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Abstract Recent studies have produced a variety of advances in the 
investigation of genetic similarities and differences among human 
populations.  Here, I pose a series of questions about human population-
genetic similarities and differences, and I then answer these questions by 
numerical computation with a single shared population-genetic dataset.  
The collection of answers obtained provides an introductory perspective 
for understanding key results on the features of worldwide human genetic 
variation.   

 

In this expository overview, I seek to clarify recent developments in the study of 
the magnitude of the genetic variability among human populations.  Specifically, 
I examine the answers to several questions about human genetic similarities and 
differences, all in the context of a single standardized set of samples and 
markers.  
 

1. Are most alleles widely distributed, or are they largely confined to specific 
parts of the world? 

 

2. Do there exist distinctive alleles for specific geographic regions that 
distinguish individuals in one group from those of other groups? 

 

3. Of the genetic variants that exist in the human genome, how many are 
present within a given geographic region? 

 

4. On average, how different are two individuals from the same local 
population, in comparison with two individuals chosen from any two 
populations anywhere in the world? 
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5. To what extent is it possible to determine the genetic ancestry of an 
individual using the alleles in his or her genome? 

 

6. What events in human evolutionary history are responsible for the basic 
patterns of genetic similarity and difference evident in worldwide human 
populations? 

 

Rather than providing a systematic review, this article offers an informal 
introductory perspective on the basis of work that my colleagues and I have 
performed with the genome-wide microsatellites of the Human Genome 
Diversity Project/Centre d’Etude du Polymorphisme Humain (HGDP-CEPH) 
Cell Line Panel (Rosenberg et al. 2002, 2003a, 2003b, 2005; Zhivotovsky et al. 
2003; Ramachandran et al., 2004, 2005; Schroeder et al. 2007; Szpiech et al. 
2008).  Use of a shared dataset to address all of the questions eliminates the 
effects that such factors as differences in samples or loci can have in producing 
different outcomes across studies.  Although we have previously reported results 
very similar to many of those shown, the analyses here are original, so that the 
same standardized dataset is used for all computations. 

 
A dataset on autosomal microsatellite polymorphisms in 
human populations 
 

The HGDP-CEPH Cell Line Panel (Cann et al. 2002; Cavalli-Sforza 2005), 
henceforth termed the “diversity panel,” consists of 1064 cell lines from 
individuals in more than 50 indigenous populations distributed worldwide 
(Figure 1, Table 1).  For this article, the populations are divided among seven 
major geographic regions: sub-Saharan Africa, Europe, the Middle East, 
Central/South Asia, East Asia, Oceania, and the Americas.   

Each individual represented in the diversity panel has been genotyped for 
783 microsatellite polymorphisms, spread across all 22 autosomes (Rosenberg et 
al. 2005).  Recall that a microsatellite locus is a region of the genome in which 
individuals differ in their numbers of repeated copies of a basic DNA unit 
(Goldstein and Schlötterer 1999).  Thus, for example, an individual with the 
DNA sequence CATCATCATCAT at a particular microsatellite has four copies 
of the repeated unit CAT.  For each of the microsatellites we have studied, the 
basic repeated unit has size 2, 3, 4, or 5.    

Because human microsatellites are highly variable, they provide 
considerable information about human genetic diversity and its geographic 
distribution (e.g. Bowcock et al. 1994).  They tend to have at least several 
distinct alleles: for the 783 loci we have studied, the mean worldwide number of 
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distinct alleles per locus is 11.94.  Adjusting for the differing sample sizes of the 
different geographic regions in the dataset by considering subsamples of equal 
size from the various regions, Figure 2A shows that on average, a subsample of 
size 60 alleles from Africa contains ~8 distinct alleles, a subsample of size 60 
from Oceania or the Americas contains ~5-6 distinct alleles, and a subsample 
from Europe or Asia contains ~6-7 distinct alleles.  For comparison, a 
worldwide sample of size 420—60 from each of the seven regions—contains on 
average ~10 distinct alleles per locus. 

Representative microsatellite allele frequency distributions are shown in 
Figure 3 for three loci, each of which has exactly eight distinct alleles 
worldwide.  The loci each have a pattern in which 3-6 of their alleles are 
reasonably common, and the rest are quite rare.  These three loci illustrate a 
relatively small divergence in allele frequencies across geographic regions, a 
large divergence in allele frequencies across regions, and an intermediate level 
of divergence.  For D6S474, the least diverged locus, nearly every allele has 
similar frequencies in all seven of the regions; for D10S1425, the locus with 
intermediate divergence, some but not all of the alleles have noticeable 
differences across regions; finally, for D12S2070, the most strongly diverged of 
the three loci, nearly every allele—most dramatically, the allele shown in 
purple—has a substantial frequency difference. 

 
Questions about human genetic variation 
 

1. Are most alleles widely distributed, or are they largely confined to 
specific parts of the world?  For each of the alleles in the dataset, we can 
characterize its geographic distribution by identifying the locations in which it is 
present and those in which it is absent.  Considering each of the seven regions, a 
given allele has one of 27-1=127 possible presence/absence distributions.  If we 
disregard alleles that appear only once in the dataset—and that are therefore 
more likely than other alleles to result from genotyping errors—Table 2 gives 
the fractions of alleles in the dataset that have each of the possible geographic 
categorizations. 
 We can observe from Table 2 that by far the geographic distribution most 
prevalent among alleles, containing 46.60% of the alleles in the dataset, is 
presence in all seven regions.  The three distributions with the next highest 
numbers of alleles are the categories for presence everywhere except Oceania 
(6.97%), everywhere except both Oceania and the Americas (5.09%), and 
everywhere except the Americas (4.98%).  These distributions are then followed 
by presence only in Africa (4.28%), and presence only in Africa and the Middle 
East (2.29%). 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



 4

 Assembling the presence/absence categories with the largest numbers of 
alleles into a pie chart and grouping categories with small numbers of alleles, 
Figure 4A illustrates that most alleles tend to be found in at least two or three of 
the seven regions, and that relatively few alleles are private to individual regions 
(7.53%).  Among private alleles, more than half (56.89%) are found only in 
Africa.  This result is intensified in Figure 2C, which adjusts for sample size 
differences among the regions.  In this figure, which considers the mean number 
of private alleles per locus if equal-sized subsamples are simultaneously drawn 
from each of the seven regions, it can be observed that on average, in a sample 
of size 420 containing 60 alleles from each region, a microsatellite locus has 
about 0.9 private alleles in Africa, and about 0.15-0.2 private alleles in each of 
the other regions—fewer in the Americas. 
 We can now answer the question posed in this section.   Most alleles are 
widely distributed around the world, and about half of all alleles represented in 
the diversity panel are found in all seven geographic regions.  Relatively few 
alleles are private to individual regions.  Among the alleles that are private, 
more than half are found only in Africa. 

 
2. Do there exist distinctive alleles for specific geographic regions 
that distinguish individuals in one group from those of other groups?  
We have seen that the number of alleles that are private to individual regions is 
relatively small.  We can now ask whether those alleles have high or low 
frequencies in the regions where they are found.  If the frequencies of private 
alleles are high, these alleles could then be used as diagnostic types that could 
easily identify individuals as belonging to particular groups. 

