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[1] The influence of aquifer property correlation on multiphase fluid migration and
entrapment was explored through the use of correlated and uncorrelated porosity,
permeability, and capillary pressure-saturation (Pc-Sat) parameter fields in a cross-
sectional numerical multiphase flow model. Data collected from core samples in a
nonuniform sandy aquifer were used to generate three-dimensional aquifer parameter
fields. Porosity was assumed to be uniform or simulated using sequential Gaussian
simulation (SGS). Permeability (k) was modeled independently of porosity using SGS as
well as simulated geostatistical indicator classes derived from measured grain size
distribution curves. Retention characteristics were assigned employing Leverett scaling of
a representative Pc-Sat curve to the geostatistical k fields or, alternatively, on the basis
of simulated indicator classes and porosity values. Ensemble dense nonaqueous phase
liquid (DNAPL) infiltration and entrapment behavior for a hypothetical tetrachloroethylene
(PCE) spill was simulated in four sets of two-dimensional profiles extracted from these
realizations. Comparisons of saturation profiles and spatial moments from point source
DNAPL infiltration simulations suggest that choices involving the geostatistical algorithm
used to model k and the incorporation of variable versus uniform porosity have a smaller
influence than choices involving the scaling of capillary retention properties to k. From
these simulations it is apparent that the degree of spatial correlation in Pc-Sat parameters
exerts a controlling influence on predicted DNAPL spreading and redistribution in
saturated aquifers. The resultant distribution of mass within a DNAPL source zone will
have implications for DNAPL recovery and subsequent mass fluxes in remediation
operations. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1869 Hydrology: Stochastic

processes; 1832 Hydrology: Groundwater transport; KEYWORDS: DNAPL entrapment, DNAPL source zone,

geostatistics, heterogeneity, nonuniformity, stochastic simulation

Citation: Lemke, L. D., L. M. Abriola, and P. Goovaerts (2004), Dense nonaqueous phase liquid (DNAPL) source zone

characterization: Influence of hydraulic property correlation on predictions of DNAPL infiltration and entrapment, Water Resour. Res.,
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1. Introduction

[2] Many organic industrial chemicals and petroleum
derivatives such as chlorinated solvents or polynuclear
aromatic hydrocarbons are not readily soluble in water. Such
compounds exist as separate, nonaqueous phase liquids
(NAPLs). Spilled NAPLs migrating through the vadose or
saturated zones under gravitational and capillary forces can
become entrapped in the subsurface environment [Wilson et
al., 1990]. At residual organic saturation, NAPL becomes
discontinuous and is immobilized by capillary forces [Mercer
and Cohen, 1990]. The presence of residual NAPL ganglia

or pools within a formation is difficult to detect yet
can create a persistent dissolved contaminant source, not
readily amenable to effective remediation by traditional
pump and treat technologies [National Research Council,
1994]. Nonuniformity and heterogeneity in soil properties
contribute to spreading and irregular distributions of entrap-
ped NAPLs [Kueper and Frind, 1991a, 1991b; Essaid and
Hess, 1993;Kueper and Gerhard, 1995;Dekker and Abriola,
2000a]. In addition, the presence of low-permeability zones
can inhibit uniform delivery of surfactants and subsequent
advective transport of solubilized or mobilized contaminant
[Fountain et al., 1996; Fountain, 1997; Saenton et al.,
2002]. DNAPL source zone architecture [Sale and
McWhorter, 2001] as well as the variance and spatial corre-
lation of the aquifer permeability field [Dekker and Abriola,
2000b] can strongly influence remedial performance and
mass flux. Representation of aquifer heterogeneities and
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nonuniformities is therefore essential to the modeling of
entrapped NAPL distributions necessary for the prediction
of dissolved phase contaminant flux or the evaluation of
alternative remediation strategies [Strategic Environmental
Research and Development Program and Environmental
Security Technology Certification Program, 2002].
[3] Numerical multiphase flow models incorporate aqui-

fer nonuniformity through specification of the distribution
of spatially variable aquifer properties including intrinsic
permeability, porosity, relative permeability, and capillary
pressure-saturation (Pc-Sat) relationships. A few studies
have applied multiphase models to the investigation of
organic liquid behavior in spatially variable systems
[Kueper and Frind, 1991a; Essaid and Hess, 1993; Kueper
and Gerhard, 1995; Rathfelder and Abriola, 1998; Dekker
and Abriola, 2000a]. These investigations have revealed the
substantial influence of the spatial distribution of parameters
such as permeability and capillary retention on the predic-
tion of immiscible flow pathways and organic spreading.
The trend of increased spreading with increased heteroge-
neity observed in these numerical studies has also been
observed in the field, at sites of existing spills [e.g., Essaid
et al., 1993] and controlled releases of dense nonaqueous
phase liquids (DNAPLs) [e.g., Kueper et al., 1993]. In
general, a relatively small degree of horizontal bedding
has been observed to result in a pronounced preferential
lateral migration of organic [Poulsen and Kueper, 1992;
Essaid et al., 1993; Kueper et al., 1993]. Clearly, the
incorporation of spatial variability in permeability, porosity,
and Pc-Sat parameters is essential for the reproduction of
lateral spreading and irregular entrapped organic saturation
distributions observed in laboratory and field DNAPL
releases [Kueper and Frind, 1991b; Essaid and Hess,
1993]. The degree to which correlation in the spatial
variability of these parameters can influence model predic-
tions of immiscible organic contaminant infiltration and
distribution, however, has not been fully explored.
[4] In the absence of exhaustive data, modeling decisions

are necessary to specify the spatial distribution and relation-
ships of aquifer characteristics. These decisions involve
choices with respect to the application of deterministic or
stochastic approaches used to characterize the spatial distri-
bution of primary aquifer variables such as permeability and
porosity as well as assumptions relating to the representation
of spatial correlation among constitutive parameters. Under-
standing the implications of such choices and assumptions
for the prediction of DNAPL spill behavior can contribute to
the development of more realistic source zone models for use
in predicting contaminant mass flux and DNAPL recovery.
The objective of this paper is to investigate the influence of
aquifer characterization decisions on predicted DNAPL
distributions for a hypothetical spill in a saturated aquifer
with nonuniform hydraulic properties. To this end, Monte
Carlo simulations were employed to compute DNAPL
distribution statistics for ensembles of realizations generated
using four contrasting aquifer characterization approaches.
Each of the four approaches incorporated aquifer property
data collected at an actual field site, but differed in the
selection of geostatistical simulation algorithms or the treat-
ment of individual parameter correlation. The resulting
differences in predicted source zone configuration metrics,
including vertical penetration, lateral spreading, and maxi-

mum organic liquid saturations, were quantified for each
ensemble so that differences among the sets could be
examined herein. Variations in contaminant recovery and
mass flux estimates resulting from these alternative models
will be explored in a subsequent paper.

