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CHAPTER 1 

INTRODUCTION 

 

Cancer remains a major health problem in the United States and throughout many 

parts of the world, accounting for 1 in 4 deaths in the United States [Jemal et al., 2009].  

Cancer is the second leading cause of death in the United States after heart disease [Jemal et 

al., 2008].  The highest incidence of new cancer cases of men and women in the United 

States are found in prostate and breast, respectively.  However, lung cancer is responsible for 

the most deaths due to malignancy in both men and women [Jemal et al., 2009].  Although 

progress has been made in reducing incidence and mortality rates over the years, continuing 

this positive trend will require sustained advancements in the prevention, detection and 

treatment of human cancer. 

The process by which a normal cell develops into a malignant cell with the capacity 

for tumor development requires multiple cellular events.  Cancer is a highly heterogeneous 

disease arising from multiple tissue types and displaying great phenotypic and genotypic 

diversity [Hanahan and Weinberg, 2000].  There are more than 100 distinct types of cancer 

and subtypes of tumors that can be found within different organs.  Six essential alterations 

have been proposed a decade ago that govern the biological changes acquired during tumor 

development that are characteristic for malignant cells: self-sufficiency in growth signals, 

insensitivity to growth-inhibitory signals, evasion of programmed cell death (apoptosis), 

limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis 

[Hanahan and Weinberg, 2000].  Indentifying these alterations has allowed investigators to 

probe these complex pathways to gain a better understanding of the initiation, growth, and 
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progression of carcinogenesis.  Moreover, these findings have had profound implications in 

the generation of new therapies for the intervention and treatment of cancer.   

The most common modalities in the treatment of cancer involve surgery, radiation 

therapy, and chemotherapy [Abou-Jawde et al., 2003; Jabbour et al., 2007].  Although these 

treatment options can result in a positive clinical outcome, they do not represent a curative 

strategy in most cases.  For example, chemotherapy is often effective against many tumors, 

but its clinical success is often limited by factors such as drug resistance and toxicity [Sarkar 

and Li, 2009].  More recently, strategies toward the treatment of human cancer have been 

pursued that can overcome the dysregulated cell machinery of tumor cells and induce cell 

death without the added systemic toxicity. 

Due to the importance of the ubiquitin-proteasome pathway in regulating protein 

turnover, including those involved in tumorigenesis, the proteasome has emerged as an 

attractive target in cancer therapy [Goldberg, 2003; Nalepa et al., 2006].  Cancer cells have 

been shown to exhibit higher proteasome activity compared to normal cells, thus making 

tumor cells more sensitive to its blockade.  Importantly, proteasome inhibition has been 

shown to induce cell cycle arrest and apoptosis selectively in malignant cells compared to its 

normal counterpart [An et al., 1998; Dou and Li, 1999].  These important attributes make 

proteasome inhibitors attractive drug candidates in the treatment of human cancer.  Due to 

the significant challenges of anti-cancer drug discovery, exploring the interface between 

structural biology and chemistry may provide the most productive means for discovering and 

improving upon novel anticancer agents [Neidle and Thurston, 2005]. 

The following dissertation focuses on different metal-containing complexes from a 

class of [NN”O]-containing ligands with substitutions made at the 4th and 6th positions.  



 3

These metal-containing complexes were tested for their abilities to inhibit the proteasome 

and induce apoptosis in tumor cells.  Special emphasis will be given to discerning structure 

activity relationships as they relate to the nature of the ligand and metal.  Additionally, 

chapters 5 and 6 of this dissertation focus on mechanistic studies relating to the involvement 

of proteasome inhibition-mediated events in tumor cells.  Importantly, how the oxidation 

state of the metal can influence the cellular events culminating in tumor cell death.  To build 

upon the mechanistic studies in this body of work, special emphasis is given to understanding 

the role of the androgen receptor, and how it influences regulatory events involved in 

prostate tumor cell death upon exposure to therapeutic stimuli. 
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The ubiquitin-proteasome pathway 

 The balance between protein synthesis and degradation is a tightly regulated process, 

and is essential to the maintenance of normal cellular function [Goldberg, 2003].  The 

ubiquitin-proteasome pathway (UPP) is responsible for the proteolytic processing of proteins 

essential for the regulation of biological processes, such as development, differentiation, cell 

proliferation, signal transduction, and apoptosis [Nalepa et al., 2006].  The majority of 

intracellular protein degradation is facilitated through the UPP, which represents the final 

common effector for proteolysis (Fig. 1) [Ciechanover et al., 2000; Orlowski and Kuhn, 

2008].  The UPP involves two critical steps: conjugation of multiple ubiquitin molecules to 

the protein substrate, followed by degradation of the tagged protein by the 26S proteasome 

(Fig. 1) [Ciechanover, 1998].  
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Figure 1.  Schematic representation of the ubiquitin-proteasome pathway.   

Proteins marked for destruction by the proteasome are first tagged with polyubiquitin 
molecules in an ATP-dependent process.  Ubiquitin (Ub) is covalently linked to target 
proteins by a multi-enzymatic system consisting of Ub-activating (E1), Ub-conjugating (E2), 
and Ub-ligating (E3).  E1 activates an Ub monomer through adenylation and formation of 
high-energy thiol ester bond and then transferred to Ub-conjugating (E2) enzyme.  Transfer 
of Ub to a reactive lysine residue of a target protein is facilitated by ubiquitin (E3) ligating 
enzyme.  Polyubiquitinated proteins are recognized by the 19S regulatory complex of the 26S 
proteasome and fed into the 20S catalytic core for degradation into oligopeptides and the 
ubiquitin molecules recycled. 
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The 26S proteasome is a multisubunit protease (2.5 MDa), that resides in the nucleus 

and cytosol, and selectively degrades intracellular proteins.  The 26S proteasome contains the 

20S proteasome which serves as the catalytic core and two 19S regulatory subunits, which 

acts as a recognition site for protein turnover (Fig. 2) [Adams, 2004; Peters et al., 1993].  The 

20S core particle contains 4 stacked rings that form a barrel-like structure with a central 

cavity composed of a total of 28 subunits [Baumeister et al., 1998; Groll et al., 1997].  These 

stacked rings include two non-catalytic α rings outside of two catalytic β rings, and together 

form a special αββα arrangement (Fig. 2).  The α subunits bar the direct access to the active 

site of the complex by allowing access to only unfolded substrate polypeptides.  The 

proteolytic activities are confined to the β subunits that harbor the features of the multiple 

enzymatic activities [Groll et al., 1999].  These are best represented by the β1, β2, and β5 

subunits which are responsible for the caspase or peptidyl-glutamyl peptide-hydrolyzing-like 

(PGPH), trypsin-like, and chymotrypsin-like (CT-like) proteolytic activities of the 20S 

catalytic core, respectively (Fig. 2) [DeMartino and Slaughter, 1999].  In all three of these β-

subunits, the catalytically active residue (Thr1) at the amino terminal is responsible for 

catalysis, which could be targeted by proteasome inhibitors through nucleophilic attack 

[Goldberg et al., 2002; Groll et al., 1997]. 
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Figure 2.  Schematic representation of the 26S proteasome 

The 26S proteasome consists of the 20S catalytic core and two 19S caps located on each side 
of the core.  The 19S caps act as a recognition site for ubiquitinated proteins and regulate 
protein entry into the 20S core. The 20S core is a barrel-like structure containing the primary 
sites of proteolytic activities.  The outer α subunits serve as a gate to regulate protein entry 
into the inner catalytic site.  The inner β subunits line the central cavity and are responsible 
for the chymotrypsin-like (β-5), trypsin-like (β-2), and the PGPH-like (β-1) activities. 
 

 

 

 

 

 

 

 

 

 

PGPH‐like 
activity

Trypsin‐like 
activity

CT‐like 
activity

β1
β2

β3

β6

β5
β4

β7

‐‐‐ β ring
‐‐ α ring

19S

‐‐ α ring
‐‐‐ β ring

20S

19S

26S
Proteasome

PGPH‐like 
activity

Trypsin‐like 
activity

CT‐like 
activity

β1
β2

β3

β6

β5
β4

β7
β1
β2

β3

β6

β5
β4

β7

‐‐‐ β ring
‐‐ α ring

19S

‐‐ α ring
‐‐‐ β ring

20S

19S

26S‐‐‐ β ring
‐‐ α ring

19S

‐‐ α ring
‐‐‐ β ring

20S

19S

26S
Proteasome



 8

In addition, the 19S particle (700 kDa) serves as a regulatory subcomplex of the 26S 

proteasome (Fig. 2) which consists of six ATPase and at least eight non-ATPase subunits 

which are required for recognition, deubiquitination, unfolding and translocation of marked 

proteins before proteolytic degradation within the 20S proteasome [Coux et al., 1996].  

Furthermore, the 11S particle is typically associated with the immunoproteasome, which 

contains a heptameric ring structure that binds to each end of the 20S core, acting as a potent 

activator of the proteasome [Whitby et al., 2000]. 

Proteins marked for degradation are first recognized and tagged with a chain of 

ubiquitin molecules (Fig. 1).  Ubiquitin is a highly conserved 76 amino acid protein that 

serves as a tag for target proteins that are destined for destruction through the proteasome.  

The ubiquitin system is characterized by three different enzymes, Ub-activating (E1), Ub-

conjugating (E2), and Ub-ligating (E3) which links to protein substrates through covalent 

binding to create polyubiquitinated proteins (Fig. 1) [Hershko and Ciechanover, 1998].  

Initiation of this process is facilitated by the E1 enzyme which activates ubiquitin in an ATP-

requiring step by forming a high energy thiol-ester bond at its C-terminus.  Activated 

ubiquitin is then transferred from E1, to one of several distinct ubiquitin-conjugating 

enzymes (E2) through an additional thiol-ester intermediate.  Finally, the ubiquitin-ligating 

enzyme (E3) facilitates the transfer of activated ubiquitin to the specific substrate at the 

lysine residues of target proteins (Fig. 1) [Adams, 2003; Ciechanover et al., 2000].  It has 

been well recognized that the ubiquitin conjugating system plays a critical role in the protein 

quality control machinery by acting as a cascade to control the precise degradation of 

intracellular proteins.  However, evidence also suggests that several protein substrates, 

including ornithine decarboxylase, p21, IκB-α, retinoblastoma protein (RB), as well as 



 9

hypoxia-inducible factor may be degraded by the proteasome without the added necessity for 

ubiquitin marking [Hoyt and Coffino, 2004; Kong et al., 2007]. 

 

Molecular targets of the proteasome 

Cell cycle 

The proteasome is an important cellular contributor to many pathological disorders 

including cancer in which some regulatory proteins are either stabilized or degraded 

[Ciechanover, 1998].  Many important cellular targets of the proteasome have also been 

identified as important players in tumorigenesis, including cyclins [Chen et al., 2004b; Diehl 

et al., 1997], tumor suppressor protein p53 [Blagosklonny, 2002], Retinoblastoma protein 

(Rb) [Kalejta and Shenk, 2003], pro-apoptotic protein Bax [Li and Dou, 2000], cyclin 

dependent kinase inhibitor (CKI) p27 [Pagano et al., 1995], and the NF-ĸB inhibitor, IĸB-α 

[Chen, 2005]. 

It has been well known that cyclins, cyclin-dependent kinases (CDKs), and CDK 

inhibitors (CKIs) are critical components involved in controlling the timely progression of 

the cell cycle [King et al., 1996; Sherr and Roberts, 1995].  It has been demonstrated that 

CKIs are associated with growth arrest [Serrano et al., 1995], and numerous studies support 

the role of CDK inhibitors p16, p21 and p27 as tumor suppressor proteins [Deng et al., 1995; 

Serrano et al., 1995; Sherr and Roberts, 1995].  Since CKIs, especially p27 are degraded 

through the ubiquitin-proteasome pathway, proteasome function has been implicated in 

tumor cell survival.  Accordingly, pharmacological inhibition of proteasome activity leads to 

the accumulation of p27 and p21 followed by induction of cell cycle arrest and apoptosis 

[Dou and Li, 1999; Orlowski, 1999].  
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The rapid turnover of cyclins is also controlled by the ubiquitin-proteasome pathway 

and is an essential regulator of cell cycle progression.  The degradation of cyclin D1 

facilitates the exit out of G1 phase of the cell cycle and is mediated by phosphorylation-

dependent proteolysis [Diehl et al., 1997].  Cyclin E synthesis controls late G1 progression 

and entry into S phase requires the degradation of cyclin E protein by the UPP [Won and 

Reed, 1996].  In addition, the passage of cells through S phase into G2 requires the 

degradation of cyclin A, while cyclin B turnover is required for the completion of mitosis 

[Glotzer et al., 1991].  The proteasome has also been implicated in regulating the stability of 

CDC25A, CDC25B, and CDC25C phosphatases during cell cycle progression [Baldin et al., 

1997; Bernardi et al., 2000; Chen et al., 2002].  Inhibition of proteasome function leads to the 

accumulation of many of these critical cellular targets leading to the blockade of cell cycle 

progression. 

 

NF-ĸB 

Another important proteasome target protein is NF-ĸB. Activation of NF-ĸB by the 

proteasome is via the processing of the p105 precursor into the p50 subunit of NF-ĸB and 

degradation of the NF-ĸB inhibitor, IĸB [Chen et al., 1996; Palombella et al., 1994].  

Liberated NF-ĸB translocates to the nucleus and activates target genes responsible for 

oncogenesis, angiogenesis, apoptosis inhibition, and other cellular processes [Adams, 2002].  

Some of the direct transcriptional targets of NF-ĸB that block apoptosis have been identified 

as the prosurvival proteins Bcl-2 and Bcl-XL [Chen et al., 2000; Grumont et al., 1999], the 

inhibitors of apoptosis c-IAP1 and c-IAP2, and TNF Receptor associated Factors 1 and 2 

[Wang et al., 1998; Zhou et al., 1999].  One of the early mechanisms attributed to proteasome 
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inhibitors is that they disrupt NF-ĸB signaling by stabilizing IĸB, which prevents nuclear 

translocation and activation of genes involved in carcinogenesis and cancer cell survival.  

Accumulation of IĸB-α via proteasome inhibition prevents the activation of the anti-apoptotic 

NF-ĸB resulting in tumor cell apoptosis [Biswas and Iglehart, 2006].  This is best illustrated 

in multiple myeloma where constitutive activation of NF-ĸB has been observed in both cell 

culture and patients samples, and inhibition of its activity is associated with cell cycle arrest 

and apoptosis [Chauhan et al., 1996; Hideshima et al., 2001]. 

 

Proteasome and apoptosis 

An important role of proteasome inhibitors is their ability to induce apoptosis 

preferentially in tumor cells and not in normal tissue [An et al., 1998; Ma et al., 2003].  

Although the exact mechanism of action has remained elusive, many have demonstrated the 

ability of proteasome inhibitors to induce apoptosis by stabilizing pro-apoptotic proteins such 

as p53 and Bax, while reducing levels of some antiapoptotic proteins, such as Bcl-2 

[Mortenson et al., 2005].  Bax, a member of the Bcl-2 family of proteins is distributed in the 

cytosol as a monomeric protein.  Upon induction of apoptosis by proteasome inhibitors, Bax 

undergoes a conformational change to form a dimer which translocates to the mitochondria 

resulting in the loss of the mitochondrial membrane potential and release of cytochrome c [Li 

and Dou, 2000].  Furthermore, the tripeptidyl proteasome inhibitor N-carbobenzoxy-L-

Leucyl-L-leucyl-norvalinal (LLnV) accumulates Bax to the mitochondria, where it interacts 

with the anti-apoptotic Bcl-2 protein to overcome Bcl-2-mediated protection from apoptosis 

[An et al., 1998; Li and Dou, 2000].  Therefore Bax degradation via the proteasome pathway 

is critical in regulating cell survival, and its accumulation is essential for blocking the growth 
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of some tumors [Li and Dou, 2000].  Conversely, turnover of the anti-apoptotic proteins, 

such as Bcl-2 and Bcl-XL is critical in mitigating tumor growth and progression [Green and 

Reed, 1998].  In addition, proteasome inhibition has been accompanied by c-Jun-NH2 

terminal kinase induction, generation of reactive oxygen species, activation of intrinsic 

caspase 9-mediated, and extrinsic caspase 8-mediated apoptosis [Nencioni et al., 2007; 

Orlowski and Kuhn, 2008].  These interesting findings coupled with the observation that 

highly proliferating tumor cells are more sensitive to the apoptotic stimuli of proteasome 

inhibitors, makes these drug candidates highly desirable in the treatment of human cancer. 

 

Bortezomib 

Bortezomib (Velcade, PS-341) (Fig. 3) is the first proteasome inhibitor to gain 

approval by the US Food and Drug Administration and is currently in use for the treatment of 

relapsed multiple myeloma (MM) and mantle cell lymphoma [Kane et al., 2003; Kane et al., 

2007].  Bortezomib is a dipeptide boronic acid derivative that demonstrates considerable 

apoptotic inducing activity in a range of tumor cell lines and animal models [Adams et al., 

1999; Frankel et al., 2000].  It is a slowly reversible inhibitor directed mostly against the β5- 

(chymotrypsin-like) and β1- (PGPH-like) subunits, with the β5 subunit inhibition responsible 

for its cell-death inducing capabilities (Fig. 4) [Crawford et al., 2006].  A major mechanism 

of action of bortezomib resides in its suppression of NF-ĸB activity by stabilizing its 

inhibitory molecule I-ĸB, resulting in the down-regulation of its target genes.  This leads to 

decreased expression of myeloma cell adherence factors, and interference with adherence-

mediated induction of interleukin-6 production [Hideshima et al., 2001; Orlowski and 

Baldwin, 2002].  Although the majority of success achieved with bortezomib has been in 
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hematological malignancies, its effect toward solid tumors has been investigated, but with 

less than encouraging results [Engel et al., 2007; Yang et al., 2006a].  Additionally, the 

antitumor effects of bortezomib has been evaluated as a single agent, or in combination with 

conventional therapies as a means to induce chemosensitization or overcome 

chemoresistance in various malignancies such as multiple myeloma, solid tumors, or other 

hematological malignancies [Orlowski and Kuhn, 2008]. 

 Clinical studies have demonstrated that circulating proteasome levels could provide 

insight as a potential prognostic indicator for MM, lending support to the concept of targeting 

the proteasome in the treatment of MM [Jakob et al., 2007].  After a “proof of concept” study 

demonstrated the correlation of proteasome inhibition by bortezomib with tumor cell death, 

clinical trials evaluating bortezomib for the treatment of MM were initiated.  Phase 1 trials 

using bortezomib as a single agent revealed remarkable efficacy for the treatment of various 

hematological malignancies [Orlowski et al., 2002].  As a result, bortezomib was further 

evaluated in two Phase II trials against relapsed multiple myeloma, the Clinical Response and 

Efficacy Study of Bortezomib in the Treatment of Relapsing Multiple Myeloma (CREST) 

and the larger Study of Uncontrolled Multiple Myeloma Managed with Proteasome 

Inhibition Therapy (SUMMIT).  

 Two doses of bortezomib were compared in the CREST trial (1.3 mg/m2 and 1.0 

mg/m2) and the addition of Dexamethasone was permitted in cases of inadequate response 

after 2-4 cycles of therapy.  Results showed a higher response in patients receiving the higher 

dose administration of bortezomib (50% vs. 37%) [Jagannath et al., 2004].  The appearance 

of side effects included myelosuppression, particularly thrombocytopenia, gastrointestinal 

irritation, and peripheral sensory neuropathy. An extended follow up report on the CREST 
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study reported a 5-year-overall survival of 45% in the 1.3 mg/m2 group and 32% in the 1.0 

mg/m2 group [Jagannath et al., 2008].  The SUMMIT trial found a response rate of 35% 

when 202 patients with relapsed MM were being treated with bortezomib at 1.3 mg/m2, with 

dexamethasone added as needed [Richardson et al., 2003].  Following the remarkable clinical 

results from phase I and II trials, a large phase III trial APEX (Assessment of Proteasome 

Inhibition for Extending Remissions) was initiated comparing bortezomib with high-dose 

dexamethasone in patients with previously treated myeloma.  These results demonstrated the 

superior clinical efficacy over dexamethasone in hematological malignancy patients in terms 

of response rate, time to progression, and survival [Richardson et al., 2007; Richardson et al., 

2005].   

Many cytotoxic agents have been found to induce the anti-apoptotic proteins, NF-ĸB 

and Bcl-2, which suggests that the use of proteasome inhibitors may be an effective strategy 

in inducing chemosensitization or overcoming chemoresistance [Ma et al., 2003; Mitsiades et 

al., 2003].  Moreover, bortezomib has been clinically investigated in combination with a 

variety of chemotherapeutics, and results from these studies show that bortezomib has 

generally been tolerable without significantly increased toxicity or large dose adjustments 

[Aghajanian et al., 2005; Messersmith et al., 2006]. 

Bortezomib has also shown to have activity against other hematological 

malignancies.  In a phase 1 trial, one patient with refractory mantle cell lymphoma (MCL) 

and another with follicular center cell lymphoma (FCCL) responded to treatment with single-

agent bortezomib [Orlowski et al., 2002].  In a phase II clinical trial of patients with 

refractory B-cell non-Hodgkins lymphoma (NHL) using bortezomib at a dose of 1.5 mg/m2 

on days 1, 4, 8, and 11 of repeating 21 day cycles, 41% of 33 patients with MCL responded 
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to treatment [Goy et al., 2005].  Another phase II trial involving MCL patients and other 

patients with indolent NHL showed responses in patients with FCCL [O'Connor et al., 2005].  

Two additional Phase II trials demonstrated the superior efficacy of bortezomib, leading to its 

FDA approval for the treatment of previously treated MCL [Belch et al., 2007; Fisher et al., 

2006]. 

Although significant efficacy has been achieved in clinical trials with bortezomib 

against a number of hematological malignancies, its activity toward solid tumors has yielded 

disappointing results.  Bortezomib was tolerated but no responses were observed in patients 

with metastatic breast cancer [Engel et al., 2007; Yang et al., 2006a].  Single agent 

bortezomib exhibited only modest efficacy against androgen-independent prostate cancer 

[Papandreou et al., 2004].  A phase I/II dose escalation study showed that 

bortezomib/docetaxel combination therapy demonstrated antitumor activity, but its results 

were similar to docetaxel alone [Hainsworth et al., 2007].  Similarly, bortezomib in 

combination with pemetrexed did not demonstrate a clinical advantage in patients with non-

small lung carcinoma (NSCLC) [Davies et al., 2007], gemcitabine in pancreatic cancer 

[Alberts et al., 2005], irinotecan in various advanced solid tumors [Ryan et al., 2006], or 

carboplatin in ovarian cancer [Aghajanian et al., 2005]. 

 In the early development of proteasome inhibitors as potential drug candidates, there 

was great concern that the proteasome could not be inhibited without dire consequences 

because of the essential role it plays in cellular processes.  Fortunately, an acceptable 

therapeutic index was achieved, but the appearance of toxic side effects have been 

documented throughout clinical testing.  The most frequent toxic side effects associated with 

bortezomib treatment are nausea, fatigue, and diarrhea, and more serious ones include 
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thrombocytopenia, peripheral neuropathy, neutropenia, and lymphopenia [Shah and 

Orlowski, 2009].  These problems associated with bortezomib, plus development of 

resistance to this proteasome inhibitor drug in some solid tumors, have encouraged 

researchers to broaden the search for and discover new proteasome inhibitors with similar 

potency but decreased toxicity. 
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Figure 3.    Chemical structures of proteasome inhibitors  
 
The chemical structures depicted are currently in clinical use or under going clinical trials. 
Bortezomib is a dipeptide boronate analog currently in use for the treatment of multiple 
myeloma and mantle cell lymphoma.  NPI-0052, is a natural product derivative resembling 
Lactacystin, the first proteasome inhibitor identified in nature.  Carfilzomib is a peptide 
epoxyketone derived from epoxomicin.  Both NPI-0052 and Carfilzomib are currently 
undergoing clinical trials for the treatment of multiple myeloma and other hematological 
malignancies. 
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Other clinically investigated proteasome inhibitors 

NPI-0052 (Fig. 3), also referred to as salinosporamide A, is currently being developed 

by Nereus Pharmaceuticals, Inc. (San Diego, CA).  This natural product derivative resembles 

lactacystin (Fig. 3); the first proteasome inhibitor identified in nature, and irreversibly targets 

all three active sites of the proteasome (Fig. 4) [Chauhan et al., 2006; Joazeiro et al., 2006].  