Considering all 624 private alleles observed more than once in the dataset, 
their mean estimated frequency in the region where they occur is 0.0165, with 
standard deviation 0.0212.  Only six alleles private to a single region have 
frequencies greater than 0.10 in the region where they are found, and only one 
has frequency greater than 0.13.  This allele, allele 275 at locus D9S1120, is 
present only in the Americas, with overall frequency 0.365.  Its frequencies in 
the five Native American populations in the diversity panel are 0.192, 0.250, 
0.300, 0.220, and 0.971 for indigenous Colombians, Karitiana, Maya, Pima, and 
Surui, respectively. 

If we now consider all alleles in the dataset—not only the private alleles—
and identify those that according to a statistic that measures ancestry 
information content (Rosenberg et al. 2003a) have the greatest potential to 
enable inferences about regional ancestry, we can see that none of these highly 
informative alleles has a frequency close to one in some groups but close to zero 
in all others (Table 3).  Thus, none of the alleles is diagnostic for a particular 
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region or group of regions.  The most diverged allele has an allelic 
informativeness of 0.169, noticeably smaller than both 0.363, the value that 
would be obtained for an allele with frequency one in three of the groups and 
zero in the other four, and 0.278, the informativeness for an allele with 
frequency one in one of the seven groups and zero in all others.  To visually 
observe the frequency differences for a locus that has an allele with strong 
divergence across geographic regions, note that allele 95 of locus D12S2070, 
shown in purple in Figure 3, has the third-highest regional ancestry information 
content of all 9346 alleles in the dataset. 
 The combination of these results shows that among the alleles considered, 
there do not exist distinctive alleles present in all members of one region but 
absent from individuals outside the region.  While occasional alleles with large 
frequency differences do exist, they are unusual, and they do not typically 
approach the maximal possible level of divergence.  As a fraction of all alleles, 
strongly diverged alleles are rare. 

 
3. Of the genetic variants that exist in the human genome, how many 
are present in a given geographic region?  Using the values in Table 2, 
together with the remaining geographic distributions not shown in the table, we 
can calculate the fractions of alleles found in each of the geographic regions in 
the dataset.  Considering all 8290 alleles observed more than once, 87.12% are 
found in Africa, 77.17% in Europe, 81.09% in the Middle East, 81.66% in 
Central/South Asia, 79.82% in East Asia, 57.44% in Oceania, and 60.11% in the 
Americas.  Averaging across regions, a random region contains 74.91% of the 
non-singleton alleles found in the full worldwide dataset. 
 The quantities in Figure 2A enable us to make adjustments for the unequal 
sample sizes in the different geographic regions.  For each region and various 
values of the subsample size g, Figure 2B plots the mean fraction of alleles in a 
randomly chosen worldwide subsample containing g alleles from each of the 
seven regions that are found in a random region-specific subsample of size g.  
Over most of the values of g considered, about 75-81% of worldwide alleles 
appear in Africa, 63-71% in Europe, the Middle East, Central/South Asia, or 
East Asia, 59-63% in Oceania, and 53-57% in the Americas.  Thus, each region 
contains a majority of all alleles found worldwide, with the greatest fraction 
being observed in Africa and the smallest fraction occurring in the Americas. 

  
4. On average, how different are two individuals from the same 
local population, in comparison with two individuals chosen 
from any two populations anywhere in the world?  On the basis of 
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the initial analysis of protein polymorphisms performed by Lewontin (1972) and 
subsequent computations with other types of markers, it has often been noted 
that “genetic variation within populations constitutes X% of human genetic 
variation, and genetic variation among populations constitutes (100-X)%.”  The 
values of X vary by study, but they generally lie in the range of 80-95% (e.g. 
Barbujani and Di Benedetto 2001; Brown and Armelagos 2001; Ruvolo and 
Seielstad 2001; Excoffier and Hamilton 2003; Long and Kittles 2003; 
Rosenberg et al. 2003b; Li et al. 2008). 
 This description of the partition of human variation suggests that the 
number 80-95% is the answer to a question similar to #3.  However, as we have 
seen in the section on question #3, the fraction of alleles present in a randomly 
chosen geographic region is generally smaller than 80-95%, and the fraction in a 
randomly chosen population must be still smaller.  In the literature on human 
genetic variation, statements about the fraction of variation within and among 
populations have almost always referred to the answers to questions similar to 
#4. 
 In one of the most common ways that the partitioning of human genetic 
variation has been conceptualized—which differs slightly from the entropy-
based approach of Lewontin (1972)—populations are first classified by 
geographic region.  A variable indicating the presence or absence of an allele in 
a population is expressed in an analysis-of-variance framework as the sum of 
terms for the mean frequency of the allele worldwide, the mean frequency of the 
allele in the region to which the population belongs, the mean frequency of the 
allele in the population, and an “error” term, which reflects within-population 
variation.  For each distinct allele in a dataset, this linear equation is constructed 
for each presence/absence observation of the allele in each individual, and using 
analysis-of-variance techniques, the components of genetic variation are then 
estimated.  These components correspond to the estimated fractions of the 
variation in the allelic indicator variable owing to variation across regions, 
variation across populations within regions, and “error,” or within-population 
variation.  Estimates of these components based on the individual alleles are 
then combined across alleles and loci to produce an overall estimate of the 
genetic variance components.  Some studies omit the region term in the linear 
model, estimating only the among-population and within-population 
components of genetic variation.  The variance components estimation is based 
only on the ~0.1% of the human genome that consists of variable markers, as 
monomorphic markers have no variation across individuals that can be 
partitioned. 
 For our microsatellite data, we can estimate the components of genetic 
variation for different designs using the analysis-of-variance approach (Table 4), 
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obtaining a similar result to previous studies, namely that in a design with two 
variance components, the within-population component constitutes more than 
90% of human genetic variation.  When we divide the populations into seven 
geographical regions and estimate three variance components, the within-
population component is 93.9%, the among-population-within-region 
component is 2.4%, and the among-region component is 3.8%.  
 Conveniently, the estimated variance components of the allelic indicator 
variables, whose meaning can be difficult to interpret, are closely related to 
concepts that are more easily understood.  First, for a variance partitioning with 
only two components, among-populations and within-populations, the among-
population component can be viewed as an estimator of the commonly used 
statistic Fst, which measures the level of variation at polymorphic markers 

among a set of populations (the quantity ̂  in Weir 1996, p. 169-174), and the 

within-population component can be seen as an estimator of 1-Fst.  For a given 

locus, the Fst statistic can be formulated as Fst=(t-s)/t, where s is the mean 
probability for the locus that two alleles chosen from the same population are 

distinct, and t is the mean probability that two alleles chosen from any two 
populations are distinct (Nei 1987, p. 162).  For variance partitioning with three 
components, the among-region, among-population-within-region, and within-