2. Mathematical Formulation and Numerical
Implementation

[5] Modeling the simultaneous movement of two or more
fluids in the subsurface entails a conceptual understanding of
the interactions among fluids as well as the relationship
between each fluid and the properties of the porous medium.
In addition to equations governing multiphase flow, mathe-
matical multiphase flow models incorporate constitutive
equations for fluid retention and relative permeability intro-
ducing additional physical parameters. Thus a set of aquifer
properties and constitutive parameters, each of which can
vary spatially dependently or independently of the others,
must be specified across the model domain.
[6] Numerical simulations in this study were performed

using M-VALOR [Abriola et al., 1992; Rathfelder and
Abriola, 1998], a two-dimensional (in a vertical cross
section), block-centered, finite difference immiscible fluid
flow simulator capable of incorporating nodal spatial
variability in aquifer properties and constitutive parameters.
M-VALOR solves a system of pressure and saturation
equations using an iterative implicit pressure-explicit satura-
tion scheme. First order upstream weighting is employed for
interblock transmissibilities. The code was extended to
include the Brooks-Corey-Burdine Pc-Sat and relative per-
meability formulations. M-VALOR has been verified against
analytical solutions [Demond et al., 1996] and with labora-
tory sandbox data for the infiltration of chlorinated solvents
under heterogeneous conditions [Rathfelder et al., 2003].
[7] M-VALOR solves coupled mass balance equations of

the form [Abriola et al., 1992]:

@

@t
fSarað Þ ¼ r � kkra

ma
r Pa � ragzð Þ

� �
þ qa: ð1Þ

Here a denotes the fluid phase (a = w, o for water and
organic phases, respectively, in a two phase system,), f is the
porosity, Sa is the a-fluid saturation, ra is the a-fluid density,
k is the intrinsic permeability tensor, kra is the relative
permeability to the a-fluid, g is gravitational acceleration, ma
is the a-fluid dynamic viscosity, Pa denotes the pressure in
phase a, and qa is an external source/sink term.
[8] Modeling studies have indicated that hysteresis and

NAPL entrapment must be included in numerical models to
obtain accurate representation of two-phase immiscible
liquid migration [Essaid et al., 1993; Kueper et al., 1993;
Van Geel and Sykes, 1994]. Hysteresis and entrapment are
incorporated into M-VALOR using the parametric model of
Kaluarachchi and Parker [1992]. The approach utilizes the
Land [1968] equation to calculate the effective residual
organic phase along any imbibition scanning curve:

Sor ¼
1� S

min

w

1þ R 1� S
min

w

� � ; where R ¼ 1� Swr

Smax
or

� 1: ð2Þ
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Here S
min

w is the minimum effective water saturation prior to
imbibition, Swr is the residual or irreducible water satura-
tion, and Sor

max is the residual organic phase saturation
defined by the main imbibition curve. An apparent effective
water saturation, Sw, is defined by:

Sw ¼ Sw þ Sot; ð3Þ

where Sw is the effective water saturation ((Sw � Swr)/(1 �
Swr)), and Sot is the normalized trapped or immobile organic
phase saturation [Parker and Lenhard, 1987]. For any point
along a scanning imbibition curve originating at S

min
w on the

primary drainage curve, the quantity of entrapped organic
between Sot = 0 at Sw = S

min
w and Sot = Sor at Sw = 1 is

estimated by linear interpolation [Parker and Lenhard,
1987]:

Sot ¼ Sor
Sw � S

min

w

1� Sor
� �

� S
min

w

 !
: ð4Þ

[9] Numerical simulations in this study used the Brooks-
Corey [Brooks and Corey, 1964] Pc-Sat model for primary
drainage:

Sw ¼ Pb

Pc

� �l

if Pc � Pb ð5Þ

Sw ¼ 1:0 if Pc < Pb; ð6Þ

where l is the pore size distribution index, Pc is the
capillary pressure (Po � Pw), and Pb is the entry or bubbling
pressure. In addition, Brooks and Corey [1964] relative
permeability functions, based on extensions of the work of
Burdine [1953], were adopted. Closed form solutions for

these relationships are given by [Demond et al., 1996; Chen
et al., 1999]:

krw ¼ S

2þ3l
l

w ð7Þ

kro ¼ 1� Sw

� �2
1� S

2þl
l

w

� �
: ð8Þ

Hysteresis due to nonwetting phase entrapment is incorpo-
rated through the inclusion of apparent water saturations in
equation (8), consistent with the observation that wetting
phase relative permeability is generally a function of
saturation while nonwetting phase relative permeability
shows hysteresis [Demond and Roberts, 1987; Lenhard et
al., 1991].
[10] Equation (1) together with the continuity equation:

Sw þ So ¼ 1:0 ð9Þ

and a combination of the constitutive relations for capillary
pressure-saturation and relative permeability form a com-
plete set of relationships required to model two-phase
immiscible flow. For the formulation implemented in this
study, a total of 10 fluid properties, aquifer properties, and
constitutive parameters must be specified for these equa-
tions: ma and ra for each phase, f, k, Sor

max, Swr, and Brooks-
Corey capillary-saturation parameters l and Pb.

3. Aquifer and DNAPL Source Zone
Characterization

[11] The aquifer chosen to provide a basis for alternative
characterization models used in this study is located in
Oscoda, Michigan, USA, at the site of a former dry cleaning
business (Figure 1) facing Bachman Road. A suspected
DNAPL source zone was identified beneath the building in

Figure 1. Location of the field study site in Oscoda, Michigan. The position of vertical and oriented soil
cores is shown. The suspected PCE source zone targeted in the SEAR pilot test is shaded. The thick SW-
NE line indicates the position of two-dimensional vertical profiles extracted from three-dimensional
geostatistical simulations.
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an unconfined aquifer where a narrow tetrachloroethylene
(PCE) plume emanates and discharges into Lake Huron
approximately 200 m down gradient [Drummond et al.,
2000]. The aquifer is composed of relatively homogeneous
glacial outwash sands and is underlain by a thick clay layer
approximately 8 m below the ground surface. A pilot-scale
Surfactant Enhanced Aquifer Remediation (SEAR) test,
designed to solubilize and recover residual PCE from the
suspected DNAPL source zone under the building was
conducted in the summer of 2000. The pilot-scale test was
designed with a single extraction well, a row of three water
injection wells to establish a flow field through the source
zone perpendicular to the natural gradient, and a row of
three surfactant injection wells positioned between the water
supply and extraction wells (Figure 1) [Drummond et al.,
2000].
[12] Aquifer characterization efforts associated with the