Preclinical studies have suggested significantly stronger and more durable effects on the 

chymotrypsin-like and trypsin-like activities of the proteasome compared to bortezomib (Fig. 

4) [Chauhan et al., 2005; Groll et al., 2006].  It has been suggested that the increased potency 

of NPI-0052 may be directly related to its emphasis on caspase 8-mediated apoptosis 

compared to bortezomib [Chauhan et al., 2005].  Perhaps, due to these properties, NPI-0052 

was able to overcome bortezomib resistance and act synergistically with conventional 

therapy in various MM cell lines, as well as in primary lymphocytes from patients with 

chronic lymphocytic leukemia (CLL) [Chauhan et al., 2008; Chauhan et al., ; Sterz et al., 

2008].  Phase 1 studies aimed at establishing optimal dosing of NPI-0052 against advanced 

solid tumors or refractory lymphomas and MM have been conducted [Yang et al., 2009].  

Preliminary studies have shown it to be well tolerated with toxicities comparable to that of 

bortezomib in patients with myeloma [Shah and Orlowski, 2009].  Furthermore, clinical 

studies investigating NPI-0052 in combination with vorinostat are ongoing in a Phase Ib 

open-label study in patients with advanced non-small lung cancer (NCT00667082, Nereus 

Pharmaceuticals). 

Carfilzomib (Fig. 3) is a peptide epoxyketone derived from epoxomicin (Fig. 3) that 

was developed by Proteolix, Inc. (South San Francisco, CA) and has entered clinical trials.  

Carfilzomib binds irreversibly to the proteasome, with increased specificity toward the 
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chymotryptic activity over the caspase-like or trypsin-like activities (Fig. 4) [Kuhn et al., 

2007].  Preclinical studies suggest that carfilzomib showed higher apoptotic-inducing indices 

compared to bortezomib in primary plasma cell models, and were able to overcome 

resistance to bortezomib [Kuhn et al., 2007].  In tumor xenograft models, carfilzomib showed 

antitumor activity that was both dose and schedule dependent, with efficacy stronger than 

bortezomib when administered on its clinical dosing schedule [Demo et al., 2007].  Phase II 

clinical trials in patients with previously treated myeloma showed response rates in the range 

of 25-54 % [Yang et al., 2009].  Another clinical trial has been initiated to evaluate the 

efficacy and safety of carfilzomib with lenalidomide and dexamethasone in patients with 

relapsed MM (NCT00603447, Proteolix).  Despite these encouraging results, there remains 

an unmet need to develop proteasome inhibitors with a broader spectrum of activity, 

especially toward solid tumors, as potential drug candidates.  These include compounds 

harvested from nature, or harnessing the unique properties of metal-based compounds as 

potential proteasome inhibitors. 
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Figure 4.  Proteasome inhibition by clinically used and tested proteasome inhibitors 

The β-subunits of the 20S core contain three catalytic sites: β-1 (responsible for the caspase-
like activity), β-2 (responsible for the trypsin-like activity), and β-5 (responsible for the 
chymotrypsin-like activity). Bortezomib is commonly used in the treatment of multiple 
myeloma, whereas NPI-0052 and Carfilzomib are undergoing clinical trials.  These 
proteasome inhibitors predominantly affect the β-5 chymotryptic-like site which is associated 
with tumor cell growth, although their mechanisms of action may also play a role in binding 
to other sites. 
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Apoptosis 

Apoptosis (programmed cell death) is a highly regulated form of cell death that is 

important in many biological processes, and plays an important role in the maintenance of 

tissue homeostasis.  Deregulation of this process can disrupt the delicate balance between cell 

proliferation and cell death and lead to pathological disorders, including cancer [Fesik, 2005; 

Roth and Reed, 2002].  Apoptosis can be characterized by typical biochemical and 

morphological hallmarks, including cell shrinkage, nuclear DNA fragmentation, and 

membrane blebbing [Hengartner, 2000].  Induction of apoptosis by anticancer drugs 

converges in the activation of intracellular caspases which cleave various substrates in the 

cytoplasm and nucleus leading to the many of the morphological features of apoptotic cell 

death [Fulda and Debatin, 2006]. 

  Apoptosis predominantly operates through two main intracellular cascades and is 

characterized by three fundamental steps: initiation, commitment and execution [Reed, 

1997].  The intrinsic pathway or mitochondrial pathway is initiated by the release of 

apoptogenic factors such as cytochrome c from the mitochondria and forming the 

apoptosome, consisting of dATP (2’deoxyadenosine 5’triphosphate), apoptotic protease-

activating factor 1 (APAF-1), and caspase 9 [Budihardjo et al., 1999; Fesik, 2005].  

Formation of the apoptosome functions in promoting the processing of caspase 9 which leads 

to the recruitment and activation of the effector caspase 3, which in turn facilitates the 

proteolytic degradation of its target substrates [Hunter et al., 2007].  Conversely, Bcl-2 and 

Bcl-XL inhibit programmed cell death by preventing the release of cytochrome c, whereas 

pro-apoptotic Bcl-2 family members (such as Bak, Bax, Bad and Bid) promote the release of 

cytochrome c [Huang and Strasser, 2000].   
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The extrinsic pathway is activated by the engagement of death receptors such as 

CD95/Fas, the tumor necrosis factor (TNF) or TNF related apoptosis-inducing ligand 

(TRAIL) that are found at the cell surface.  The intracellular death domains of these receptors 

recruit adaptor proteins (such as FADD and TRADD) along with the initiator caspase-8  and 

together comprise the death-inducing signaling complex (DISC) [Fesik, 2005].  Stimulation 

of death receptors results in the activation of caspase 8 which can propagate the apoptotic 

stimuli via the direct activation of the effector caspase-3 [Adams and Cory, 2007].  

Additionally, connections exist at different levels linking the intrinsic and extrinsic pathways.  

Death receptor-mediated activation of caspase 8 may result in the cleavage of the Bcl-2 

family member, Bid.  Truncated Bid can then translocate to the mitochondria to release 

cytochrome c thereby triggering the apoptotic stimuli [Fulda and Debatin, 2004].  In addition 

to apoptosis, other mechanisms of cell death have been identified that operate independently 

of caspase activation.  These nonapoptotic forms of cell death include among others, necrosis 

and autophagy. 

 

Metals and metal complexes 

The field of medicinal inorganic chemistry encompasses, but is not limited to, the 

administration (or removal) of a metal ion into (or from) a biological system for either 

therapeutic or diagnostic purposes [Scott and Orvig, 2009].  An important property of metals 

is that they form positively charged ions in aqueous solution that can bind to negatively 

charged biological molecules.  Thus, the charge can be fine-tuned depending on the 

coordination environment involved, leading to the generation of a species that can be 

cationic, anionic, or neutral [Haas and Franz, 2009; Orvig and Abrams, 1999].  Additionally, 
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metal ions with high electron affinity can significantly polarize groups that are coordinated to 

them, fostering the generation of hydrolysis reactions [Haas and Franz, 2009]. 

In recent years, the field of medicinal inorganic chemistry has received considerable 

attention in the design of anticancer agents [Jakupec et al., 2008; Zhao and Lin, 2005].  

Although metals have been used throughout human history in treating various pathological 

disorders, it has only been since the landmark discovery of cisplatin (Fig. 5) in the 1960’s 

that the full impact of metal-based compounds in the treatment of cancer has been fully 

realized.  Because the presence of metals under cellular conditions is a tightly regulated 

process, appropriate administrations of metal-containing drugs must be carefully defined to 

achieve an optimal therapeutic response [Holm et al., 1996; Mertz, 1993].  Otherwise, both 

excess and deficiency of metals may result in undesirable toxicity. 

 Metal-containing compounds offer many advantages over conventional carbon-based 

compounds in the development of new medicinal compounds.  These advantages are due to 

their ability to coordinate ligands in a three dimensional configuration, thus allowing 

functionalization of groups that can be tailored to defined molecular targets [Fricker, 2007; 

Meggers, 2009].  Metal-based complexes offer a rich environment to build upon a variety of 

distinct molecular structures that confer a wide spectrum of coordination numbers and 

geometries, as well as kinetic properties, that cannot be realized with conventional carbon-

based structures [Cohen, 2007; Ott and Gust, 2007; Yan et al., 2005].  The partially filled d 

orbitals in transition metals impart interesting electronic properties that can act as suitable 

probes in the design of anticancer agents [Hambley, 2007].  The oxidation state of a metal is 

also an important consideration in the design of coordination compounds, given that it allows 

the participation in biological redox chemistry and plays an influential role in optimal dose 
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and bioavailability of the agent administered [Orvig and Abrams, 1999; Thompson and 

Orvig, 2003].  Furthermore, the ability to undergo ligand exchanged reactions offers a myriad 

of opportunities for metals to interact and coordinate to biological molecules, as 

demonstrated by the widely used drug cisplatin [Fricker, 2007].  

 

Platinum-based complexes 

 The discovery of cisplatin (Fig. 5) more than four decades ago represented a 

significant achievement in cancer therapy and stimulated efforts to investigate other platinum 

and non platinum metal-containing compounds for their potential use in the treatment of 

cancer [Desoize, 2004; Ott and Gust, 2007].  Cisplatin has been widely employed to treat a 

variety of tumors including ovarian, cervical, head and neck, non-small cell lung carcinoma, 

and testicular cancers, and is commonly used in combination regimens [Jamieson and 

Lippard, 1999; Kelland, 2007].  However, its widespread clinical use has been hampered by 

increased toxicity, and the appearance of intrinsic and acquired resistance [Galanski et al., 

2003].  In an effort to address these shortcomings, 2nd and 3rd generation platinum analogs, 

namely carboplatin and oxaliplatin (Fig. 5), have been designed and clinically approved that 

maintain a more manageable toxicity profile [Alama et al., 2009].  Carboplatin is effective in 

the treatment of ovarian carcinoma, lung, and head and neck cancers [Harrap, 1985], while 

oxaliplatin (Fig. 5) is clinically approved for the treatment of colorectal cancer, which is 

resistant to cisplatin [de Gramont et al., 2000]. 
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Figure 5.  Chemical structures of platinum-based anticancer agents. 

The chemical structures depicted are platinum drugs used in the treatment of various 
malignancies.  Carboplatin and Oxaliplatin are next generation platinum compounds that are 
currently used in the clinic. 
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A key factor underlying the antitumor effect of platinum-based compounds is related 

to its ligand exchange kinetics.  Although the platinum-ligand bond exhibits similar 

thermodynamic durability (less than 100 kJ/mol) and is much weaker than typical 

coordination bonds, such as C-C, C-N, or C-O single and double bonds (between 250 and 

500 kJ/mol) , the ligand exchange behavior is rather slow [Reedijk, 2003].  This gives them a 

high kinetic stability and allows much slower ligand exchange reactions on the order of 

minutes to days rather than seconds [Kostova, 2006; Montana and Batalla, 2009]. 

 Upon binding of platinum-based compounds, various signal transduction pathways 

are activated, which interfere with different cellular processes including transcription and 

DNA replication, thereby triggering apoptotic cell death [Siddik, 2003].  The antitumor 

activity of cisplatin and carboplatin (Fig. 5) is derived from the formation of identical 1,2-

intrastrand DNA cross-links [Fuertes et al., 2002; Galanski, 2006].  In contrast, the bulky 

diaminocyclohexane (DACH) carrier ligand of oxaliplatin (Fig. 5) is thought to confer less 

cross-resistance and a more favorable toxicity profile [Wang and Lippard, 2005]. 

In an effort to improve upon the limitations of platinum anticancer drugs, different 

metals and metal complexes that pose different mechanisms of action has been the subject of 

investigation as potential anticancer drugs. 

 

Gallium 

Investigation into the therapeutic utility of gallium was not pursued until the 1970’s, 

when Group 13 (previously IIIA) elements including aluminum, indium, thallium and 

gallium were considered for efficacy in various experimental models for tumor growth 

inhibition. Only gallium represented a suitable therapeutic and toxicity profile that allowed 
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for further clinical development [Hart and Adamson, 1971; Hart et al., 1971].  Gallium was 

subsequently found to be active against accelerated bone turnover, tumor growth and 

immune disease [Blair et al., 1992; Orosz et al., 1996].  Based on positive clinical activity of 

gallium nitrate [Ga(NO3)3] against accelerated bone turnover, research efforts involving this 

metal salt was refocused toward its effects on bone breakdown and was subsequently 

approved for the treatment of hypercalcemia related to malignancy [Chitambar, 2004b]. 

Excitement toward gallium nitrate in anti-cancer therapy has only reappeared recently, 

fostering resurgence in investigating gallium-based compounds as anti-tumor agents 

[Chitambar, 2004b].  Gallium nitrate and other gallium compounds are currently being 

investigated in clinical trials to be used as single agents, or in combination with pre-existing 

chemotherapeutic agents against various malignancies [Einhorn, 2003; Weick et al., 1983]. 

Gallium nitrate is especially effective in lymphomas and in bladder cancer.   

Because gallium (II) would exhibit an energetically unfavorable [Ar]3d104s1 

configuration, and because the process Ga3+ Ga4+ + e- would require considerable energy 

(6200 kJ/mol), the trivalent form of gallium is redox-inactive, often being used as a probe for 

electroactive ligands [Imbert et al., 2005; Lanznaster et al., 2006]. 

The therapeutic application of gallium appears to be underscored by its biochemical 

similarities to the ferric ion, specifically its protein binding modes, but with a distinct 

physiological effect [Bernstein, 1998].  Mutually shared chemical characteristics include 

ionic radius, electronegativity and electron affinity [Green and Welch, 1989]. Therefore, 

gallium is expected to pursue similar biochemical pathways found in iron metabolism. 

However, it is the difference between these two ions that allows for gallium to be exploited 

as a therapeutic agent.  Gallium, unlike iron, is redox inactive. This property prevents gallium 
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insertion into certain proteins involved with oxygen transport and precludes participation in 

other redox reactions of biological relevance [Hedley et al., 1988].  However, gallium is able 

to bind to proteins that require the trivalent form of iron, such as transferin, therefore 

disrupting normal cellular homeostasis.  Increasing evidence suggests that this mimicking 

effect of gallium plays a pivotal role in the cytotoxicity of the metal [Jakupec and Keppler, 

2004a].  Targeting of the transferin receptor (TFR) by metal-bound transferrin is achieved in 

a highly competitive fashion and is incorporated into cells via receptor mediated endocytosis, 

leading to intracellular accumulation of gallium [Chitambar, 2004a].   

 One of the critical targets for intracellular gallium appears to be ribonucleotide 

reductase, which catalyzes the rate-limiting step in DNA synthesis and is up-regulated in 

highly proliferating cells. Iron plays a key role in stabilizing the tyrosyl free radical in the R2 

subunit of ribonucleotide reductase.  However, the binding of gallium to this subunit serves 

as a destabilizing effector resulting in inhibition of DNA synthesis [Chitambar et al., 1988; 

Chitambar and Narasimhan, 1991].  This gallium-dependent inhibition of ribonucleotide 

reductase is in part related to the inhibition of cellular proliferation. Although the mechanism 

of cellular uptake is more readily understood, its downstream effects regulating its 

antiproliferative activity have been open to investigation. 

 Several gallium complexes have been synthesized and evaluated in clinical trials 

which have shown an increase in bioavailability and superior anti-tumor efficacy compared 

to gallium nitrate and other gallium based salts [Collery et al., 1996].  These findings provide 

evidence for developing gallium-based complexes with various ligand moieties that 

maximizes the therapeutic index.  However, a full understanding of their molecular targets 

and the underlying mechanism responsible for their anticancer activity has yet to be 
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elucidated.  Since our lab has previously shown that other metal-containing complexes such 

as copper, zinc, and gold could potently target and inhibit the cellular proteasome [Chen et 

al., 2006; Milacic et al., 2008a; Milacic et al., 2006], we hypothesize that gallium could have 

a similar effect.  This dissertation will highlight the cellular proteasome as a molecular target 

for gallium-based complexes that is atleast partially responsible for their biological effects.  

The introductory section on tridentate ligands will explore the evolution of this ligand 

platform and it suitability as a metal complex endowed with anticancer activity. 

 

Copper 

 Copper is another essential trace metal that has been selected by nature to be a driving 

force in many biochemical processes including chemical redox reactions, cellular growth, 

development, and angiogenesis [Chen et al., 2009; Tapiero et al., 2003].  Under biological 

conditions, copper exists in both (Cu+) and (Cu2+), which allows it to serve as a cofactor in 

redox reactions, such as cytochrome c oxidase (involved in the mitochondrial electron 

transport chain) and superoxide dismutase (involved in the detoxification of reactive oxygen 

species) [Gupte and Mumper, 2009; Kim et al., 2008].  The acquisition and distribution of 

copper is a tightly regulated process to assure proper uptake, distribution, and to avoid 

unnecessary binding to biomolecules [Chen and Dou, 2008; Radisky and Kaplan, 1999]. 

 Depending on the oxidation state, the coordination chemistry of copper is often 

distinct: Cu+ shows a preference for sulfur donor ligands, such as cysteine or methionine, 

whereas Cu2+ prefers nitrogen donors such as histidine or oxygen donors such as glutamate 

or aspartate (Kim, 2008, 176).  Copper in its reduced form (Cu+) has a filled d10 

configuration with no preference for geometry based on no LFSE (ligand field stabilization 
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energy) and thus can exist in a wide range of geometries [Marzano et al., 2009; Rorabacher, 

2004].  The d9 configuration of Cu2+ favors a four to six coordination arrangement due to 

Jahn-Teller distortions. Geometries include four-coordinate square-planar, five-coordinate 

trigonal bipyramidal, and six-coordinate axially distorted octahedral arrangements [Marzano 

et al., 2009; Rorabacher, 2004]. 

 The role of copper in the growth and progression of malignancy has been the subject 

of intense investigation for the last two decades.  This was born out of the realization that 

copper levels are altered in tumor bearing mice and humans [Apelgot et al., 1986; Zowczak 

et al., 2001].  Additionally, high serum and tissue levels of copper were found in various 

human tumors including breast [Kuo et al., 2002], prostate [Habib et al., 1980], colon [Nayak 

et al., 2003], lung [Diez et al., 1989], and brain [Turecky et al., 1984], compared to healthy 

subjects.  The reasons for this elevation have not been fully elucidated and no firm 

conclusions could be established.  Moreover, a number of clinical trials have shown 

promising results using copper chelation as an anticancer strategy [Brewer et al., 2000; 

Redman et al., 2003].  We have shown that copper binding compounds, such as CQ 

(Clioquinol) and DSF (Disulfiram) (Fig. 6), when complexed with copper, could target the 

and inhibit the proteasome in vitro and in vivo associated with apoptosis induction [Chen et 

al., 2007a; Chen et al., 2006].  Our hypothesis is predicated on the following observations: (i) 

tumor cells in vivo contains high levels of copper, (ii) this in vivo finding can be emulated 

under cell culture conditions (which contain low levels of copper) by supplementing 

exponentially growing cells with copper, (iii) treatment of tumor cells-containing heightened 

levels of copper with a copper chelating ligand can generate a copper complex which can 

target the tumor proteasome and induce cell death, (iv) alternatively, treating tumor cells 
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under cell culture conditions (containing low levels of copper) with a copper complex could 

mimic the biological effect observed under in vivo conditions.  Due to the importance of 

copper in the growth and development of cancer, coupled with the anticancer activity of the 

copper metal, the use of copper complexes that target the tumor proteasome may have 

potential clinical relevance in the treatment of human cancer. 

 This dissertation will explore a series of copper-containing complexes with tridentate 

[NN’O] ligands appended with iodo groups at the 4th and 6th position as potential proteasome 

inhibitiors by taking a interdisciplinary apporoach of biology and inorganic chemistry.  The 

introductory section on tridentate ligands will further elaborate on the proposed studies of 

this dissertation. 
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Figure 6.  Chemical structures of copper binding compounds. 

The depicted chemical structures Disulfiram and Clioquinol are copper-binding compounds 
with proteasome inhibitory activity. 
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Zinc 

 Zinc is an indispensable trace element that plays a critical role in a wide range of 

cellular processes including cell proliferation, differentiation, and defense against free 

radicals [Ho, 2004; Stefanidou et al., 2006].  Zinc acts as a key structural component in many 

proteins and enzymes, including transcription factors, cellular signaling proteins, and DNA 

repair enzymes [Prasad, 1995]. 

It has also been well established that zinc plays a critical role in the regulation of 

apoptosis in mammalian cells [Chang et al., 2006; Fraker and Lill-Elghanian, 2004].  

However the precise role of zinc in modulating this response appears to be cell specific, 

highly complex, and lacking firm conclusion [Franklin and Costello, 2009].  In many cell 

types, including prostate epithelial, glial cells, ovarian epithelial cells, and others, zinc has 

been reported to induce apoptosis.  However, in breast cells, lung epithelial cells, renal cells, 

macrophages, and Hela cells, zinc exhibits antiapoptotic effects [Franklin and Costello, 

2009].  This has been supported by evidence showing that in some cells, exposure to low 

levels of zinc induces apoptosis, whereas exposure to high zinc levels inhibits apoptosis 

[Provinciali et al., 1995].  These seemingly contradictory results have been the subject of 

intense investigation and currently remain unanswered. 

 Given the indispensible role of Zn in a myriad of biochemical processes, it is not 

surprising that altered levels of Zn are associated with systemic abnormalities, including the 

development of cancer [Murakami and Hirano, 2008].  Although the levels of zinc have been 

found to be compromised in cancer patients as compared to normal subjects, the relationship 

between tumor development and Zn levels appears to lack discernable conclusions and is 

dependent on tumor type [Federico et al., 2001; Franklin and Costello, 2009; Prasad et al., 
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1998].  Zinc levels have been found to be reduced in patients afflicted with cancer of the 

liver, gallbladder, digestive tract, or prostate [Chakravarty et al., 1986; Franklin and Costello, 

2007; Gupta et al., 2005], whereas breast cancer patients showed decreased and elevated Zn 

levels in serum and malignant tissues [Chakravarty et al., 1986; Margalioth et al., 1983; 

Schwartz et al., 1974].  Emerging evidence suggests that expression levels of Zn transporters 

are associated with cancer progression [Murakami and Hirano, 2008; Zhao and Eide, 1996].  

In addition to the critical role that zinc plays in biological systems, the unique properties of 

zinc have allowed it to gain favor as potential anticancer agents.  Our lab has previously 

shown that zinc-containing complexes can inhibit the proteasome and apoptosis in tumor 

cells [Cvek et al., 2008; Milacic et al., 2008a].  Based on the anticancer properties of zinc, 

and previous studies from our lab, this dissertation investigates the potential of zinc-

containing complexes with [NN’O] tridentate ligands as potential proteasome inhibitors as 

explained further in the following section. 

 

Metals with tridentate [NN’O]-containing ligands 

Our groups have been actively pursuing a strategy of developing novel complexes of 

well defined stoichiometry formed between asymmetric [NN’O] tridentate ligands-containing 

metals as potential anticancer drug candidates (Fig. 7). Such ligands are an evolution from 

terbutylated analogues used as biomimetic models for galactose-oxidase [Itoh et al., 1999; 

Vaidyanathan et al., 1998].  Moreover, a secondary amine in this ligand allows for the design 

of complexes with appended moieties to enhance water solubility [Melchior et al., 2001; 

Storr et al., 2005] or lipophilicity [Kirin et al., 2005; Shakya et al., 2006b] to address 

concerns for drug design purposes (Fig. 7).  Our studies initially focused on the development 
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of a series of gallium complexes described as [GaIII(Lx-NN’O)2]ClO4, with asymmetric NN’O-

containing pyridine amino phenolate ligands (Fig. 7) [Shakya et al., 2006b].  The phenolate 

moiety groups were appended with electron withdrawing and donating groups such as 

methoxy (1), nitro (2), chloro (3) bromo (4), and iodo (5) positioned at the 4th and 6th 

positions (Fig. 7).  The geometry of the final complex is distorted octahedrally, but owing to 

the flexibility of the ligands, facial coordination takes place (Fig. 7) [Shakya et al., 2006b]. 
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Figure 7. Chemical structure of gallium complexes with [NN’O] tridentate ligands 

The chemical structures represented are gallium complexes with [NN’O] tridentate ligands 
appended with substitutions at the 4th and 6th position.  These complexes can take on a facial 
or meridional coordination.  The geometry of the final complex is distorted octahedrally. 
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Our initial studies revealed, in ranking order, methoxy (1) = nitro (2) < chloro (3) < 

bromo (4) < iodo (5), that the species containing halogen substituents showed preferential 

growth inhibition in human neuroblastoma cells with activity superior to that of cisplatin 

(Fig. 7) [Shakya et al., 2006b].  Interestingly, these gallium(III) complexes were associated 

with only minor toxicity.  Thus, the formation of a coordination complex appended with 

halogen substituents appears to influence the cytotoxicity of these complexes.   

