancer has two main divisions. These are small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC). Cases of NSCLC make up 75-80% of all lung cancer cases (1). 

NSCLC can be further subdivided into squamous cell carcinoma, adenocarcinoma, and large cell 

carcinoma. Most originating sites of the various types of lung cancer are located at or near 

identified airway stem cell niches, which suggests their stem cell origin (2). The discovery of a 

group of cells with self-renewing abilities in tumors was groundbreaking, and prompted further 

study. These cells, called cancer stem cells (CSCs) may be the primary cause of chemotherapy 

resistance and recurrence in patients with multiple types of cancer, including lung cancer (3). In 

order to gain a better understanding of lung CSCs and develop new treatments, a fundamental 

understanding of CSC markers, their therapeutic targeting, drug-resistant properties of CSCs, and 

the role of miRNAs must be attained. With current understanding combined with further 

research, we will hopefully continue to develop better and better treatments that can target CSCs 

as well as removing the bulk of tumors, leading to smaller proportions of recurrence and drug-

resistance in lung cancer. 

2. Cancer Stem Cells of the Lungs 
 
2.1 Markers defining lung CSCs and their potential implications 
 
 In order to research CSCs, they must first be identified. Among the common markers 

used to isolate and study CSCs are CD133, ALDH, ABCG2, and Nanog. These markers provide 

ways to assess how effective different treatments are at eradicating CSCs. The markers also have 

prognostic applications. Furthermore, the markers have been specifically targeted to reduce 

functionality – or even induce apoptosis – in CSCs, increasing the specificity and thus improving 

treatment. 



2.1.1 CD133 

CD133 is a commonly demonstrated lung CSC marker (2). It is a cell surface 

glycoprotein that consists of five transmembrane domains and two large glycosylated 

extracellular loops (4). Researchers tested ten NSCLC cell lines in an attempt to verify that cells 

positive for CD133 possessed properties of CSCs. Findings suggested that CD133 positive 

(CD133+) cells showed significantly higher abilities of self-renewal, tumor initiation, and drug 

resistance when compared to CD133- cells (5, 6). In addition to these findings in NSCLC cell 

lines, CD133+ cells with similar CSC properties were found in SCLC, suggesting that CD133 

may be a pan-lung cancer stem cell marker (2).  

In terms of the potential implications of this marker, high CD133 expression has been 

linked to poor prognosis in patients with NSCLC (7, 8). This may result from the fact that 

CD133 expression has also been associated with higher tumor stage in adenocarcinoma (7). 

However, these results are not completely conclusive yet and cannot be generalized for all 

patients with NSCLC, as indicated by one study that did not find any link between CD133 

expression and NSCLC prognosis (9).  

2.1.2 ALDH 

 Another marker useful for identifying and isolating CSCs has to do with the high 

aldehyde dehydrogenase activity of stem cells. Aldehyde dehydrogenase (ALDH)’s enzymes 

control the differentiation of normal stem cells, suggesting a link between ALDH and CSC 

differentiation (10). Furthermore, the ALDH family of intracellular enzymes was found to 

participate in cellular detoxification and drug resistance in CSCs (2). ALDH1, a cytosolic 

isoenzyme, is a member of the ALDH family. Lung cancer cells that expressed ALDH1 

demonstrated highly tumorigenic and clonogenic properties. (11). Moreover, ALDH1A1+ CSCs 



displayed resistance to chemotherapy drugs and EGFR-TKI (epidermal growth factor receptor 

tyrosine kinase inhibitors), both treatments used to fight lung cancer (12). Specifically, the drugs 

to which ALDH1A1+ CSCs displayed resistance are the chemotherapeutic drugs cisplatin, 

etipisode, and fluorouracil, as well as the EGFR-TKI gefitinib (12).  

 Taking a look at the combined effects of the overexpression of CD133 in conjunction 

with that of ALDH, it is important to note that this combination has been related to an increased 

risk of recurrence in early-stage NSCLC (13). Furthermore, the concomitant expression of 

CD133 and ALDH1A1 was correlated with shortest overall survival among 205 stage-1 NSCLC 

patients (13). Thus, the detection of both CD133 and ALDH could potentially serve as a 

prognosis indicator for NSCLC patients.  

2.1.3 ABCG2 

 Yet another marker of lung CSCs is ABCG2, an ATP-binding cassette transporter. 

ABCG2 has the ability to pump chemotherapeutic drugs outside the cell, ultimately resulting in 

decreased intracellular concentrations of the drugs (4). The transporter works by using energy 

from ATP to drive the active transport of drug metabolites and other compounds across the cell 

membrane. The ATP-binding cassette (ABC) superfamily, of which ABCG2 is a part, is a 

powerful resistance mechanism that greatly contributes to the chemoresistance of CSCs (14, 15). 

Looking at the implications of the presence of the ABCG2 marker, the source of the energy 

driving its active transport becomes important. Since ABC transporters are ATP-dependent, 

ATP-competitive agents could target them to potentially reduce their efficacy. 

2.1.4 Nanog 

 The Nanog transcription factor plays a key role in maintaining the self-renewal of 

embryonic stem cells in embryonic development (16, 17). It plays a similar role in CSCs. Since 



its role is directly related to such a key phenotypic characteristic of CSCs, it has been used as a 

marker in lung CSCs (17, 18). The overexpression of the Nanog protein predicted a worse 

prognosis for lung cancer patients, suggesting its possible use as a prognosis indicator (19). The 

relationship between Nanog and lung CSCs needs to be further examined in order to continue the 

development of novel treatments. 

2.2 Therapeutic targeting of lung CSC markers      

 Therapeutic treatments have been developed in attempts to specifically attack CSCs. 

Such treatments have made use of CSC markers by either using them to find CSCs or by actually 

targeting the markers themselves. The therapeutic targeting of lung CSC markers has not been 

studied to the depth it merits in lung cancer. However, markers of lung CSCs have indeed been 

established and studied in great detail. Thus, this section will entail the discussion of therapeutic 

targeting of lung CSC markers in any type of cancer. Some lung CSC markers that have been 

targeted include the aforementioned CD133, ALDH, ABCG2, and Nanog.  

 CD133 targeting in human metastatic melanoma has been effective. Short hairpin RNAs 

were used to down-regulate CD133. This led to decreased movement ability, spheroid-forming 

ability, and capacity of metastasis (20). The down-regulation also led to slower overall cell 

growth. An efficient method in the elimination of CD133+ tumors is the use of antibody-drug 

conjugates (21). This method has been used with success in hepatocellular and gastric cancers, 

and its efficiency when applied to lung cancer should be further studied. 

 Yet another marker targeted in lung cancer is the ALDH family. The ALDH family has 

been targeted in colorectal cancer and breast cancer, among others. In both colorectal and breast 

cancer, ALDH1 activity inhibition with DEAB was successful. In breast cancer cells, the 

ALDH1 inhibition resulted in suppression of tumor-initiating ability and a reduction of 



metastasis to the lungs (22). In colorectal cancer cells, ALDH1 inhibition caused treated lines to 

be more sensitized to the cytotoxic effects of a chemotherapeutic drug, CPA (16). Another 

method used in colorectal cancer cells was the down-regulation of ALDH through the use of 

shRNA, which reduced the number of detected CSCs (16). 