pilot SEAR test included analysis of 167 samples collected
from 12 vertical and directional cores (Figure 1). Care was
taken to avoid combining distinctly different soil textures
when separating the core samples into 15 and 30 cm lengths
so that macroscopic breaks (i.e., bedding) would not be
obfuscated. Each sample was dried, disaggregated, and
sieved to quantify grain size distributions (GSDs). GSDs
were normalized to a maximum particle size of 850 mm to
reduce the influence of a multimodal gravel fraction present
in about 10% of the samples (Figure 2). Such gravel size
pebbles were not observed to constitute a separate layer or lag
in any of the core samples. Rather they were distributed
within a predominantly sand matrix. The normalization step
was therefore adopted to facilitate the use of GSDs for the
estimation of hydraulic conductivity and capillary retention
properties judged to be controlled by the finer sediment
fractions [Koltermann and Gorelick, 1995]. The arithmetic
mean porosity value, measured in a subset of 162 repacked
samples, was 0.36 (Figure 3). In addition, hydraulic conduc-
tivity, K, was measured for 10 repacked samples using a
constant head permeameter. Isotropic K values for all sam-
ples were estimated from normalized grain size distributions
using the Kozeny-Carman (K-C) equation [Bear, 1972]:

K ¼ rwg
mw

k ¼ rwg
mw

d2m
180

f3

1� fð Þ2

" #
; ð10Þ

where dm is a representative grain size. Constant fluid
density and viscosity for water at 15�C were assumed,
making values of k and K directly scaleable. Good
agreement between measured and estimated K values
(Figure 4) was achieved assuming a porosity value of
0.36 and using the normalized d10 value as the representa-
tive grain size. Although continuous core samples collected
from the site contain relatively homogeneous fine- to
medium-grained sand, estimated K values were nonuniform,
ranging from 1 to 48 m/d. The variance of the lognormal
transformation of the estimated K population (s2 ln(K)),
0.29, is similar to the values of 0.24 and 0.37 reported by
Woodbury and Sudicky [1991] for K measurements made
along two profiles in sandy glaciofluvial deposits at the
Canadian Forces Base Borden, Ontario, and to the value of
0.24 reported by Hess et al. [1991] for a sand and gravel
glacial outwash deposit on Cape Cod, Massachusetts.
[13] Six individual soil classes were identified based on

KMEANS clustering of the 167 measured grain size distri-
butions following the approach of Schad [1993] (Figure 2).
Air-water Pc-Sat curves (Figure 5) were measured for
samples from each of the six soil classes using a pressure
cell apparatus developed by Salehzadeh and Demond [1999].
Retention curves estimated from grain size distribution
curves and porosity values using the Haverkamp and
Parlange [1986] method compared favorably with the mea-
sured curves (Figure 5).
[14] In support of the pilot SEAR test, three-dimensional,

nonuniform f and K distributions were generated using
geostatistics over a 30 	 30 	 10 m grid centered on the
suspected DNAPL source zone. The domain was large
enough to encompass all core sampling points which were
used as conditioning data. Grid discretization of 30 cm for
geostatistical modeling corresponded directly to the scale of
support for core sample data used to measure or estimate f
and K. Infiltration and entrapment of PCE was modeled
along two-dimensional vertical profiles extracted from the
three-dimensional geostatistical realizations. The use of
two-dimensional profiles permitted the application of Monte
Carlo analysis to evaluate variability among ensembles of
realizations. Numerical PCE infiltration experiments were
run on a set of Sun Microsystems Ultra 1, Ultra 5, and Ultra
10 workstations. The average CPU time for each of this
investigation’s 200 simulations was 5.3 hours. Each profile

Figure 2. Grain size cumulative distribution function (cdf) plots: (a) Normalized distributions for 167
measured sand samples; dark line represents the 167 sample average. (b) Weighted average grain size
distribution cdfs for six soil classes identified based on KMEANS clustering of normalized cdfs.

4 of 16

W01511 LEMKE ET AL.: DNAPL SOURCE ZONE CHARACTERIZATION W01511



is oriented SW-NE along a 7.65 m flow path passing through
the suspected DNAPL source zone and connecting the SEAR
extraction and middle surfactant injection wells (Figure 1).
The position of these profiles was chosen in anticipation of
simulations designed to model DNAPL recovery and effluent
mass flux under natural gradient and enhanced recovery
conditions similar to those found at the Bachman site.

[15] Prior to the pilot-scale SEAR test, the distribution
and volume of entrapped PCE at the Bachman Road site
was unknown. At some spatial sampling points beneath the
building, aqueous phase concentrations approached the PCE
solubility limit [Drummond et al., 2000] and visible staining
was observed along floor joists beneath a portion of the
building, suggesting that the likely source of PCE was spills
and leaks that infiltrated the earthen floor of the crawl space
above the suspected source zone. Because no significant
free phase PCE was detected during coring and aquifer fluid
sampling, the majority of DNAPL was thought to be in the
form of entrapped residual. A PCE spill scenario consisting
of small volumes of solvent released over long periods of
time is consistent with the suspected spill history at the
Bachman site.

4. Methods

4.1. Alternative Geostatistical Simulation Approaches

[16] The application of stochastic modeling to flow and
transport problems has become increasingly widespread
over the last three decades and a wide variety of geo-
statistical simulation algorithms have been developed to
address flow and transport variables as spatially random
functions [Meyers, 1997; Goovaerts, 1999]. Stochastic
simulation methods can generate multiple, equally probable
realizations of nonuniform or heterogeneous aquifer prop-
erties, each honoring the properties’ statistical spatial struc-
ture and probability distribution [Srivastava, 1994]. Two of
the most common methods, sequential Gaussian simulation
(SGS) and sequential indicator simulation (SIS) [Deutsch
and Journel, 1998], were employed in this study to generate
three-dimensional, nonuniform f and K fields.
[17] SGS relies on an analytical model for the random

function distribution. It assumes that the random function
multivariate distribution (or commonly its natural loga-
rithm) is Gaussian so that the univariate distribution can
be completely characterized by two parameters, the mean
and variance, and the bivariate (two-point) distribution
requires only the covariance or semivariogram as additional
information. If an original sample histogram is not normal,

Figure 3. Porosity and hydraulic conductivity data:
(a) Histogram of measured porosity values for repacked
samples. (b) Histogram of K values estimated directly from
measured grain size distribution d10 values using the
Kozeny-Carman relationship (equation (10)) with a uniform
porosity of 0.36. (c) Cross plot of f and K values for
162 core samples. Scatter on this plot suggests a weak
correlation between variables. The R2 value for a linear
regression is 0.09.