This dissertation sets out to investigate a possible molecular mechanism for these 

gallium complexes that could provide insight into their growth inhibitory properties.  Our 

studies reveal that complexes (3 Chloro) < (4 Bromo) < (5 Iodo) are able to target and inhibit 

proteasomal activity and induce apoptosis in various prostate cancer cell lines.  Importantly, 

complex (5) exhibited superior anticancer activity, and was able to exert the same effect in 

vivo by inhibiting the growth of mice-bearing xenografts.  

Since one of the important focuses in our labs involves investigating the use of copper 

chelating ligands and other transition metal-based complexes as proteasome inhibitors 

(discussed above) [Chen et al., 2007a; Chen et al., 2006; Chen and Dou, 2008], we decided to 

extend our work by investigating the role of bivalent transition metals, such as copper and 

zinc complexed to our same HLI platform to gain insight into their potential as anticancer 

agents.  Based on the significantly higher potency conferred by the HLI ligand when formed 

in a coordination complex with gallium, subsequent studies relied on this model architecture 

with other bivalent transition metals, with emphasis on mechanistic properties. 
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Figure 8.  Copper complexes with [NN’O] tridentate ligands.   

Evaluation of a stoichiometric HLI:Cu:DMSO mixture led to the identification of both 
fragments (1) and (2) that may act as pharmacophores responsible for their biological 
activity.  Species (1) was (2) were mixed with copper chloride and acetate, respectively.  
Species (3) was synthesized in a 2:1 ligand to metal ratio. 
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Evaluation of a stoichiometric HLI:CuCl2:DMSO mixture led to the identification of 

both monomeric and dimeric fragments that may act as pharmacophores responsible for their 

biological activity [Hindo et al., 2009].  These initial studies formed the basis of developing a 

series of copper(II) complexes with the ligand HLI, which were synthesized and 

characterized as (1), (2), and (3) (Fig. 8).  The results from this dissertation show that these 

copper complexes function as proteasome inhibitors and apoptosis inducers in human 

prostate cancer cells.  Furthermore, this study also provides insight into the potential 

pharmacophore needed for inhibition of proteasomal activity. 

To further build upon our studies and further investigate our hypothesis that species 

[MLIA]+ is the necessary pharmacophore for proteasome inhibition, data in this dissertation 

compared the proteasome inhibition capabilities of two divalent transition metals, namely 

zinc and nickel as coordination complexes utilizing the same HLI ligand as a platform (Fig. 

9).  Initial comparison studies considering coordination of a 1:1 [Zn(L)]+ fragment with 

threonine suggest a favorable coordination through the terminal hydroxyl group.  This 

dissertation shows that the zinc complex could significantly inhibit the cellular proteasome 

compared to its nickel counterpart [Frezza et al., 2009].  The data provided in this 

dissertation seeks to dissect the underlying disparity in biological activity between the two 

metals and provide some mechanistic insight into its proteasome inhibitory effects by using a 

chemical biology approach. 
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Figure 9: Zinc and Nickel complexes synthesized with [NN’O] tridentate ligands 

The Chemical structures of zinc and nickel complexes depicted were synthesized in a 2:1 
ligand: metal ratio with tridentate ligands. 
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Gold and gold complexes 

 Gold was first recognized for its medicinal and therapeutic applications thousands of 

years ago, but its rational use in medicine didn’t begin until the early twentieth century.  The 

gold(I) triethylphosphine compound, auranofin (Fig. 10) was the first clinically approved 

gold drug for the treatment of rheumatoid arthritis.  Although no other gold-containing 

complex has been approved clinically, its therapeutic value continues to be the subject of 

investigation [Milacic et al., 2008b]. 

 Based on the finding that auranofin displayed cytotoxic effects toward cancer cells in 

vitro, various gold(I) compounds were synthesized and shown to have strong cytotoxic 

activity against melanoma and leukemia cell lines in vitro and anti-tumor activity against 

leukemia in vivo [Mirabelli et al., 1986].  Although the phosphine-coordinated gold(I) 

thiosugar complexes appeared to be the most potent of them, they were found to be 

completely inactive against solid tumors [Chen et al., 2009]. 

 Primarily because of their high reactivity, gold(III) complexes have not been as 

thoroughly investigated as gold(I) complexes. Having a high redox potential and relatively 

poor stability, the use of gold(III) complexes as anti-cancer drugs under physiological 

conditions was questioned [Ronconi et al., 2005]. Given that the cellular environment is 

generally reducing, compounds with gold(III) were expected to be reduced in vivo to gold(I) 

and metallic gold, which makes them less effective as drugs [Ronconi et al., 2005]. 

However, the interest for gold(III) complexes was markedly increased after 

platinum(II) complexes exhibited promising results against selected types of cancers. Since 

gold(III) is isoelectronic (d8) with platinum(II) and tetracoordinate gold(III) complexes have 
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the same square-planar geometries as cisplatin [Ronconi et al., 2006], the anti-cancer activity 

of gold(III) compounds has been investigated. 

In recent years, a selection of more stable gold(III) compounds have been synthesized 

using better ligand platforms that contain nitrogen atoms as donor groups [Messori et al., 

2003].  Ronconi et al. synthesized various gold(III) dithiocarbamate derivatives that display 

superior chemotherapeutic index in terms of increased bioavailability, higher cytotoxicity, 

and more tolerable side effects compared to cisplatin [Ronconi et al., 2005]. These different 

gold(III) dithiocarbamate derivatives, particularly, N,N-dimethyldithiocarbamate and 

ethylsarcosinedithiocarbamate analogs were shown to display significantly higher 

cytotoxicity and were able to overcome resistance to cisplatin (Fig. 10).  

Studies with gold(III) complexes have shown that their interaction with DNA, the 

primary target of platinum compounds, was less than favorable, suggesting a different 

mechanism of action [Marcon et al., 2002; Messori et al., 2001].  This observation has 

prompted the search a new search for gold-protein interactions in an attempt to identify 

possible targets for the biological effects of gold-containing compounds. 
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Figure 10.  Chemical structures of gold-containing compounds. 

Auranofin was the first and only gold compound used clinically. Au(DMDT)Br2 with 3+ 
charge; AUL12 with a 3+ charge, and AUL15 with 1+ charge are gold-containing 
dithiocarbamate compounds with proteasome inhibitory activity.   
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Our lab has shown that a gold(III) dithiocarbamate derivative, namely 

[Au(DMDT)Br2] (Fig. 10) could target and inhibit the chymotrypsin-like activity of a 

purified 20S proteasome (IC50= 7.4 µM) and 26S proteasome in intact MDA-MB-231 breast 

cancer cells [Milacic et al., 2006].  PGPH-like and trypsin-like activities were also inhibited, 

but the CT-like inhibition was the most significant, indicating that this complex preferentially 

binds to and inhibits the chymotrypsin-like β5 subunit of the proteasome.  Associated with 

proteasomal inhibition, an accumulation of ubiquitinated proteins, p27, and induction of 

apoptosis was observed in breast cancer cells.  Additionally, Au(DMDT)Br2 was able to 

potently inhibit tumor growth (~50%) associated with inhibition of proteasomal activity and 

apoptosis induction [Milacic et al., 2006].  However, whether the nature of the metal and 

dithiocarbamate ligand is instrumental in influencing its biological activity could not be 

established. 

In this dissertation we investigate the importance of the oxidation state of gold and 

the involved mechanism of action of two gold containing complexes toward human breast 

cancer cells (Fig. 10).  The data provides strong evidence that the cellular proteasome is an 

important target of both gold(I) and gold(III) dithiocarbamates, but distinct cellular 

mechanisms are responsible for their different overall effect. 

 

Androgen Receptor Signaling in Prostate Cancer 

 Prostate cancer is the most frequently diagnosed cancer and the second leading cause 

of cancer death among american males [Jemal et al., 2008].  Prostate cancer can be 

effectively treated by androgen-ablation therapy through medical or surgical castration.  

However, this effect is transient and the majority of prostate cancer patients eventually 
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relapse to a hormone refractory state that no longer responds to androgen withdrawal 

[Heinlein and Chang, 2004].  Treatment options for hormone refractory prostate cancer are 

an unmet need with only docetaxel being the only agent that has been shown to prolong 

survival [Chen et al., 2008].   

Androgen Receptor (AR) appears to be a critical component of the transition from a 

hormone sensitive to a hormone refractory state that remains dependent on AR signaling.  

Despite decreased androgen levels, AR remains highly expressed and active in hormone-

refractory tumors, implying a switch to alternative mechanisms of action [Burnstein, 2005; 

Steinkamp et al., 2009].  Clinical observations have provided clues that AR signaling remains 

active and engaged in hormone refractory prostate cancer.  The AR-dependent gene, PSA has 

been successfully used as a clinical marker to assess disease activity.  PSA declines after 

hormone deprivation therapy and a subsequent rise is commonly the first sign of disease 

progression, indicating the reactivation of AR signaling accompanies the development of 

HRPC [Attard et al., 2009a].  Recently it was discovered that up to 90% of all prostate 

cancers overexpress an ets oncogene, including ERG, ETV1, ETV5, and ETV6 via a variety 

of mechanisms (Petrovics, 2005, 3847).  The most common mechanism of overexpression is 

fusion of the ets gene (ERG) to the 5’-untranslated region of highly AR-regulated TMPRSS2 

gene.  Thus, in addition to the lineage dependence of prostate cells on AR signaling, prostate 

cancer has additional selection pressure to maintain TMPRSS2 expression and AR activity 

[Tomlins et al., 2007; Tomlins et al., 2005].  It has been reported that 40%-70% of prostate 

cancers have chromosomal rearrangement that results in hormonal regulation of oncogenic 

ETS gene expression, highlighting one mechanism by which AR becomes oncogenic 

[Tomlins et al., 2005]. 
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Figure 11.  Schematic representation of the androgen receptor (AR) 

Two isoforms of AR, AR-A and AR-B, exist. AR is a member of the steroid superfamily of 
transcription factors and shares a similar organization of functional domains. AR contains an 
amino-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (H) 
containing a proline-, glutamate-, serine-, threonine-rich (PEST) motif, and a carboxy-
terminal ligand-binding domain (LBD). AR-A differs from AR-B in that its NTD is shorter 
than that of AR-B. The additional portion of NTD present in AR-B (missing from AR-A) 
contains a motif necessary for full ligand activated transcriptional activity. 
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AR is a member of the steroid superfamily of ligand activated transcription factors 

sharing a similar organization of functional domains.  Like other members of this family, AR 

contains three domains; an NH2-terminal domain (ATD), a central DNA binding domain 

(DBD), and a carboxy-terminal ligand binding domain (LBD) (Fig. 11) [Lee and Chang, 

2003; Tsai and O'Malley, 1994].  The DBD and LBD are separated by a hinge region 

containing a PEST (proline-, glutamate-, serine-, and threonine-rich) motif (Fig. 11).  

Unliganded AR remains inactive in the cytosol and associates with the HSP chaperone 

complex which maintains AR competent for binding androgens [Shen and Balk, 2009].  

Testosterone is the predominant circulating androgen in mammals and is converted to 

dihydrotestosterone (DHT) by 5α-reductase in certain tissues including the prostate.  DHT 

binds with the highest affinity to AR and together with testosterone promotes AR 

transcriptional activity through receptor nuclear translocation, dimerization, and binding to 

androgen response elements in DNA of target genes (Fig. 12) [Burnstein, 2005; Taplin, 

2008].  AR homodimers recruit a myriad of factors including coactivators and mediator 

proteins whose enzymatic activities promote chromatin remodeling and transcriptional 

regulation of target genes leading to cell differentiation, survival, and proliferation (Fig. 12) 

[Heinlein and Chang, 2002].  Androgen stimulation of the AR is not only essential, but is 

also sufficient for the development of the prostate gland and is strongly implicated in the 

growth and progression of prostate cancer [Burnstein, 2005]. 
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Figure 12.  Schematic description of androgen receptor signaling 

Androgen receptor signaling mediated by testosterone, or its more potent form, 
dihydrotestosterone by 5α-reductase (right).  Upon activation, AR translocates to the nucleus 
and binds to the promoters of AR target genes such as PSA regulating cell survival and 
proliferation.  AR may become promiscuous and respond to other ligands, such as growth 
factors and other steroids. AR may also be responsive to other signaling pathways such as 
PI3K and MAPK. These AR-mediated events are associated with cell migration, proliferation 
and survival (left). 
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There is well established evidence that the AR gene undergoes alterations from a 

hormone sensitive to a hormone refractory state.  AR gene amplification has been reported in 

25-30% of patients with HRPC but, but is present at a very low rate in primary prostate 

cancer [Edwards et al., 2003; Ford et al., 2003].  Additionally, AR mutations have been 

found in prostate cancer and its incidence has been known to occur in the 10%-40% range 

[Taplin and Balk, 2004].  As a result, these hormone-independent tumor cells become very 

sensitive to low or no androgen environments, and are responsive to a broad range of ligands 

such as growth factors, other steroid hormones, anti-androgens, etc [Chen et al., 2004a; Culig 

et al., 1994].  It has also been reported that wild type AR can be activated by other signal 

transduction pathways in a ligand independent manner [Chen et al., 2004a; Culig, 2004].  

Furthermore, ligand-independent AR can bind the enhancer elements on the promoters of 

target genes and mediated their expression even in the absence of androgen as seen with the 

prostate specific antigen (PSA) gene in androgen-independent prostate cancer cells [Jia et al., 

2006].  Finally, Alterations in the balance of between AR coactivator and co-repressor 

proteins may result in a growth advantage of prostate cancer cells, thus making these 

potential drug targets [Gregory et al., 2001]. 

 

Approaches in prostate cancer treatment 

 Standard hormone therapy for prostate cancer includes a variety of approaches to 

directly reduce ligand (androgen) concentrations or block the ability of ligand to interact with 

AR.  Approved antiandrogens, include bicalutamide, or hydroxyflutamide and nilutamide, 

and adrenal androgen synthesis is commonly inhibited with corticosteroids.  These 

Conventional approaches reduce but fail to completely eliminate circulating levels of 
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androgen.  Serum testosterone is reduced to 90-95%, while intraprostatic androgen, 

concentration is reduced only about 75% and is sufficient to activate AR [Chen et al., 2008; 

Montgomery et al., 2008].  However, despite an initial response, the time to progression is 

usually short in the majority of patients.  This has stimulated significant efforts to develop 

novel therapeutic strategies for the treatment of hormone-resistant prostate cancer (HRPC). 

HSP-90 is a chaperone protein required for refolding denatured proteins and protein 

maturation, and inhibitors of HSP-90 have been in clinical testing as prostate cancer 

therapeutics [Solit and Rosen, 2006].  Histone deacetylases are enzymes that modulate 

chromatin remodeling and regulate gene transcription.  HDAC inhibitors are currently in 

clinical testing for leukemia and solid tumors, including prostate cancer and exert their 

activity by inducing cell cycle arrest and apoptosis.  In a manner similar to HSP-90 

inhibitors, HDAC inhibitors destabilize the AR by interfering with the binding of HSP90 to 

the AR and also to ERBB2 [Minucci and Pelicci, 2006].  More recently, Abiraterone acetate 

has been developed, which acts as a highly specific inhibitor of CYP17 and results in 

significant suppression of serum androgenic steroids and estrogens which was associated 

with significant reductions in PSA associated with tumor regression in patients with HRPC 

[Attard et al., 2009b; Attard et al., 2008].  MDV-3100 is a novel small molecule antagonist 

being testing in clinical trials for patients with HRPC that have failed other treatments.  Its 

mechanism of action involves blockade of nuclear translocation of AR, DNA binding, and 

exhibits no agonist activity when AR is overexpressed [Tran et al., 2009].  These 

encouraging findings suggest that further understanding the role of AR in the growth and 

progression of prostate cancer could lead to the more effective design of therapeutic 

strategies in the treatment of prostate caner. 
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We have previously reported that proteasome inhibitors caused downregulation of AR 

in both androgen-dependent LNCaP cells and androgen-independent C4-2B cells [Chen et 

al., 2007b; Yang et al., 2006b], and that calpain involvement is at least partially responsible 

for this effect [Yang et al., 2008].  However, whether AR stability is directly implicated in 

modulating the cell death pathway in prostate cancer cells has yet to be established.  The data 

in this dissertation provides compelling evidence that AR can influence the regulatory events 

associated with cell death in response to proteasome inhibition and chemotherapy.  Although 

both AR-independent prostate cancer cells and AR transfected cells showed similar 

sensitivity to growth inhibition, the mechanism underlying this effect appears to be distinct 

and regulated by AR-mediated events.  The data provided in this dissertation could have 

important prognostic and clinical relevance in the treatment of prostate cancer. 
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CHAPTER 2 

Inhibition of the Proteasome Activity by Gallium(III) Complexes 

Contributes to Their Anti-Prostate Tumor Effects 

 

Adapted from published material in Cancer Research, 2007; 67(19): 9258-65. 

 

 The investigation of metal-based complexes with potential antitumor activity has 

been of paramount importance in recent years due to the successful use of cisplatin against 

various cancers. Gallium(III) and subsequently developed gallium(III)-containing complexes 

have shown promising antineoplastic effects when tested in a host of malignancies, 

specifically in lymphomas and bladder cancer. However, the molecular mechanism 

responsible for their anticancer effect is yet to be fully understood. The data in this 

dissertation shows for the first time that the proteasome is a molecular target for gallium 

complexes in a variety of prostate cancer cell lines and in human prostate cancer xenografts. 

Five gallium complexes (1–5) were tested in which the gallium ion is bound to an NN’O 

asymmetrical ligand containing pyridine and substituted phenolate moieties in a 1:2 (M/L) 

ratio. The data shows that complex 5 showed superior proteasome inhibitory activity against 

both 26S proteasome (IC50, 17 µmol/L) and purified 20S (IC50, 16 µmol/L) proteasome. 

Consistently, this effect was associated with apoptosis induction in prostate cancer cells. 

Additionally, complex 5 was able to exert the same effect in vivo by inhibiting growth of PC-

3 xenografts in mice (66%), which was associated with proteasome inhibition and apoptosis 

induction. The data presented in this dissertation strongly suggest that gallium complexes, 
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acting as potent proteasome inhibitors, have great potential to be developed into novel 

anticancer drugs. 

 

Materials and Methods 

Materials. The gallium complexes 1 – 5 were synthesized as described previously 

[Shakya et al., 2006b]. Hoechst 33258 and cremophor were purchased from Sigma-Aldrich 

(St. Louis, MO). Purified rabbit 20S proteasome, fluorogenic peptide substrates Suc-LLVY-

AMC and Ac-DEVD-AMC were obtained from Calbiochem Inc (San Diego, CA). Peptide 

substrate Z-GGL-AMC was from BIOMOL International LP (Plymouth Meeting, PA). 

Apoptag Peroxidase In Situ Apoptosis Detection Kit was from Chemicon International, Inc. 

(Temecula, CA). 

    Cell cultures and whole cell extract preparation.  Human prostate cancer cells, 

LNCaP, C4-2B and PC-3, were grown in RPMI 1640 medium supplemented with 10% FBS 

and maintained at 37 °C and 5% CO2. A whole cell extract was prepared as described 

previously [An et al., 1998; Chen et al., 2006]. 

    Inhibition of purified 20S proteasome activity. Purified rabbit 20S proteasome 

(17.5 ng) was incubated in 100 l of assay buffer (50 mmol/L Tris–HCl, pH 7.5) with 

gallium complexes and 10 mol/L fluorogenic peptide substrate Suc-LLVY-AMC for 2 h at 

37 °C.  After incubation, production of hydrolyzed AMC groups was measured as previously 

described [Daniel et al., 2004]. 

Inhibition of the proteasome activity in intact cells. C4-2B cells were cultured in a 

96-well plate (1 × 104 cells/well) and treated with various concentrations of gallium 

complexes for 18 h.  After the additional 2 h incubation with the fluorogenic peptide 
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substrate Z-GGL-AMC, specific for the proteasomal chymotrypsin-like activity, production 

of hydrolyzed AMC groups was measured as described above. 

Caspase-3 and proteasomal CT-like activity assays. Proteins extracted from cells 

or tumor tissue were incubated for 1 h at 37°C in 100 μl of assay buffer (50 mmol/L Tris-

HCl, pH 7.5) with 10 mol/L fluorogenic substrate Suc-LLVY-AMC (for CT-like activity in 

cultured cells) or Z-GGL-AMC (for CT-like activity in tumor tissues) or Ac-DEVD-AMC 

(for Caspase–3/7 activity) as described previously [Daniel et al., 2005]. 

Cellular and nuclear morphology analysis. A Zeiss Axiovert 25 microscope was 

used for all microscopic imaging with either phase contrast for cellular morphology or 

fluorescence for nuclear morphology with Hoechst 33258 staining as described previously 

[Daniel et al., 2005].  

Western blot analysis. The cell or tissue extracts were separated by SDS-PAGE and 

transferred to a nitrocellulose membrane.  Western blot analysis was performed using 

specific antibodies against ubiquitin, p27, AR, β-actin (Santa Cruz Biotechnology Inc, Santa 

Cruz, CA) or PARP (BIOMOL International LP, Plymouth Meeting, PA), followed by 

visualization using the enhanced chemiluminescence (ECL) reagent (Amersham Biosciences, 

Piscataway, NJ).  

Human prostate tumor xenograft experiments. Five-week-old male athymic nude 

mice were purchased from Taconic Research Animal Services (Hudson, NY) and housed 

under pathogen-free conditions according to Wayne State University animal care guidelines. 

The protocols of animal experiments were reviewed and approved by Institutional 

Laboratory Animal Care and Use Committee of Wayne State University. PC-3 cells (2 × 106) 

were injected subcutaneously (s.c.) at one flank of the mice.  The mice were then randomly 
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grouped and injected s.c. daily with either solvent (PBS: Cremophor: Ethanol: DMSO = 5: 

2.7: 1.3: 1) as a control (n=9), 20 mg/kg of complex 5 (n=9), or 20 mg/kg of L5 (n=5) for 29 

days. Tumor size was measured every other day using calipers. Tumor volume (V) was 

determined by the equation: V= (L x W2) x 0.5, where L is the length and W is the width of 

the tumor. 

Terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling 

(TUNEL), immunostaining and Hematoxylin and Eosin (H&E) assays. TUNEL assay 

using in situ apoptosis detection kit and immunostaining of p27 were done as previously 

described [Chen et al., 2006]. H&E staining in tumor tissues was done following 

manufactory protocols [Chen et al., 2006]. Briefly, paraffin-embedded sample slides were 

deparafinized and hydrated, and then stained with Hematoxylin for 1 minute. After rinsing, 

the slides were stained with Eosin for 1 minute, rinsed and mount of cover slips onto slides 

with Permount. 

Statistical analysis. Statistical analysis was performed with Microsoft ExcelTM 

software. Student’s t test for independent analysis was applied to evaluate differences 

between treatments and control. 
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Results 

Structural relationships of several synthetic gallium complexes with their 

activities to inhibit purified 20S proteasome and cellular 26S proteasome. We have 

previously reported that certain copper complexes are potent proteasome inhibitors [Chen et 

al., 2007a; Chen et al., 2006; Daniel et al., 2004].  Therefore, we hypothesized that gallium 

complexes might be similarly capable of targeting and inhibiting the proteasome in human 

tumor cells. To test this hypothesis, proteasome-inhibitory potencies of five gallium 

complexes were analyzed (Fig. 13) under cell-free conditions, and found that the complexes 

3, 4 and 5 inhibited CT-like activity of the purified 20S proteasome with IC50 values 46, 27 

and 16mol/L, respectively (Fig. 14A). In contrast, complex 2 demonstrated very weak 

inhibitory potential, while complex 1 had no effect at the highest concentration used (50 

mol/L; Fig. 14B).  The rank of the inhibitory potencies of the gallium complexes against the 

purified 20S proteasome is: 5 > 4 > 3 > 2 ≥ 1. 
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Figure 13.  Chemical structures of gallium complexes. 