population components correspond to (t-r)/t, (r-s)/t, and s/t, 

respectively, where s and t have the same meaning as in the two-component 

design and r is the mean probability of non-identity for two alleles chosen from 
the same region.  The within-population component can be viewed as the level 
of genetic difference for a pair of individuals from the same population, in 
comparison with the level of difference between two individuals from any two 
populations.  The among-population-within-region component then equals the 
excess level of difference for a pair of individuals from the same region but from 
different populations, and the among-region component is the excess level of 
difference for a pair of individuals from different regions. 
 The connection between variance components and probabilities of identity 
suggests an approach to visualizing genetic variance components in human 
populations.  Figure 5A depicts the genome-wide distributions of pairwise 
differences for pairs of individuals from the same population, from the same 
region, and from any two arbitrarily chosen populations.  In the distribution of 
pairwise differences for arbitrarily selected pairs, most pairs with a proportion of 
differing alleles above the small jump near 0.7 involve at least one individual 
from Africa.  This result is reflected in Figure 5B, in which it can be seen that 
among the geographic regions, only Africa has more than a negligible 
probability density at values of the proportion of differing alleles above 0.7.  
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Consistent with the general sequence of levels of diversity seen in Figure 2, both 
in Figure 5B and in Figure 5C, Africa has the highest mean proportion of 
differing alleles, followed by the Middle East, Central/South Asia, Europe, East 
Asia, Oceania, and the Americas (Table 5).  Note that the bimodal distribution 
for Oceania in Figure 5B reflects the sampling of only two populations in 
Oceania, so that the peak to the left involves within-population pairs, and the 
peak to the right involves between-population pairs.  Also, both the wide range 
in Figure 5C of the proportion of differing alleles for pairs within Native 
American populations and the small peaks in Oceania and Africa between 0.2 
and 0.5 are consequences of the inclusion of pairs of relatives in the diversity 
panel, particularly in Native Americans (Rosenberg 2006).   
 As can be observed from Figure 5A, the mean proportion of differing alleles 
for arbitrary pairs of individuals, or 0.651, only slightly exceeds the mean 
difference for pairs from the same region, or 0.618.  In turn, the mean pairwise 
difference within regions only slightly exceeds the mean difference for pairs 
from the same population, or 0.603.  The fraction of the genetic differences for a 
random pair of individuals from anywhere in the world found in a random pair 
from the same population—a quantity that corresponds to the within-population 
component of genetic variation—equals 0.603/0.651≈0.927.  The excess 
difference for two individuals from the same region in comparison with two 
individuals from the same population—which parallels the among-population-
within-region component—equals (0.618-0.603)/0.651≈0.023.  Finally, the 
excess difference for two individuals chosen from any two populations in 
comparison with two individuals from the same region is (0.651-
0.618)/0.651≈0.050.   
 The variance components estimated for the division of the dataset into 
seven regions and 53 populations differ slightly between the analysis on the 
basis of pairwise differences, which obtained (0.927, 0.023, 0.050) for the three 
components, and that on the basis of the analysis of variance, which estimated 
them at (0.939, 0.024, 0.038).  The differences between these estimates arise 
largely from differences in the nature of the estimators: the estimates in Table 4 
rely on estimators that consider the different sample sizes in different 
populations, whereas the calculations employing Figure 5 use the graphs exactly 
as they appear in the figure, without sample size weights.  In summary, 
however, the rough agreement of analysis-of-variance and pairwise-difference 
methods supports the general observation that the mean level of difference for 
two individuals from the same population is almost as great as the mean level of 
difference for two individuals chosen from any two populations anywhere in the 
world. 
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5. To what extent is it possible to determine the genetic ancestry of 
an individual using the alleles in his or her genome?  The answers to 
questions #1-#4 produce a view of human genetic variation in which the level of 
similarity among populations is relatively high, and the level of difference is 
low.  Most alleles are widely distributed, the fraction of alleles private to 
individual regions is small, most populations contain most of the alleles present 
in the human population, and the mean genetic difference for two individuals 
from the same population is almost as large as that for two individuals chosen 
from any two populations.   We will see, however, that in the accumulation of 
small amounts of allele frequency variation across many loci, it is possible to 
make inferences about individual genetic ancestry from genetic markers.  

Consider one of the loci in Figure 3.  If the region of origin of an individual 
were known, it would not be possible to predict the genotype of the individual 
with much accuracy.  Too much variation exists within each region to enable 
accurate predictions: the number of alleles is too high, and the frequency of the 
most frequent allele is too low. 

The reverse question, however, namely that of inferring the source region of 
an individual given his or her genotypes, begins to be tractable as the number of 
loci increases.  Suppose an individual is known to have been sampled from one 
of the seven regions in Figure 3.  If the genotype of the individual were known 
at the first locus, D6S474, little information would be obtained about the origin 
of the individual.  For example, suppose the individual is a yellow-yellow 
homozygote.  This genotype is reasonably common in all of the geographic 
regions, so that any of them could potentially be the source of the individual.  If 
the individual is also a blue-yellow heterozygote at the second locus, D10S1425, 
it becomes more likely that the individual is East Asian or Native American, as 
the blue-yellow genotype is most common in East Asia and in the Americas.  
Finally, if for D12S2070 the individual is a purple-purple homozygote, it is now 
much more likely that the individual is Native American than East Asian.  
Although the combination of yellow-yellow at D6S474, blue-yellow at 
D10S1425, and purple-purple at D12S2070 may very well have nonzero 
frequency in most regions, an individual with this combination of genotypes is 
by far most likely to be Native American. 

This example has been based only on three loci.  Imagine aligning similar 
pie charts for 783 loci in the same manner as in Figure 3.  If an individual 
genotype were known for all 783 loci, as long as a reasonable amount of 
variation in frequencies exists across regions, it would probably not be difficult 
to look through the 783 sets of pie charts to determine which region is the most 
likely source for the individual.  It is also likely that a fair amount of confidence 
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could be placed in this estimate, regardless of which multilocus genotype an 
individual possessed.   

This type of inferential procedure is what we have performed using the 
clustering algorithm STRUCTURE (Pritchard et al. 2000; Falush et al. 2003), with 
two main differences.  First, in the description above, the source regions were 
known in advance, so that the problem was to classify individuals on the basis of 
known allele frequencies.  The STRUCTURE approach, however, uses an 
unsupervised clustering algorithm, so that the clusters to which individuals are 
assigned are inferred simultaneously with assignment of individual membership.  
Second, above it was assumed that each individual originated from a single one 
of the regional groups.  With STRUCTURE, however, individuals can have partial 
membership in multiple clusters.  Thus, the genome of an individual is 
represented as a vector of membership coefficients, with membership 
coefficients summing to one across clusters.  The number of clusters, 
represented by the value of a parameter K, is selected in advance, but can be 
varied across independent runs of the algorithm. 

When we apply this unsupervised mixed-membership clustering approach 
to individual multilocus genotypes, we find that individuals from the same 
populations have similar membership coefficients in the inferred clusters (Figure 
6).  If two clusters are used, the individuals from Africa have nearly full 
membership in one cluster, shown in orange, and the Native Americans have 
nearly full membership in the other cluster, shown in purple.  Moving east 
across Asia, the membership coefficients of individuals decrease in their 
similarity to those of the Africans, and they increase in similarity to those of the 
Native Americans. 