Figure 4. Comparison of laboratory-measured and esti-
mated K values. Estimates were obtained from the Kozeny-
Carman relationship (equation (10)) assuming 0.36 porosity
and using the normalized d10 value as the representative
grain size.
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the log or normal score transform can be used prior to
simulation followed by a back transform of the simulated
values [Deutsch and Journel, 1998]. Conversely, in SIS no
assumption is made about the shape of the random function
distribution, which, consequently, can be used to character-
ize the spatial variability of categorical (i.e., discrete valued
random functions) as well as continuous variables.
[18] In sequential simulation, a random path is followed

to visit each unsimulated grid node. For SGS, multi-Gauss-
ian kriging is used to estimate the local cumulative distri-
bution function (cdf) at each node, conditioned to all known
and previously simulated data points, by assuming that it is
Gaussian. The attribute value assigned to the grid node is
then drawn at random from the local conditional cumulative
distribution function (ccdf) [Srivastava, 1994]. The process
is repeated until all unsimulated grid nodes have been
visited. Sequential simulation requires a kriging system
solution for every node [Deutsch and Journel, 1998] which
makes it computationally demanding. The major drawback
associated with SGS, however, may be its inability to
preserve the occurrence of continuous units that can be
critical to flow and transport because of its tendency to
maximize the entropy associated with the simulation
[Journel and Deutsch, 1993; Gomez-Hernandez, 1997;
Gomez-Hernandez and Wen, 1998].
[19] SIS relies on indicator coding of data, which model

the probability that the value of an attribute zk, at an
unsampled location, ua, is no greater than a given threshold:

i ua; zkð Þ ¼
1 if z uað Þ 
 zk

0 if z uað Þ > zk

8<
:

9=
;: ð11Þ

Here i(ua; zk) is the indicator value at location ua defined
with respect to the threshold value zk. Continuous variables
are thus discretized using a set of n = 1, 2, . . ., N threshold
values. Alternatively, threshold values can represent a set of
N discrete categories. In this case, the indicator coding
corresponds to the presence or absence of the category
rather than indicating whether a threshold value has been
exceeded [Goovaerts, 1997, 1998]. Semivariograms are
modeled as a continuous function of the separation vector

between points using a linear combination of permissible
(positive semi-definite) variogram models for each indicator
class. SIS follows the same procedure as SGS, assigning
values to each node in the domain in random order, except
that indicator kriging is used to model the local ccdf at each
point. However, because SIS does not assume a particular
distribution for the random function, it has several advan-
tages over Gaussian algorithms. As discussed above, it can
be applied to continuous variables or mutually exclusive
classes of soil types. Indicator simulation has the potential
to reproduce spatial correlation of extremely large or small
values [Goovaerts, 1997] that may be important for repli-
cating continuity in preferential flow paths or barriers within
pixel-based simulations. Furthermore, like other nonpara-
metric stochastic simulation algorithms, SIS generally pro-
vides more flexibility to incorporate soft geological and
geophysical information [Koltermann and Gorelick, 1996].
[20] Because of their ability to represent categorical data,

indicator statistics are commonly employed to simulate the
distribution of aquifer or reservoir facies with distinct or
heterogeneous property distributions [e.g., Johnson and
Dreiss, 1989; Poeter and Townsend, 1990; Rubin and
Journel, 1991; Goggin and Jordan, 1995; Johnson, 1995;
Ritzi et al., 1995; Dominic et al., 1998]. Fewer studies have
employed indicator statistics to model categories within a
single facies [e.g., Schad, 1993; Ptak, 1997]. In the present
study, the data are treated as nonuniform, but statistically
homogeneous, rather than heterogeneous. For a useful
discussion of the distinction between the terms nonunifor-
mity and heterogeneity, the interested reader is referred to
Greenkorn and Kessler [1969] and Freeze [1975]. This
treatment, combined with the use of SIS, results in preser-
vation of continuity of low and high indicator class values.
Note that the transformation of indicator values to aquifer
parameters (i.e., d10 values) can impart an additional ran-
dom component that diminishes spatial continuity of high
and low values when modeling nonuniform rather than
heterogeneous distributions.

4.2. Spatial Variability of ffffffffffffffff and K

[21] Porosity measurements and hydraulic conductivity
estimates are poorly correlated at the Bachman Road site, as

Figure 5. Capillary pressure-saturation curves: (a) Laboratory-measured air-water Pc-Sat curves for
samples from each of the six soil classes identified in Figure 2b. (b) Comparison of laboratory-measured
and predicted Pc-Sat curves. Predicted retention curves are estimated from grain size distribution curves
and porosity values using the Haverkamp and Parlange [1986] method.
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illustrated by the f-K cross plot (Figure 3). Therefore f and
K were simulated independently. Although nonuniform in
their distribution, both f and K were judged to be
statistically homogeneous. That is, the data are believed to
be taken from a single depositional unit and can be pooled
across the study area for the purpose of inferring random
function ccdfs and moments. Second order stationarity is
herein adopted so that the expected value of the random
function is constant and the covariance between two random
variables at u and u + h does not depend on the location u,
but only upon the separation vector, h [Goovaerts, 1997].
Analysis of variance and geostatistical simulation were
conducted in three-dimensions to maximize the number of
data pairs used to define experimental variograms and to
incorporate all available data as conditioning points within
each geostatistical realization.
[22] Two approaches were used to model porosity. In the

first, a uniform porosity equivalent to the arithmetic mean of
the measured porosity values was assumed. In the second,
SGS was used to create multiple nonuniform realizations
conditioned to the 162 sample points with measured poros-
ity values. The latter approach required a prior normaliza-
tion of the sample probability distribution. Experimental
vertical and horizontal semivariograms for normal score
transforms of porosity measurements (Figure 6) were fit
with a zonal anisotropy model [Journel and Huijbregts,
1978] including a nugget effect of 0.4 estimated from the
vertical semivariogram and an exponential semivariogram
model:

g hð Þ ¼ c � 1:0� exp � 3h

a

� �� �
; ð12Þ

where g(h) is the semivariogram value for a lag distance h, c
is a positive contribution to the variance, and a is the
direction-dependent range, which is equivalent to three
times the integral scale. Variability in the horizontal plane
was modeled as isotropic. Variogram model parameters
used in geostatistical simulations are given in Table 1.
[23] Three-dimensional, nonuniform K fields, conditioned

at the 167 core sample points across the study area, were

simulated using two alternative geostatistical approaches.
Initially, SGS was used to simulate conditional d10 grain
size values that were subsequently converted to K values
using the Kozeny-Carman relationship (equation (10)).
Experimental semivariograms for d10 values (Figure 7)
were fit with a zonal anisotropy model including a nugget
effect of 0.333 estimated from the vertical semivariogram
and a spherical semivariogram model:

g hð Þ ¼ c � 1:5
h

a

� �
� 0:5

h

a

� �3
" #

if h 
 a ð13Þ

g hð Þ ¼ c if h � a; ð14Þ

where g(h) is the semivariogram value for a lag distance, h,
c is a positive contribution to the variance, and a is the
direction-dependent range (Table 1). Variability in the
horizontal plane was modeled as isotropic.
[24] The second modeling approach was implemented

using a three step procedure to generate conditional K field
realizations using SIS: (1) simulation of the spatial
distribution of six indicator classes representing categories
of grain size distributions (indicator class variogram
parameters are given in Table 2); (2) random assignment
of d10 values to each grid node based upon smoothed d10
value histograms for each indicator class (Figure 8); and (3)
K value calculation using equation (10) assuming uniform
or stochastically simulated porosity fields.