Gallium complexes 1-5 depicted were synthesized with tridentate ligands in a 2:1 
ligand:metal ratio 
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Figure 14. Gallium complexes inhibit the chymotrypsin-like activity of purified 20S 
proteasome and cellular 26S proteasome.  
 
A. Inhibition of the chymotrypsin-like activity of purified 20S proteasome.  B. Inhibition of 
proteasome activities in intact human prostate cancer cells. C4-2B cells were treated with 50 
µmol/L of each gallium complex for 18 h, followed by measurement of proteasomal 
chymotrypsin-like activities. 
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To determine the potencies of these complexes to inhibit CT-like activity in intact 

cells, an androgen-independent human prostate cancer line C4-2B [Thalmann et al., 1994] 

were plated in a 96-well plate and treated with each of the five complexes for 18 h, followed 

by measuring the proteasome activity. We found that IC50 values of the complexes 3, 4 and 5 

in intact C4-2B cells were 48, 28 and 17mol/L, respectively (Fig. 14B), consistent with 

their inhibitory potencies against the purified 20S proteasome. Complexes 1 and 2 again 

showed only slight inhibitory effect (Fig. 14B).     

Inhibition of proteasomal CT-like activity by gallium complexes in androgen-

independent human C4-2B prostate cancer cells is associated with down-regulation of 

androgen receptor (AR) and induction of cell death. To confirm the ability of these 

gallium complexes to inhibit the proteasomal activity in prostate cancer cells, C4-2B cells 

were treated with each complex at 50 mol/L concentrations for 18 h.  The cells were 

harvested and used for cell extract preparation, followed by measurement of the proteasomal 

CT-like activity and accumulation of ubiquitinated proteins.  Complexes 1-5 were found to 

inhibit 7.5, 14, 38, 58 and 81% of the proteasomal activity, respectively (Fig. 15). 

Additionally, high levels of accumulated ubiquitinated proteins were detected in C4-2B cells 

treated with complexes 3, 4 and 5 (Fig. 16).  
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Figure 15.  Gallium complexes inhibit proteasome activities in prostate cancer C4-2B 
cells. 
 
Human prostate cancer C4-2B cells were treated with 50 µM of complex 1-5 for 18 h, 
followed by measurement of chymotrypsin-like activity. *, P < 0.05, **, P < 0.01. 
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Figure 16.  Gallium complexes accumulate ubiquitinated proteins and induce cell death 
in prostate cancer C4-2B cells. 
 
Human prostate cancer C4-2B cells were treated with 50 µM of complex 1-5 for 18 h, 
followed by western blot analysis of ubiquitinated proteins (Ub-Prs), androgen receptor 
(AR), and PARP. DM was used as solvent control.  
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It has been shown that proteasome inhibition could down-regulate AR expression 

[Lin et al., 2002].  Therefore, if gallium complexes were able to inhibit proteasomal activity, 

we would expect a decrease in AR expression level. Indeed, the results in Figure 16 showed 

that gallium complexes 2 and 3, but not 1, down-regulated AR protein (3 > 2 > 1), while 

complexes 4 and 5 completely abrogated AR protein expression (Fig. 16).  These results 

remained consistent with the order of proteasome-inhibitory potency of the gallium 

complexes.  

It has also been shown that inhibition of the proteasomal CT-like activity in 

malignant cells could result in the induction of apoptosis [An et al., 1998; Lopes et al., 1997]. 

To investigate whether the proteasomal inhibition and AR level reduction by gallium 

complexes are associated with cell death, PARP cleavage and morphological and nuclear 

changes were measured in the same experiment. The results showed that treatment with 

gallium complexes 3, 4 and 5 caused cell death associated PARP cleavage (Fig. 16), while 

complexes 1 and 2 failed to do so (Fig. 16). Consistently, morphological changes (shrunken 

cells and characteristic apoptotic blobbing; Fig. 17) and the presence of apoptotic nuclei after 

Hoechst staining (condensed or punctuated and brighter nuclei; Fig. 17) were observed in the 

cells treated for 18 h with the complexes 4 and 5.  While complex 3 induced only moderate 

level of apoptotic cellular and nuclear changes (Fig. 17), complexes 1 and 2 showed some to 

no activity (Fig. 17). These results demonstrate that the induction of apoptosis in C4-2B cells 

by gallium complexes is associated with the inhibition of the proteasomal CT-like activity, 

and that the apoptosis-inducing potency of these compounds was also ranked as 5 > 4 > 3 > 2 

≥ 1. 
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Figure 17.  Cellular morphological and nuclear changes. 

Human prostate cancer C4-2B cells were treated with 50 µM of complex 1-5 for 18 h, 
followed by staining for cellular morphological and nuclear changes. (DM) was used as 
solvent control. 
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To investigate effects of different concentrations of gallium complexes on prostate 

cancer cells, we selected the most potent complex 5 and treated C4-2B cells at various 

concentrations (10, 25, and 50 mol/L), followed by measurement of proteasome inhibition, 

AR protein level, and cell death induction. The results showed that complex 5 inhibited the 

proteasome in a dose-dependent manner, as measured by proteasomal CT-like activity (Fig. 

18), accumulation of ubiquitinated proteins and proteasome target protein p27 (Fig.19). A 

decrease in AR level and cell death associated PARP cleavage were also induced in a dose-

dependent manner (Fig.19). 
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Figure 18.  Dose effects of gallium complex 5 on C4-2B cells. 

Human prostate cancer C4-2B cells were treated with indicated concentrations of complex 5 
for 18 h, followed by measurement of the chymotrypsin-like activity. **, P < 0.01. 
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Figure 19. Dose effects of the gallium complex 5 on C4-2B cells. 

Human prostate cancer C4-2B cells were treated with indicated concentrations of complex 5 
for 18 h, followed by Western blot analysis with antibodies to ubiquitin, p27, androgen 
receptor, and PARP.  DMSO (DM) was used as solvent control. 
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Inhibition of proteasomal CT-like activity by gallium complexes in androgen-

dependent human LNCaP prostate cancer cells is associated with down-regulation of 

androgen receptor (AR) and induction of cell death. After we showed the ability of the 

gallium complexes to inhibit proteasome activity and induce cell death in androgen-

independent C4-2B prostate cancer cells, we tested the effect of the same gallium complexes 

on androgen-dependent LNCaP cell line [Thalmann et al., 1994].  LNCaP cells were treated 

with 50 mol/L concentration of each complex for 18 h, followed by measurement of the 

proteasome activity, AR protein level and cell death induction. We found that gallium 

complexes 2, 3, 4 and 5 inhibited CT-like activity of the proteasome by 12, 39, 62 and 79%, 

respectively (Fig. 20), while complex 1 showed only slight effect compared to solvent 

control (Fig.20).   
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Figure 20. Gallium complexes inhibit proteasome activities in prostate cancer LNCaP 
cells. 
 
Human prostate cancer LNCaP cells were treated with 50 µM of complex 1-5 for 18 h, 
followed by measurement of chymotrypsin-like activity. *, P < 0.05, **, P < 0.01. 
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Consistent with the inhibition of the proteasomal CT-like activity, significantly 

increased levels of ubiquitinated proteins were detected in the LNCaP cells treated with the 

complexes 3-5 (Fig. 21). Complex 5 was also found to be most potent in decreasing AR 

level, while complex 1 had almost no effect (Fig 21). In the same experiment, treatment with 

gallium complexes 3, 4 and 5 resulted in massive cell detachment (data not shown) and 

PARP cleavage (Fig. 21). Additionally, complexes 3-5 induced caspase-3/7 in a time-

dependent manner (data not shown), while complexes 1 and 2 showed only slight effect. 

These results demonstrate that in androgen-dependent LNCaP cells these gallium complexes 

have the same rank of proteasome-inhibitory, AR-suppressing and cell death-inducing 

potencies as in androgen-independent C4-2B cells. 
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Figure 21. Accumulation of ubiquitinated proteins and cell death induction by gallium 
complexes in prostate cancer LNCaP cells. 
 
Human prostate cancer LNCaP cells were treated with 50 µM of complex 1-5 for 18 h, 
followed by western blot analysis of ubiquitinated proteins (Ub-Prs), androgen receptor 
(AR), and PARP. DM was used as solvent control.  
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The time-dependent proteasome inhibition and cell death induction by gallium 

complex 5 in androgen-independent human prostate cancer PC-3 cells.  The data in this 

dissertation reveals that complex 5, of all tested complexes, had superior proteasome-

inhibitory and cell death-inducing abilities in AR-dependent prostate cancer C4-2B and 

LNCaP cells (Figs. 14-21). To study the effect of these compounds in AR-independent 

prostate cancer cells, PC-3 cells were treated with 50 mol/L of complex 5 for various time 

points (0.5-12 h). The proteasomal CT-like activity was found to be inhibited by 17% after 

first 30 minutes of treatment (Fig. 22), associated with accumulated level of ubiquitinated 

proteins (Fig. 23). The proteasome inhibition and accumulation of ubiquitinated proteins 

were observed during the course of treatment (Fig. 22 and 23).  Accumulation of p27 was 

also found to be time-dependent (Fig. 23). Importantly, cell death associated PARP cleavage 

was not observed until 4 hours of treatment (Fig. 23). These results clearly show that cell 

death induced by complex 5 occurs after proteasome inhibition. Therefore, proteasome 

inhibition seems to be required for cell death induction by gallium complexes. 
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Figure 22.  Kinetic effects of complex 5 on PC-3 cells. 

Human prostate cancer PC-3 cells were treated with 50 µmol/L of complex 5 for indicated 
hours, followed by measurement of the chymotrypsin-like activity. *, P < 0.05, **, P < 0.01. 
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Figure 23.  Kinetic effects by complex 5 on PC-3 cells. 

Human prostate cancer PC-3 cells were treated with 50 µmol/L of complex 5 for indicated 
hours, followed by Western blot analysis of Ub (Ub-Prs), p27, and PARP.  DMSO (DM) was 
used as solvent control. 
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Proteasome-inhibitory and apoptosis-inducing activities of gallium complex 5 

and ligand 5 (L5) in human prostate cancer xenografts. The in vitro data shown in this 

dissertation demonstrate that gallium complexes 3, 4 and 5 act as proteasome inhibitors and 

cell death (e.g. apoptosis) inducers in cultured human prostate cancer cells and that complex 

5 is the most potent (Figs. 14-23). To investigate whether compound 5 could also inhibit the 

proteasome and induce apoptosis in vivo, we used mice bearing human prostate tumor 

xenografts.  PC-3 cells were implanted s.c. into male nude mice and allowed to grow until 

the appearance of a palpable tumor (~120 mm3). The mice were then randomly grouped and 

injected s.c. daily with either solvent, 20 mg/kg of complex 5, or 20 mg/kg of L5 for 29 days. 

At the end of the trial, the mice were sacrificed and tumor tissue was harvested and used for 

multiple assays. The measurement of tumor size showed that tumor growth was inhibited by 

66% in complex 5-treated mice, and by only 30% in L5-treated mice, compared to the 

control mice (Fig. 24). Therefore, complex 5 possesses potent anti-tumor properties in vivo. 

However, the anti-tumor activity of L5 was also observed (see below).  
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Figure 24. Complex 5 inhibits tumor growth in mice bearing PC-3 xenografts. 

Male athymic nude mice were xenografted by injection of PC-3 cells. When tumor size 
reached to ~120 mm3, the mice were divided into three groups and treated with either solvent 
(Sol) control (n=9) or Ligand 5 (L5; 20 mg/kg/day; n=5) or Complex 5 (20 mg/kg/day; n=9) 
for 29 days. Tumor growth was inhibited up to 66% and 30% by Complex 5 and L5 after 29-
day treatment, respectively, when compared to control (*, P < 0.05; **, P < 0.01). Points 
represent the means of tumor volume in each experimental group. 
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Figure 25.  Inhibition of tumor growth by complex 5 is associated with inhibition of 
chymotrypsin-like activity. 
 
Male nude mice bearing PC-3 xenografts were treated with either solvent (Sol) control (n=9) 
or Ligand 5 (L5; 20 mg/kg/day; n=5) or Complex 5 (20 mg/kg/day; n=9) for 29 days. At the 
end of 29 days tumors were collected and measured for the proteasomal chymotrypsin-like 
activity. *, P < 0.05; **, P < 0.01. 
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Figure 26.  Western blot analysis of tumor extracts 

Male nude mice bearing PC-3 xenografts were treated with either either solvent (Sol) control 
(n=9) or Ligand 5 (L5; 20 mg/kg/day; n=5) or Complex 5 (20 mg/kg/day; n=9) for 29 days. 
At the end of 29 days tumors were collected and measured for protein levels of Ub, p27, and 
cleaved PARP. 
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To determine if the observed anti-tumor effects of complex 5 and L5 are associated 

with proteasome-inhibitory and apoptosis-inducing activities in vivo, the prepared tissue 

samples were used for several assays. Figure 25 shows inhibition of the proteasomal CT-like 

activity by 65% in complex 5-treated tumors, compared to the control, while L5-treated 

tumors showed only 31% inhibition. Consistently, accumulation of ubiquitinated proteins and 

p27 was found in tumors treated with complex 5, as measured by Western blot analysis (Fig. 

26).  L5-treated tumors were also able to accumulate ubiquitinated proteins and p27, but to a 

lesser extent (Fig. 26). This suggests the possibility of L5 combining with endogenous metal 

species, such as copper, forming partial proteasome-inhibiting complexes (see Discussion). 

Increased accumulation of p27 protein in tumors treated by complex 5 or L5 was further 

confirmed by immunohistochemistry assay, which showed the increase of p27-positive cells 

by 64, 25 and 7% in tumors treated with complex 5, L5 or solvent, respectively (Fig. 28). 
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Figure 27. Inhibition of tumor growth by complex 5 is associated with activation of 
caspase 3/7 activity. 
 
Male nude mice bearing PC-3 xenografts were treated with either solvent (Sol) control (n=9) 
or Ligand 5 (L5; 20 mg/kg/day; n=5) or Complex 5 (20 mg/kg/day; n=9) for 29 days. At the 
end of 29 days tumors were collected and measured for the caspase 3/7 activity. *, P < 0.05; 
**, P < 0.01. 
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Furthermore, we found that the inhibition of the proteasomal CT-like activity in 

tumors treated with complex 5 or L5 was associated with apoptosis, as shown by induction of 

caspase-3/7 activity (Fig. 27) and the appearance of cleaved PARP fragment (Fig. 26). 

Induction of apoptosis in tumors treated with complex 5 or L5 was further confirmed by the 

presence of TUNEL-positive cells (78 and 19% in complex 5 and L5-treated tumors, 

respectively) (Fig. 28), and high levels of condensed apoptotic nuclei detected by H & E 

staining (76 and 23% in complex 5- and L5-treated tumors, respectively) (Fig. 28).  While L5 

alone was able to induce some level of apoptosis, complex 5 was much more potent, showing 

superior tumor growth inhibition. We monitored the body weight of mice from each group 

and the average readings were 25.9, 25.7 and 25.5 grams from the mice treated with the 

solvent, L5 and complex 5, respectively. The data of the body weight showed that there was 

no toxicity of L5 and complex 5 observed in the treated mice. Taken together, these results 

clearly demonstrate that complex 5 was able to target the proteasome in vivo, resulting in 

induction of apoptotic cell death. 
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Figure 28.  Immunohistochemistry p27, TUNEL and H&E staining assays using mouse 
tumor samples.  
 
Tumors were collected after 29-day treatment (see Fig. 5 legend), and the prepared tissue 
slides were used for immunostaining with p27 antibody (A), TUNEL (B) and H&E staining 
assays (C). Stronger or/and more p27 positive cells and TUNEL positive nuclei as well as 
apoptotic-condensed nuclei were found in tumor tissue from mice treated with complex 5. L5 
has the similar effects but weaker. Magnification 400X as indicated.  
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Discussion 

The main problems with conventional metal-based chemotherapeutic strategies are 

nonspecific interactions and the acquisition of drug resistance. The screening and subsequent 

development of copper-based compounds as anti-tumor agents has shown promising pre-

clinical results, which formed the basis for a potential novel therapeutic strategy [Chen et al., 

2006; Chen et al., 2005]. Gallium complexes have been investigated in clinical trials and 

ongoing studies are trying to optimize drug disposition and pharmacokinetic parameters 

[Galanski et al., 2003; Jakupec and Keppler, 2004a].   

The established anti-tumor activity and therapeutic potential of gallium complexes 

have renewed our interest in exploring their mechanisms of action [Galanski et al., 2003; 

Jakupec and Keppler, 2004a; Jakupec and Keppler, 2004b]. Although many studies are 

investigating biological effects of gallium, they are mainly focused on a transferrin-mediated 

mode of action, with subsequent inhibition of DNA synthesis [Chitambar, 2004b; Galanski et 

al., 2003; Jakupec and Keppler, 2004b]. Some studies with gallium have been implicated in 

the programmed cell death pathway concomitant with iron deficiency and sustained gallium 

exposure [Chitambar, 2004a; Haq et al., 1995]. However, the mechanism of action triggered 

by gallium complexes remains unclear. 

Since gallium complexes showed inhibition of cell proliferation against cisplatin-

resistant neuroblastoma cells [Shakya et al., 2006b], we decided to further investigate their 

biological activities against prostate cancer cells and tumors. We demonstrate in this 

dissertation that some of these gallium complexes are very potent cell death inducers in 

androgen-dependent and androgen-independent prostate cancer cells. Moreover, we reveal 
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the 26S proteasome as their target, which represents an important step in delineating their 

mechanism of action. 

The gallium complexes investigated here were synthesized by using asymmetric 

ligands containing pyridine and 2,6 substituted phenol moieties (Fig. 13).  While their cell-

killing activities have been well-established, their coordination mode and structure activity 

relationship (SAR) are not well understood. In the current study we have found that complex 

5 is much more potent than complexes 1-4, suggesting that L5 possesses certain 

characteristics that, after coordination with gallium, provide an optimal biological response. 

This optimal response may be governed by the strong π electron-donating iodine group. 

Considering that all ligands used to synthesize complexes 3-5 contain electron withdrawing 

halogen substituents, only their π-donating ability could relate to their anti-tumor effects (I > 

Br > Cl). Iodine retains very weak electron withdrawing ability but is a very strong π-

donating group, which can activate the ring system of the complex and influence its ability to 

bind the proteasome. However, the influence of the coordination mode of the metal ion and 

phenol substitute group as it relates to its therapeutic effect is purely speculative at this point. 

The data also showed that L5 is able to bind other metals, such as copper, and that L5 mixed 

with copper potently inhibited the proteasome and induced apoptosis in human prostate 

cancer cells (data not shown). It has been reported that tumor tissue contains elevated level of 

copper [Habib et al., 1980; Nayak et al., 2003]. Therefore, one possible explanation for some 

tumor growth inhibition observed in the mice treated with L5 could be an effect of the 

complex made between L5 and copper.  

We also found that the gallium(III) chloride was relatively nontoxic and that 

concomitant treatment with complex 5 and iron(III) chloride partially precluded the cytotoxic 
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effect of complex 5 (data not shown). Therefore, we propose that gallium complexes, rather 

than gallium ions sequestered from the complex, are taken up through the transferrin 

receptor-mediated pathway. However, the exact mechanism for uptake of gallium complexes 

and their intracellular trafficking and binding to the proteasome needs to be further 

investigated. 

The most important aspects in this dissertation were to investigate whether these 

gallium complexes were active in vivo and to verify their molecular target(s). Therefore, the 

effects of complex 5 were tested along with its ligand L5 in mice bearing human PC-3 

xenografts. Our data in this dissertation showed that treatment with complex 5 caused a 

significant inhibition of PC-3 tumor growth in nude mice (Fig. 24). Importantly, the anti-

tumor activity of complex 5 was associated with the proteasomal activity inhibition (Fig. 25), 

accumulation of the proteasome target proteins p27 (Figs. 26 and 28), and induction of 

apoptosis, demonstrated by caspapse-3/-7 activation, PARP cleavage, TUNEL positivity and 

nuclei condensation (Figs. 26, 27, 28B).  Taken together, the data in this dissertation suggests 

that gallium complexes, by acting as potent proteasome inhibitors, have great potential to be 

developed as novel anti-cancer drugs. 
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CHAPTER 3 
 

Metals in anticancer therapy: Copper(II) complexes as inhibitors of the 

20S proteasome 

 

Adapted from published material in European Journal of Medicinal Chemistry, 2009; 4353-

4361 

 

The data presented in this dissertation shows that selective 20S proteasomal inhibition 

and cell death induction were observed when several lines of cancer cells were treated with a 

series of copper complexes described as [Cu(LI)Cl] (1), [Cu(LI)OAc] (2), and 

[Cu(HLI)(LI)]OAc (3), where HLI is the ligand 2,4-diiodo-6-((pyridine-2-

ylmethylamino)methyl)phenol. These complexes were synthesized, characterized by means 

of ESI (Electrospray ionization) spectrometry, infrared, UV-visible and EPR (Electron 

paramagnetic resonance) spectroscopies, and X-ray diffraction when possible. After full 

characterization species 1-3 were evaluated for their ability to function as proteasome 

inhibitors and cell death inducers in C4-2B and PC-3 human prostate cancer cells and MCF-

10A normal cells. With distinct stoichiometries and protonation states, this series suggests 

the assignment of species [CuLI]+ as the minimal pharmacophore needed for proteasomal 

chymotrypsin-like activity inhibition and permits some initial inference of mechanistic 

information. 
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Materials and Methods 

Materials 

All reagents were obtained from commercial sources. CuCl2·2H2O was purchased 

from Sigma-Aldrich (St. Louis, MO). Solvents were purified by means of an I.T. solvent 

purification system. RPMI 1640, penicillin and streptomycin were purchased from Invitrogen 

(Carlsbad, CA). Fetal bovine serum was purchased from Aleken Biologicals (Nash, TX). 

Fluorogenic peptide substrate Suc-LLVY-AMC (for the proteasomal chymotrypsin-like 

activity) were from Calbiochem (San Diego, CA).  Mouse monoclonal antibody against 

human poly(AP-ribose) polymerase (PARP), p27, ubiquitin and secondary antibodies were 

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).  

 

Methods 

ESI (Electrospray ionization) spectra were measured on a Micromass QuattroLC 

triple quadrupole mass spectrometer with an electrospray/APCI source and Walters Alliance 

2695 LC, autosampler and photodiode array UV (Ultraviolet) detector. Experimental 

assignments were simulated based on peak location and isotopic distributions. Infrared 

spectra were measured from 4000 to 400 cm-1 as KBr pellets on a Tensor 27 FTIR (Fourier 

transform infrared)-spectrophotometer. UV (Ultraviolet)-visible spectroscopy from 1.0 x 10-4 

methanol or methanol:DMSO solutions were performed using a Cary 50 spectrometer in the 

range 250 to 1000 nm. The samples were mortar-ground and heat-dried under vacuum 

overnight to eliminate solvent molecules. First derivative X-Band EPR (Electron 

paramagnetic resonance) spectra of 1.0x10-3 M methanol solutions were performed with a 

Bruker ESP 300 spectrometer using liquid helium as the coolant.  Elemental analyses were 
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performed by Midwest Microlab, Indianapolis, Indiana. Cellular morphology analyses and 

imaging with phase contrast were performed on a Zeiss Axiovert 25 microscope. 

X-ray Structural Determination for [Cu(LI)(Cl)] (1). Diffraction data were 

measured at 100 K on a Bruker X8 APEX-II kappa geometry diffractometer with Mo 

radiation and a graphite monochromator.  Frames were collected as a series of sweeps with 

the detector at 40 mm and 0.3 degrees between each frame, recorded for 10 or 20 s.  APEX-II 

and SHELX-97 software were used in the collection and refinement (Table 2).  Crystals of 1 

[C13H11N2O1Cl1I2Cu1] were blue-green needles; the diffraction sample was 0.4 x 0.02 x 

0.01 mm3. 50251 total reflections were recorded, yielding 7828 independent hkl data.  

Hydrogen atoms were placed in calculated positions.  The asymmetric unit consists of two 

independent neutral complexes. 