When three clusters are used, the third cluster subdivides the orange cluster 
into one cluster that corresponds largely to Africans, and one that corresponds 
largely to individuals from Europe, the Middle East, and Central/South Asia, 
shown in blue.  One population of note in the analysis with K=3 is the Mozabite 
population from northern Africa, whose individuals have mixed membership in 
the cluster that contains Africans and the cluster containing the populations from 
Europe, the Middle East, and Central/South Asia.   

With K=4, a cluster corresponding to East Asia, shown in pink, separates 
from the purple cluster.  Decreasing membership in this cluster is visible moving 
westward across Asia, in that populations such as Burusho, Hazara, and Uygur 
are estimated to have mixed membership both in the blue and pink clusters.  
With five clusters, the highest-likelihood replicate of the analysis separates a 
single Native American population, Surui from Brazil, into a distinct cluster.  
This result differs from our previous analyses with K=5 (Rosenberg et al. 2002, 
2005), which identified a cluster corresponding to the two populations from 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



 11

Oceania, one from Papua New Guinea and the other from the Solomon Islands.  
However, only one of ten replicates here identified a Surui cluster, and the 
remaining nine all obtained the cluster corresponding to Oceania.  With K=6, the 
Oceania cluster was identified in all replicates, the highest-likelihood of which 
also obtained the cluster corresponding to Surui.  This observation is also 
slightly different from our previous analyses with overlapping but not identical 
sets of markers in the same individuals, in which the sixth cluster corresponded 
to the Kalash population from Pakistan (Rosenberg et al. 2002), or to a 
subdivision of Native Americans into more northerly and southerly populations 
(Rosenberg et al. 2005). 

From these results, we can observe that despite the genetic similarity among 
populations suggested by the answers to questions #1-#4, the accumulation of 
information across a large number of genetic markers can be used to subdivide 
individuals into clusters that correspond largely to geographic regions.  The 
apparent discrepancy between the similarity of populations in questions #1-#4 
and the clustering in this section is partly a consequence of the multivariate 
nature of clustering and classification methods, which combine information 
from multiple loci for the purpose of inference, in contrast to the univariate 
approaches in questions #1-#4, which merely take averages across loci (Edwards 
2003).  Even though individual loci provide relatively little information, with 
multilocus genotypes, ancestry is possible to estimate at the broad regional level, 
and in many cases, it is also possible to estimate at the population level as well. 

 
6. What events in human evolutionary history are responsible for the 
basic patterns of genetic similarity and difference evident in 
worldwide human populations?  The discussion of the first five questions 
has focused on patterns of variation observed in human populations today.  This 
section turns to explaining these patterns using inferences that can be made 
about the genetic history of the human population.  Suppose that the human 
population descends from a small ancestral group confined to a small area.  
Suppose also that the expansion of populations occurred by a sampling process, 
in which population subgroups repeatedly split off from their ancestral groups 
and moved short distances away.  Repetition of this process of subsampling and 
expansion would eventually have led to habitation of a large area. 

Our simulations of this serial sampling process suggest that it would 
produce a linear decline in levels of genetic variation, as measured by 
heterozygosity, with increasing geographic distance from the site of origin 
(Ramachandran et al. 2005; DeGiorgio et al. 2009).  Considering three different 
locations as examples—one in Africa, one in East Asia, and one in South 
America—we can see in Figure 7 that a linear decline of heterozygosity occurs 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



 12

with distance from the location in Africa, but not with distance from each of the 
other points: the point in East Asia does not produce a straight line, and while 
the point in South America does produce a close match to a straight line, the 
slope of this line is positive rather than negative.  These observations can 
potentially be explained by a serial sampling model starting from an African 
origin, in which South America is among the last places to have been reached 
during the human expansion. 

Figure 8 shows a plot of a measure of the linear fit between heterozygosity 
and geographic distance from a point, for points selected from around the world 
(excluding the Americas). The putative points of origin with the closest match to 
a pattern of linear decrease in heterozygosity with distance from the point all lie 
within Africa.  Further, each point in Africa produces a better fit of the model 
than does any point outside of Africa, so that if the serial sampling model is 
sensible, the human population likely originated with a group in Africa. 

This view of human migrations is also supported by computations of the 
directional “flow” of alleles for pairs of regions.  For each ordered pair of 
geographic regions, Figure 9 shows the fraction of alleles found in the first 
region that are also observed in the second.  Assigning each region a number of 
migrational steps from a putative human origin in Africa (Africa=0, Middle 
East=1, Europe=Central/South Asia=2, East Asia=3, Oceania=America=4), for 
all pairs of regions at different numbers of steps from Africa, the flow of alleles 
is always greater moving outward from Africa than that moving back towards 
Africa.  In other words, the pattern of allelic presence and absence matches a 
history in which the gene pool of each migrating human population consisted 
largely of a sampling of the alleles present in its ancestral population.   

The serial sampling model can explain other properties of the data discussed 
above.  We observed earlier that both the mean number of alleles found at a 
locus and the mean number of private alleles are greatest for African populations 
and smallest for populations in the Americas and Oceania, even after adjusting 
for sample size differences.  We also saw that African groups possess a greater 
proportion of the alleles found in the full human population than do non-African 
groups, and that groups from the Americas and Oceania possess the smallest 
proportion of alleles.  These observations are all expected if Africa was the 
original source of human populations, and if the populations of Oceania and the 
Americas trace their ancestry primarily to more recent waves of migrating 
human populations. 

We also found that in an unsupervised cluster analysis, individuals grouped 
into geographical clusters largely corresponding to sub-Saharan Africa, Europe 
and the part of Asia west of the Himalayas, the part of Asia east of the 
Himalayas, Oceania, and the Americas.  These observations are compatible with 
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serial sampling, assuming that major geographic barriers such as oceans, the 
Sahara desert, and the Himalayas were not frequently crossed during human 
migrations.  This reduced frequency for the traversal of major barriers would 
then increase the genetic similarity for individuals on the same side of a barrier 
relative to that of individuals on opposite sides of the barrier, with the following 
consequence: a discontinuity in genetic distance as a function of geographic 
distance would be produced for most pairs of populations on opposite side of a 
major barrier, in comparison with the genetic distance for pairs on the same side.  
This discontinuity, which is in fact observed in the diversity panel (Figure 10), 
would then explain the ability of clustering algorithms to identify clusters of 
individuals corresponding to the geographic regions bounded by the barriers that 
are most important.  Thus, the clusters we have observed are consistent with 
serial sampling together with reduced permeability for major geographic 
barriers.   