 As previously discussed, the ABC multidrug efflux pumps are important for the 

chemoresistance of CSCs. In order to increase the potency of treatment, the ABCG2 transporter 

has been targeted. Inhibitors of the transporter are still waiting comprehensive clinical 

assessment, but they include phosphodiesterase-5 inhibitors and Ko143 (23). Dietary flavonoids 

may also work to inhibit ABCG2 –mediated cellular drug efflux (24). Such inhibitors will 

hopefully eventually work synergistically with conventional chemotherapeutics to eliminate 

tumors and reduce possibilities of recurrence in cancers.  

Finally, Nanog mRNA knock-down has resulted in decreased mobility and invasion 

abilities of choriocarcinoma cells (25). Since the therapeutic targeting of Nanog has proven 

successful in one type of cancer, it has the potential to be successful in the treatment of lung 

cancer as well. 

3. Drug-resistance 
 

Therapeutic resistance is one of the primary causes of failure in cancer treatment (26). 

Drug-resistant properties of cancer can result in either an immediate re-initiation of the disease or 

a re-initiation after a significant lapse of time (27). Some common treatments of lung cancer that 

have faced the problem of treatment resistance include Epidermal Growth Factor Tyrosine 

Kinase Inhibitors (EGFR-TKI), chemotherapy, anti-proliferative treatments, and radiation 

treatment (27-29). The process of EMT has played a role in drug-resistance, as have the very 

properties of CSCs.  



 
3.1 Role of EMT in drug-resistance 

Epithelial cells can become invasive, migratory mesenchymal cells. This process, known 

as epithelial mesenchymal transition (EMT) gives cancer cells the ability to migrate, invade, and 

spread through the blood. Furthermore, EMT may result in the production of CSCs, as evidenced 

by differences in cell surface marker expression and increased tumor formation (30-32). Typical 

progression of EMT involves losing epithelial markers and gaining mesenchymal markers (33). 

A distinctive feature of EMT is the loss of E-cadherin, a glycoprotein involved in epithelial cell-

cell adhesion and cytoskeletal organization (26). Considering its primary functions, it is clear 

that E-cadherin would not be useful for a migratory mesenchymal cell. 

 The loss of function of E-cadherin is thought to enable metastasis by giving rise to 

significant transcriptional and functional changes. One particular study focused on the role of E-

cadherin in EMT. This study sought to determine whether E-cadherin loss resulted solely in the 

loss of cell-cell contacts or if E-cadherin loss activated multiple transcriptional pathways. Results 

indicated that E-cadherin loss contributed to the action of multiple transcriptional pathways (26, 

34). In fact, after E-cadherin loss, 19 transcription factors were highly induced. Moreover, E-

cadherin loss alone is enough to give metastatic abilities to breast cancer cells that previously 

lacked these abilities (35). 

 EMT plays a key role in making cancer cells drug-resistant to commonly used 

therapeutics, such as EGFR-TKI. EGFR is an oncogenic pathway that has been inhibited through 

the use of tyrosine kinase inhibitors (TKIs) (29). EGFR-TKI has been used to treat the 

adenocarcinoma subset of NSCLC (29). Though patients respond to the treatment initially, most 

patients face relapse (36). Adenocarcinoma cells resistant to EGFR inhibitors such as gefitinib 

and erlotinib showed a decrease in their expressions of E-cadherin, an epithelial cell marker, and 



an increase in their expressions of vimentin, a mesenchymal cell marker. Since the drug-resistant 

lung cancer cells display the mesenchymal phenotype, EMT might be an indicator of 

insensitivity to EGFR inhibition in lung cancer (26). Furthermore, restoration of E-cadherin 

increased the sensitivity of the drug-resistant cancer cells to EGFR-TKIs such as gefitinib, 

further suggesting a relationship between EMT and resistance to EGFR-inhibitors (29). Though 

support for the relationship between EMT and resistance to these inhibitors in adenocarcinoma is 

present, the evidence is still inconclusive. For example, one particular study found that only 50% 

of samples had undergone EMT after exposure to gefitinib (37). Further research is required to 

fully understand the relationship between EGFR-TKI resistance and EMT. Such research may 

help increase the efficacy of EGFR-TKI in patients who have shown resistance to this treatment 

method. 

3.2 Role of CSCs in drug-resistance 
 

Some therapies that are currently in place are effective in that they are able to remove 

bulky disease. However, therapies that fail to employ a strategic elimination of CSCs are often 

ineffective and result in cancer recurrence. (27). A specific example of such an instance can be 

seen in platinum-based combination chemotherapy, a first-line treatment for NSCLC in advanced 

stages (28). This type of treatment works by inhibiting DNA repair and/or DNA synthesis in 

cancer cells. Notably, a significant number of patients face tumor recurrence after platinum-

based combination chemotherapy (38). When first-line agents fail, second-line agents (such as 

docetaxel and pemetrexed) are used. Unfortunately, the second-line agents tend to be ineffective 

in patients who have received typical first-line chemotherapy. A recent study discovered that 

cisplatin treatment, a platinum-based first-line treatment, elevated the ratio of cells expressing 



the CSC markers CD133 and Nanog (14, 28). The cisplatin treatment selected for CSCs, 

resulting in the high rate of paclitaxel resistance in patients who had been treated with cisplatin. 

CSCs have special properties that contribute to their drug-resistance. Some of the more 

significant contributing properties include CSCs’ relative dormancy, their high capacity for DNA 

repair, and their high expression of multiple drug resistance membrane transporters (27).   

The relative dormancy of CSCs is important when considering anti-proliferative 

treatments, such as imatinib and nolitinib (27). CSCs are often in a state of dormancy, or 

quiescence, where they are non-proliferative (39). While CSCs are not in the cell cycle, they are 

protected from chemo-radiotherapy. The use of specific cytokines (like As2O3) to force the CSCs 

to re-enter the cell cycle can restore chemo- and radio-sensitivity and should be employed in 

conjunction with anti-proliferative treatments (40).    

CSCs express a significant amount of multiple drug resistance membrane transporters, 

including those of the ABC family (27, 41). As previously discussed, these transporters use 

active transport to efflux drugs, reducing the drugs’ impact on CSCs (14). However, CSCs rely 

on still other mechanisms for drug resistance, limiting the efficacy of ABC transporter inhibitors.  

Furthermore, CSCs have a high capacity for DNA repair, yet another factor contributing 

to their drug-resistance (27). In a study of human glioblastomas, CD133+ cells were found to 

survive radiation treatment better than cells without this CSC marker (42). This survival 

difference can be attributed to the efficient DNA repair mechanisms present in CSCs, such as the 

Chk1 and Chk2 checkpoint kinases (42). These kinases pause the cell cycle to allow DNA repair 

to happen.      

4. MiRNAs 
 



MicroRNAs, or miRNAs, are non-coding RNAs made up of 19-22 nucleotides that help 

regulate gene expression during translation (43). MiRNAs play very important roles in numerous 

biological processes of cancer cells, including development, proliferation, and apoptosis (44). 

MiRNAs are endogenous posttranscriptional regulators that negatively regulate expression of 

their target genes (45). MiRNAs can be either oncogenic or tumor suppressing, depending on the 

subsequent pathways they influence. MiRNAs will be discussed in terms of their impact on 

chemoresistance and the maintenance of CSCs in general. New therapies take advantage of 

knowledge gained from miRNA research, making the understanding of how miRNAs are 

involved in cancer critical. 