Figure 6. Experimental and modeled normal score
semivariograms for measured porosity data. The plot is
normalized to the variance to generate a sill of 1.0. Vexp is
vertical experimental; Hexp is horizontal experimental;
Vmod is vertical modeled; Hmod is horizontal modeled.

Figure 7. Experimental and modeled normal score
semivariograms for measured grain size distribution d10
data. The plot is normalized to the variance to generate a sill
of 1.0. A zonal anisotropy model is employed.

Table 1. Variogram Parameters for SGS Geostatistical Modeling

of Porosity and Representative Grain Diameter

Model Orientation Nuggeta Variancea,b Range, m Integral Scale, m

SGS f Horizontal 0.40 0.52 9.14 3.05
SGS f Vertical 0.40 1.00 3.05 1.02
SGS d10 Horizontal 0.333 0.80 7.00 2.33
SGS d10 Vertical 0.333 1.00 1.07 0.36

aVariance normalized to 1.0.
bIncludes nugget effect contribution.
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[25] Horizontal and vertical f, d10 and indicator vario-
grams (Figures 6 and 7) support a zonal anisotropy model
typical of stratified media with greater variability in the
vertical direction [Kupfersberger and Deutsch, 1999]. A
uniform Kv/Kh ratio of 0.5 was assigned to all K values to
account for anisotropy related to aquifer stratification at a
scale finer than that resolved by the geostatistical models.

4.3. Spatial Variability of Additional
Aquifer Parameters

[26] Capillary pressure-saturation parameters may also
vary spatially. Direct laboratory measurement of these
properties from field samples is expensive and time con-
suming for large sample sets. Consequently, for unconsol-
idated sandy aquifers, empirical methods are frequently
used to estimate retention curves from grain size distribution
measurements [Arya and Paris, 1981; Haverkamp and
Parlange, 1986; Arya and Dierolf, 1992]. For primary
drainage, both the Brooks-Corey pore size distribution
factor, l, and the air entry pressure, Pb, can be estimated
directly from grain size distribution curves for given
porosity and dry bulk density values using the Haverkamp
and Parlange [1986] method (HPM). The HPM estimates l
as a function of porosity, bulk density, and two fitting
parameters derived from matching a van Genuchten-type

functional form to the particle size distribution curve. Pb is
then obtained through the iterative solution of a relationship
between l, f, and an empirically derived packing
coefficient. Air entry pressures thus obtained can be scaled
to organic liquid-water systems using a ratio of interfacial
tensions.
[27] Utilization of the Haverkamp and Parlange method

provides two alternatives for the assignment of spatially
variable Pc-Sat parameters. The traditional approach, com-
monly referred to as Leverett scaling, scales the entry
pressure for a representative retention curve, Pc

ref, using a
ratio of intrinsic permeability and porosity values [Leverett,
1941]:

P0
c ¼ Pref

c

ffiffiffiffiffiffiffiffiffiffiffiffi
kref f0

k 0fref

s
: ð15Þ

In this approach, the pore size distribution factor is not
scaled so that the Pc-Sat curve is translated up or down with
respect to capillary pressure while its shape does not
change. If uniform porosity is assumed, the representative
retention curve is simply scaled to k at each node of the
geostatistical realization. A consequence of this method is
the adoption of completely correlated k and Pc-Sat
distributions. An alternative to Leverett scaling is possible
in conjunction with sequential indicator simulation of
categorical values defined using grain size distribution
patterns. In this approach, the HPM is used to derive values
for Pb and l using the representative grain size distribution
curve associated with the simulated indicator class at each
node. Nodal porosity and bulk density values can also be
used if they vary in space. A consequence of this approach
is a decrease in the dependency between Pb and k values.
Differences in multiphase flow model behavior arising from
alternative approaches to parameter distribution correlation
are not well understood, however, and systematic evalua-
tions of the consequences of simplifying assumptions such
as uniform porosity and retention curve scaling have not
been well documented in the literature.
[28] In this study, water is considered the wetting phase

while organic liquids are considered nonwetting fluids.
Dekker and Abriola [2000a] reported that correlation

Table 2. Variogram Parameters for SIS Geostatistical Modeling

Indicator
Classa Orientation Nugget Varianceb

Range a,
m

Integral
Scale, m

Global,
%

1 horizontal 0.00 0.012 3.05 1.02 1.0
1 vertical 0.00 0.012 0.003 .001
2 horizontal 0.02 0.070 2.74 0.91 13.0
2 vertical 0.02 0.075 0.49 0.16
3 horizontal 0.15 0.165 0.91 0.30 23.0
3 vertical 0.15 0.205 0.70 0.23
4 horizontal 0.13 0.060 1.83 0.61 27.0
4 vertical 0.13 0.060 0.91 0.30
5 horizontal 0.13 0.180 3.66 1.22 32.0
5 vertical 0.13 0.260 1.28 0.43
6 horizontal .005 0.052 7.32 2.44 4.0
6 vertical .005 0.052 0.88 0.29

aIndicator classes are based on the six soil classes presented in Figure 2b.
bIncludes nugget effect contribution.

Figure 8. Grain size distribution d10 values: (a) probability distribution function (pdf) of d10 values and
(b) smoothed d10 pdfs for six individual indicator classes. Global frequency of occurrence for each
indicator class is given in Table 2.
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between residual water saturation and the permeability field
had statistically insignificant effects on simulated PCE spill
behavior in a saturated sand aquifer. A similar lack of
influence was reported for cross correlation between
residual organic liquid saturation and k within the limits
of experimental observations [Dekker and Abriola, 2000a].
Consequently, soil parameters Swr and Sor

max are treated
herein as spatially uniform. The relationship between
variability in parameters l, and Pb with variability in
aquifer properties f, and k is the primary focus of this
investigation.