 
Discussion 
  

Our analysis of human microsatellites supports the following main results.  (1) 
Most genetic variants are widely distributed, with an excess present in Africa.  
(2) Genetic variants that distinguish individuals in one region from individuals 
in other regions are rare.  (3) Each geographic region contains most genetic 
variants, with Africa possessing the largest fraction.  (4) Pairs of individuals 
from different geographic regions tend to be only slightly more genetically 
different than pairs of individuals from the same region.  (5) Despite the high 
levels of similarity across populations, the accumulation of small differences 
across large numbers of markers enables inference of geographic ancestry.  (6) 
The pattern of human genetic similarities and differences can be explained as the 
outcome of a human expansion out of Africa via a process in which new 
migrating populations each carried only subsets of the variation from their 
parental populations, and in which major geographic barriers have historically 
had reduced permeability to human migration. 
 The design of this article, in which a single dataset has been used to answer 
a series of questions about human genetic similarities and differences, has 
supplied one viewpoint on key results in a vast collection of studies that cover 
many marker systems, samples, datasets, and methodological tools; the dataset 
has offered an approach focused in indigenous populations on highly variable 
markers that generally lie outside of genes and that therefore more directly 
reflect the history of human migrations than do loci at which natural selection 
has had a strong influence.  While it is hoped that this article provides a point of 
entry into the study of genetic similarities and differences among human 
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populations, the reader is also directed to more comprehensive reviews (e.g. 
Mountain 1998; Harpending and Rogers 2000; Jorde et al. 2001; Relethford 
2001; Cavalli-Sforza and Feldman 2003; Tishkoff and Verrelli 2003; Jobling et 
al. 2004; Garrigan and Hammer 2006; Lawson Handley et al. 2007; Weaver and 
Roseman 2008; Barbujani and Colonna 2010; Novembre and Ramachandran 
2011) for additional perspectives on the patterns of worldwide human genetic 
variation and their history.  

 
Acknowledgments I am grateful to all of my collaborators who have contributed to the 
work summarized in this article.  M. Jakobsson, S. Mahajan, and S. Ramachandran 
provided assistance with the preparation of Figures 9, 6, and 8, respectively.  Support has 
been provided by NIH grant R01 GM081441 and by a Burroughs Wellcome Fund Career 
Award in the Biomedical Sciences.  

 
Literature Cited 
 
Barbujani, G., and V. Colonna. 2010. Human genome diversity: frequently asked 

questions. Trends Genet. 26:285-295. 

Barbujani, G., and G. Di Benedetto. 2001. Genetic variances within and between human 
groups. In P. Donnelly and R. Foley, editors, Genes, Fossils and Behaviour, 
pages 63-77. IOS Press, Cambridge. 

Bowcock, A. M., A. Ruiz-Linares, J. Tomfohrde, E. Minch, J. R. Kidd, and L. L. Cavalli-
Sforza. 1994. High resolution of human evolutionary trees with polymorphic 
microsatellites. Nature 368:455-457. 

Brown, R. A., and G. J. Armelagos. 2001. Apportionment of racial diversity: a review. 
Evol. Anthropol. 10:34-40. 

Cann, H. M., C. de Toma, L. Cazes, M.-F. Legrand, V. Morel, L. Pioffre, J. Bodmer, W. 
F. Bodmer, B. Bonne-Tamir, A. Cambon-Thomsen, Z. Chen, J. Chu, C. Carcassi, 
L. Contu, R. Du, L. Excoffier, G. B. Ferrara, J. S. Friedlaender, H. Groot, D. 
Gurwitz, T. Jenkins, R. J. Herrera, X. Huang, J. Kidd, K. K. Kidd, A. Langaney, 
A. A. Lin, S. Q. Mehdi, P. Parham, A. Piazza, M. P. Pistillo, Y. Qian, Q. Shu, J. 
Xu, S. Zhu, J. L. Weber, H. T. Greely, M. W. Feldman, G. Thomas, J. Dausset, 
and L. L. Cavalli-Sforza. 2002. A human genome diversity cell line panel. 
Science 296:261-262. 

Cavalli-Sforza, L. L. 2005. The Human Genome Diversity Project: past, present and 
future. Nature Rev. Genet. 6:333-340. 

Cavalli-Sforza, L. L., and M. W. Feldman. 2003. The application of molecular genetic 
approaches to the study of human evolution. Nature Genet. 33:S266-S275. 

Conrad, D. F., M. Jakobsson, G. Coop, X. Wen, J. D. Wall, N. A. Rosenberg, and J. K. 
Pritchard. 2006. A worldwide survey of haplotype variation and linkage 
disequilibrium in the human genome. Nature Genet. 38:1251-1260. 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



 15

DeGiorgio, M., M. Jakobsson, and N. A. Rosenberg. 2009. Explaining worldwide 
patterns of human genetic variation using a coalescent-based serial founder model 
of migration outward from Africa. Proc. Natl. Acad. Sci. USA 106:16057-16062. 

Edwards, A. W. F. 2003. Human genetic diversity: Lewontin's fallacy. BioEssays 25:798-
801. 

Excoffier, L., and G. Hamilton. 2003. Comment on “Genetic structure of human 
populations”. Science 300:1877. 

Falush, D., M. Stephens, and J. K. Pritchard. 2003. Inference of population structure 
using multilocus genotype data: linked loci and correlated allele frequencies. 
Genetics 164:1567-1587. 

Garrigan D., and M. F. Hammer. 2006. Reconstructing human origins in the genomic era. 
Nature Rev. Genet. 7:669-680. 

Goldstein, D. B., and C. Schlötterer, editors. 1999. Microsatellites: Evolution and 
Applications. Oxford University Press, Oxford. 

Harpending, H., and A. Rogers. 2000. Genetic perspectives on human origins and 
differentiation. Annu. Rev. Genomics Hum. Genet. 1:361-385. 

Hurlbert, S. H.. 1971. The nonconcept of species diversity: a critique and alternative 
parameters. Ecology 52:577-586. 

Jobling, M. A., M. E. Hurles, and C. Tyler-Smith. 2004. Human Evolutionary Genetics: 
Origins, Peoples & Disease. Garland Science, New York. 

Jorde, L. B., W. S. Watkins, and M. J. Bamshad. 2001. Population genomics: a bridge 
from evolutionary history to genetic medicine. Hum. Mol. Genet. 10:2199-2207. 

Kalinowski, S. T. 2004. Counting alleles with rarefaction: private alleles and hierarchical 
sampling designs. Conserv. Genet. 5:539-543. 

Lawson Handley, L. J., A. Manica, J. Goudet, and F. Balloux. 2007. Going the distance: 
human population genetics in a clinal world. Trends Genet. 23:432-439. 

Lewontin, R. C.. The apportionment of human diversity. 1972. Evol. Biol. 6:381-398. 

Li, J. Z., D. M. Absher, H. Tang, A. M. Southwick, A. M. Casto, S. Ramachandran, H. 
M. Cann, G. S. Barsh, M. Feldman, L. L. Cavalli-Sforza, and R. M. Myers. 2008. 
Worldwide human relationships inferred from genome-wide patterns of variation. 
Science 319:1100-1104. 

Long, J. C., and R. A. Kittles. 2003. Human genetic diversity and the nonexistence of 
biological races. Hum. Biol. 75:449-471. 

Mountain, J. L. Molecular evolution and modern human origins. 1998. Evol. Anthropol. 
7:21-37. 

Mountain, J. L., and L. L. Cavalli-Sforza. 1997. Multilocus genotypes, a tree of 
individuals, and human evolutionary history. Am. J. Hum. Genet. 61:705-718. 

Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. 