4.1 MicroRNAs associated with chemoresistance 

 Since miRNAs are useful in so many different arenas, it is only natural that they be 

discussed in relation to chemoresistance. Much research has focused on – and continues to focus 

on – the up-regulation or down-regulation of miRNAs in relation to treatment resistance. This 

research can result in attempts to up-regulate the miRNAs to reverse treatment resistance or 

developments of new treatments altogether. Since miRNAs are associated with chemoresistance, 

they can also prove useful as prognostic indicators. The miRNA-212, the let-7 family, and 

various miRNAs associated with EGFR should be further researched in order to identify new 

treatments or improve the effectiveness of currently common treatments for lung cancer. 

4.1.1 miRNA-212 

miR-212 is considered a tumor suppressor, and its down-regulation has been correlated 

with chemoresistance (46). When miR-212’s expression levels are normal, it increases tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death in NSCLC cells 

(47). The down-regulation of miR-212 leads to the up-regulation of the anti-apoptotic PED. PED 



has been implicated in inducing resistance to chemotherapeutic treatment, meaning that miR-212 

down-regulation is responsible in part for chemoresistance. Another way miR-212 may be 

involved in chemoresistance can be found by considering its relationship with ABC multidrug 

efflux transporters. In CML, or chronic myeloid leukemia, miR-212 down-regulation 

corresponded with decreased ABCG2 protein expression (48). The use of reporter gene assays 

established that miR-212 targeted the 3’-UTR region of ABCG2 (48). Finally, MiR-212 down-

regulation has also been indicated as responsible for docetaxel resistance in NSCLC 

adenocarcinoma cells (49).  

4.1.2 The let-7 family 

Let-7 (lethal-7) refers to a family that consists of 12 miRNAs. The let-7 family is a 

known inhibitor of EMT (50). Accordingly, let-7 was down-regulated in A549 NSCLC cells 

treated with TGF-β1. These cells were resistant to the drug erlotinib. The re-expression of let-7b 

and let-7c led to an appeared reversal of EMT and was accompanied by increased erlotinib 

sensitivity (51). Since let-7 down-regulation results in drug resistance, it follows as logical that 

reduced levels of let-7 have been associated with poor patient outcome for patients with lung 

cancer (52). 

4.1.3 miRNAs associated with EGFR 

Acquired resistance of NSCLC to EGFR has included secondary mutations in EGFR 

itself. An example of such a mutation is the EGFR T790M “gatekeeper” mutation, which has 

been responsible for 50% of resistant cases (53). Another mechanism of acquired resistance, the 

amplification of the MET oncogene, has been associated with tumor growth and metastasis. This 

mechanism has been observed in 20% of resistant cases (54). The study of miRNAs through a 

microRNA microarray identified that miR-30b, miR-30c, miR-221, and miR-222 target both 



epidermal growth factor (EGF) and MET receptors (55). The microarray also found that miR-

103 and miR-203 target solely the MET oncogene. These microRNAs collectively had a large 

impact on the response to gefitinib-induced apoptosis of NSCLC. The microRNAs inhibited 

expression of genes encoding BCL2-like 11 (BIM), apoptotic peptidase activating factor 1 

(APAF-1), protein kinase C-ε, and sarcoma viral oncogene homolog (SRC) (56). Modulating 

these miRNAs, in conjunction with chemotherapy, could provide a better outlook for NSCLC 

patients treated with EGFR-TKIs. 

4.2 MicroRNAs associated with CSCs 

MiRNAs, important regulators of CSCs, are improperly regulated in many cancers. Such 

incorrect regulation could include the down-regulation of tumor suppressors, as is seen in 

miRNA-34a, miRNA-21, and the miRNA-200 family. This process brings to mind the question 

of whether re-introduction or corrected regulation of these miRNAs would restore normal tumor 

suppressing ability. Interestingly enough, in some cases, it has. 

4.2.1 miRNA-34a 

MiR-34a is a known tumor suppressor, and its up-regulation has led to increased 

apoptosis (46). The tumor suppressor p53 transcriptionally induces miR-34a. (57). When miR-

34a expression is reduced, lung CSCs take on a more aggressive phenotype (58). When miR-34a 

expression is increased again, this more aggressive phenotype is lost (58). Since miR-34a is 

frequently down-regulated in lung cancer, it is being evaluated as a replacement therapy 

candidate (55). The delivery of a miR-34a mimic has been shown to reduce tumor growth (59). 

This suggests that miRNA replacement therapy may prove extremely useful and encourages 

further research into the field of miRNAs related to CSCs – and cancer in general.  

4.2.2 miRNA-21 



 MiRNA-21 expression was greatly increased in colon cancer CSCs (45). The down-

regulation of miR-21 caused the differentiation of CSCs, as evidenced by a decrease of CSC 

markers. Since differentiated CSCs are more susceptible to treatments, down-regulation of miR-

21 in conjunction with other treatment was studied. When the down-regulation of miR-21 

preceded other treatments such as FUOX and CDF, the treatments were more effective 

(45).Taking a more detailed look at miR-21, it is important to consider its targets. Phosphatase 

and tension homolog (PTEN) is a tumor suppressor gene that is a target of miR-21 (60). When 

miR-21 is suppressed, PTEN is up-regulated, resulting in tumor suppression (60). In relation to 

lung cancer, miR-21-3p relative expressions were found to be higher in NSCLC tissues as 

compared to non-cancerous tissues (61).  miR-21, however, has a lower prognostic value when 

compared to other miRNAs, so while down-regulation of miR-21 should be attempted in lung 

cancer, the expectations for its impact on lung CSCs should not be too high.  

4.2.3 The miR-200 family 

 The miR-200 family is a known inhibitor of EMT, a process that is responsible for some 

of the production of CSCs (30-32, 51). The loss of expression of the miR-200 family is 

associated with an increase in EMT, and consequently drug resistance and CSCs (60). MiR-

200b, a member of the miR-200 family, targets Suz12. The expression of Suz12 is enough to 

generate CSCs (62). The re-expression of miR-200 through the use of drugs such as CDF would 

inhibit Suz12, helping to suppress tumor growth and stop the generation of CSCs (62). This re-

expression could also potentially reverse EMT, lead to the differentiation of CSCs, and improve 

prognosis of lung cancer (63). 

5. Natural and synthetic anti-cancer compounds 
 



 The discovery of anti-cancer compounds, both natural and synthetic, is very interesting in 

that though we may be searching for compounds with astounding effects on cancer, we are also 

interested in learning how these compounds function. The increased understanding of both 

natural and synthetic anti-cancer compounds can result in the discovery or synthesis of novel 

compounds that may have a profound impact on the face of cancer treatment worldwide. In this 

section, a natural compound, BR-DIM, will be discussed, as will another natural compound, 

curcumin, and its synthetic analog, CDF.  

 
5.1 BR-DIM 

 One treatment that has proven in the elimination of cancer cells is the BR-DIM treatment 

(64). This natural agent works in part by inducing apoptosis in lung cancer cells by the down-

regulating Survivin and Bcl-2, decreasing Bax, and enhancing procaspase cleavage (65, 66). This 

agent also induces apoptosis through activation of the p38 MAPK pathway (67). In NSCLC, BR-

DIM was shown to inhibit the growth of drug-resistant cell lines that exhibited mutant EGFR 

(66). Even cancer cells resistant to targeted therapies, chemotherapy, or radiation exhibited 

growth inhibition in the presence of BR-DIM (66). Met, which has been linked to poor patient 

prognosis in lung cancer, faced reduced expression in lung cancer cells when they were treated 

with BR-DIM (66).  