 
Syntheses 
 

The ligand 2,4-diiodo- 6-((pyridine-2-ylmethylamino) methyl)phenol was synthesized 

according to a previously published procedure [Shakya et al., 2006a; Shakya et al., 2006b]. 

[Cu(LI)Cl] (1). (0.50 g, 1.1 mmol) of HLI was dissolved in 15 mL of DMSO. After 5 minutes 

(0.18 g, 1.2 mmol) of CuCl2·2H2O was dissolved in 15 mL of DMSO and the resulting 

solution was added drop wise and stirred at room temperature for 45 min. The green solution 

was added to 15 mL of cold ethanol to afford dark green needle-like crystals after 48 hours. 

Yield = 0.15 g (27%). Elemental analysis calc. (%) for C13H11ClCuI2N2O: C 27.68; H 1.97; 

N 4.97. Found: C, 27.72; H, 1.88; N, 4.86. IR data (KBr, cm-1): 3073 v(N-H); ESI+ MS data 

(MeOH): m/z = 527.9 for [CuL]+, 605.9 [CuL-DMSO]+.  

 [Cu(LI)OAc] (2). (0.50 g, 1.1 mmol) of HLI was dissolved in 15 mL of DMSO and 

treated with 1.1 equivalents of triethylamine. While stirring for 5 minutes at room 
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temperature, (0.27 g, 1.2 mmol) of Cu(OAc)2·2H2O was dissolved in 15 mL of DMSO and 

the ligand solution was added drop wise and allowed to react for 45 min. The complex was 

isolated using suction filtration and washed with cold methanol and ether to afford a green 

precipitate. Yield = 0.505 g (86%). Elemental analysis calc. (%) for C15H14CuI2N2O3: C 

30.66; H 2.40; N 4.77. Found: C, 30.82; H, 2.45; N, 4.70. IR data (KBr, cm-1): 3073 v(N-H); 

1586 vasym(OAc-); 1402 vsym(OAc-). ESI+ MS (Electrospray ionization mass spectrometry) 

data (MeOH): m/z = 527.8 for [CuL]+
, 606.0 [CuL-DMSO]+.  

 [Cu(HLI)(LI)]OAc (3). A 15 mL methanol solution of HLI (1.05 g, 2.1 mmol) was 

added drop wise to a 15 mL methanol solution of Cu(OAc)2·2H2O (0.27 g, 1.2 mmol) at 45 

oC. After 45 minutes a green precipitate was obtained, isolated by frit filtration, and washed 

with cold methanol and ether. The solid was recrystallized in dichloromethane. Yield = 0.900 

g (79%). Elemental analysis calc (%) for 3•CH2Cl2 C29H28Cl2CuI4N4O4: C 30.59; H 2.48; 

N 4.92. Found: C, 30.82; H, 2.42; N, 4.76. IR data (KBr, cm-1) 3448 v(OH); 3076 v(N-H); 

1564 vasym(OAc-); 1439 vsym(OAc-). ESI+  MS (Electrospray ionization mass spectrometry) 

data (MeOH): m/z = 527.9 for [CuL]+, 994 (minor) for [Cu(HL)(L)]+. 

 

Trypan blue assay 

The trypan blue dye exclusion assay was performed by mixing 100 µl of cell 

suspension with 50 µl of 0.4% trypan glue dye before injecting into a hemocytometer and 

counting.  The number of cells that absorbed the dye and those that excluded the dye were 

counted, from which the percentage of nonviable cell number to total cell number was 

calculated. 
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Cell Cultures and Whole-cell Extract Preparation.  

Human prostate cancer cells, C4-2B and PC-3 were grown in RPMI 1640 medium 

supplemented with 10% FBS and maintained at 37°C and 5% CO2.  MCF-10A cells (normal, 

derived from benign human breast tissue were obtained and cultured as previously described. 

A whole cell extract was prepared as previously described [Daniel et al., 2005]. 

 

Analysis of the Proteasomal Activity in Whole-cell Extract  

C4-2B, PC-3 and MCF-10A whole-cell extract (8 µg) was incubated with 10 µmol/L 

chymotrypsin-like-substrate (Suc-LLVY-AMC) in 100 µL assay buffer [50 mmol/L Tris-HCl 

(pH 7.5)] in the presence of different copper complexes, ligand, and inorganic copper salt at 

various concentrations or solvent DMSO as control.  After 2 h incubation at 37° C, 

production of hydrolyzed AMC groups was measured using a Wallac Victor3TM multilabel 

counter with an excitation filter of 365 nm and an emission filter of 460 nm [Daniel et al., 

2005]. 

 

Western Blot Analysis  

Cell extracts were separated by SDS-PAGE and transferred to a nitrocellulose 

membrane.  Western blot analysis was performed using specific antibodies to p27, ubiquitin, 

or PARP (Santa Cruz Biotechnology Inc, Santa Cruz, CA) followed by visualization using 

the HyGLO reagent (Denville Scientific, Metuchin, NJ) 
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Results 

Ligand design and in situ copper complexation.  The iodo-substituted ligand 2,4-diiodo-6-

((pyridine-2-ylmethylamino)methyl)phenol, HLI was synthesized by treatment of 2-hydroxy-

3,5-diiodobenzaldehyde with 2-aminomethylpyridine followed by reduction with sodium 

borohydride [Shakya et al., 2006a; Shakya et al., 2006b].  It can be considered as an 

evolution from its terbutylated analogues inspired by biomimetic efforts to model redox-

active enzymes such as galactose-oxidase [Itoh et al., 1999; Vaidyanathan et al., 1998].  The 

complexes  were designed considering that a metal ion coordinated to the ligand could bind 

to the 20S core of the proteasome, possibly via the terminal threonine residue Thr1 or another 

available coordination site.  Initial exploratory studies on human C4-2B prostate cancer cells, 

comprised of cell death induced by a stoichiometric mixture of HLI and copper(II) chloride in 

DMSO and toward proteasomal activity in whole-cell extracts. These data reported in this 

dissertation show that the resulting HLI:CuCl2:DMSO mixture was fourfold more potent than 

the recently reported gallium species. 

Syntheses, Spectrometry, and Spectroscopic Characterization of complexes 1-3.  

Spectrometric evaluation of the stoichiometric HLI:CuCl2:DMSO mixture using ESI 

(Electrospray ionization) in the positive mode led to the identification of monomeric and 

dimeric fragments that may act as pharmacophores to the inhibition of the proteasome 

complex (Fig. 29).  These fragments fit well with the expected distribution anticipated in 

systems containing copper and iodine isotopes. The relative ESI-MS (Electrospray 

ionization-mass spectrometry) profile for the monomeric [CuLI]+ is m/z = 527.9.  
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Figure 29.  Representative copper(II) complexes with tridentate ligands 

Spectrometric evaluation of the stoichiometric HLI:CuCl2:DMSO mixture led to the 
identification of monomeric and dimeric fragments depicted as [Cu(LI)Cl] (1), Cu(LI)OAc 
(2), and [Cu(HLI)(LI)]OAc (3). 
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A minor peak at m/z = 994 is also detectable in this mixture suggesting a 2:1 ligand-to-

copper complex, where either two fully deprotonated ligands are coordinated to the metal ion 

as in [Cu(LI)2]+H++ or one of the ligands remains protonated as in [Cu(HLI)(LI)]+, respecting 

a 5-coordination preference imposed by the Jahn-Teller effect expected by a 3d9 species such 

as the copper(II) ion [Rorabacher, 2004]. Based on similar systems the latter proposition is 

favored. 

 With the intent of isolating and testing these species as anticancer agents, reactions 

with 1:1, and 2:1 ligand-to-metal ratios were performed. Treatment of 1 equiv. of the ligand 

with 1 equiv. of CuCl2·2H2O in DMSO yielded a green solution that was precipitated with 

ethanol in 30% yield as a crystalline material.  

The isolated product was characterized as [Cu(LI)Cl] (1). It is noteworthy that 1 can 

also be obtained using methanol or ethanol as solvents, and the choice of DMSO was 

intended to match the experimental conditions of the initially used stoichiometric mixture. 

The chloride anions from the copper salt seem able to deprotonate the ligand with subsequent 

formation of hydrochloric acid. Hence, copper chloride was replaced by copper acetate, 

primarily in order to increase the yield of this reaction, as well as a cautionary measure to 

avoid HCl build up [Olaleye and Farombi, 2006].  The ligand HLI (1 equiv.) was treated with 

Cu(OAc)2·2H2O (1 equiv.) in presence of triethylamine as a base to support ligand 

deprotonation yielding the species [Cu(LI)OAc] (2) in 90% yield. The ESI(pos) MS 

(Electrospray ionization mass spectrometry )spectrum shows the characteristic m/z = 527.8 

associated with the fragment [Cu(LI)]+, whereas the acetate species was detected by infrared 

spectroscopy at 1586 and 1402 cm-1 as a monodentate ligand. Elemental analysis showed 

excellent agreement with the proposed formula.  
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 The EPR (Electron paramagnetic resonance) spectra taken at 77 K for 1 and 2 

reinforce this notion with values of g|| ≈ 2.26, g ≈ 2.06, A|| ≈ 174 G and A ≈ 19 G, thus 

typical of 3d9 copper(II) ions in nearly square planar environments.  Furthermore, the UV-

visible spectra of species 1 and 2 in methanol show the presence of a phenolate-to-copper 

charge transfer band at around 450 nm (ε  1250 L·mol-1·cm-1) [Itoh et al., 1999]. 

 When a reaction of 2:1 stoichiometry between HLI and the copper acetate salt was 

carried out in methanol, a green precipitate described as [Cu(HLI)(LI)]OAc (3) was obtained. 

The compound was recrystallized in dichloromethane yielding a microcrystalline material. 

Although crystals suitable for X-ray diffraction were not obtained, infrared spectroscopy 

reveals the presence of acetate counterions, as displayed by prominent peaks at 1564 and 

1439 cm-1. Additional peaks at 3448 are attributed to the presence of OH stretches belonging 

to a protonated HLI ligand. ESI (Electrospray ionization) mass spectra in the positive mode 

shows m/z = 527.9 characteristic of the [Cu(LI)]+ fragment. In good agreement with the 

elemental analysis, these data confirm the presence of two ligands coordinated to copper, one 

of which remaining protonated. This coordination mode for copper has been observed in our 

laboratories with the analogous ligand HLtBu, where tertiary butyl groups occupy the 2- and 

4- positions of the phenol ring. Species 3 shows EPR parameters g, A||, and A similar to 

those of 1 and 2 but with g|| = 2.30, thus, evidencing bonding along the z-axis typical of five-

coordinate copper(II) ions. 

Molecular Structure of complex 1.  Needle-like crystals of [Cu(LI)Cl] (1) were isolated and 

solved diffractometrically by means of X-ray diffraction. The crystal structure of 1 is shown 

in Figure 30 and confirms its mononuclear nature. One copper(II) ion is coordinated to a 

deprotonated ligand with distances of 1.93 Ǻ to the oxygen of the phenolate group,  1.99 Ǻ to 
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the amine nitrogen, and 2.02 Ǻ for the pyridine nitrogen, resembling similar systems [Itoh et 

al., 1999; Vaidyanathan et al., 1998].  The coordination sphere is completed with the anionic 

chloro ligand occupying the fourth position 2.24 Ǻ away from the metal. The copper center 

adopts a distorted square-planar environment. One can, therefore, conclude that contrary to 

the tetradentate phenol-containing ligands tridentate ligands such as HLI do not foster the 

formation of stable dimers in the solid state [Brewer, 2007].  (The spectroscopic, 

spectrometric and structural analyses were generated by the Verani Lab, WSU 

Department of Chemistry). 
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Figure 30.  Crystal structure of [Cu(LI)Cl] (1). 

ORTEP (Oak Ridge Thermal Ellipsoid Plot Program) diagram at 50% probability level for 
[Cu(LI)Cl] (1) with selected bond lengths (Å) and angles (o). Cu(1)-O(1) = 1.929(3), Cu(1)-
N(2) = 1.990(4), Cu(1)-N(1) = 2.018(4), Cu(1
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Figure 30.  Crystal structure of [Cu(LI)Cl] (1). 

ORTEP (Oak Ridge Thermal Ellipsoid Plot Program) diagram at 50% probability level for 
[Cu(LI)Cl] (1) with selected bond lengths (Å) and angles (o). Cu(1)-O(1) = 1.929(3), Cu(1)-
N(2) = 1.990(4), Cu(1)-N(1) = 2.018(4), Cu(1)-Cl(1) = 2.2488(14), N(2)-Cu(1)-Cl(1) = 
162.63(14), O(1)-Cu(1)-N(1) = 66.40(17). 
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Antiproliferative Effect of 1-3 in Tumor Cells.  Our results thus far have allowed us to 

gain detailed understanding on the coordination chemistry of copper complexes as candidate 

drugs or prodrugs for cancer therapy. Human leukemia Jurkat T cells were treated with 

complexes 1-3 at different concentrations for 18 h, followed by trypan blue assay to assess 

cell death.  This is a reliable assay that is reproducible and frequently used in our lab.  All 

species tested demonstrated a dose-dependent increase in cell-killing activity with nearly 

100% cell death at 15 µM, compared to a control treated with DMSO. The values given in 

Table 1 reflect the concentration that each compound induces 50 % cell death. 

The 1:1 copper species 1 and 2 demonstrated IC50 values of 3.82 and 4.46 μmol/L. 

Interestingly, complex 3 exerted a similar degree of potency (IC50 = 3.98 µmol/L).  Because 

the cation [CuII(LI)]+ of 1 is isostructural with that of 2, this observation suggests the 1:1 

ligand-to-metal ratio as the possible pharmacophore and potential therapeutic agent. 

Furthermore, treatment of the cells with up to 50 µM of the ligand HLI or the copper salt 

failed to induce death ratios greater than 10%.  Due to the small standard deviation values 

between 1 and 2, ascertaining the role played by the nature of the anionic ligand (chloride vs. 

acetate) remains unclear and further analysis will be necessary to provide a more conclusive 

result. 
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Table 1. IC50 values for cell death induction by copper compounds.  
 
Human leukemia Jurkat T cells were treated with copper compounds 1-3 for 18h, followed 
by measurement of cell death in a trypan blue exclusion assay. Standard deviations are 
indicated. 

 

 

 

 

 

 

 

 

 

 

 

Compound Cell death induction 
IC50 µmol/L 

1 3.82  0.01  
2 4.46  0.01  
3 3.98  0.01  

HLI no activity 
CuCl2 no activity 
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In-vitro Inhibition of Proteasomal Chymotryspin-like Activity by 1-3.  In order to test the 

role of complexes 1-3 in targeting the cellular proteasome, we compared the independent 

activity of the salt CuCl2·2H2O, the ligand HLI
, and that of a 1:1 mixture of copper chloride 

and the ligand HLI towards C4-2B prostate cancer cell extract.  The results indicate that both 

the copper chloride salt and the copper chloride:ligand  mixture inhibit the chymotrypsin-like 

activity of the 26S proteasome with IC50 values of ~3.5 µM (Fig. 31a).  In contrast, the 

ligand HLI alone had a negligible effect, even at concentrations as high as 25 µM.  This 

seems to be consistent with prior work in our laboratories in which the copper ion [Chen and 

Dou, 2008; Daniel et al., 2005; Daniel et al., 2004] is the driving force underlying 

proteasome inhibition. We hypothesize that the ligand is necessary as a carrier to preclude 

undesired nonspecific interactions of copper in the cell extract [Brewer, 2007].  In order to 

underscore the role of the ligand, we tested complexes 1-3 under similar conditions. All 

species inhibited the proteasomal chymotrypsin-like activity in a concentration-dependent 

manner as shown in Figure 31b. 

 

 

 

 

 

 

 

 

 



 99

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31. In vitro proteasome-inhibitory activity of compounds 1-3 in C4-2B cell 
extracts. 
 
A. Proteasomal chymotrypsin-like activity (%CT) of the ligand HLI, the salt CuCl2, and a 1:1 
HLI:CuCl2 mixture in DMSO at 25 mmol/L stock solution. B. Concentration dependent 
inhibition by 1-3 at 0.1, 1, 5, 10, and 25 µM 
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Inhibition of Chymotrypsin-like Activity and Induction of Apoptosis by 1-3 in Multiple 

Prostate Cancer Cell Lines.  In the previous section we have discussed the inhibition of 

proteasomal chymotryspin-like activity under cell-free conditions. When intact prostate 

cancer cells were treated with HLI or the Cu+2 ion at the 15 µmol/L concentration, less than 

20% proteasome inhibition was evident. In order to confirm the ability of the copper 

complexes to inhibit the proteasomal activity in cancer cells, two distinct prostate cell lines 

were tested, namely androgen receptor-positive C4-2B and androgen receptor-negative PC-3.  

Androgen receptor-positive C4-2B prostate cells were first treated with compound 1 

at 5, 10 and 15 µM concentrations for 18 h.  The cells were harvested and proteins extracted, 

followed by measurement of proteasomal inhibition and apoptosis. Cells were also treated 

with the vehicle DMSO, the ligand HLI, and the salt CuCl2·2H2O at the same concentrations 

to serve as negative controls. Compound 1 inhibited the proteasomal chymotrypsin-like 

activity in a dose dependent manner by 35% at 5 µM, 62% at 10 µM and 85% at 15 µM (Fig. 

32).  Consistent with proteasome inhibition by 1, levels of ubiquitinated proteins were also 

increased in a dose-dependent fashion in the treated C4-2B cells (Fig. 33). In a sharp 

contrast, cells treated either with the solvent, the ligand, or the copper salt failed to inhibit 

significantly the proteasome activity (Figs. 32, 33 and data not shown). Therefore, we 

hypothesize that the combination of copper(II) ion and ligand is a necessary requirement in 

order to cross the cellular membrane and reach the proteasome. 

 

 

 

 

 

 



 101

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 32. Effects of compounds 1-3 on C4-2B cells are dose-dependent. 
 
Human prostate C4-2B cells were treated with compounds 1, 2, or 3 for 18 h followed by 
measurement of proteasomal chymotrypsin-like activity. DMSO was used as solvent control. 
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It has been shown that inhibition of the proteasomal chymotrypsin-like activity is 

associated with apoptosis of tumor cells [Lopes et al., 1997].  To investigate whether the 

proteasomal inhibition by 1 is associated with cell death, cleavage of the DNA repair protein, 

poly-(ADP-ribose) polymerase (PARP) and cellular morphological changes were measured 

in the same experiment.  Cells showed a significant decrease in levels of PARP protein (Fig. 

33) when treated with 1 at 10 and 15 µM.  Consistently, aberrant morphological changes, 

namely the rounded up shape and detached shown in Figure 34, were also observed in 1 in a 

concentration-dependent manner.  Again, cells treated with DMSO, the ligand HLI, or the 

salt CuCl2 individually were unable to perturb the full length PARP fragment and no visible 

aberrant morphological changes were observed up to 15 µM tested (Figs. 33, 34 and data not 

shown).   

Similar results were also obtained from the C4-2B cells treated with compounds 2 

and 3: these two compounds inhibited about 80% of proteasomal activity at concentrations of 

10 and 15 µM (Fig. 32), associated with increased levels of ubiquitinated proteins, decreased 

levels of PARP protein and the appearance of characteristic cell death morphology (Figs. 33, 

34).  These results show that the inhibition of proteasomal chymotrypsin-like activity in C4-

2B cells is associated with the induction of cell death (e.g. apoptosis).  Due to similar 

activity, it is also possible that in the 2:1 species 3, the protonated ligand is labile and easily 

interchangeable suggesting that the active pharmacophore in both 2 and 3 is the cupric cation 

[Cu(LI)]+. 
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Figure 33. Dose dependent effects of compounds 1-3 on C4-2B cells. 
 
Human prostate C4-2B cells were treated with compounds 1, 2, or 3 for 18 h followed by 
measurement of accumulation of ubiquitinated proteins (Ub-Prs), and cleavage of PARP. 
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Figure 34. Dose dependent effects of compounds 1-3 on C4-2B cells. 
 
Human prostate cancer C4-2B cells were treated with HLI, CuCl2, 1, 2, and 3 followed by 
visualization of apoptotic morphological changes. 
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We next tested the effects of these copper compounds toward androgen receptor-

negative PC-3 prostate cells:  Upon demonstrating the ability of copper compounds to inhibit 

the proteasomal chymotrypsin-like activity in androgen receptor-positive C4-2B cells, we 

then tested the effect of compounds 2 and 3 on androgen receptor-negative PC-3 prostate 

cancer cells.  PC-3 cells were treated respectively with different concentrations of 2 and 3, 

copper salt, and HLI for 18 h, followed by measurement of the proteasome activity, 

accumulated ubiquitinated proteins and cell death induction.  We found that 3 could inhibit 

the chymotrypsin-like activity by ~30% and ~85% at 5 and 10 µmol/L, respectively, whereas 

2 could inhibit the chymotrypsin-like activity by ~88% at 10 µmol/L (Fig. 35).  Additionally, 

cells treated with either CuCl2 or HLI showed no effect toward proteasome activity compared 

to the DMSO control. 

Consistent with the inhibition of proteasomal chymotrypsin-like activity, significantly 

increased levels of ubiquitinated proteins were detected in the PC-3 cells treated with 2 and 3 

but not metal salt or HLI (data not shown).  In the same experiment, treatment with 2 and 3 

resulted in significant cellular detachment and cleavage of PARP, associated with cell death 

induction (Fig. 36).  These results show that as in C4-2B prostate cancer cells, copper 

compounds 2 and 3 could target and inhibit the proteasome in PC-3 cells. Our results in this 

dissertation remain consistent in that HLI or the metal salt alone had little effect on 

proteasome activity and overall cellular integrity. 
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Figure 35. Proteasome inhibitory effects of compounds 2 and 3 on androgen-dependent 
PC-3 cells. 
 
Human prostate cancer C4-2B cells were treated with HLI, CuCl2, 1, 2, and 3 for 18 h 
followed by measurement of proteasomal chymotrypsin-like activity. 
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Figure 36. Cell death inducing effects of compounds 2 and 3 on androgen-dependent 
PC-3 cells. 
 
Human prostate cancer C4-2B cells were treated with HLI, CuCl2,  2, and 3 for 18 h followed 
by visualization of cellular morphology. 
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Kinetic effect of complexes 1-3 on proteasome Inhibition and cell death 

induction.  The previous results show that complexes 1-3 demonstrated potent proteasome-

inhibitory and cell death-inducing activities in multiple prostate cancer cell lines.  In order to 

study the kinetic effect of copper complex-induced proteasome inhibition, C4-2B prostate 

cancer cells were treated with 15 µM of 2 for 2-18 h.  The proteasomal chymotrypsin-like 

activity was inhibited by 45%, 60%, 70% and 80% after 2, 4, 8, and 18 h, respectively, as 

shown in the graph on Figure 37A.  The proteasomal chymotrypsin-like activity inhibition 

was associated with accumulated levels of ubiquitinated proteins (Fig. 37B). Consistently, 

cell death associated PARP cleavage was visible after 8 h treatment and full length PARP 

was completely cleaved into its respective p65 fragment after 18 h (Fig. 37B). This 

observation is also supported by abnormal morphological changes during later time points, as 

well as the appearance of rounded up and detached cells indicative of cell death, as shown by 

selected micrographs in Figure 37C.  These results presented in this dissertation clearly show 

that cell death induction occurs following inhibition of proteasomal activity.  Therefore, 

proteasome inhibition appears to be a requirement for cell death (e.g. apoptosis) induction. 
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Figure 37.   Kinetic effect of proteasome inhibition and cell death induction by 
compound 2 in C4-2B cells. 
 