Novembre, J., and S. Ramachandran. 2011. Perspectives on human population structure 
at the cusp of the sequencing era. Annu. Rev. Genomics Hum. Genet. 12:245-274. 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



 16

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure 
using multilocus genotype data. Genetics 155:945-959. 

Ramachandran, S., O. Deshpande, C. C. Roseman, N. A. Rosenberg, M. W. Feldman, 
and L. L. Cavalli-Sforza. 2005. Support from the relationship of genetic and 
geographic distance in human populations for a serial founder effect originating 
in Africa. Proc. Natl. Acad. Sci. USA 102:15942-15947. 

Ramachandran, S., N. A. Rosenberg, L. A. Zhivotovsky, and M. W. Feldman. 2004. 
Robustness of the inference of human population structure: A comparison of X-
chromosomal and autosomal microsatellites. Hum. Genomics 1:87-97. 

Relethford, J. H. 2001. Genetics and the Search for Modern Human Origins. Wiley-Liss, 
New York. 

Rosenberg, N. A. 2004. DISTRUCT: a program for the graphical display of population 
structure. Mol. Ecol. Notes 4:137-138. 

Rosenberg, N. A. 2006. Standardized subsets of the HGDP-CEPH Human Genome 
Diversity Cell Line Panel, accounting for atypical and duplicated samples and 
pairs of close relatives. Ann. Hum. Genet. 70:841-847. 

Rosenberg, N. A., L. M. Li, R. Ward, and J. K. Pritchard. 2003a. Informativeness of 
genetic markers for inference of ancestry. Am. J. Hum. Genet. 73:1402-1422. 

Rosenberg, N. A., S. Mahajan, S. Ramachandran, C. Zhao, J. K. Pritchard, and M. W. 
Feldman. 2005. Clines, clusters, and the effect of study design on the inference of 
human population structure. PLoS Genet. 1:660-671. 

Rosenberg, N. A., J. K. Pritchard, J. L. Weber, H. M. Cann, K. K. Kidd, L. A. 
Zhivotovsky, and M. W. Feldman. 2002. Genetic structure of human populations. 
Science 298:2381-2385. 

Rosenberg, N. A., J. K. Pritchard, J. L. Weber, H. M. Cann, K. K. Kidd, L. A. 
Zhivotovsky, and M. W. Feldman. 2003b. Response to comment on “Genetic 
structure of human populations”. Science 300:1877. 

Ruvolo, M., and M. Seielstad. 2001. The apportionment of human diversity: 25 years 
later. In R. S. Singh, C. B. Krimbas, D. B. Paul, and J. Beatty, editors, Thinking 
about Evolution: Historical, Philosophical, and Political Perspectives, pages 
141-151. Cambridge University Press, Cambridge. 

Schroeder, K. B., T. G. Schurr, J. C. Long, N. A. Rosenberg, M. H. Crawford, L. A. 
Tarskaia, L. P. Osipova, S. I. Zhadanov, and D. G. Smith. 2007. A private allele 
ubiquitous in the Americas. Biol. Lett. 3:218-223. 

Szpiech, Z. A., M. Jakobsson, and N. A. Rosenberg. 2008. ADZE: a rarefaction approach 
for counting alleles private to combinations of populations. Bioinformatics 
24:2498-2504. 

Tishkoff, S. A., and B. C. Verrelli. 2003. Patterns of human genetic diversity: 
implications for human evolutionary history and disease. Annu. Rev. Genomics 
Hum. Genet. 4:293-340. 

Venables, W. N., and B. D. Ripley. 1997. Modern Applied Statistics with S-PLUS. 
Springer-Verlag, New York, 2nd edition. 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



 17

Weaver, T. D., and C. C. Roseman. 2008. New developments in the genetic evidence for 
modern human origins. Evol. Anthropol. 17:69-80. 

Weir, B. S. 1996. Genetic Data Analysis II. Sinauer, Sunderland, MA. 

Zhivotovsky, L. A., N. A. Rosenberg, and M. W. Feldman. 2003. Features of evolution 
and expansion of modern humans, inferred from genomewide microsatellite 
markers. Am. J. Hum. Genet. 72:1171-1186. 

Pre-print version. Visit 
http://digitalcommons.wayne.edu/humbiol/ 
after 1 December 2011 to acquire final version.



 18

Figure 1.  Geographic locations of populations in the HGDP-CEPH Cell Line Panel.  If a range of latitude and longitude 
coordinates was specified by Cann et al. (2002) for a given population, the population was plotted at the centroid of the range 
(mean of the longitudes, inverse sine of the mean of the sines of the latitudes).  Except where otherwise specified, this article 
utilizes the exact microsatellite dataset of Rosenberg et al. (2005), a collection of 783 autosomal microsatellites in 1048 
individuals from 53 populations.  The map indicates 58 populations, some pairs of which overlap precisely in location, but six 
Bantu groups from southern Africa are grouped into a single population for the analysis.  When the populations are split into 
regions, unless otherwise specified, the regions include sub-Saharan Africa, Europe, the Middle East (and North Africa), 
Central/South Asia, East Asia, Oceania, and the Americas.  
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Figure 2.  Mean and standard error across 783 loci of the number of distinct alleles, proportion of distinct alleles worldwide, and 
private alleles in geographic regions, as a function of the number of sampled alleles.  (A) Number of distinct alleles.  For a given 
locus, region, and sample size g, the number of distinct alleles averaged over all possible subsamples of g alleles from the given 
region is computed according to the rarefaction formula (Hurlbert 1971; Kalinowski 2004, eq. 3; Szpiech et al. 2008).  (B) 
Proportion of alleles observed in a specific region.  For a given locus, region, and sample size g, the quotient of the mean number 
of distinct alleles at the locus for a subsample from the region and the corresponding value for a worldwide subsample containing 
g alleles from each region is computed.  (C) Number of private alleles.  For a given locus, region, and sample size g, the number 
of private alleles in the region—averaging over all possible subsamples that contain g alleles each from the seven regions—is 
computed according to an extension of the rarefaction formula (Kalinowski 2004, eq. 4; Szpiech et al. 2008).  Error bars denote 
the standard error of the mean across loci.  In all three plots, for each sample size g, loci were considered only if their sample 
sizes were at least g in each geographic region. 
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Figure 3.  Allele frequencies at three microsatellite loci.  Each of the three loci has exactly eight alleles, which are displayed 
counterclockwise from the top of each pie chart in the following sequence of colors, proceeding in increasing order of allele size: 
orange, blue, yellow, purple, pink, red, green, brown.  In most of the pie charts, one or more alleles is rare or absent. 
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Figure 4.  Classifications of alleles by geographic distribution.  The classifications are grouped by the number of regions in 
which alleles were found, and the distributions with the largest numbers of alleles are shown explicitly.  (A) Classifications of 
alleles by presence or absence within regions.  (B) Classifications of alleles by presence or absence within populations. 
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Figure 5.  Distributions of pairwise genetic differences across 783 microsatellites.  (A) Pairwise differences for pairs of 
individuals from the same population, pairs from the same geographic region, and pairs arbitrarily chosen from any two 
populations.  (B) Pairwise differences for pairs of individuals from the same geographic region, separated by region.  (C) 
Pairwise differences for pairs of individuals from the same population, with populations from the same region grouped together.  
The pairwise difference for a given pair of individuals was computed as one minus their proportion of shared alleles (Mountain 
and Cavalli-Sforza 1997).  For a given pair of individuals, loci for which one or both individuals has missing data were omitted 
from consideration.  Probability densities were estimated from pairwise genetic differences as in Venables and Ripley (1997, p. 
181, rectangular kernel with parameter b). 
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Figure 6.  Inferred population structure for various numbers of clusters K.  Each individual is represented by a thin line 
partitioned into K colored segments that represent the fractions of the individual’s genome estimated to belong to the K clusters.  
Each plot, made with DISTRUCT (Rosenberg 2004), utilizes the highest-likelihood run among ten runs of STRUCTURE with the F 
model (Falush et al. 2003).  Estimates were obtained from 10,000 iterations following a burn-in period of 20,000 iterations.  For 
K=2 and K=4, all ten runs produced the same set of clusters.  For K=3, three of the ten runs separated a cluster corresponding 
largely to East Asia and Oceania rather than one corresponding largely to Europe, the Middle East, and Central/South Asia.  For 
K=5, the other nine runs separated a cluster corresponding to Oceania rather than one corresponding to Surui.  For K=6, only one 
of the remaining nine runs produced the cluster corresponding to Surui.  Seven of these nine runs instead separated a cluster in 
which many individuals from Central/South Asia—especially those from the Kalash population—had partial membership; in the 
ninth run, the sixth cluster partially separated the African hunter-gatherer populations (Biaka, Mbuti and San) from the other 
African groups. 
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Figure 7.  Heterozygosity of populations as a function of geographic distance from particular points: (A) Nairobi, Kenya 
(1.26666667ºS 36.8ºE); (B) Vladivostok, Russia (43.13333333ºN 131.91666667ºE); (C) Montevideo, Uruguay (34.88333333ºS 