 Most significantly, BR-DIM may be able to reduce cancer metastasis or recurrence. Such 

an outcome is possible due to BR-DIM’s ability to decrease invasive abilities of EGFR events. A 

possible mechanism for this is the suppression of the pro-metastatic chemokine receptor CXCR4 

(68, 69). This compound should be studied in combination with other forms of therapy to find 

treatment that will provide the best prognostic outlook for patients. 

 



5.2 Curcumin 

One example of a natural anti-cancer compound is curcumin. Curcumin is a non-toxic 

substance extracted from turmeric (43). Curcumin has proven effective in inducing the apoptosis 

– as well as inhibiting the proliferation – of drug-resistant CSCs. Some ways in which curcumin 

are effective include inducing EGFR removal-related apoptosis, increasing CSC treatment 

sensitivity, and interacting with miRNAs to induce apoptosis (43).  

As previously discussed, the EGFR-TKI method of NSCLC treatment is prone to 

resistance. However, when curcumin is present, the EGFR protein undergoes ubiquitination and 

degradation (70). Decreasing the EGFR protein on the cell membrane results in eventual cancer 

cell apoptosis and death (70). Part of what makes this method successful is the fact that it is not 

susceptible to EGFR mutation.  

 Furthermore, curcumin may increase the therapeutic effectiveness of existent treatments. 

Curcumin was able to induce the sensitivity of CD133+ CSCs in laryngeal carcinoma to cisplatin. 

This resulted in the reduction of the percentage of CD133+ CSCs, which were previously 

resistant to treatment (71). Curcumin was able to reduce drug-resistant properties by down-

regulating the expression and/or activity of ABC multidrug transporters in leukemic cells (43). 

ABCG2, a member of this family of transporters, is also a marker for lung CSCs, suggesting 

curcumin’s potential efficacy in reducing drug-resistant properties of lung CSCs. Curcumin has 

also reduced amounts of CD133+ medulloblastoma, glioblastoma, pancreatic and colon CSC 

proliferation through Hedgehog, insulin growth factor (IGF-), STAT3-, and histone 

methyltransferase EZH2-dependent mechanisms (70). CD133 is also a marker used for the 

identification of lung CSCs in both NSCLC and SCLC, again suggesting curcumin’s potential 

effectiveness in lung cancer. Curcumin works to reduce drug-resistant properties of cancer by 



targeting CSCs and their markers. This may indirectly result in a reduction of tumor recurrence, 

since CSCs have been posited as being responsible for the phenomenon (27, 72).  

 Curcumin has also been able to induce apoptosis in a multi-drug resistant lung 

adenocarcinoma cell line, A549 (73). By down-regulating miR-186 in A549 (lung 

adenocarcinoma) cells, curcumin was able to promote lung cancer cell apoptosis (74). 

Discoveries of the efficiency of curcumin in lung cancer treatment (and cancer treatment in 

general) prompted research into the field of curcumin analogs, some of which have been 

extremely useful in the continuing fight against cancer.  

5.3 CDF  

 The low bioavailability of curcumin prompted the synthesis of CDF, a difluorinated 

synthetic analog of curcumin with greater bioavailability (3, 60). CDF works in a manner similar 

to curcumin. It down-regulates the expression and/or activity of EGFR, IGF-1R, NF-κB, c-Myc, 

β-catenin, COX-2, and the ABCG2 multidrug transporter (3). In order to ensure that the 

efficiency of CDF at killing CSCs was on par with that of curcumin, tests were conducted 

comparing the two in terms of their ability to reduce the presence of CSC markers in chemo-

resistant colon cancer cells that were highly enriched in CSCs. These tests discovered that CDF 

was more effective. 

CDF was determined to cause a greater induction of overall apoptosis (43).  CDF 

promoted this apoptosis by activating the pro-apoptotic factor Bax (3). Furthermore, CDF was 

able to inhibit and disintegrate colonospheres containing over 80% of CSCs, as determined by 

presence of the colon CSC marker CD44 (3). Curcumin failed to do the same. In a study 

comparing CDF and curcumin in the pancreatic cancer cell lines AsPc-1 and MIAPa-Ca-2, 

similar results were observed (60). In order to determine which is superior in terms of killing 



lung CSCs, further research needs to be conducted. Furthermore, the specificities of the 

mechanisms of CDF have not yet been determined in their entirety. 

6. Conclusions – The Future of CSCs and CSC-targeted Treatment 

 Research on CSCs has shed enormous light on why so many cancers are drug-resistant 

and recurrent. With this powerful information, treatments can be modified to include components 

that kill CSCs as well as the regular mass of cells. Understanding the processes of how CSCs 

confer drug-resistance can lead to treatment with the goal of eliminating drug-resistant properties 

before – or while – administering traditional treatment.  

 CSCs have already changed the face of cancer treatment. Already, the use of antibody-

drug conjugates that target markers of CSCs in addition to normal drug function have been 

successfully employed (21). Such ideas are delightfully simple, but they could not have ever 

come into existence without countless hours in the laboratory determining the very existence of 

CSCs, pinpointing their markers, finding an antibody, and creating the antibody-drug conjugate. 

The antibody-drug conjugate is just one example of a success story. 

 Novel natural and synthetic compounds that target CSCs are slowly being understood. 

These compounds can help us as human beings make lifestyle choices and changes, where 

possible, to reduce risk of cancer. Prevention is always more efficient than treatment. For 

example, BR-DIM and curcumin can be added to the standard diet fairly easily (7). Further 

research into these compounds may result in the eventual synthesis of a compound superior to all 

existent compounds. The possibilities are endless. 

 CSCs are – and should be – at the forefront of cancer research. The practical applications 

surrounding their research are absolutely astounding. Future research should focus on new ways 

to target CSC markers, methods to induce CSC differentiation to reduce drug-resistance, the use 



of miRNAs in treatment, and, again, heightened understanding of anti-cancer compounds. By 

continuing to amalgamate more knowledge, there is hope for improved prognosis for patients 

afflicted with cancer of all types. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



MiRNA Up or Down-
regulated in Cancer 

Target Genes Reference 
Numbers 

MiR-21 Up-regulated PTEN 45, 60, 61 
MiR-30b/30c Up-regulated BIM/APAF-1 46, 55, 56 
MiR-221/222 Up-regulated BIM/APAF-1 55, 56, 63 
MiR-103/203 Down-regulated PKC-ε, SRC 55, 56 
MiR-200 family Down-regulated E2F3 55, 60, 62 
MiR-212 Down-regulated PED 46, 47, 48, 49 
Let-7 family Down-regulated RAS, HMGA2 50, 51, 52 
MiR-34a Down-regulated c-Met, CDK4,  

Bcl-2 
46, 55, 57, 58, 59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





Reference	  List	  
	  

	   (1)	  	   Pathak	  AK,	  Bhutani	  M,	  Mohan	  A,	  Guleria	  R,	  Bal	  S,	  Kochupillai	  V.	  Non	  small	  cell	  lung	  
cancer	  (NSCLC):	  current	  status	  and	  future	  prospects.	  Indian	  J	  Chest	  Dis	  Allied	  Sci	  
2004;46:191-‐203.	  