4.4. Geostatistical Ensemble Sets

[29] Four ensemble sets of 50 aquifer realizations were
generated to investigate the influence of aquifer charac-
terization decisions on predicted multiphase flow and
entrapment behavior. DNAPL infiltration simulation
results were analyzed for an increasing number of realiza-
tions in each set until the mean value for each of the
model performance metrics described in section 4.6 sta-
bilized [Lemke, 2003]. The first ensemble, termed the
reference set, assumed a uniform average porosity of 0.36
and utilized SGS to simulate three-dimensional distributions
of d10 values. Hydraulic conductivity values were then
calculated as a function of the uniform porosity and
simulated d10 values at each node using equation (10). A
single, representative Pc-Sat curve was estimated using
HPM based on a weighted average GSD curve calculated
from the 167 individual GSD curves (Figure 2a). The l
value from the representative curve was assigned uniformly
to all nodes, consistent with the similar shapes of grain size
distributions for indicator classes 2–6 in Figure 2b. The
representative Pb value was scaled according to the
simulated permeability at each node (equation (15)). This
approach is similar to that used by Kueper and Frind
[1991b], Kueper and Gerhard [1995], and Dekker and
Abriola [2000a], who generated Gaussian spatially-corre-
lated random permeability fields, assumed constant poros-
ity, and scaled capillary pressure-saturation curves to k
using modified Leverett scaling.
[30] Three additional simulation sets (sets 1, 2, and 3)

were created to explore differences in predicted DNAPL
distributions related to variability in porosity, permeability,
and Brooks-Corey Pc-Sat parameter distributions (Table 3).
Set 1 realizations are identical to the reference set except
that the spatial distribution of d10 values was generated in
two steps: (1) the spatial distribution of six categories of
grain size distributions was simulated using SIS, and (2) d10
values were assigned randomly from histograms corre-
sponding to each of the six indicator classes (Figure 8).
[31] Set 2 realizations differ from set 1 in that porosity

was simulated as an independent random field using SGS.
Hydraulic conductivity and permeability values were then

calculated as a function of both the simulated porosity and
d10 values at each grid node.
[32] Simulation sets 2 and 3 share identical porosity and

permeability distributions but differ in the assignment of
capillary pressure parameters. Set 2 employs Leverett scal-
ing to scale a representative Pb value to k and f at each
simulation node. In set 3, individual Pb and l values were
assigned based on HPM calculations using the simulated
porosity value and the grain size distribution corresponding
to the simulated class (Figure 9) at each node. Leverett
scaling of Pb values was not applied.

4.5. Simulated DNAPL Release

[33] The infiltration and entrapment of a hypothetical
PCE spill were modeled in two-dimensional profiles
extracted from the three-dimensional geostatistical realiza-
tions described above. In each M-VALOR run, 96 liters of
PCE was released over four cells located at the top center
of the model, at a constant flux of 240 ml/day for
400 days. An additional 330 days was simulated to allow
for subsequent organic liquid infiltration and redistribution.
Constant pressure and saturation boundaries were main-
tained along the profile sides and a no-flow boundary was
imposed at the base of the model domain. Preliminary
simulations confirmed that a 96 liter PCE release produced
organic liquid distributions that were spread vertically and
horizontally throughout a large portion of the model
domain but did not result in basal pooling or PCE
migration across lateral profile boundaries. This behavior

Table 3. Variable Treatment of Porosity, Intrinsic Permeability, and Brooks-Corey Capillary Pressure-Saturation Parameters Among the

Four Alternative Simulation Sets

Reference Set Set 1 Set 2 Set 3

Porosity, f uniform uniform random (SGS) random (SGS)
Permeability, k SGS k = f(d10) SIS k = f(d10) SIS k = f(d10, f) SIS k = f(d10, f)
Brooks-Corey Pc-Sat weighted average Pb and l weighted average Pb and l weighted average Pb and l separate Pb and l by IC and f
Leverett Scaling Pb scaled by

ffiffiffi
k

p
Pb scaled by

ffiffiffi
k

p
Pb scaled by

ffiffiffiffiffiffiffiffi
k;f

p
none: Pb = f(IC, f)

Figure 9. Weighted average Pc-Sat curves for each
indicator class estimated using the Haverkamp and Parlange
method assuming a porosity of 0.36. A single weighted
average curve for the entire sample population is shown as a
thick solid line.
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was desirable to insure consistent total PCE mass in all
realizations while maximizing the area contacted by
organic liquid so that organic liquid distributions were
influenced by spatial variability over a representative
portion of the model domain. Table 4 contains a list of
M-VALOR simulation input parameters.
[34] Sensitivity to horizontal and vertical grid refinement

was explored using both the Brooks and Corey [1964] and
van Genuchten [1980] Pc-Sat formulations following the
approach of Rathfelder and Abriola [1998]. Simulations
utilizing the van Genuchten approach demonstrated con-
vergence in spreading behavior and maximum predicted
organic liquid saturations when horizontal and vertical grid
increments were reduced to 30.48 cm and 7.62 cm or less,
respectively. Consistent with Rathfelder and Abriola’s
[1998] results, simulations with the Brooks-Corey Pc-Sat
formulation continued to display increased spreading with
finer grid intervals in the vertical dimension. Maximum
organic liquid saturation values were stable, however. For
reasons of computational efficiency resulting from the large
number of simulations required for Monte Carlo analysis in
this study, horizontal and vertical grid refinement was
limited to 30.48 cm and 7.62 cm, respectively.

4.6. Model Metrics

[35] Spatial moments and saturation probability distri-
bution functions of DNAPL distributions predicted by
M-VALOR simulations were analyzed to explore similarities
and differences in model behavior for each ensemble set of
realizations. Metrics included first and second moments and
the average and maximum PCE saturation. Spatial moments
were defined following Kueper and Frind [1991b] and
Essaid and Hess [1993] using:

Mij ¼
Z1
�1

Z1
�1

froSo x; zð Þxizjdxdz: ð16Þ

M00, the zeroth moment, is equivalent to the summation of
PCE mass in the profile. The horizontal and vertical
positions for the PCE spill center of mass are given by:

xcm ¼ M10

M00

and zcm ¼ M01

M00

: ð17Þ

The second spatial moments about the center of mass in the
x and z directions, given by:

s2xx ¼
M20

M00

� x2cm and s2zz ¼
M02

M00

� z2cm; ð18Þ

are a measure of horizontal and vertical organic liquid
spreading, respectively.