56.18333333ºW).  For each locus and population, expected heterozygosity was computed as    
i ipnnH 211/ , 

where n denotes the number of alleles in the sample and pi denotes the sample frequency of distinct allele i in the population.  
The mean heterozygosity across loci was then computed.  Geographic coordinates for populations were obtained as in Figure 1, 
and great-circle geographic distances between populations were computed as in Rosenberg et al. (2005), forcing paths between 
pairs of points to travel through the five waypoints described in Ramachandran et al. (2005).  Paths to the Americas all passed 
through 64ºN 177ºE and 54ºN 130ºW, paths to Oceania through 11ºN 104ºE, and paths to Africa through 30ºN 31ºE; paths from 
Europe to Africa, the Middle East, or Oceania also passed through 41ºN 28ºE.  As in Ramachandran et al. (2005), the Bantu 
samples from southern Africa were split into Southwestern Bantu (Herero, Ovambo) and Southeastern Bantu (Pedi, Sotho, 
Tswana, Zulu) groups, and the Surui were omitted (for the Southwestern and Southeastern Bantus, the coordinates used were the 
mean of the longitudes and the inverse sine of the mean of the sines of the reported locations of included individuals).  The four 
Native American populations are marked with triangles, the two populations from Oceania with squares, and the eight sub-
Saharan African populations with crosses.  The remaining populations, from Europe, Asia, and northern Africa, are marked with 
circles.  Denoting geographic distance in thousands of kilometers by D, the regression lines are H=0.770-0.00716D, 
H=0.712+(9.97×10-5)D, and H=0.586+0.00574D, for (A), (B), and (C), with coefficients of determination (R2) equal to 0.865, 
1.16×10-4, and 0.662, respectively. 
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Figure 8.  The fit of a linear decline of heterozygosity with increasing distance from putative geographic origins.  The color of a 
point indicates a correlation coefficient r between expected heterozygosity and geographic distance from the point.  Geographic 
coordinates and distances between points were obtained as in Figure 7.  Excluding points in Iceland and Greenland, all points in 
the region shown were considered as possible origins, provided that they were both on land and on a lattice of latitudes and 
longitudes described by Ramachandran et al. (2005).  Among the points shown, the smallest value of r (-0.932) is observed at 
1.43ºN 20ºE. 
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Figure 9.  Schematic world map of the “flow” of microsatellite alleles.  Colored boxes represent regions of the world, positioned 
geographically.  Links entering into a geographic region indicate the percentages of distinct alleles from the geographic region 
found in other regions (and an edge with the number x is drawn proportionately in width to x/4-8).  For example, averaging across 
loci, 87% of alleles observed in Europe are also observed in Africa, whereas 74% of alleles observed in Africa are also observed 
in Europe.  More precisely, following Conrad et al. (2006), for a given locus, a sample size g, and a pair of regions A and B, the 

expected number  of distinct alleles that will be found in a sample of size g from region A is computed as in Figure 2A.  The 

expected number  of distinct alleles that will be found in a sample of size g from region A but not in a sample of size g from 
region B is computed as in Figure 2C, as the number of alleles private to region A, averaging over all possible subsamples that 
contain g alleles from region A and g alleles from region B.  The fraction of the alleles in region A that are found in region B is 

then obtained as 1-/.  The value g=40 was used for all computations, and for a given pair of regions, only those loci with 
sample sizes of at least g in both regions were considered. 
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Figure 10.  Genetic and geographic distance for 630 pairs of populations in Europe, Asia, and northern Africa.  All pairs 
involving populations sampled in these regions are plotted, except for those that involve Hazara, Kalash, or Uygur.  The 
population pairs presented are a subset of those shown in Figure 6 of Rosenberg et al. (2005).  Blue triangles indicate 324 pairs of 
populations on opposite sites of the Himalayas.  Points marked by a red E or W indicate pairs with both populations on the east or 
west side of the Himalayas, respectively (153 population pairs each).  The regression line based on all 630 points is 
Fst=0.00537+0.0023D+0.0219B, where D denotes geographic distance in thousands of kilometers (as computed for Figure 7) and 
B=0 for population pairs on the same side and B=1 for pairs on opposite sides.  The blue and red lines illustrate the regression 
equation, setting B=1 and B=0, respectively.  R2 equals 0.882 for the bivariate regression of Fst on B and D, and 0.659 for a 
univariate regression on D only.  Fst genetic distance was calculated using eq. 5.3 of Weir (1996). 
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Table 1.  Coordinates used in geographic analyses.  Latitudes in the northern hemisphere are listed with positive values, as are 
longitudes in the eastern hemisphere.  Additional coordinates used in some analyses include 28.39886514ºS 27.6ºE for 
Southeastern Bantu and 20.9934025ºS 18.666667ºE for Southwestern Bantu, respectively. 