	   (2)	  	   Singh	  S,	  Chellappan	  S.	  Lung	  cancer	  stem	  cells:	  Molecular	  features	  and	  therapeutic	  
targets.	  Mol	  Aspects	  Med	  2013.	  

	   (3)	  	   Kanwar	  SS,	  Yu	  Y,	  Nautiyal	  J,	  Patel	  BB,	  Padhye	  S,	  Sarkar	  FH,	  et	  al.	  Difluorinated-‐
curcumin	  (CDF):	  a	  novel	  curcumin	  analog	  is	  a	  potent	  inhibitor	  of	  colon	  cancer	  stem-‐
like	  cells.	  Pharm	  Res	  2011;28:827-‐38.	  

	   (4)	  	   Hu	  Y,	  Fu	  L.	  Targeting	  cancer	  stem	  cells:	  a	  new	  therapy	  to	  cure	  cancer	  patients.	  Am	  J	  
Cancer	  Res	  2012;2:340-‐56.	  

	   (5)	  	   Chen	  YC,	  Hsu	  HS,	  Chen	  YW,	  Tsai	  TH,	  How	  CK,	  Wang	  CY,	  et	  al.	  Oct-‐4	  expression	  
maintained	  cancer	  stem-‐like	  properties	  in	  lung	  cancer-‐derived	  CD133-‐positive	  cells.	  
PLoS	  One	  2008;3:e2637.	  

	   (6)	  	   Wu	  Y,	  Wu	  PY.	  CD133	  as	  a	  marker	  for	  cancer	  stem	  cells:	  progresses	  and	  concerns.	  
Stem	  Cells	  Dev	  2009;18:1127-‐34.	  

	   (7)	  	   Mizugaki	  H,	  Sakakibara-‐Konishi	  J,	  Kikuchi	  J,	  Moriya	  J,	  Hatanaka	  KC,	  Kikuchi	  E,	  et	  al.	  
CD133	  expression:	  a	  potential	  prognostic	  marker	  for	  non-‐small	  cell	  lung	  cancers.	  Int	  
J	  Clin	  Oncol	  2013.	  

	   (8)	  	   Shien	  K,	  Toyooka	  S,	  Ichimura	  K,	  Soh	  J,	  Furukawa	  M,	  Maki	  Y,	  et	  al.	  Prognostic	  impact	  
of	  cancer	  stem	  cell-‐related	  markers	  in	  non-‐small	  cell	  lung	  cancer	  patients	  treated	  
with	  induction	  chemoradiotherapy.	  Lung	  Cancer	  2012;77:162-‐7.	  

	   (9)	  	   Herpel	  E,	  Jensen	  K,	  Muley	  T,	  Warth	  A,	  Schnabel	  PA,	  Meister	  M,	  et	  al.	  The	  cancer	  stem	  
cell	  antigens	  CD133,	  BCRP1/ABCG2	  and	  CD117/c-‐KIT	  are	  not	  associated	  with	  
prognosis	  in	  resected	  early-‐stage	  non-‐small	  cell	  lung	  cancer.	  Anticancer	  Res	  
2011;31:4491-‐500.	  

	   (10)	  	   Russo	  JE,	  Hilton	  J.	  Characterization	  of	  cytosolic	  aldehyde	  dehydrogenase	  from	  
cyclophosphamide	  resistant	  L1210	  cells.	  Cancer	  Res	  1988;48:2963-‐8.	  

	   (11)	  	   Sullivan	  JP,	  Spinola	  M,	  Dodge	  M,	  Raso	  MG,	  Behrens	  C,	  Gao	  B,	  et	  al.	  Aldehyde	  
dehydrogenase	  activity	  selects	  for	  lung	  adenocarcinoma	  stem	  cells	  dependent	  on	  
notch	  signaling.	  Cancer	  Res	  2010;70:9937-‐48.	  

	   (12)	  	   Huang	  CP,	  Tsai	  MF,	  Chang	  TH,	  Tang	  WC,	  Chen	  SY,	  Lai	  HH,	  et	  al.	  ALDH-‐positive	  lung	  
cancer	  stem	  cells	  confer	  resistance	  to	  epidermal	  growth	  factor	  receptor	  tyrosine	  
kinase	  inhibitors.	  Cancer	  Lett	  2013;328:144-‐51.	  



	   (13)	  	   Alamgeer	  M,	  Ganju	  V,	  Szczepny	  A,	  Russell	  PA,	  Prodanovic	  Z,	  Kumar	  B,	  et	  al.	  The	  
prognostic	  significance	  of	  aldehyde	  dehydrogenase	  1A1	  (ALDH1A1)	  and	  CD133	  
expression	  in	  early	  stage	  non-‐small	  cell	  lung	  cancer.	  Thorax	  2013;68:1095-‐104.	  

	   (14)	  	   Bertolini	  G,	  Roz	  L,	  Perego	  P,	  Tortoreto	  M,	  Fontanella	  E,	  Gatti	  L,	  et	  al.	  Highly	  
tumorigenic	  lung	  cancer	  CD133+	  cells	  display	  stem-‐like	  features	  and	  are	  spared	  by	  
cisplatin	  treatment.	  Proc	  Natl	  Acad	  Sci	  U	  S	  A	  2009;106:16281-‐6.	  

	   (15)	  	   Sung	  JM,	  Cho	  HJ,	  Yi	  H,	  Lee	  CH,	  Kim	  HS,	  Kim	  DK,	  et	  al.	  Characterization	  of	  a	  stem	  cell	  
population	  in	  lung	  cancer	  A549	  cells.	  Biochem	  Biophys	  Res	  Commun	  2008;371:163-‐
7.	  

	   (16)	  	   Dylla	  SJ,	  Beviglia	  L,	  Park	  IK,	  Chartier	  C,	  Raval	  J,	  Ngan	  L,	  et	  al.	  Colorectal	  cancer	  stem	  
cells	  are	  enriched	  in	  xenogeneic	  tumors	  following	  chemotherapy.	  PLoS	  One	  
2008;3:e2428.	  

	   (17)	  	   Li	  L,	  Yu	  H,	  Wang	  X,	  Zeng	  J,	  Li	  D,	  Lu	  J,	  et	  al.	  Expression	  of	  seven	  stem-‐cell-‐associated	  
markers	  in	  human	  airway	  biopsy	  specimens	  obtained	  via	  fiberoptic	  bronchoscopy.	  J	  
Exp	  Clin	  Cancer	  Res	  2013;32:28.	  

	   (18)	  	   Yi	  H,	  Cho	  HJ,	  Cho	  SM,	  Jo	  K,	  Park	  JA,	  Kim	  NH,	  et	  al.	  Blockade	  of	  interleukin-‐6	  receptor	  
suppresses	  the	  proliferation	  of	  H460	  lung	  cancer	  stem	  cells.	  Int	  J	  Oncol	  
2012;41:310-‐6.	  

	   (19)	  	   Du	  Y,	  Ma	  C,	  Wang	  Z,	  Liu	  Z,	  Liu	  H,	  Wang	  T.	  Nanog,	  a	  novel	  prognostic	  marker	  for	  lung	  
cancer.	  Surg	  Oncol	  2013;22:224-‐9.	  

	   (20)	  	   Rappa	  G,	  Fodstad	  O,	  Lorico	  A.	  The	  stem	  cell-‐associated	  antigen	  CD133	  (Prominin-‐1)	  
is	  a	  molecular	  therapeutic	  target	  for	  metastatic	  melanoma.	  Stem	  Cells	  
2008;26:3008-‐17.	  