Human prostate cancer C4-2B cells were treated with 15 µmol/L of compound 2 for 
indicated time points followed by measurement of proteasomal chymotrypsin-like activity 
(A) accumulated ubiquitinated proteins (Ub-Prs) and PARP cleavage (B) and cell death 
associated morphological changes (C). 
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Nontoxic Effect of 1-3 in Immortalized Human Breast Cells.  The ability to 

distinguish normal from malignant cells is imperative for developing successful anticancer 

drugs.  To determine whether inhibition of proteasome activity achieved by copper 

compounds is selective toward malignant cells and not normal cells, we used normal-

immortalized human breast cell line, MCF-10A to test this effect.  MCF-10A cells were 

treated with different concentrations of 2 and 3 up to 10 µmol/L for 18 h, followed by 

measurement of proteasomal chymotrypsin-like activity and cell death.  We found that when 

these nontransformed cells were treated with 2 and 3, no proteasome inhibition was detected 

(data not shown).  Other treatments also had no or little effect on MCF-10A cells. To 

determine whether the inability of copper compounds to inhibit the proteasome activity is 

associated with the lack of cell death induction in these normal immortalized breast cells, cell 

death-associated morphological changes were then assessed in the same experiment.  These 

normal, immortalized MCF-10A cells showed only little, if any, such cell death-related 

detachment after treatment with 2 and 3 up to 18 h (Fig. 38).  Our data suggests that these 

copper compounds could inhibit the proteasome activity and induce cell death selectively in 

human cancer cells but not in normal immortalized breast cells. 
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Figure 38. Effects of compounds 2 and 3 on normal, immortalized MCF-10A cells. 
 
Human immortalized MCF-10A breast cells were treated with either HLI, CuCl2, 2, or 3 for 
18 h followed by visualization of morphological changes. Abnormal (spherical, detached) 
morphological changes were not observed in normal breast cells after treatment with CuCl2, 
HLI, or copper compounds. 
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Discussion 
 

Following the encouraging results observed for similar gallium(III) complexes [Chen 

et al., 2007b] this dissertation presented the results of proteasome inhibition by copper(II) 

complexes of the iodo-substituted ligand HLI as a potential anticancer therapeutic route. 

Three compounds with distinctive stoichiometries and nature of the anionic monodentate 

ligand were compared. On one hand, it has been demonstrated that the non-metallated ligand 

is incapable of inhibiting the 20S proteasome activity. On the other hand, inhibition does 

occur by the copper(II) chloride salt, but only under cell-free conditions. Therefore, it is 

hypothesized that the primary function of the copper complexes is to serve as a carrier to 

cross the cell membrane. Once inside the cell, this complex is likely to cause proteasome 

inhibition by coordination of the metal center to available amino acids capable of forming 

Cu-N, Cu-S, or Cu-O bonds.  If this hypothesis is correct, the stoichiometry of the complex is 

of paramount importance. Consistently, the 1:1 metal-to-ligand complexes 1 and 2 are 

comparable or slightly more effective than the 1:2 species 3. Nonetheless, due to the small 

SD values in terms of cytotoxicity, it seems premature to make such a comparison. 

Copper(II), being a labile species, can gain in stability by bonding to deprotonated and 

negatively charged phenolates and the nature of the anionic monodentate ligand per se may 

or may not be relevant. The data in this dissertation shows, that Species 1 and 2 have shown 

comparable proteasome-inhibitory activity in vitro. Therefore, it can be suggested that the 

pharmacophore to act as an active species can be described as [CuLI]+ or, more likely, some 

equivalent solvated species such as [CuLI(H2O)]+ or [CuLI(H2O)2]+, where one or more 

water molecules replace the chloro or acetato ligands. Granted that more detailed studies are 

necessary to provide final evidence, this pharmacophore would present an open coordination 
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that facilitates interaction with available amino acids with high affinity for copper.  It is 

viable that the active form of the copper complex binds to the amino-terminal threonine 

residue of the chymotryptic active center in the 20S proteasome. This hypothesis is based on 

known mechanisms for different classes of proteasome inhibitors [Adams, 2004; Adams et 

al., 1999; Groll et al., 2006].  Recent data [Cvek et al., 2008] indicating that the JAMM 

domain of the 19S caps in the 26S proteasome is another target for copper complexes 

suggests that further studies are necessary to assess this possibility and to ascertain the 

precise locus of coordination.  It is also possible that 3 is a pro-drug and in order to become 

active, the loss of a ligand must occur.  This process would convert this compound into a 

similar [CuLI(H2O)n]+ species, as described in Figure 39. 
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Figure 39.  Suggested conversion of 3 into a [CuLI(H2O)n]+ species. 

This depiction suggests the assignment of species [CuLI]+ as the minimal pharmacophore 
needed for proteasomal chymotryspin-like activity. 
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The depth of the therapeutic potential for metal-based proteasome inhibitors is yet to 

be determined. It is evident, however, that this can become a viable novel route to anticancer 

therapy. Ongoing work focuses on (i) the metabolic stability and the pharmacokinetic 

behavior of these compounds, (ii) assessment of the role of anionic ligands, and (iii) on the 

inclusion of other bivalent metal centers such as cobalt, nickel, and zinc, and trivalent ions 

such as iron and ruthenium to assess the roles of ligand dissociation, the 1:1 and 1:2 metal-to-

ligand stoichiometry, redox activity, and charge. Biomimetic models of the 1:1 gallium and 

copper species are also being developed towards complexation with threonine and other 

amino acids and short peptides in order to determine the precise coordination loci within the 

proteasome. 
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CHAPTER 4 
 

Comparative Activities of Nickel(II) and Zinc(II) Complexes of 

Asymmetric [NN’O] Ligands as 26S Proteasome Inhibitors 

 

Adapted from published material in Inorganic Chemistry, 2009; 48: 5928-5937 

 
In this dissertation, we compare the proteasome inhibition capabilities of two 

anticancer candidates, [Ni(LIA)2] (1) and [Zn(LIA)2] (2) where LIA- is the deprotonated form 

of the ligand 2,4-diiodo-6-((pyridine-2-ylmethylamino)methyl)phenol.  Species 1 contains 

Nickel(II), a considerably inert ion that favors covalency, whereas 2 contains Zinc(II), a 

labile transition metal ion that favors predominantly ionic bonds. We report on the synthesis 

and characterization of 1 and 2 using various spectroscopic, spectrometric, and structural 

methods. Furthermore, the pharmacological effects of 1 and 2, along with the salts NiCl2 and 

ZnCl2, were evaluated in vitro and in cultured human cancer cells in terms of their 

proteasome-inhibitory and cell death-inducing capabilities. It is shown that neither NiCl2 nor 

1 have the ability to inhibit the proteasome activity at any sustained levels. However, ZnCl2 

and 2 showed superior inhibitory activity to the chymotrypsin-like activity of both 26S 

proteasome (IC50 = 5.7 and 4.4 µmol/L, respectively) and purified 20S proteasome (IC50 = 

16.6 and 11.7 µmol/L, respectively) under cell-free conditions.  Additionally, inhibition of 

proteasomal activity in cultured prostate cancer cells by 2 was associated with higher levels 

of ubiquitinated proteins and cell death. Treatment with either metal complex or salt was 

relatively non-toxic toward human normal cells. The results presented in this dissertation 

strengthen the current working hypothesis that fast ligand dissociation is required to generate 
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an [MLIA]+ pharmacophore capable of interaction.  This interaction, possibly via the N-

terminal threonine amino acids present in the active sites, renders the proteasome inactive. 

These results present a compelling rationale for 2, along with its gallium(III) and copper(II) 

congeners to be further investigated as potential anticancer drugs that act as proteasome 

inhibitors. 
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Figure 40.  Proposed model of the species responsible for proteasome inhibition 
 
Representation of the equilibrium of [M(LIA)2] ↔ [M(LIA)]+ + LIA- to generate the [M(LIA)]+ 
pharmacophore.  
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Materials and Methods 
 
 

Materials.  All reagents were obtained from commercial sources and were used as 

received.  Methanol was distilled over CaH2. IR (Infrared) spectra were measured from 4000 

to 400 cm-1 as KBr pellets on a Tensor 27 FTIR-spectrophotometer.  ESI spectra on the 

positive mode were measured in methanol on a Micromass Quattro LC triple quadrupole 

mass spectrometer with an electrospray/APCI source and Walters Alliance 2695 LC, 

autosampler and photodiode array UV detector. Experimental assignments were simulated 

based on peak location and isotopic distributions. The 1H-NMR spectra were measured in 

CDCl3 in a Varian Unity-300 instrument. Elemental analyses were performed by Midwest 

Microlab, Indianapolis, Indiana. Trypan blue exclusion dye was purchased from Sigma 

Aldrich (St. Louis, MO).  The peptide substrate Suc-LLVY-AMC (for the proteasomal 

chymotrypsin-like activity) was purchased from Calbiochem, Inc (San Diego, CA).  RPMI 

1640, penicillin, and streptomycin were purchased from Invitrogen (Carlsbad, CA).  Fetal 

bovine serum was purchased from Aleken Biologicals (Nash, TX).  Antibodies against 

Ubiquitin, Actin, and secondary antibodies were purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA).  Mouse monoclonal antibody against human poly (ADP-ribose) 

polymerase (PARP) was purchased from BIOMOL International LP (Plymouth Meeting, 

PA). 

X-ray Structural Determination for [Ni(LIA)2] (1) and [Zn(LIA)2] (2): Diffraction 

data were measured on a Bruker X8 APEX-II kappa geometry diffractometer with Mo 

radiation and a graphite monochromator. Frames were recorded for 10 s at 100 K with the 

detector at 40 mm and 0.3 degrees between each frame. APEX-II (Bruker AXS INC, 



 120

Madison WI, USA, 2005) and SHELX software were used in the collection and refinement of 

the models. 

Crystals of [Ni(LIA)2] (1)  were colorless plates. A total of 86456 reflections were 

counted, which averaged to 10883 independent data. Hydrogen atoms were placed at 

calculated positions except for those on nitrogen which were observed. The complex 

crystallized with three equivalents of chloroform. All atoms occupy general positions. 

Crystals of [Zn(LIA)2] (2) appeared as colorless needles. A total of 77377 reflections 

were measured, yielding 14112 unique data.  Hydrogen atoms were placed in calculated 

positions.  The complex crystallized with three equivalents of methylene chloride and one 

equivalent of water. All atoms occupy general positions. 

Electronic Structure Calculations Methods: The B3LYP level of theory [Becke, 

1988] with the SDD of the presence of iodine atoms, and all of the calculations were done 

using the Gaussian series of programs. Geometries were fully minimized, without symmetry 

constraints, using standard methods.  Located stationary points were characterized by 

computing analytic vibrational frequencies. Reported energies include zero-point correction.  

Syntheses: The iodo-substituted ligand HLIA was synthesized by treatment of 2-

hydroxy-3,5-diiodobenzaldehyde with 2-aminomethylpyridine in methanol followed by 

reduction with sodium borohydride as previously published [Shakya et al., 2006b]. 

[Ni(LIA)2] (1).  A 15 mL methanol solution of HLI (0.49 g, 1.1 mmol) was added dropwise to 

a 15 mL methanol solution of Ni(OAc)2·2H2O (0.25 g, 1.2 mmol) at 45 oC. After 45 minutes 

a purple precipitate was obtained, isolated by frit filtration, and washed with cold methanol 

and ether. The solid was recrystallized in chloroform. Yield = 0.95 g (88 %). Elemental 

analysis calculated for 1 C26H22NiI4N4O2: C 31.58; H 2.24; N 5.67. Found: C, 31.47; H, 
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2.30; N, 5.56. IR (KBr, cm-1) 3068 v(N-H), 1606, 1593 (C=N from pyridine), 1486 (C-O 

from phenyl). ESI pos. in MeOH: m/z = 988.9 for [NiL2+H+]+.  

[Zn(LIA)2] (2).  A 15 mL methanol solution containing HLI (0.51 g, 1.1 mmol) was added 

dropwise to a 15 mL methanol solution of Zn(OAc)2·2H2O (0.26 g, 1.2 mmol) at 45 oC. A 

white precipitate was obtained after 1 hour, isolated by frit filtration, and washed with cold 

methanol and ether. The solid was recrystallized in dichloromethane. Yield = 0.85 g (77 %). 

Elemental analysis calculated for 2 C26H22ZnI4N4O2: C 31.37; H 2.23; N 5.63. Found: C, 

31.27; H, 2.38; N, 5.58. IR (KBr, cm-1) 3290 (N-H), 1608 (C=N from pyridine), 3079 v(N-

H). ESI pos. in MeOH: m/z = 994.9 for [ZnL2+H+]+.  

Cell Cultures and Whole-cell Extract Preparation.  Human prostate cancer cells, 

C4-2B and PC-3, and human leukemia Jurkat T cells were grown in RPMI-1640 

supplemented with 10 % fetal bovine serum and maintained at 37° C and 5 % CO2.  MCF-

10A (normal, derived from benign human breast tissue) were obtained and cultured as 

previously described [Daniel et al., 2005]. A whole-cell extract was prepared as previously 

described [Daniel et al., 2005]. 

Cell Proliferation Assay.  Cells were seeded in quadruplicate in a 96-well plate and 

grown until 70-80 % confluence, followed by treatment with indicated agents for 18 h.  After 

that, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 

done as described previously [Daniel et al., 2005]. 

Trypan Blue Assay.  Jurkat T cells were treated with  NiCl2, ZnCl2, 1, and 2 for 18 h 

at indicated concentrations followed by measurement of cell death.  The trypan blue dye 

exclusion assay was performed by mixing 100 µl of cell suspension with 50 µl of 0.4 % 

trypan blue dye before injecting into a hemocytometer and counting.  The number of cells 
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that absorbed the dye and those that excluded the dye were counted, from which the 

percentage of nonviable cell number to total cell number was calculated. 

Proteasomal Activity in Whole-cell Extract or Purified 20S proteasome.  C4-2B 

whole-cell extract (8 µg) or a purified 20S rabbit proteasome (35 ng) were incubated with 10 

µmol/L CT-substrate, Suc-LLVY-AMC, in 100 µL assay buffer [50 mmol/L Tris-HCl  (pH 

7.5)] in the presence of NiCl2, ZnCl2, 1, and 2 at various concentrations or solvent DMSO as 

control.  After 2 h incubation at 37°C, production of hydrolyzed AMC groups was measured 

using a Wallac Victor3TM multilabel counter with an excitation filter of 365 nm and an 

emission filter of 460 nm. 

Proteasome CT-like Activity in Cells.  Proteins extracted from cells after each 

treatment were incubated for 2 h at 37° C in 100 µl of assay buffer (50 mmol/L Tris-HCL, 

pH 7.5) with 10 µmol/L fluorogenic substrate Suc-LLVY-AMC as described previously 

[Daniel et al., 2005]. 

Western Blot Analysis.  Cell extracts were separated by SDS-PAGE and transferred 

to a nitrocellulose membrane.  Western blot analysis was performed using specific antibodies 

to PARP, Ubiquitin, or AR followed by visualization using the HyGLO reagent (Denville 

Scientific, Metuchin, NJ). 

Cellular Morphology Analysis.  A Zeiss Axiovert 25 microscope was used for all 

microscopic imaging with phase contrast for cellular morphology. Magnification x100. 
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Results 

 Ligand Design.  The work in this dissertation focuses on the development of discrete 

complexes of well established stoichiometry, formed between asymmetric [NN’O] ligands 

and transition metal ions for anticancer therapy. Such ligands are an evolution from 

terbutylated analogues used as biomimetic models for galactose-oxidase [Itoh et al., 1999; 

Shimazaki et al., 2000]. The presence of electron-donating and -withdrawing phenol 

substituents (i.e. H, tBu, Cl, Br, and I) in such complexes has shown distinctive influence on 

the apoptosis of cisplatin-resistant neuroblastoma and prostate cancer cell lines [Chen et al., 

2007b; Shakya et al., 2006b].  We are mostly engaged with the phenol-based ligand 2,4-

diiodo-6-(((2-pyridinylmethyl)amino)methyl)phenol, synthesized by treatment of 2-hydroxy-

3,5-diiodobenzaldehyde with 2-aminomethylpyridine followed by reduction with sodium 

borohydride [Shakya et al., 2006b].  Upon deprotonation, this ligand leads to 2:1 ligand-to-

metal [M(LIA)2] species with divalent ions, hence, eliminating the required charge balance by 

counterions. Moreover, a secondary amine in this ligand allows for the design of species with 

appended moieties to enhance water solubility [Melchior et al., 2001; Storr et al., 2005] 

(currently at 4.5x10-5 mol/L for the equivalent gallium complex) or lipophilicity [Kirin et al., 

2005; Shakya et al., 2006b]. Such changes can address concerns with future oral 

administration as therapeutics.  

 Syntheses, Spectrometric, and Spectroscopic Evaluation. Complexes [Ni(LIA)2] 

(1) and [Zn(LIA)2] (2) were synthesized by treatment of HLIA with the proper acetate salts in 

methanol and isolated in good yields (~80 %). Triethylamine was used as a base to ensure 

ligand deprotonation.  Spectrometric evaluation of 1 and 2 in methanol using ESIMS 

(Electrospray Ionization Mass Spectrometry) in the positive mode led to identification with a 
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good isotropic distribution for the main peaks m/z = 988.7 and 994.7 respectively for 

[1+(H+)]+ and [2+(H+)]+. The 1:1 ligand-to-metal species were also detected via ESIMS 

(Electrospray Ionization Mass Spectrometry).  Since such species only become prominent at 

higher cone voltages, they were considered a direct result of fragmentation of 1 and 2. 

Infrared spectra confirmed the presence of the ligand and revealed the absence of peaks at ca. 

1560 and 1450 cm-1 associated with potential acetate counterions.  This gives further 

evidence that the 2:1 ligand-to-metal species are the favored products. Furthermore, 

elemental analyses were in excellent agreement with those expected for 1 and 2. 

The 1H-NMR (Nuclear Magnetic Resonance) spectrum of the ligand shows the 

expected signals for protons at the pyridine and phenol rings between 7.0 and 9.0 ppm (parts 

per million) [Shakya et al., 2006b].  Distinctive signals for methylene groups vicinal to the 

pyridine and phenol rings appear respectively as singlet peaks at 3.94 and 3.91 ppm.  At 

room temperature the 1H-NMR spectrum of the zinc complex 1 is comparable to that of the 

ligand with further splitting of the peaks between 7-9 ppm, suggestive of two ligands with 

dissimilar conformation.  Equally distinctive is the observation that the methylene signals 

become broadened and split into 6 ill-defined bands, indicating that the complex is not rigid, 

and that at least six of the eight methylene protons are non-equivalent.  By lowering the 

temperature to ca. -60oC, these signals coalesce into three peaks. The amine proton, 

originally at 3.49 ppm in the ligand, splits into two broad peaks at 1.77 and 1.18 ppm and 

appears at 2.20 ppm at low temperature. The nickel species yielded broad and ill-defined 1H-

NMR results in agreement with the paramagnetic nature of a 3d8 high spin species.  A 

detailed investigation of the ligand dynamics of 1 and its gallium-containing counterpart 
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using VT-NMR (Variable Temperature-Nuclear Magnetic Resonance) properties is under 

development.  

 Molecular Structural Characterization.  Good crystals for X-ray diffractometric 

analyses were isolated for 1 and 2 in chloroform and dichloromethane, respectively, and their 

molecular structures were determined. The ORTEP (Oak Ridge Thermal Ellipsoid Plot 

Program) renditions for 1 and 2 are shown in Figure 41, and selected bond lengths and angles 

are displayed in Table 2. Complex 1 crystallizes in a monoclinic space group P21/n 

composed of a nickel(II) ion coordinated to two deprotonated (LIA)- ligands, with each of 

them containing an [NpyNamOphen] set of donors.  Both ligands are facially coordinated with 

the two pyridine rings (Ni - Npy ≈ 2.09 Å), the two amine groups (Ni - Nam ≈ 2.09 Å), and 

the two phenolate rings (Ni - Ophen ≈ 2.04 Å), arranged trans to one another to yield a 

pseudo-octahedral geometry. Crystals of 2 appeared as colorless needles and crystallize in an 

orthorhombic P212121 space group, also showing a similar facial coordination of the (LIA)- 

ligands in a pseudo-octahedral geometry.  However, whereas 1 exhibits a symmetrical all-

trans environment described as [Ni<Nam1Nam2><Npy1Npy2><O(phO-)1O(phO-)2>] in a bent 

arrangement (Lesh, 2009, 345), 2 is described as having an all-cis [Zn<Nam1O(phO-

)2><Npy1Nam2><O(phO-)1 Npy2>].  As observed by the 1H-NMR (Nuclear Magnetic 

Resonance) spectrum with distinctive signals for methylene groups the two ligands present 

dissimilar conformations. 

We have demonstrated the role played by structural and electronic effects in a series 

of 3d5-10 [M(L)2] species with such asymmetric NN’O ligands.  Although ligand rigidity 

enforces meridional coordination in similar imine ligands, electronic configuration leads to a 

facial coordination mode in flexible amines.  The metal centers also dictate the preferential 
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cis or trans orientation of equivalent phenolates and other donor sets in vicinal ligands, with 

3d5
high spin ions [Imbert et al., 2005] displaying a cis-arrangement and 3d6

low spin and 3d7
 high 

spin ions,  supporting a trans-orientation.  Species 1 reinforces the notion of an all-trans mode 

for 3d8 configurations, whereas 2 seems to fall within other 3d10 configurations [Lanznaster 

et al., 2006; Shakya et al., 2006b] lacking a clear preference.  Another remark is that while 

most of the Ophenolate bond lengths for 1 and 2 are comparable at 2.02-2.05 Å, one of the Zn-

Ophenolate bonds for 2 is elongated reaching ca. 2.11 Å.  This is attributed to the 3d10 

electronic configuration of the zinc(II) ion which favors electrostatic interactions. 
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Figure 41.  ORTEP  (Oak Ridge Thermal Ellipsoid Plot Program) diagrams at 50% 
probability level for 1(a) and 2(b). 
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Ni(1)-O(2) = 2.036(2) 
Ni(1)-O(1) = 2.057(2) 
Ni(1)-N(2) = 2.088(3) 
Ni(1)-N(3) = 2.090(3) 
Ni(1)-N(4) = 2.096(3) 
Ni(1)-N(1) = 2.098(3) 
 
O(2)-Ni(1)-O(1) = 179.52(10) 
O(2)-Ni(1)-N(2) = 87.86(10) 
O(1)-Ni(1)-N(2) = 91.99(10) 
O(2)-Ni(1)-N(3) = 89.60(10) 
O(1)-Ni(1)-N(3) = 90.87(10) 
N(2)-Ni(1)-N(3) = 99.14(11) 
O(2)-Ni(1)-N(4) = 92.66(10) 
O(1)-Ni(1)-N(4) = 87.49(10) 
N(2)-Ni(1)-N(4) = 179.47(11) 
N(3)-Ni(1)-N(4) = 80.76(11) 
O(2)-Ni(1)-N(1) = 88.86(10) 
O(1)-Ni(1)-N(1) = 90.66(10) 
N(2)-Ni(1)-N(1)  = 81.01(11) 
N(3)-Ni(1)-N(1) = 178.45(11) 
N(4)-Ni(1)-N(1) = 99.10(12) 

Zn(1)-O(2) = 2.025(6) 
Zn(1)-O(1) = 2.111(5) 
Zn(1)-N(1) = 2.149(6) 
Zn(1)-N(4) = 2.179(6) 
Zn(1)-N(2) = 2.181(7) 
Zn(1)-N(3) = 2.259(7) 
 
O(2)-Zn(1)-O(1) = 92.0(2) 
O(2)-Zn(1)-N(1) = 90.0(2) 
O(1)-Zn(1)-N(1) = 99.6(2) 
O(2)-Zn(1)-N(4) = 92.4(2) 
O(1)-Zn(1)-N(4) = 88.7(2) 
N(1)-Zn(1)-N(4) = 171.3(3) 
O(2)-Zn(1)-N(2) = 168.9(2) 
O(1)-Zn(1)-N(2) = 89.2(2) 
N(1)-Zn(1)-N(2) = 79.0(2) 
N(4)-Zn(1)-N(2) = 98.6(2) 
O(2)-Zn(1)-N(3) = 87.9(2) 
O(1)-Zn(1)-N(3) = 166.7(2) 
N(1)-Zn(1)-N(3) = 93.7(2) 
N(4)-Zn(1)-N(3) = 78.1(3) 
N(2)-Zn(1)-N(3) = 93.5(2) 

 

Table 2.  Selected bond lengths (Å) and angles (deg) for 1 and 2. 

 

(a)                                                            (b)(a)                                                            (b)
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Electronic Structure Calculations.  A series of electronic structure calculations 

were carried out for the nickel-containing 1, and zinc-containing 2, as well as on isomers 

with alternative geometries and binding modes aiming at evaluating bond nature, 

delocalization and energy differences between isomers.  These results allowed to gain insight 

on how the electronic structure of these species may foster the formation of the expected 

pharmacophores [MLIA]+. The optimized geometries for the electronic structures of 1 and 2 

are in good agreement with the crystallographic data presented above.  