 
Population Latitude Longitude 
Adygei 44 39 
Balochi 30.49871492 66.5 
Bantu (Kenya) -3 37 
Bantu (Southern Africa) -25.56926433 24.25 
Basque 43 0 
Bedouin 31 35 
Biaka Pygmy 4 17 
Brahui 30.49871492 66.5 
Burusho 36.49838568 74 
Cambodian 12 105 
Colombian 3 -68 
Dai 21 100 
Daur 48.49753416 124 
Druze 32 35 
French 46 2 
Han 32.26566812 114 
Han (Northern China) 32.26566812 114 
Hazara 33.49855601 70 
Hezhen 47.4976192 133.5 
Italian 46 10 
Japanese 38 138 
Kalash 35.99366014 71.5 
Karitiana -10 -63 
Lahu 22 100 
Makrani 26 64 
Mandenka 12 -12 
Maya 19 -91 
Mbuti Pygmy 1 29 
Melanesian -6 155 
Miao 28 109 
Mongola 45 111 
Mozabite 32 3 
Naxi 26 100 
Orcadian 59 -3 
Oroqen 50.43389257 126.5 
Palestinian 32 35 
Papuan -4 143 
Pathan 33.48700562 70.5 
Pima 29 -108 
Russian 61 40 
San -21 20 
Sardinian 40 9 
She 27 119 
Sindhi 25.49063551 69 
Surui -11 -62 
Tu 36 101 
Tujia 29 109 
Tuscan 43 11 
Uygur 44 81 
Xibo 43.49792973 81.5 
Yakut 62.98287845 129.5 
Yi 28 103 
Yoruba 7.995094727 5 
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Table 2.  Percentages of alleles, among 8290 non-singleton alleles at 783 loci, that have given geographic distributions.  Each 
row depicts a possible geographic distribution that an allele can possess, with an X indicating the presence of the allele in a 
geographic region.  The percentage of all alleles with the given distribution is then indicated in the column at right.  Only 
distributions possessed by more than 0.4% of the alleles are shown, in reverse lexical order.  The remaining 94 distributions not 
shown together contain 10.12% of the alleles. 

 
Africa Europe Middle 

East 
Central/ 
South 
Asia 

East Asia Oceania America Percent  
of all 
alleles 

X X X X X X X 46.60 
X X X X X X  4.98 
X X X X X  X 6.97 
X X X X X   5.09 
X X X X    1.41 
X X X  X   0.52 
X X X     0.55 
X X  X X   0.64 
X X  X    0.49 
X X      0.70 
X  X X X X  0.54 
X  X X X  X 0.45 
X  X X X   0.97 
X  X X    1.25 
X  X  X   0.65 
X  X     2.29 
X   X X   0.68 
X   X    1.28 
X    X   1.34 
X       4.28 
 X X X X X X 0.42 
 X X X X  X 0.63 
 X X X X   0.90 
 X X X    0.68 
 X X     0.43 
 X  X X   0.42 
 X  X    0.53 
 X   X   0.48 
  X X    0.66 
  X     0.64 
   X X   0.78 
   X    0.59 
    X   1.01 
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Table 3.  The 10 alleles most informative about regional ancestry, among 9346 alleles at 783 microsatellite loci.  Ancestry information content for alleles was calculated according 
to the In measure of Rosenberg et al. (2003a, eq. 5).  Loosely speaking, according to this measure, an allele is most informative about regional ancestry if the knowledge that an 
individual has the allele enables accurate inferences to be made about the source population of the individual, and if the allele is sufficiently common that it enables ancestry 
inference for a substantial fraction of all individuals. 

 
Locus Alternate 

name of 
locus 

Allele 
size 

Allelic 
infor-
mative-
ness  

Allele frequency 

    Africa Europe Middle 
East 

Central/ 
South 
Asia 

East Asia Oceania America 

GTTTT002P  140 0.169 0.033 0 0.006 0.002 0.002 0.667 0
D6S1006 ATC4D09 194 0.136 0.631 0.364 0.555 0.239 0.036 0 0.014
D12S2070 ATA25F09 95 0.127 0.187 0.078 0.072 0.126 0.403 0.014 0.852
D2S2986 2QTEL47 158 0.124 0.074 0.029 0.016 0.071 0.365 0.569 0.598
ATAC026P  198 0.124 0.541 0.006 0.071 0.027 0 0 0.005
AAT258  145 0.120 0.070 0.007 0.046 0.042 0.021 0 0.604
GATA65E01  121 0.119 0.488 0 0.043 0.015 0.002 0 0
D2S441 GATA8F03 135 0.118 0.045 0.161 0.106 0.223 0.213 0.792 0.755
D7S1808 GGAA3F06 252 0.115 0.008 0.019 0 0.050 0.305 0.030 0.519
TTTA028  187 0.114 0.146 0.487 0.517 0.242 0.021 0 0.019
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Table 4.  The partition of genetic variation.  Eurasia, which denotes the combination of Europe, the Middle East, and 
Central/South Asia, is treated as a single region in the five-region worldwide design, but it is subdivided in the seven-region 
design.  Variance components were estimated according to the method of Weir (1996, pp. 169-174, 184-186), assuming Hardy-
Weinberg equilibrium within populations.  Confidence intervals are based on 1000 bootstraps across loci. 

 
Sample Number 

of 
regions 

Number  
of 

populations

Variance components and 95% confidence intervals (%) 

   Within 
populations 

Among 
populations 

within regions 

Among regions 

World 1 53 94.4 (94.1, 94.6) 5.6 (5.4, 5.9)  
World 5 53 93.0 (92.7, 93.3) 2.5 (2.4, 2.6) 4.5 (4.3, 4.8) 
World 7 53 93.9 (93.6, 94.1) 2.4 (2.3, 2.5) 3.8 (3.5, 4.0) 
Africa 1 7 96.9 (96.8, 97.1) 3.1 (2.9, 3.2)  
Eurasia 1 21 98.4 (98.3, 98.5) 1.6 (1.5, 1.7)  
Eurasia 3 21 98.3 (98.1, 98.4) 1.2 (1.1, 1.3) 0.6 (0.5, 0.7) 
Europe 1 8 99.2 (99.1, 99.3) 0.8 (0.7, 0.9)  
Middle East 1 4 98.6 (98.5, 98.8) 1.4 (1.2, 1.5)  
Central/ 
South Asia 1 9 98.6 (98.5, 98.8) 1.4 (1.2, 1.5)  
East Asia 1 18 98.8 (98.6, 98.9) 1.2 (1.1, 1.4)  
Oceania 1 2 93.6 (93.0, 94.3) 6.4 (5.7, 7.0)  
America 1 5 88.3 (87.8, 88.7) 11.7 (11.3, 12.2)  
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Table 5.  The mean and standard deviation of the proportion of alleles differing between two individuals from the same 
geographic region, and for each region, the mean and standard deviation of the proportion of alleles differing between two 
individuals from the same population within the region. 

 
Region Mean proportion of alleles differing between pairs of individuals 
 Same region Same population within a region 
Africa 0.672 ± 0.025 0.646 ± 0.034 
Europe 0.619 ± 0.013 0.612 ± 0.016 
Middle East 0.633 ± 0.018 0.623 ± 0.023 
Central/South Asia 0.631 ± 0.016 0.620 ± 0.024 
East Asia 0.600 ± 0.013 0.590 ± 0.018 
Oceania 0.587 ± 0.046 0.556 ± 0.050 
America 0.550 ± 0.055 0.474 ± 0.083 
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