	   (21)	  	   Smith	  LM,	  Nesterova	  A,	  Ryan	  MC,	  Duniho	  S,	  Jonas	  M,	  Anderson	  M,	  et	  al.	  
CD133/prominin-‐1	  is	  a	  potential	  therapeutic	  target	  for	  antibody-‐drug	  conjugates	  in	  
hepatocellular	  and	  gastric	  cancers.	  Br	  J	  Cancer	  2008;99:100-‐9.	  

	   (22)	  	   Kim	  RJ,	  Park	  JR,	  Roh	  KJ,	  Choi	  AR,	  Kim	  SR,	  Kim	  PH,	  et	  al.	  High	  aldehyde	  
dehydrogenase	  activity	  enhances	  stem	  cell	  features	  in	  breast	  cancer	  cells	  by	  
activating	  hypoxia-‐inducible	  factor-‐2alpha.	  Cancer	  Lett	  2013;333:18-‐31.	  

	   (23)	  	   Stacy	  AE,	  Jansson	  PJ,	  Richardson	  DR.	  Molecular	  pharmacology	  of	  ABCG2	  and	  its	  role	  
in	  chemoresistance.	  Mol	  Pharmacol	  2013;84:655-‐69.	  

	   (24)	  	   Mimeault	  M,	  Hauke	  R,	  Batra	  SK.	  Recent	  advances	  on	  the	  molecular	  mechanisms	  
involved	  in	  the	  drug	  resistance	  of	  cancer	  cells	  and	  novel	  targeting	  therapies.	  Clin	  
Pharmacol	  Ther	  2008;83:673-‐91.	  



	   (25)	  	   Siu	  MK,	  Wong	  ES,	  Chan	  HY,	  Ngan	  HY,	  Chan	  KY,	  Cheung	  AN.	  Overexpression	  of	  
NANOG	  in	  gestational	  trophoblastic	  diseases:	  effect	  on	  apoptosis,	  cell	  invasion,	  and	  
clinical	  outcome.	  Am	  J	  Pathol	  2008;173:1165-‐72.	  

	   (26)	  	   Xiao	  D,	  He	  J.	  Epithelial	  mesenchymal	  transition	  and	  lung	  cancer.	  J	  Thorac	  Dis	  
2010;2:154-‐9.	  

	   (27)	  	   Trumpp	  A,	  Wiestler	  OD.	  Mechanisms	  of	  Disease:	  cancer	  stem	  cells-‐-‐targeting	  the	  evil	  
twin.	  Nat	  Clin	  Pract	  Oncol	  2008;5:337-‐47.	  

	   (28)	  	   Liu	  YP,	  Yang	  CJ,	  Huang	  MS,	  Yeh	  CT,	  Wu	  AT,	  Lee	  YC,	  et	  al.	  Cisplatin	  selects	  for	  
multidrug-‐resistant	  CD133+	  cells	  in	  lung	  adenocarcinoma	  by	  activating	  Notch	  
signaling.	  Cancer	  Res	  2013;73:406-‐16.	  

	   (29)	  	   Witta	  SE,	  Gemmill	  RM,	  Hirsch	  FR,	  Coldren	  CD,	  Hedman	  K,	  Ravdel	  L,	  et	  al.	  Restoring	  
E-‐cadherin	  expression	  increases	  sensitivity	  to	  epidermal	  growth	  factor	  receptor	  
inhibitors	  in	  lung	  cancer	  cell	  lines.	  Cancer	  Res	  2006;66:944-‐50.	  

	   (30)	  	   Mani	  SA,	  Guo	  W,	  Liao	  MJ,	  Eaton	  EN,	  Ayyanan	  A,	  Zhou	  AY,	  et	  al.	  The	  epithelial-‐
mesenchymal	  transition	  generates	  cells	  with	  properties	  of	  stem	  cells.	  Cell	  
2008;133:704-‐15.	  

	   (31)	  	   Rhim	  AD,	  Mirek	  ET,	  Aiello	  NM,	  Maitra	  A,	  Bailey	  JM,	  McAllister	  F,	  et	  al.	  EMT	  and	  
dissemination	  precede	  pancreatic	  tumor	  formation.	  Cell	  2012;148:349-‐61.	  

	   (32)	  	   Zhang	  Y,	  Wei	  J,	  Wang	  H,	  Xue	  X,	  An	  Y,	  Tang	  D,	  et	  al.	  Epithelial	  mesenchymal	  transition	  
correlates	  with	  CD24+CD44+	  and	  CD133+	  cells	  in	  pancreatic	  cancer.	  Oncol	  Rep	  
2012;27:1599-‐605.	  

	   (33)	  	   Giarnieri	  E,	  De	  VC,	  Noto	  A,	  Roscilli	  G,	  Salerno	  G,	  Mariotta	  S,	  et	  al.	  EMT	  markers	  in	  
lung	  adenocarcinoma	  pleural	  effusion	  spheroid	  cells.	  J	  Cell	  Physiol	  2013;228:1720-‐
6.	  

	   (34)	  	   Singh	  A,	  Settleman	  J.	  EMT,	  cancer	  stem	  cells	  and	  drug	  resistance:	  an	  emerging	  axis	  of	  
evil	  in	  the	  war	  on	  cancer.	  Oncogene	  2010;29:4741-‐51.	  

	   (35)	  	   Onder	  TT,	  Gupta	  PB,	  Mani	  SA,	  Yang	  J,	  Lander	  ES,	  Weinberg	  RA.	  Loss	  of	  E-‐cadherin	  
promotes	  metastasis	  via	  multiple	  downstream	  transcriptional	  pathways.	  Cancer	  Res	  
2008;68:3645-‐54.	  

	   (36)	  	   Zhang	  WC,	  Shyh-‐Chang	  N,	  Yang	  H,	  Rai	  A,	  Umashankar	  S,	  Ma	  S,	  et	  al.	  Glycine	  
decarboxylase	  activity	  drives	  non-‐small	  cell	  lung	  cancer	  tumor-‐initiating	  cells	  and	  
tumorigenesis.	  Cell	  2012;148:259-‐72.	  

	   (37)	  	   Uramoto	  H,	  Iwata	  T,	  Onitsuka	  T,	  Shimokawa	  H,	  Hanagiri	  T,	  Oyama	  T.	  Epithelial-‐
mesenchymal	  transition	  in	  EGFR-‐TKI	  acquired	  resistant	  lung	  adenocarcinoma.	  
Anticancer	  Res	  2010;30:2513-‐7.	  



	   (38)	  	   Azzoli	  CG,	  Baker	  S	  Jr,	  Temin	  S,	  Pao	  W,	  Aliff	  T,	  Brahmer	  J,	  et	  al.	  [American	  Society	  of	  
Clinical	  Oncology	  Clinical	  Practice	  Guideline	  update	  on	  chemotherapy	  for	  stage	  IV	  
non-‐small-‐cell	  lung	  cancer].	  Zhongguo	  Fei	  Ai	  Za	  Zhi	  2010;13:171-‐89.	  

	   (39)	  	   Kusumbe	  AP,	  Bapat	  SA.	  Cancer	  stem	  cells	  and	  aneuploid	  populations	  within	  
developing	  tumors	  are	  the	  major	  determinants	  of	  tumor	  dormancy.	  Cancer	  Res	  
2009;69:9245-‐53.	  