Nickel species: A recent study on similar nickel complexes supports a favorable trans 

facial coordination of the ligands over the meridional mode by approximately 5.0 kcal/mol 

using a comparable level of theory.  Therefore, the work in this dissertation was focused on 

two different all-trans facial isomers, namely, the structurally characterized 1 and a 

hypothetical 1’.  Isomer 1 displays both phenolate rings in parallel planes, whereas these 

same rings are perpendicular to one another in 1’ (Figure 42A).  The energy difference 

between the two structures is 3.7 kcal/mol, clearly favoring 1 as the lowest energy state. 

Interestingly, we recently compared similar isomers with unsubstituted phenolate rings and 

the energy difference was a mere 1.1 kcal/mol.  It can be suggested that the iodine 

substituents play a significant role in favoring 1 instead of 1’.  Furthermore, both isomers 

display triplet ground states with S=1, consistent with a 3d8 high spin configuration where 

two unpaired electrons populate the dX
2-y

2 (SOMO) and dz
2 (SOMO-1) (Single Occupied 

Molecular Orbitals) orbitals. (Figure 42B).   
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Figure 42.  Coordination mode of Nickel isomer complexes 

A. Depiction of the two facial [Ni(LIA)2] isomers 1 and 1’. B. Selected MOs (Molecular 
Orbitals) for unpaired electrons. 
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Because divalent zinc is a 3d10 ion, it lacks LFSE (Ligand Field Stabilization Energy) 

and the coordination mode is most likely the result of ligand sterics.  For 2, we observed a 

new facial all-cis [Zn<Nam1O(phO-)2><Npy1Nam2><O(phO-)1 Npy2>] coordination mode for a 

doubly deprotonated species, well in contrast with the all-trans counterpart obtained 

previously with a non-substituted ligand.  Thus two different facial isomers were explored for 

the zinc complex as shown in Figure 43A.  The structurally characterized 2 and a 

hypothetical 2’ that matched the geometry adopted for the nickel containing 1.  Interestingly, 

the calculations favor 2’ by a small margin of less than 2.0 kcal/mol, thus in disagreement 

with the observed structure. Therefore, in the absence of a LFSE (Ligand Field Stabilization 

Energy) the bonding is mainly ionic in nature and other factors such as solvation, crystal 

packing, or intermolecular force effects must control the final geometry.  
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Figure 43. Depiction of zinc isomers and possible interaction of N-terminal threonine.  

A. Depiction of the two facial [Zn(LIA)2] isomers 2 and 2’. B. Possible interaction between 
the fragment [Zn(LIA)]+ and threonine. 
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In order to address partial atomic charges, natural bond order (NBO) analysis was 

performed with both 1 and 2, the results are shown in Table 3.  It is clear from these charge 

distributions that the interaction between the Ni(II) center in 1 and the ligand is more 

delocalized, i.e. covalent, than the interaction between the Zn(II) center and the ligand in 2. 

This can be seen by lower charges on the metal: 1.3 for 1 versus 1.6 for 2.  The values for 

other atoms in 2 are consistently larger in magnitude reinforcing the notion of more 

localized, i.e. ionic bonds.  These values indicate that there is less stabilization of the positive 

divalent metal charge unto the ligands for 2 over 1.  This difference is significant, since both 

complexes are discrete neutral species with an overall zero charge.  Thus, it is possible to 

conclude that an ionic nature would favor ligand dissociation in the biologic milieu for 2 and 

the equilibrium suggested in Figure 40 should be facilitated. 
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  Ni (1) Zn (2) 
M 1.3 1.6 
O1 -0.87 -0.90 
O2 -0.87 -0.92 
N1 -0.56 -0.64 
N2 -0.75 -0.77 
N3 -0.56 -0.61 
N4 -0.75 -0.80 

 
 

Table 3.  NBO (Natural Bond Order) partial atomic charges. 
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Finally, initial theoretical treatment of the possible binding modes between the 

fragment [Zn(LIA)]+ and a deprotonated threonine residue were also performed.  A simplified 

[Zn(L)]+  fragment with an unsubstituted ligand was used and, in order to model the terminal 

nature of the threonine residue, a dimethylated amide residue was incorporated, as shown in 

Figure 43. Two coordination modes were probed; the first considered binding between the 

zinc center at the [Zn(L)]+ fragment with the terminal (and deprotonated) hydroxyl group and 

the secondary amine group, whereas the second focused on the binding through the 

secondary amine and the carbonyl group of the amide residue.  The first binding mode is 

approximately 35 kcal/mol more stable, and although this proposition is merely speculative 

at this point, it suggests that terminal hydroxo/amine coordination to zinc would be favored. 

(The spectroscopic, spectrometric, and structural analyses were generated by the 

Verani Lab, WSU Department of Chemistry). 

 

Induction of Cell Death and Inhibition of Cell Proliferation. The cytotoxic effect 

of NiCl2, ZnCl2, 1, and 2, was tested in human leukemia Jurkat T cells treated at different 

concentrations for 18 h. After each treatment, trypan blue exclusion assay was performed to 

assess cell death.  Cells treated with 2 exhibited a dose-dependent activity reaching 48 %, 70 

%, 95 %, and 100 % cell death at 7.5, 10, 15, and 20 µmol/L, respectively (Fig. 44). This 

turned out to be the single viable species, since the metal salts and 1 had marginal cell-death 

induction, smaller than ~10 % compared with DMSO-treated cells, at as high as 20 µmol/L 

(Fig. 44). 

 To further substantiate this effect, we evaluated whether 2 can suppress cell 

proliferation of human prostate cancer cells.  C4-2B human prostate cancer cells were treated 
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with NiCl2, ZnCl2, 1, 2, and the DMSO control at different concentrations for 18 h, followed 

by measurement of cell proliferation by MTT assay.  It was observed that cells treated with 2 

suppressed cell proliferation in a dose-dependent manner (IC50 = ~6 µmol/L), reaching 100 

% inhibition at 10 µmol/L (Fig. 45).  Furthermore, cells treated with 2 at 5 and 7.5 µmol/L 

decreased cell proliferation by ~35 % and ~85 %, respectively (Fig. 45).  Consistently, C4-

2B cells treated with the metal salts or 1 showed little or no inhibitory effect even at the 

highest concentration tested of 20 µmol/L (Fig. 45). 
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Figure 44.  Induction of cell death by zinc complex (1). 

Jurkat leukemia T-Cells were treated with NiCl2, ZnCl2, 1, or 2 for 18 h followed by 
measurement of nonviable cells in a trypan blue exclusion assay. 
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Figure 45.  Zinc complex (2) inhibits cell proliferation. 

Human prostate cancer C4-2B cells were treated for 18 h with NiCl2, ZnCl2, 1, or 2 followed 
by MTT assay to measure cell proliferation. 
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In Vitro Proteasome Inhibition.  To test the proteasome inhibitory capacity of these 

species, a comparison of the inhibitory activity of NiCl2, ZnCl2, 1, and 2 to the 26S 

proteasomal activity was performed under cell-free conditions. An extract of C4-2B prostate 

cancer cells (Fig. 46) was used and the results indicate that both the ZnCl2 salt and 2 have the 

potential to inhibit the chymotrypsin-like activity of the 26S proteasome with IC50 values of 

5.7 and 4.4 µmol/L, respectively.   This result is consistent with our previous finding that 

zinc dithiocarbamate complexes can target and inhibit the proteasome [Milacic et al., 2008a]. 

However, extracts treated with 1 at as high as 25 µmol/L showed only ~20 % inhibition (Fig. 

46) on the 26S proteasome suggesting that intrinsic distinctive mechanisms of inhibition 

must be present for 1 and 2.  Consistent with this finding is the fact that NiCl2 at 25 µmol/L 

could only inhibit the proteasomal activity by ~25 % (Fig. 46). 

To provide direct evidence for distinct mechanisms, we incubated a purified rabbit 

20S proteasome with NiCl2, ZnCl2, 1, and 2 at various concentrations, followed by 

measurement of the chymotrypsin-like activity.  We found that this activity was significantly 

inhibited with the salt ZnCl2 and 2 with similar potencies (IC50 = 16.6 and 11.7 µmol/L, 

respectively) (Fig. 47). Although NiCl2 showed modest inhibitory activity, 1 was rather 

inactive (Fig. 47).  The finding that 1 resulted in an increase in proteasome inhibition 

suggests the possibility of an irregular fit for nickel into the S1 pocket of the β-5 subunit.  

Overall, our data remain consistent with the fact that the zinc ion, both as a chloride salt and 

a complex with the (LIA)- ligand is able to target and inhibit the proteasome under cell-free 

conditions. 
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Figure 46.  Inhibition of the proteasomal chymotrypsin-like activity in C4-2B cells 
extracts. 
 
C4-2B cell extract (10 ug) was incubated with a peptide substrate for the proteasomal 
chymotrypsin-like activity in the presence of NiCl2, ZnCl2, 1, or 2 at indicated 
concentrations. 
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Figure 47.  Inhibition of the proteasomal chymotrypsin-like activity of purified 20S. 
 
C4-2B cell extract (35 ng) was incubated with a peptide substrate for the proteasomal 
chymotrypsin-like activity in the presence of NiCl2, ZnCl2, 1, or 2 at indicated 
concentrations. 
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Proteasome inhibition and cell death induction in intact cancer cells.  To confirm 

the ability of 2 to inhibit the proteasomal activity in intact tumor cells, C4-2B human prostate 

cancer cells were first treated with different concentrations (5, 10, and 25 µmol/L) of NiCl2, 

ZnCl2, 1, and 2 for 18 h, followed by measurement of proteasome inhibition.  The values for 

proteasomal chymotrypsin-like activity are given as a percentage in Table 4.  The C4-2B 

cells treated with 2 showed a dose-dependent inhibition of the proteasomal activity by 31 % 

inhibition at 10 µmol/L and 86 % inhibition at 25 µmol/L.  Consistently, levels of 

ubiquitinated proteins were increased in a dose-dependent manner in C4-2B cells (Fig. 48).  

In comparison, cells treated with either NiCl2, ZnCl2, or 1 showed negligible proteasome 

inhibitory effect. 
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 Dose 
µM 

C4-2B 
% 

SDa   
 (+-)   

  PC3   
%     

SDa  
(+-)    

MCF 
10A %  

SD  
(+-) 

DMSO — 100 0.81 100 1.56 100 3.00 

NiCl2 25 92 1.41 99 0.10 98 1.83 

ZnCl2 25 99 0.90 127 0.45 116 1.56 

 5 84 0.87 101 0.01 — — 

[Ni(LIA)2] (1) 10 83 0.96 81 1.59 — — 

 25 80 2.27 92 0.85 89 1.96 

 5 111 1.02 114 2.63 118 0.55 

[Zn(LIA)2] (2) 10 69 0.14 17 1.38 97 1.48 

 25 14 0.68 10 1.13 83 1.59 

 

 

Table 4. Percentile of CT-activity after treatment with NiCl2, ZnCl2, 1, and 2 
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Figure 48.  Western analysis of proteasome target proteins. 

Human C4-2B cells were treated with ZnCl2, NiCl2, 2, or 1 for 18 h followed by measuring 
accumulated ubiquitinated proteins (Ub), PARP, and androgen receptor (AR) levels.  DMSO 
(D) was used as solvent control. 
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It has been shown that proteasome inhibition can lead to decreased levels of androgen 

receptor (AR) expression [Lin et al., 2002; Yang et al., 2008].  Therefore a decrease in such 

expression should be observed assuming proteasome activity inhibition by 2.  Consistently, 

this is the only species that down regulated significantly AR and 25 µmol/L treatment 

completely abrogated AR expression levels (Fig. 48).  These results remain consistent with 

the ability of 2 to inhibit the proteasome activity. 

 It has been shown that inhibition of the proteasomal chymotrypsin-like activity 

selectively in transformed cells could result in the induction of apoptosis [An et al., 1998].  

To investigate whether proteasome inhibition and androgen receptor down regulation are 

associated with cell death, PARP disappearance and morphological changes were measured 

in the same experiment (Fig. 48 and 49).  The results show that only cells treated with 25 

µmol/L of 2 were able to completely abrogate full length PARP, whereas cells treated with 

either NiCl2, ZnCl2, or 1 at the highest concentration tested had little visible effects (Fig. 48). 

Consistently, morphological changes (detached, shrunken and rounded up) were observed in 

cells treated with 25 µmol/L 2 and to a significant but lesser extent at 10 µmol/L (Fig. 49). 

Much less aberrant morphological changes were detected in the cells treated with metal salt 

or 1 at the highest concentration tested (Fig. 49).  These results in this dissertation show that 

the induction of apoptosis in C4-2B cells by 2 is associated with inhibition of proteasomal 

chymotrypsin-like activity. 
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Figure 49.  Cellular morphological changes of human prostate C4-2B cells. 

Human prostate C4-2B cells were treated with ZnCl2, NiCl2, 1, or 2 for 18 h followed by 
visualization of morphological changes. 
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Upon demonstrating the ability of 2 to inhibit the proteasomal chymotrypsin-like 

activity in AR-dependent C4-2B prostate cancer cells, we then tested the effect of 2 on AR-

independent PC-3 human prostate cancer cells.  PC-3 cells were treated with 5, 10 and 25 

µmol/L of 1 or 2, and their metal salt for 18 h, followed by measurement of the proteasome 

activity and apoptosis induction.  Percentage of proteasomal chymotrypsin-like activity is 

designated in Table 4 with DMSO as control.  We found that 2 could inhibit the proteasomal 

activity and induce apoptotic cell death in PC-3 prostate cancer cells, whereas 1, NiCl2, and 

ZnCl2 showed little or no effect (Table 4, Fig. 50). 
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Figure 50.  Cellular morphological changes of human prostate PC-3 cells. 

Human prostate C4-2B cells were treated with ZnCl2, NiCl2, 1, or 2 for 18 h followed by 
visualization of morphological changes. 
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Kinetics of proteasome inhibition and cell death induction.  To study the kinetic 

effect of proteasome inhibition, C4-2B prostate cancer cells were treated with 15 µmol/L 2 

over different time points (2-18 h) and their cell lysates were used to measure the 

proteasomal-chymotrypsin-like activity (Fig. 51A). The proteasomal chymotrypsin-like 

activity was inhibited by 18 %, 42 %, 57 %, and 63 %, respectively, at 2, 4, 8, and 18 h.  This 

result was consistent with the time-dependent increase in levels of accumulated ubiquitinated 

proteins.  Furthermore, lower levels of AR were detected in cells treated with 2 at all time 

points and complete abrogation of AR expression is detected in cells after 18 h treatment. 

Importantly, cell death-associated PARP decrease was detected at later time points with 

complete PARP disappearance at 18 h (Figure 51B).  Cell death induction at later time points 

is also typified with the appearance of aberrant morphological changes (detached, shrunken 

and rounded up) (Figure 51C). These results clearly demonstrate that induction of the cell 

death occurs after proteasome inhibition.  Thus, proteasome inhibition appears to be required 

for cell death induction. 
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Figure 51.  Kinetic effects of proteasome inhibition and cell death induction by zinc 
complex (2). 
 
C4-2B cells were treated at indicated time points with 15 µmol/L zinc compound followed 
by measurement of chymotrypsin-like activity (A), Western analysis of ubiquitinated 
proteins, AR, and PARP (B), and cellular morphological changes (C). 
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Tumor Cell Selectivity.  The ability to distinguish normal from malignant cells is of 

paramount importance for developing clinically-relevant anticancer drugs.  To determine 

whether inhibition of prostate cancer cellular proteasome activity achieved by 2 is selective 

toward malignant cells but not normal cells, we used normal-immortalized human breast cell 

line, MCF-10A. The MCF-10A cells were treated with different concentrations with 2 as 

high 25 µmol/L for 18 h, followed by measurement of proteasomal chymotrypsin-like 

activity and cell death.  We found that when these nontransformed cells were treated with 2, 

only 17 % proteasome inhibition was detected at the highest concentrations tested (Table 4).  

Other treatments also had little effect on MCF-10A cells (Table 4).  To determine whether 

the inability of 2 to inhibit the proteasome activity at sustainable levels is associated with the 

lack of cell death induction in these normal immortalized breast cells, cell death associated 

morphological changes were then assessed in the same experiment.  These normal, 

immortalized MCF-10A cells showed only little, such cell death-related detachment after 

treatment with 2 up to 18 h at the highest concentration tested (data not shown).  

Furthermore, the species NiCl2, ZnCl2, and 1 had little or no cytotoxic effect on normal cells.  

Our data presented in this dissertation suggests that 2 could inhibit the proteasome activity 

and induce cell death selectively in human cancer cells but not in normal immortalized cells, 

validating 2 as a promising proteasome inhibitor. 

 

 

 

 

 



 151

Discussion 

In this dissertation we report on two new coordination complexes as potential 

anticancer candidates, namely, [Ni(LIA)2] (1) and [Zn(LIA)2] (2). Both species were 

characterized by several spectroscopic, spectrometric, and structural methods and display a 

well established 2:1 ligand-to-metal stoichiometry.  DFT calculations considering different 

isomers of 1 and 2 were performed and show good agreement with the nickel species, but fail 

to predict the appropriate geometry for the zinc-containing species. Furthermore, initial 

studies considering coordination of a 1:1 [Zn(L)]+ fragment with threonine suggest a 

favorable coordination through the terminal hydroxyl group of the amino acid. 

The effects of NiCl2, ZnCl2, 1, and 2 were tested toward a purified rabbit 20S 

proteasome and 26S proteasome in human prostate cancer cell lines.  The results indicate that 

only 2 and ZnCl2 have a direct inhibitory effect on the proteasome to any significant levels. 

Furthermore, when NiCl2, ZnCl2, 1, and 2 were tested on the 26S proteasome of cultured 

human prostate cancer cells, it was shown that only 2 exhibited potent anti-proliferative and 

cell death-inducing activity (Fig. 48-51). Similarly, only 2 induced higher levels of 

ubiquitinated proteins, which were associated with decreased levels of proteasomal 

chymotrypsin-like activity (Fig. 48; Table 4). In addition, the decrease of proteasomal 

chymotrypsin-like activity observed for 2 is tightly associated with tumor cell death as seen 

by the morphological changes and the apparent disappearance of the full length PARP 

fragment (Fig. 48-51).  Species 2 also showed remarkably low cytotoxicity toward normal 

human breast cells (Table 4; data not shown).  

This sharp contrast in proteasome activity inhibition between 1 and 2 is suggested to 

be related to the nature of the metal ion and its degree of reactivity when combined with 
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NN’O-containing ligands.  As observed in similar complexes from the previous work in this 

dissertation [Hindo et al., 2009], considerable proteasome inhibition can be attained through 

1:1 ligand to metal species that is believed to be the pharmacophore in all these species. 

Therefore, an equilibrium [M(LIA)2] ↔ [M(LIA)]+ + LIA- seems necessary to facilitate the 

formation of the pharmacophore with available coordination sites capable of interaction with 

the 20S proteasome, likely to be via the N-terminal threonine residue. It is observed from the 

molecular structures and DFT calculations available that covalent interactions prevail in 1, 

while 2 is ionic in nature. We, therefore, propose that this intrinsic difference defines the 

capacity of pharmacophore formation and determines the activity of these species.  The lack 

of activity observed for ZnCl2 in intact cells reinforces the notion offered for the equivalent 

copper counterparts [Hindo et al., 2009] that the ligand (LIA)- serves as a shuttle vector to 

cross the cellular membrane.  Taken together, it is suggested that the presence of the 

fragment [Zn(LIA)]+ is required for proteasome inhibition. At this point it is not clear whether 

the ligand dissociation [Zn(LIA)2] ↔ [Zn(LIA)]+ + LIA- is intra or extracellular, and if 

intracellular, before or after reaching the 26S proteasome.  Furthermore, it is likely that water 

molecules will coordinate to the zinc ion forming [Zn(LIA)(H2O)n]+ hydrated species. The 

investigation of these issues is a current goal of this project and will be properly developed in 

the future.  Nonetheless, the data observed thus far from this dissertation provides a 

compelling rationale for the clinical development of 2 as a potential anticancer drug.  
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CHAPTER 5 

Inhibition of Tumor Proteasome Activity by Gold Dithiocarbamato 

Complexes via both Redox-Dependent and –Independent Processes 

 

Adapted from published material in Journal of Cellular Biochemistry, 109, 2010; 162-172 

 
 

We have previously reported on a gold(III) complex, namely [AuBr2(DMDT)] (N,N-

dimethyldithiocarbamate) showing potent in vitro and in vivo growth inhibitory activities 

toward human cancer cells and identifying the cellular proteasome as one of the major 

targets.  However, the importance of the oxidation state of the gold center and the involved 

mechanism of action has yet to be established.  The data in this dissertation shows that both 

gold(III)- and gold(I)-dithiocarbamato species, namely [AuBr2(ESDT)] (AUL12) and 

[Au(ESDT)]2 (AUL15), could inhibit the chymotrypsin-like activity of purified 20S 

proteasome and 26S proteasome in human breast cancer MDA-MB-231 cells, resulting in 

accumulation of ubiquitinated proteins and proteasome target proteins, and induction of cell 

death, but at significantly different levels. Gold(I) and gold(III) compounds-mediated 

proteasome inhibition and cell death induction were completely reversed by the addition of a 

reducing agent, dithiothreitol or N-acetyl-L-cysteine, suggesting the involvement of redox 

processes.  Furthermore, treatment of MDA-MB-231 cells with gold(III) compound 

(AUL12), but not the gold(I) analogue (AUL15), resulted in the production of significant 

level of reactive oxygen species.  The data in this dissertation provides strong evidence that 

the cellular proteasome is an important target of both gold(I) and gold(III) dithiocarbamates, 

but distinct cellular mechanisms of action are responsible for their different overall effect. 
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Materials and Methods 

  Materials. Gold-dithiocarbamato complexes [AuBr2(ESDT)] (AUL12) and 

[Au(ESDT)]2 (AUL15) were synthesized and characterized as previously described [Ronconi 

et al., 2005].  3-[4,5-dimethyltiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), 

dithiothreitol (DTT), N-acetyl-L-cysteine (NAC), DMSO and other chemicals were 

purchased from Sigma Aldrich (St. Louis, MO).  DMEM/F-12, penicillin, streptomycin and 

ROS detection kit were purchased from Invitrogen (Carlsbad, CA).  Purified rabbit 20S 

proteasome was purchased from Boston Biochem (Cambridge, MA).  Fluorogenic peptide 

substrate, Suc-LLVY-AMC (for the proteasomal chymotrypsin-like activity) was purchased 

from Calbiochem (San Diego, CA).  Mouse monoclonal antibody against human poly(ADP-

ribose)polymerase (PARP) was purchased from BIOMOL International LP (Plymouth 

Meeting, PA).  Mouse monoclonal antibodies against Bax, IκB-α, ubiquitin, goat polyclonal 

antibody against actin, and secondary antibodies were from Santa Cruz Biotechnology (Santa 

Cruz, CA). 

  Cell culture and whole-cell extract preparation.  Human breast cancer MDA-MB-

231 cells were obtained from American Type Culture Collection (Manassas, VA) and grown 

in DMEM/F-12 supplemented with 10% fetal bovine serum and 100 units/mL of penicillin 

and 100 µg/mL of streptomycin.  All cells were grown at 37° C in a humidified incubator 

with a 5% CO2-enriched atmosphere.  A whole-cell extract was prepared as previously 

described [Daniel et al., 2005].  

  Inhibition of the purified 20S proteasomal activity by gold compounds.  Purified 

rabbit 20S proteasome (35 ng) was incubated with 20 µmol/L of the fluorogenic substrate 

Suc-LLVY-AMC (for the proteasomal chymotrypsin-like activity) in 100 µl assay buffer (25 
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mmol/L Tris-HCl pH 7.5) for 2 h at 37°C in the presence of either gold compound at 

different concentrations or equivalent v/v percentage of DMSO as control.  After incubation, 

production of hydrolyzed AMC groups was measured with a Wallac Victor3 multilabel 

counter with an excitation filter of 365 nm and emission filter of 460 nm. 

  Proteasome activity assay in intact human breast cancer MDA-MB-231 cells. 