5. Results

5.1. Aquifer Parameter Distributions

[36] Figure 10 depicts aquifer property distributions for
representative profiles from each of the four simulation sets.
Here, profiles with simulated PCE saturation distribution
statistics (section 5.2) most closely approaching the mean
ensemble value for each set were selected as representative.
Simulated porosity distributions for sets 2 and 3 exhibit a
strong random component due to the large nugget effect
(0.40). Nevertheless, stratification in the porosity profiles is
evidenced by a higher degree of continuity in high and low
f values in the horizontal versus the vertical direction.
[37] Although a high degree of stratification is visible in

the indicator class simulations (sets 1, 2, and 3) (Figure 10),
profiles of d10 values generated in this way are visually
similar to those generated directly using SGS (reference
set). In sets 1, 2, and 3, d10 values have been assigned
randomly from overlapping probability distributions asso-
ciated with individual indicator classes (Figure 8b), which
results in a spatial randomization of d10 values. The
similarity of SGS and SIS d10 profiles thus results from
(1) the decomposition of the essentially monomodal,
nonuniform global d10 probability density function (pdf)
(Figure 8a) into subsidiary distributions with smaller,
overlapping ranges (Figure 8b); followed by (2) the
subsequent reformulation of the global pdf through random
sampling of d10 values from the subsidiary pdfs in
proportion to the global frequency of occurrence of each
subsidiary set. As expected, both the SGS and SIS
realizations reproduce the global d10 histogram with fidelity.
Profiles generated with the two-step SIS approach are able
to preserve additional information regarding the distribution
of grain size distribution classes embedded within the
indicator class distribution, however.
[38] The uniform porosity assumption results in a direct

correlation between d10 and K values in simulation sets 1
and 2. Independent simulation of a variable porosity field
contributes to greater spatial disorder within K fields
estimated using equation (10) in sets 3 and 4, however.
[39] Leverett scaling of air-water entry pressures in the

reference and simulation sets 1 and 2 leads to a direct
correlation between Pb and K values (Figure 11a). This
inverse relationship is also apparent in the inversion of light
and dark pixels within the Pb and K fields depicted in Figure
10. The shape of the representative Pc-Sat curve, as
represented by the Brooks-Corey l value, remains spatially
invariant in the reference and simulation sets 1 and 2
(Figure 11b). In contrast, set 3 contains spatially variable l
and Pb values that are strongly correlated with the
distribution of indicator classes (Figure 10). Furthermore,
because Pb is now a function of both porosity and indicator
class, a clear correlation between Pb and K values is not
present (Figure 12a) and Brooks-Corey l values in set 3
cluster into six groups associated with the six indicator
classes (Figure 12b). Although Figure 12a shows more
scatter in Pb versus k values for set 3 than the corresponding
plot in Figure 11a, the spatial arrangement Pb values in set 3
is more highly correlated (Figure 10), reflecting the

Table 4. M-VALOR Simulation Input Parameters

Variable Water PCE

Density (kg/m3) 999.032 1623.0
Viscosity (kg/m.s) 1.139 	 10�3 8.900 	 10�4

Compressibility (Pa�1) 4.4 	 10�10 0.0
Swr 0.08
Sor 0.151
sa/w (d/cm) 72.0
sa/o (d/cm) 31.7
so/w (d/cm) 47.8
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stratification present within the original indicator class
simulations.

5.2. Simulated DNAPL Distributions

[40] Ensemble statistics for saturation, vertical infiltra-
tion, and lateral spreading are presented in Table 5 for all
simulation sets. Figure 13 illustrates simulated PCE satu-
rations for three representative realizations from each of the
four sets. Here realizations generating the minimum, max-

imum, and value closest to the mean of sxx
2 were chosen to

represent each set, and PCE saturation is scaled from 0.0001
to 0.05 to enhance the depiction of low saturation
variability. Maximum PCE saturations ranged from 0.17
to 0.915 (Table 5) but saturations exceeding 5% occurred in
fewer than 3% of the cells containing PCE in each model.
Note that the maximum liquid organic saturation in each
simulation was limited to 0.915 by the assumed irreducible
water saturation of 0.085. Across all realizations, the

Figure 10. Comparison of aquifer parameter distributions in representative two-dimensional profiles
extracted from three-dimensional geostatistical simulations. The abbreviation IC stands for indicator
class.

Figure 11. Cross plots of (a) Pb versus k and (b) Pb versus l for realization 2 of simulation set 2.
Leverett scaling of the entry pressure from a single representative Pc-Sat curve results in a direct
correlation between Pb and k as well as very high entry pressures for low-permeability cells. Adoption of
a single representative Pc-Sat curve also imposes a single value for the pore size distribution (shape)
factor, l, across all Pb values.
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average saturation of cells containing PCE at saturations
greater than the specified M-VALOR convergence criterion
of 1.0 	 10�4 ranged from 0.01 to 0.04, with the greatest
variability occurring in set 3. These values are consistent
with measured organic liquid saturations reported by
Poulsen and Kueper [1992] for a field experiment involving
the release of tetrachloroethylene into an unsaturated fine to
medium grained sand located at Canadian Forces Base
Borden in Ontario. PCE saturation profiles and ensemble
statistics from set 3 consistently differ from those of the first
three simulation sets (Table 5). Set 3 simulations showed
little variance in maximum PCE saturations, an overall
increase in vertical penetration (zcm), and a decreased
degree of lateral spreading (sxx

2 ). Maximum Pb values in
simulation sets employing Leverett scaling are significantly
higher than those in set 3 (Figures 11 and 12) and may
contribute to the tendency for greater lateral spreading in the
reference set and sets 1 and 2. Despite lower maximum
entry pressures, realizations in set 3 exhibit maximum
organic liquid saturation values approaching the limiting
value of 1-Swr. Analysis of the high saturation cells in set 3
output files suggests that apparent pooling in these
simulations is caused by entry pressure contrast rather than
contrast in k values.

6. Discussion

[41] This study examined the influence of four alternative
approaches to characterizing aquifer parameter spatial var-
iability in a statistically homogeneous but nonuniform sand
aquifer. Comparison of predicted entrapped PCE distribu-
tions for the four approaches considered reveals that mod-
eling choices involving the representation of permeability or
porosity have a smaller influence than choices involving the
scaling of capillary retention properties to k. In general,
ensemble behavior is similar in the reference set and sets 1
and 2, although greater variability in the distribution of PCE
saturation is observed in set 2 relative to set 1 due to the
additional independent porosity variation incorporated into
set 2.
[42] Even though simulation sets 2 and 3 share identical

porosity and permeability distributions, set 3 exhibits mark-
edly different PCE spreading and pooling behavior, which is

mainly attributable to the assignment of Pc-Sat parameters
independently of the intrinsic permeability field. Leverett
scaling in the reference and simulation sets 1 and 2 leads to
a direct correlation between Pb and k (Figure 11a) while
the absence of Leverett scaling in set 3 decreases this
dependency (Figure 12a). Cross plots of Pb and l
(Figure 12b) show that HPM generated Pc-Sat parameter
values are segregated according to grain size distribution
classes in set 3 realizations. In this instance, the correlation
of Pb with grain size classes leads to a preservation of the
spatial continuity of similar values for air entry pressures
(Figure 10) that accounts for the significantly different
DNAPL infiltration behavior in set 3. It appears that the
lateral juxtaposition of cells containing similar entry
pressure values is more important than the presence of a
few cells with extreme high entry pressures.
[43] An important motivation for the modeling of NAPL

infiltration and entrapment is the need to derive realistic
models of organic liquid distribution within DNAPL source

Figure 12. Cross plots of (a) Pb versus k and (b) Pb versus l for realization 2 of simulation set 3. Pb and
l values were assigned using the Haverkamp and Parlange method on the basis of nodal porosity values
and the representative grain size curve corresponding to the nodal indicator class (Figure 9).