	   (40)	  	   Kim	  EY,	  Lee	  SS,	  Shin	  JH,	  Kim	  SH,	  Shin	  DH,	  Baek	  SY.	  Anticancer	  effect	  of	  arsenic	  
trioxide	  on	  cholangiocarcinoma:	  in	  vitro	  experiments	  and	  in	  vivo	  xenograft	  mouse	  
model.	  Clin	  Exp	  Med	  2013.	  

	   (41)	  	   Patel	  P,	  Chen	  EI.	  Cancer	  stem	  cells,	  tumor	  dormancy,	  and	  metastasis.	  Front	  
Endocrinol	  (Lausanne)	  2012;3:125.	  

	   (42)	  	   Bao	  S,	  Wu	  Q,	  McLendon	  RE,	  Hao	  Y,	  Shi	  Q,	  Hjelmeland	  AB,	  et	  al.	  Glioma	  stem	  cells	  
promote	  radioresistance	  by	  preferential	  activation	  of	  the	  DNA	  damage	  response.	  
Nature	  2006;444:756-‐60.	  

	   (43)	  	   Mimeault	  M,	  Batra	  SK.	  Potential	  applications	  of	  curcumin	  and	  its	  novel	  synthetic	  
analogs	  and	  nanotechnology-‐based	  formulations	  in	  cancer	  prevention	  and	  therapy.	  
Chin	  Med	  2011;6:31.	  

	   (44)	  	   Liu	  C,	  Tang	  DG.	  MicroRNA	  regulation	  of	  cancer	  stem	  cells.	  Cancer	  Res	  2011;71:5950-‐
4.	  

	   (45)	  	   Yu	  Y,	  Sarkar	  FH,	  Majumdar	  AP.	  Down-‐regulation	  of	  miR-‐21	  Induces	  Differentiation	  
of	  Chemoresistant	  Colon	  Cancer	  Cells	  and	  Enhances	  Susceptibility	  to	  Therapeutic	  
Regimens.	  Transl	  Oncol	  2013;6:180-‐6.	  

	   (46)	  	   Sarkar	  FH,	  Li	  Y,	  Wang	  Z,	  Kong	  D,	  Ali	  S.	  Implication	  of	  microRNAs	  in	  drug	  resistance	  
for	  designing	  novel	  cancer	  therapy.	  Drug	  Resist	  Updat	  2010;13:57-‐66.	  

	   (47)	  	   Incoronato	  M,	  Garofalo	  M,	  Urso	  L,	  Romano	  G,	  Quintavalle	  C,	  Zanca	  C,	  et	  al.	  miR-‐212	  
increases	  tumor	  necrosis	  factor-‐related	  apoptosis-‐inducing	  ligand	  sensitivity	  in	  non-‐
small	  cell	  lung	  cancer	  by	  targeting	  the	  antiapoptotic	  protein	  PED.	  Cancer	  Res	  
2010;70:3638-‐46.	  

	   (48)	  	   Turrini	  E,	  Haenisch	  S,	  Laechelt	  S,	  Diewock	  T,	  Bruhn	  O,	  Cascorbi	  I.	  MicroRNA	  
profiling	  in	  K-‐562	  cells	  under	  imatinib	  treatment:	  influence	  of	  miR-‐212	  and	  miR-‐328	  
on	  ABCG2	  expression.	  Pharmacogenet	  Genomics	  2012;22:198-‐205.	  

	   (49)	  	   Rui	  W,	  Bing	  F,	  Hai-‐Zhu	  S,	  Wei	  D,	  Long-‐Bang	  C.	  Identification	  of	  microRNA	  profiles	  in	  
docetaxel-‐resistant	  human	  non-‐small	  cell	  lung	  carcinoma	  cells	  (SPC-‐A1).	  J	  Cell	  Mol	  
Med	  2010;14:206-‐14.	  



	   (50)	  	   Ahmad	  A,	  Aboukameel	  A,	  Kong	  D,	  Wang	  Z,	  Sethi	  S,	  Chen	  W,	  et	  al.	  Phosphoglucose	  
isomerase/autocrine	  motility	  factor	  mediates	  epithelial-‐mesenchymal	  transition	  
regulated	  by	  miR-‐200	  in	  breast	  cancer	  cells.	  Cancer	  Res	  2011;71:3400-‐9.	  

	   (51)	  	   Ahmad	  A,	  Maitah	  MY,	  Ginnebaugh	  KR,	  Li	  Y,	  Bao	  B,	  Gadgeel	  SM,	  et	  al.	  Inhibition	  of	  
Hedgehog	  signaling	  sensitizes	  NSCLC	  cells	  to	  standard	  therapies	  through	  
modulation	  of	  EMT-‐regulating	  miRNAs.	  J	  Hematol	  Oncol	  2013;6:77.	  

	   (52)	  	   Takamizawa	  J,	  Konishi	  H,	  Yanagisawa	  K,	  Tomida	  S,	  Osada	  H,	  Endoh	  H,	  et	  al.	  Reduced	  
expression	  of	  the	  let-‐7	  microRNAs	  in	  human	  lung	  cancers	  in	  association	  with	  
shortened	  postoperative	  survival.	  Cancer	  Res	  2004;64:3753-‐6.	  

	   (53)	  	   Takezawa	  K,	  Okamoto	  I,	  Tanizaki	  J,	  Kuwata	  K,	  Yamaguchi	  H,	  Fukuoka	  M,	  et	  al.	  
Enhanced	  anticancer	  effect	  of	  the	  combination	  of	  BIBW2992	  and	  thymidylate	  
synthase-‐targeted	  agents	  in	  non-‐small	  cell	  lung	  cancer	  with	  the	  T790M	  mutation	  of	  
epidermal	  growth	  factor	  receptor.	  Mol	  Cancer	  Ther	  2010;9:1647-‐56.	  

	   (54)	  	   Engelman	  JA,	  Zejnullahu	  K,	  Mitsudomi	  T,	  Song	  Y,	  Hyland	  C,	  Park	  JO,	  et	  al.	  MET	  
amplification	  leads	  to	  gefitinib	  resistance	  in	  lung	  cancer	  by	  activating	  ERBB3	  
signaling.	  Science	  2007;316:1039-‐43.	  

	   (55)	  	   Garofalo	  M,	  Croce	  CM.	  MicroRNAs	  as	  therapeutic	  targets	  in	  chemoresistance.	  Drug	  
Resist	  Updat	  2013;16:47-‐59.	  

	   (56)	  	   Garofalo	  M,	  Romano	  G,	  Di	  LG,	  Nuovo	  G,	  Jeon	  YJ,	  Ngankeu	  A,	  et	  al.	  EGFR	  and	  MET	  
receptor	  tyrosine	  kinase-‐altered	  microRNA	  expression	  induces	  tumorigenesis	  and	  
gefitinib	  resistance	  in	  lung	  cancers.	  Nat	  Med	  2012;18:74-‐82.	  

	   (57)	  	   Bommer	  GT,	  Gerin	  I,	  Feng	  Y,	  Kaczorowski	  AJ,	  Kuick	  R,	  Love	  RE,	  et	  al.	  p53-‐mediated	  
activation	  of	  miRNA34	  candidate	  tumor-‐suppressor	  genes.	  Curr	  Biol	  2007;17:1298-‐
307.	  

	   (58)	  	   Basak	  SK,	  Veena	  MS,	  Oh	  S,	  Lai	  C,	  Vangala	  S,	  Elashoff	  D,	  et	  al.	  The	  CD44(high)	  
tumorigenic	  subsets	  in	  lung	  cancer	  biospecimens	  are	  enriched	  for	  low	  miR-‐34a	  
expression.	  PLoS	  One	  2013;8:e73195.	  

	   (59)	  	   Wiggins	  JF,	  Ruffino	  L,	  Kelnar	  K,	  Omotola	  M,	  Patrawala	  L,	  Brown	  D,	  et	  al.	  
Development	  of	  a	  lung	  cancer	  therapeutic	  based	  on	  the	  tumor	  suppressor	  
microRNA-‐34.	  Cancer	  Res	  2010;70:5923-‐30.	  

	   (60)	  	   Bao	  B,	  Ali	  S,	  Kong	  D,	  Sarkar	  SH,	  Wang	  Z,	  Banerjee	  S,	  et	  al.	  Anti-‐tumor	  activity	  of	  a	  
novel	  compound-‐CDF	  is	  mediated	  by	  regulating	  miR-‐21,	  miR-‐200,	  and	  PTEN	  in	  
pancreatic	  cancer.	  PLoS	  One	  2011;6:e17850.	  

	   (61)	  	   Jiang	  M,	  Zhang	  P,	  Hu	  G,	  Xiao	  Z,	  Xu	  F,	  Zhong	  T,	  et	  al.	  Relative	  expressions	  of	  miR-‐205-‐
5p,	  miR-‐205-‐3p,	  and	  miR-‐21	  in	  tissues	  and	  serum	  of	  non-‐small	  cell	  lung	  cancer	  
patients.	  Mol	  Cell	  Biochem	  2013;383:67-‐75.	  



	   (62)	  	   Iliopoulos	  D,	  Lindahl-‐Allen	  M,	  Polytarchou	  C,	  Hirsch	  HA,	  Tsichlis	  PN,	  Struhl	  K.	  Loss	  
of	  miR-‐200	  inhibition	  of	  Suz12	  leads	  to	  polycomb-‐mediated	  repression	  required	  for	  
the	  formation	  and	  maintenance	  of	  cancer	  stem	  cells.	  Mol	  Cell	  2010;39:761-‐72.	  

	   (63)	  	   Dandawate	  P,	  Padhye	  S,	  Ahmad	  A,	  Sarkar	  FH.	  Novel	  strategies	  targeting	  cancer	  stem	  
cells	  through	  phytochemicals	  and	  their	  analogs.	  Drug	  Deliv	  Transl	  Res	  2013;3:165-‐
82.	  

	   (64)	  	   Soubani	  O,	  Ali	  AS,	  Logna	  F,	  Ali	  S,	  Philip	  PA,	  Sarkar	  FH.	  Re-‐expression	  of	  miR-‐200	  by	  
novel	  approaches	  regulates	  the	  expression	  of	  PTEN	  and	  MT1-‐MMP	  in	  pancreatic	  
cancer.	  Carcinogenesis	  2012;33:1563-‐71.	  

	   (65)	  	   Ichite	  N,	  Chougule	  MB,	  Jackson	  T,	  Fulzele	  SV,	  Safe	  S,	  Singh	  M.	  Enhancement	  of	  
docetaxel	  anticancer	  activity	  by	  a	  novel	  diindolylmethane	  compound	  in	  human	  non-‐
small	  cell	  lung	  cancer.	  Clin	  Cancer	  Res	  2009;15:543-‐52.	  

	   (66)	  	   Rahimi	  M,	  Huang	  KL,	  Tang	  CK.	  3,3'-‐Diindolylmethane	  (DIM)	  inhibits	  the	  growth	  and	  
invasion	  of	  drug-‐resistant	  human	  cancer	  cells	  expressing	  EGFR	  mutants.	  Cancer	  Lett	  
2010;295:59-‐68.	  

	   (67)	  	   Xue	  L,	  Firestone	  GL,	  Bjeldanes	  LF.	  DIM	  stimulates	  IFNgamma	  gene	  expression	  in	  
human	  breast	  cancer	  cells	  via	  the	  specific	  activation	  of	  JNK	  and	  p38	  pathways.	  
Oncogene	  2005;24:2343-‐53.	  

	   (68)	  	   Hsu	  EL,	  Chen	  N,	  Westbrook	  A,	  Wang	  F,	  Zhang	  R,	  Taylor	  RT,	  et	  al.	  CXCR4	  and	  CXCL12	  
down-‐regulation:	  a	  novel	  mechanism	  for	  the	  chemoprotection	  of	  3,3'-‐
diindolylmethane	  for	  breast	  and	  ovarian	  cancers.	  Cancer	  Lett	  2008;265:113-‐23.	  

	   (69)	  	   Jung	  MJ,	  Rho	  JK,	  Kim	  YM,	  Jung	  JE,	  Jin	  YB,	  Ko	  YG,	  et	  al.	  Upregulation	  of	  CXCR4	  is	  
functionally	  crucial	  for	  maintenance	  of	  stemness	  in	  drug-‐resistant	  non-‐small	  cell	  
lung	  cancer	  cells.	  Oncogene	  2013;32:209-‐21.	  

	   (70)	  	   Ye	  MX,	  Li	  Y,	  Yin	  H,	  Zhang	  J.	  Curcumin:	  updated	  molecular	  mechanisms	  and	  
intervention	  targets	  in	  human	  lung	  cancer.	  Int	  J	  Mol	  Sci	  2012;13:3959-‐78.	  

	   (71)	  	   Zhang	  H,	  Yu	  T,	  Wen	  L,	  Wang	  H,	  Fei	  D,	  Jin	  C.	  Curcumin	  enhances	  the	  effectiveness	  of	  
cisplatin	  by	  suppressing	  CD133	  cancer	  stem	  cells	  in	  laryngeal	  carcinoma	  treatment.	  
Exp	  Ther	  Med	  2013;6:1317-‐21.	  

	   (72)	  	   Mimeault	  M,	  Batra	  SK.	  Altered	  gene	  products	  involved	  in	  the	  malignant	  
reprogramming	  of	  cancer	  stem/progenitor	  cells	  and	  multitargeted	  therapies.	  Mol	  
Aspects	  Med	  2013.	  

	   (73)	  	   Zhang	  J,	  Zhang	  T,	  Ti	  X,	  Shi	  J,	  Wu	  C,	  Ren	  X,	  et	  al.	  Curcumin	  promotes	  apoptosis	  in	  
A549/DDP	  multidrug-‐resistant	  human	  lung	  adenocarcinoma	  cells	  through	  an	  
miRNA	  signaling	  pathway.	  Biochem	  Biophys	  Res	  Commun	  2010;399:1-‐6.	  



	   (74)	  	   Zhang	  J,	  Du	  Y,	  Wu	  C,	  Ren	  X,	  Ti	  X,	  Shi	  J,	  et	  al.	  Curcumin	  promotes	  apoptosis	  in	  human	  
lung	  adenocarcinoma	  cells	  through	  miR-‐186*	  signaling	  pathway.	  Oncol	  Rep	  
2010;24:1217-‐23.	  

	  
 


	Cancer Stem Cells in Recurrent and Drug-Resistant Lung Cancers
	Recommended Citation

	Microsoft Word - Cancer Stem Cells & lung Cancer (Shadan) (3).docx