Table 5. Ensemble Statistics for PCE Distribution Metrics

Property Set Minimum Mean Maximum Standard Deviation

So average Ra 0.013 0.017 0.028 0.0027
So average 1 0.014 0.017 0.021 0.0015
So average 2 0.014 0.017 0.023 0.0018
So average 3 0.012 0.019 0.039 0.0060
So maximum R 0.172 0.355 0.625 0.086
So maximum 1 0.210 0.358 0.501 0.080
So maximum 2 0.198 0.370 0.567 0.086
So maximum 3 0.900 0.910 0.915 0.004

sxx
2 R 0.273 0.663 1.722 0.295

sxx
2 1 0.263 0.530 2.177 0.284

sxx
2 2 0.227 0.545 2.550 0.320

sxx
2 3 0.174 0.433 0.868 0.166

zcm R 2.583 3.639 4.611 0.472
zcm 1 2.638 3.569 4.233 0.303
zcm 2 2.871 3.532 4.450 0.302
zcm 3 2.220 4.318 6.012 1.050

szz
2 R 2.193 4.418 7.856 1.367

szz
2 1 2.459 4.117 6.112 0.909

szz
2 2 2.417 4.157 7.476 0.971

szz
2 3 0.648 4.202 9.551 2.311

aR refers to the reference set.
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zones for use in pre- and post-remediation contaminant
mass flux estimation. Mathematical modeling suggests that
DNAPL source zone architecture will govern mass transfer
and organic source persistence in aquifers with uniform
flow fields [Sale and McWhorter, 2001]. Because of the
contrast in the magnitude and spatial distribution of
predicted maximum organic saturations in the simulation
sets incorporating Leverett scaling relative to those that did
not, it is anticipated that predicted dissolved contaminant
effluent concentrations and response to simulated NAPL
remediation technologies will differ using results generated
with Leverett scaling compared to those without. It is
important, then, to assess which approach generates more
realistic source zone representations.
[44] Profiles from all of the simulation sets display

irregular downward migration paths or channeling of PCE
due to incorporation of macroscopic parameter variations of
the type discussed by Kueper and Frind [1991a]. Experi-
mental NAPL release and infiltration into sandboxes packed
with cells of contrasting grain size, permeability, and Pc-Sat
characteristics have also demonstrated irregular NAPL
migration paths, pooling, and spreading resulting from
interfaces between sand cells [e.g., Kueper et al., 1989;
Barth, 1999]. Qualitatively, this behavior is consistent with
conceptual DNAPL source zone models consisting of
fingers of DNAPL entrapped at residual saturation and

pools [Mercer and Cohen, 1990; Anderson et al., 1992; Sale
and McWhorter, 2001]. Increased spill rates can lead to
higher organic liquid saturations and decreased spreading
[Kueper and Gerhard, 1995; Dekker and Abriola, 2000a].
Simulated PCE release at rates higher than those used in this
investigation (e.g., for a catastrophic spill) could result in
higher maximum PCE saturations in ensembles employing
Leverett scaling and higher overall saturations in all
ensembles, potentially masking differences among the
alternative spatial variability modeling approaches investi-
gated herein.
[45] Although all of the simulation sets are qualitatively

consistent with DNAPL source zone conceptual models, the
procedure used to generate set 3 may be more representative
of the aquifer for two reasons. First, the assumption of
perfectly correlated entry pressure and permeability fields
may be limiting. Published data on the correlation of aquifer
conductivity and retention data are sparse; however, both
Russo and Bouton [1992] and Hills et al. [1992] found very
poor correlations (r2 < 0.25) between the log of measured
values for saturated hydraulic conductivity and the van
Genuchten a parameter in analyses involving 400 to 600 in
situ and undisturbed soil samples. Second, although both
the SGS and SIS approaches were able to replicate the
overall d10 histogram, use of the SIS method captures more
information from the original data set. Specifically, the

Figure 13. Representative DNAPL saturation distributions for each simulation set. Realizations were
selected to illustrate minimum, mean, and maximum spreading as measured by the second spatial
moment about the x axis center of mass, sxx

2 .
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spatial variability in contrasting grain size distribution curve
shapes is represented in the distribution of geostatistical
indicator classes. In nonuniform sands, the correlation
between the shape of particle size distribution and pore
size distribution is strong, leading to the ability to estimate
Pc-Sat characteristics from grain size distribution curves.
Assignment of Pc-Sat parameters on the basis of indicator
class distribution preserves the simulated spatial continuity
of the indicator classes, taking advantage of the GSD
information embedded within those classes. Conversely, if a
representative retention curve is scaled to permeability, the
Pb field is mapped onto the structure of the k field and
NAPL spreading phenomena related to the lateral continuity
of vertically contrasting entry pressure values will be
restricted to spatial locations with continuity in vertically
dissimilar k values.
[46] A practical distinction between these two alternative

approaches to entry pressure assignment is manifest in the
presence and continuity of saturations exceeding 0.60 in set
3 realizations. Field and laboratory measurements of entrap-
ped NAPL saturations for comparison are few, however.
The ability to sample NAPL pools at contaminated field
sites is difficult, even when their existence can be inferred,
because the large number of boreholes required to sample
small NAPL pools is often cost prohibitive [Feenstra et al.,
1996]. Because of NAPL toxicity and the difficulty in
deconstructing sandbox experiments, laboratory measure-
ments of NAPL saturation are also problematic. Therefore a
lack of reported high saturation values might not be
indicative of the full range of in situ NAPL saturations
that are possible under field and laboratory conditions.
Nevertheless, saturations exceeding 0.60 are consistent with
values reported by Essaid et al. [1993], Dillard et al.
[1997], and Barth [1999]. Others reported saturations
approaching 0.38 in the field [Kueper et al., 1993] and
0.50 in the lab [Kueper et al., 1989].
[47] The results of this set of numerical simulations

demonstrate that independent variation in more than one
aquifer parameter can increase the variance of model
performance metrics (e.g., observed spreading). For statis-
tically homogeneous, nonuniform sand aquifers, the choice
between parametric and nonparametric (SGS vs. SIS)
approaches to modeling the spatial distribution of k or
ln(K) has only a minor influence on predicted DNAPL
distributions if Pc-sat parameter scaling to k is also
employed. Similarly, the choice between uniform and
spatially variable porosity has a relatively small effect.
However, assignment of alternative Pc-Sat indices based on
spatially-correlated grain size classes can have a significant
influence on predicted DNAPL distributions. This contrast
in predicted DNAPL distributions is expected to result in
differing behavior with respect to contaminant mass flux
and remediation efficiency. Differences in contaminant
recovery and mass flux resulting from these alternatives
models will be explored in a subsequent paper.
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