Human breast cancer MDA-MB-231 cells were grown to 70%-80% confluency, treated with 

indicated compound or DMSO as a control under various conditions, harvested, and used for 

whole-cell extract preparation.  10 µg of cell extract was used to determine the 

chymotrypsin-like activity, as described above. 

  Cell proliferation assay. MDA-MB-231 cells were seeded in triplicate in a 96-well 

plate and grown until 70% to 80% confluence, followed by treatment with each compound or 

DMSO (as a control) for 24 h. After that, the 3-(4,5-dimthylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay was done as previously described [Daniel et al., 

2005]. 

  Western Blot analysis. MDA-MB-231 breast cancer cells were treated, harvested, 

and lysed.  Cell lysates (40-50 µg) were separated by SDS-PAGE and transferred to a 

nitrocellulose membrane followed by visualization using the HyGLO chemiluminescent HRP 

detection reagent from Denville Scientific (Metuchin, NJ), as previously described [Chen et 

al., 2005]. 

  Cellular morphological and ROS detection analysis. A Zeiss Axiovert 25 

microscope was used for all microscopic imaging with either phase contrast for cellular 

morphology or fluorescence for ROS detection. MDA-MB-231 cells were seeded in a 6-well 

plate on top of a cover slip and grown to 70%-80% confluency, followed by treatment with 
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either AUL12 or AUL15, or DMSO for 3.5 h. TBHP (t-butylhydroperoxide), a common ROS 

inducer, at 100 μM was used as a positive control.  Cells that adhered to the cover slips were 

gently washed once with warm HBSS/Ca/Mg followed by labeling with 1 ml 25 μmol/L 

carboxy-H2DCFDA and 25 min incubation at 37°C.  Then, 1.0 μmol/L Hoechst 33342 was 

added to the cells and incubated for another 5 minutes in the dark.  The cover slips were 

gently washed three times with warm HBSS/Ca/Mg before ROS generation was examined 

using a Zeiss confocal laser microscope. 

ROS detection by FACS analysis. MDA-MB-231 cells were plated in p100 dishes 

and grown to 70-80% confluency, followed by treatment with AUL12 or AUL15, or DMSO 

control at the indicated concentrations for 3.5 h.  Cells were then washed twice with warm 

HBSS/Ca/Mg followed by incubation with 25 µmol/L of carboxy-H2DCFDA in a working 

solution of HBSS/Ca/Mg for 30 min at 37°C protected from light.  Cells were then washed 

with warm HBSS/Ca/Mg and harvested.  Prepared samples were then used to measure for 

ROS induction by FACS analysis. 

Annexin V-FITC binding assay.  The Annexin V-FITC binding assay was 

performed using the FITC Annexin V Apoptosis detection kit from BD Biosciences (San 

Jose, CA).  MDA-MB-231 cells were treated with AUL12 or AUL15 at 10-30 µmol/L or 

DMSO as a control for 4 h.  Harvested cells were washed with cold PBS and resuspended 

with 1X binding buffer, followed by Annexin V-FITC incubation for 15 minutes and PI 

staining for another 15 minutes at 4°C in the dark.  The apoptosis indices were detected by 

flow cytometry. 
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Results 

Gold(I)-dithiocarbamato complex AUL15 exhibits decreased potency in 

inhibiting proliferation of human breast cancer cells compared to its  gold(III) analogue 

AUL12. We have previously shown that the gold(III)-dithiocarbamato complex 

[AuBr2(DMDT)], exhibits potent anti-proliferative activity against different breast cancer 

cell lines and anti-tumor activity in nude mice bearing breast cancer xenografts [Milacic et 

al., 2006].  Moreover, our results showed that the cellular proteasome is one of the major 

targets and that proteasomal inhibition contributes to this gold(III)-mediated cell death.  

Based on these positive data, we set out to investigate two other gold dithiocarbamato 

derivatives, namely [AuBr2(ESDT)]2 (AUL12) and [AU(ESDT)]2 (AUL15) (Fig. 52), whose 

anti-cancer activity was previously reported [Ronconi et al., 2005; Ronconi et al., 2006], in 

order to elucidate the importance of the oxidation state of the gold center (3+ and 1+, 

respectively).  More importantly, we investigated a potential mechanism of action that may 

shed insight into the biological effects mediated by gold(III)- and gold(I)-containing 

compounds. 
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Figure 52. Chemical structures of [Au(ESDT)]2 (AUL15: gold 1+) and [AuBr2(ESDT)] 
(AUL12: gold 3+).   
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  We first tested the growth-inhibitory effect of both gold compounds, with the solvent 

DMSO as a control, toward the highly aggressive breast cancer MDA-MB-231 cell line 

treated for 24 h, followed by an MTT assay.  Although both compounds inhibited cell 

proliferation in a dose-dependent manner, AUL15 was less potent than AUL12 (Fig. 53).   

For example, when cells were treated with 10 µmol/L of AUL15 or AUL12, cell proliferation 

was inhibited by 35% and 70%, respectively (Fig. 53). The IC50 values of AUL15 and 

AUL12 were calculated to be 13.5 µmol/L and 4.5 µmol/L, respectively (Fig. 53). 
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Figure 53. Anti-proliferative effects of the investigated gold compounds.  
  
MDA-MB-231 cells were treated for 24 h with either AUL12 or AUL15 at indicated 
concentrations, with DMSO as a control.  After 24 h, the medium was removed and cells 
were treated with the MTT reagent.   
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 Gold(I) dithiocarbamato complex AUL15 exhibits lower proteasome-inhibitory 

activity than its gold(III) analogue AUL12. We have previously shown that the gold(III) 

compound [AuBr2(DMDT)] could inhibit the chymotrypsin-like activity of purified 

proteasome [Milacic et al., 2006].  Therefore, we hypothesized that AUL12 could be 

similarly capable of targeting and inhibiting the proteasome in vitro.  For comparison 

purposes, the gold(I) counter-part AUL15 was tested under the same experimental 

conditions.  To provide direct evidence for this, we incubated a purified rabbit 20S 

proteasome with either AUL12 or AUL15 at various concentrations, with DMSO as a 

control, followed by measurement of proteasomal activity.  We found that AUL15 inhibited 

the proteasomal chymotrypsin-like activity, but with decreased potency compared to AUL12, 

with IC50 values of 17.7 and 1.13 µmol/L, respectively (Fig. 54).   
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Figure 54. Inhibition of the chymotrypsin-like activity of purified 20S proteasome by 
gold compounds.  
 
AUL12 and AUL15 were incubated with a purified proteasome at the indicated 
concentrations, followed by measurement of the chymotrypsin-like activity. DMSO was used 
as solvent control. 
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 To investigate whether AUL12 and AUL15 could inhibit proteasomal activity in 

intact cells, breast cancer MDA-MB-231 cells were treated with 10-30 µmol/L of each 

compound for 4 and 24 h. Cells were treated with DMSO as control.  After the treatment, the 

cell extracts were used to measure proteasomal chymotrypsin-like activity and accumulation 

of ubiquitinated proteins and proteasome target protein IκB-α.  We found that AUL15 had no 

proteasome-inhibitory effect after 4 h of treatment, even at the highest concentration tested 

(Fig. 55A).  However, after 24 h, it caused proteasome inhibition by 30% and 70% at 20 and 

30 µmol/L, respectively (Fig. 55B). 
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Figure 55. Inhibition of proteasomal chymotrypsin-like activity by gold compounds in 
MDA-MB-231 cells. 
   
Breast cancer MDA-MB-231 cells were treated with indicated concentrations of AUL12 or 
AUL15 for (A) 4 h or (B) 24 h. followed by measurement of the proteasomal chymotrypsin-
like activity. DMSO was used as solvent control. 
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 Consistent with this decreased level of proteasomal chymotrypsin-like activity by 

AUL15 at 24 h, accumulation of ubiquitinated IκB-α was found (Fig. 56A).  Interestingly, 

accumulation of ubiquitinated proteins induced by AUL15 was detected after both 4 and 24 h 

(Fig. 56B).  Since accumulation of ubiquitinated proteins is a transient process, the dose-

dependent effect was not seen at 4 h and 24 h, the two time points selected in this 

experiment.  In comparison, cells treated with AUL12 at both 20 and 30 µmol/L significantly 

inhibited proteasomal chymotrypsin-like activity at both early (4 h) and late time points (24 

h) (Fig. 55A-B).  In addition, accumulation of ubiquitinated proteins and higher levels of 

IκB-α and its ubiquitinated form were apparent at both time points (Fig. 56A-B). 
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Figure 56. Western Blot analysis of MDA-MB-231 cells treated with AUL12 or AUL15. 
 
Breast cancer MDA-MB-231 cells were treated with indicated concentrations of AUL12 or 
AUL15 for 4 or 24 h, followed by Western Blot analysis. DMSO solvent was used as a 
control.  A. accumulation of IκB-α and ubiquitinated form of IκB-α; B. accumulation of 
ubiquitinated proteins. 
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  Gold(I)-dithiocarbamato complex AUL15 exhibits lower cell death-inducing 

activity than its gold(III) analogue AUL12 in intact breast cancer MDA-MB-231 cells. 

To investigate whether inhibition of proteasomal chymotrypsin-like activity was associated 

with apoptosis or cell death induction, morphological changes, PARP cleavage, Annexin V-

FITC, and TUNEL were examined.  Changes in cell morphology (shrunken, rounded up and 

characteristic apoptotic blebbing) were apparent mostly during later time points of the 

treatment with increasing concentrations of AUL15 (Fig. 57B vs. A).  Furthermore, we 

noticed that cells treated with 10 µmol/L AUL12 started rounding up even after 4 h treatment 

and the effect was greatly enhanced after the treatment with higher concentrations (Fig. 

57A). These cell death-associated morphological changes were highly magnified after 24 h; 

rendering cells predominately rounded up and detached (Fig. 57B).  
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Figure 57. Induction of cell death by gold compounds in MDA-MB-231 cells. 
   
Breast cancer MDA-MB-231 cells were treated with indicated concentrations of AUL12 or 
AUL15 for (A) 4 h or (B) 24 h, with DMSO as a control, followed by visualization of 
morphological changes. 
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 To study whether the observed cell death is related to apoptosis, we performed PARP 

cleavage assay.  Treatment of cells with AUL15 at 10-30 µM for 4 h induced the cleavage of 

the intact PARP protein (p116 kD) into a characteristic p65 fragment (Fig. 58), a by-product 

of calpain cleavage [Pink et al., 2000].  The complete PARP cleavage was observed when 

AUL15 was used at higher concentrations for 24 h (Fig. 58).  We found the cleavage of the 

intact PARP protein (p116 kD) into a characteristic p65 fragment in cells treated with either 

AUL 15 or AUL 12 in both time- and dose-dependent manners (Fig. 58).  It is notable to 

point out that treatment of cells with gold(I) complex AUL15, resulted in PARP 

disappearance mainly when higher concentrations were used (Fig. 58).  On the other hand, 

treatment with the gold(III) counter-part AUL12, at both early and late time points and at 

increasing concentrations resulted in complete disappearance of full length PARP and higher 

levels of the cleaved p65 fragment (Fig. 58).  
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Figure 58. Western Blot analysis of poly-(ADP-Ribose) polymerase PARP cleavage. 
 
Breast cancer MDA-MB-231 cells were treated with indicated concentrations of AUL12 or 
AUL15 for 4 or 24 h, followed by Western Blot analysis. DMSO solvent was used as a 
control. PARP cleavage indicates induction of cell death. 
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 We also performed FITC Annexin V staining assay. Treatment with AUL15 at 10 µM 

for 4 h induced ~21% of cells undergoing late apoptosis while 6% in non-apoptotic death 

(Fig. 59). When AUL15 was increased to 20 µM, late apoptotic cells and non-apoptotic cell 

death were increased to 31% and 27%, respectively (Fig. 59).  However, further increase of 

AUL15 to 30 µM induced 72% non-apoptotic cell death (Fig. 59).  Treatment of cells with 

AUL12 at 10 µM for 4 h induced 40% late apoptotic cell death and 25% non-apoptotic cell 

death, more potent than AUL15 at the same conditions (21% and 6%, respectively; Fig. 59). 

Similar to AUL15, when AUL12 was used at increased concentrations, the apoptotic death 

population was decreased while the non-apoptotic death cells were increased (Fig. 59).   We 

also investigated whether treatment with gold compound-induced cytotoxicity is related to 

DNA damage.  Treatment with AUL15 for 4 h at only 30 M induced TUNEL positivity by 

~10% while AUL12 at only 20 and 30 M generated 2.0 and 30% TUNEL-positive cells 

(data not shown).  Taken together, the data suggest that these gold-dithiocarbamato 

complexes induced various types of cell death, depending on the status of gold compound, 

concentrations, and treatment time.  However, these data suggest that gold(III) compound has 

higher proteasome-inhibitory activity and induced higher level of cell death compared to 

gold(I) dithiocarbamate treatment (see Discussion).   
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Figure 59. Induction of cell death by gold compounds in MDA-MB-231 cells by Annexin 
V- FITC binding assay 
 
Human breast cancer MDA-MB-231 were treated with AUL12 or AUL15 for 4 h at the 
indicated concentrations Annexin V- FITC binding assay was performed to quantify the 
number of apoptotic cells.  The lower right (Annexin V-FITC+/PI-) was considered early 
stage of apoptotic cells (EA) and upright part (Annexin V-FITC +/PI+) was considered as 
late stage of apoptotic cells (LA).  The lower left part (Annexin V-FITC-/PI-) was considered 
as viable cells (V) and the upper left part (Annexin V_FITC-/PI+) was considered non-
apoptotic cell death (NA). 
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We and others have previously shown that associated with the cell death 

commitment, Bax protein (p21/Bax) could be cleaved by calpain, producing a p18/Bax 

fragment, which then forms a homodimer p36/Bax [Gao and Dou, 2000; Wood and 

Newcomb, 2000].  Since treatment with gold compounds can lead to calpain activation and 

p65/PARP fragment production (Fig. 60), we would then expect the appearance of the 

Bax/p36 homodimer upon treatment.  Under our experimental conditions, using breast cancer 

MDA-MB-231 cells (with DMSO as a control), we detected two forms of Bax protein: p21 

and p36 (Fig. 53).  When the cells were treated with AUL15, only the treatment with high 

concentrations for 24 h resulted in higher levels of p18/Bax and p36/ Bax (Fig. 60). In 

contrast, treatment with AUL12 even at the lowest concentration resulted in higher levels of 

p18/Bax and p36/Bax during both early and late time points (Fig. 60). This effect was more 

pronounced upon treatment with higher concentrations of AUL12 (Fig. 60).  Together, these 

results show that the gold(III) compound is able to inhibit proteasomal chymotrypsin-like 

activity, activate calpain and induce cell death in human breast cancer MDA-MB-231 cells 

with a higher degree of activity compared to its gold(I) counter-part.   
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Figure 60. Accumulation of Bax isoforms by Western blot in MDA-MB-231 cells. 
 
Breast cancer MDA-MB-231 cells were treated with AUL12 or AUL15 for 4 or 24 h, 
followed by performance of Western Blot analysis of Bax isoforms. DMSO solvent was used 
as a control. 
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 Proteasome inhibition and cell death induction by gold(I)- and gold(III)-

dithiocarbamato derivatives is blocked by the reducing agents DTT and NAC.  It has 

been shown that some metals can oxidize cellular proteins and that this process could be 

blocked by reducing agents such as DTT (dithiothreitol) and NAC (N-acetyl- L-cysteine) 

[Godfrey et al., 1994; Rattan and Arad, 1998].  Since both AUL12 and AUL15 could inhibit 

the chymotrypsin-like activity of purified rabbit 20S proteasome (Fig. 53) and cellular 26S 

proteasome of cultured breast cancer cells (Figs. 55), we then tested whether reducing agents 

such as DTT and NAC could affect these events.  We found that inhibition of purified 20S 

proteasome activity by AUL15 was reversed in a dose-dependent manner by addition of DTT 

and was essentially restored to basal levels with 300 µmol/L DTT (Fig. 61). Similarly, 

inhibition of purified 20S proteasome by AUL12 could also be reversed by ~80% upon co-

incubation of 50 µmol/L of DTT (Fig. 62).   
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Figure 61. Inhibition of proteasomal activity in purified 20S by AUL15 is blocked by 
DTT.   
 
Purified rabbit 20S proteasome was incubated with a peptide substrate for the proteasomal 
chymotrypsin-like activity and indicated concentrations of AUL15 in the absence or presence 
of DTT at indicated concentrations for 2 hours, followed by the measurement of proteasomal 
chymotrypsin-like activity. DMSO was used as solvent control.   
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Figure 62. Inhibition of purified 20S proteasomal activity by AUL12 is blocked by DTT.  
 
Purified rabbit 20S proteasome was incubated with a peptide substrate for the proteasomal 
chymotrypsin-like activity and indicated concentrations AUL12 in the absence or presence of 
DTT at indicated concentrations for 2 hours, followed by the measurement of the 
proteasomal chymotrypsin-like activity. DMSO was used as solvent control. 
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 The effect of NAC on AUL12 and AUL15-induced proteasome inhibition in intact 

MDA-MB-231 cells was also investigated.  We found that NAC at 150 µmol/L, effectively 

restored proteasome activity in the cells treated with 30 µmol/L AUL15 (Fig. 63). 

Additionally, 100 µmol/L NAC could block proteasome inhibition induced by 20 µmol/L 

AUL12 after 24 h (Fig. 63).  
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Figure 63. Proteasome inhibition by AUL12 and AUL15 is blocked by NAC in intact 
MDA-MB-231 cells.  
 
Breast cancer MDA-MB-231 cells were treated with indicated concentrations of AUL12 or 
AUL15 for 24 h, in the absence or presence of various concentrations of NAC, followed by 
measurement of the proteasomal chymotrypsin-like activity. 
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 Consistently, co-treatment with each gold compound and NAC blocked accumulation 

of ubiquitinated proteins and the ubiquitinated form of IκB-α (Fig. 64).  Importantly, NAC 

almost completely blocked gold(I)- and gold(III)-induced production of p65 PARP cleavage 

(Fig. 64) and cellular morphological changes (Fig. 64).  Furthermore, addition of NAC also 

inhibited the increased levels of p18/Bax to p36/Bax induced by each gold compound, 

suggesting that NAC inhibits AUL12 and AUL15-induced calpain activation (Fig. 64).  
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Figure 64. Western Blot analysis showing that proteasome inhibition and cell death 
induction by AUL12 and AUL15 is blocked by NAC in intact MDA-MB-231 cells.  
 
Breast cancer MDA-MB-231 cells were treated with either AUL12 (20 µM) or AUL15 (30 
µM) for 24 h, in the absence or presence of various concentrations of NAC, followed by 
Western Blot analysis. 
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Figure 65. Cell death associated morphological changes in intact MDA-MB-231 cells by 
AUL12 and AUL15 are blocked by NAC. 
 
Breast cancer MDA-MB-231 cells were treated with indicated concentrations of AUL12 or 
AUL15 for 24 h, in the absence or presence of various concentrations of NAC, followed by 
visualization of apoptotic morphological changes by phase-contrast imaging (100x 
magnification). 
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 Proteasome inhibition and apoptosis induction by gold(III) but not gold(I) 

dithiocarbamate is mediated through activation of reactive oxygen species (ROS).  It has 

been demonstrated that some chemotherapeutic agents, including proteasome inhibitors, 

could mediate cell death through increase in oxidative stress [Perez-Galan et al., 2006].  Our 

data show that gold(I)- and gold(III)-dithiocarbamato derivatives can inhibit the proteasomal 

chymotrypsin-like activity and induce cell death, which can be completely reversed by the 

addition of a reducing agent.  We next set out to determine if the induction of ROS is 

responsible for cell death mediated by these complexes. Breast cancer MDA-MB-231 cells 

were treated with both 20 and 30 µmol/L of AUL12 or AUL15 for 3.5 h along with the 

oxidation-sensitive probe carboxy-H2DCFDA, followed by analysis of ROS induction by 

fluorescence microscopy and FACS analysis.  DMSO was used as the negative control and 

TBHP as positive control under the same experimental conditions. Our results show that 

treatment with AUL15, at both concentrations was unable to produce reasonably detectable 

levels of green fluorescence (1.0-1.3% ROS-positive cells)(Fig. 66A-B).  However, treatment 

with AUL12 at both concentrations resulted in the enhancement of bright green fluorescence 

indicative of the production of ROS (9.6-12.6% ROS-positive cells) (Fig. 66E-F).  

  Since we have shown that the addition of a reducing agent could completely block the 

effect of proteasome inhibition and cell death induction, we next investigated whether the 

addition of NAC could block the production of ROS induced by gold(III) dithiocarbamate.  

Our data shows that production of ROS in cells treated with the gold(III) complex was 

almost completely blocked by the addition of 200 µmol/L NAC (1.7%-ROS positive cells) 

(Fig. 66G).  Moreover, the treatment of cells with the gold(I) analogue, with or without co-

treatment of NAC failed to induce any significant levels of ROS, thus confirming that the 
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gold(I) derivative is redox inactive (Fig. 66A-C).  The results presented in this dissertation 

clearly suggest that induction of oxidative stress by gold(III), but not gold(I), is at least 

partially responsible for its biological activity which can be effectively inhibited through the 

addition of a reducing agent. 
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Figure 66. AUL12 [Au(III)] but not AUL15 [Au(I)] induces ROS production in breast 
cancer cells and is effectively blocked by the addition of NAC.  
  
ROS formation in MDA-MB-231 cells was determined using the oxidation-sensitive probe 
(carboxy-H2DCFDA).  Cells were treated with AUL12 or AUL15 at the indicated 
concentrations for 3.5 h with or without the addition of NAC.  DMSO and NAC alone were 
used as negative controls under the same experimental conditions.  ROS generation was 
examined using a Zeiss confocal laser microscope and FACS analysis as explained in 
Materials and Methods.  
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Discussion 
 

The clinical impact of platinum-based complexes has precipitated the investigation of 

other metals which broadens the spectrum of activity and presents modes of action that differ 

from cisplatin.  Although the mechanism of cisplatin has been readily understood, the 

mechanism of gold compounds responsible for their anti-tumor activity is still under debate.  

A number of studies suggested that proteins, rather than DNA, may be a more suitable target 

for gold-containing complexes.  Some of the suggested targets for gold compounds include 

S-donor ligands such as glutathione and cysteine [Milacic et al., 2006], bovine serum 

albumin [He and Carter, 1992], thioredoxin reductase [Engman et al., 2006], and ERK 

pathway [Saggioro et al., 2007]. Based on these studies, it was proposed that selective 

modification of surface protein residues by gold(III) complexes is more likely to be 

responsible for their biological activity.  

 We have previously shown that the gold(III) dithiocarbamato derivative 

([AuBr2(DMDT)]) was able to inhibit the proteasomal activity and induce apoptosis in 

cultured breast cancer cells and mice bearing breast cancer xenografts [Milacic et al., 2006].  

Furthermore, proteasomal inhibition and apoptosis induction could be effectively reversed by 

the addition of a reducing agent [Milacic et al., 2006].  The reversal of [AuBr2(DMDT)]–

mediated proteasomal inhibition by a reducing agent could be a result of the reaction that 

pulls the complex away from the proteasome, thereby preventing it from binding and 

inhibiting the proteasome.  This possibility was supported by previous findings that gold(III) 

complexes can bind S-donor ligands, such as glutathione and cysteine, and cleave their 

disulfide bond(s) [Milacic et al., 2008b].  It is also possible that NAC or DTT could reduce 

gold(III) to gold(I), an oxidation state that does not have, or has lower affinity for binding 
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and inhibiting the proteasome. Another suggested possibility was based on the report that 

gold(III) porphyrin 1a induces intracellular oxidation, altering reduced glutathione (GSH) 

levels in the cell [Wang et al., 2005]. Therefore, a possibility that [AuBr2(DMDT)] might 

stimulate production of ROS that oxidize and inactivate the proteasome was proposed 

[Milacic et al., 2006].  This hypothesis was supported by a well-established susceptibility of 

the proteasome to oxidative modification and inactivation upon exposure to free radical–

generating systems [Szweda et al., 2002].  

In order to evaluate the importance of the 3+ oxidation state for the mechanism of 

action and overall anti-tumor activity of gold compounds, we compared two gold 

dithiocarbamato derivatives with different oxidation states of the gold centers, to provide 

insights into their possible mechanism of action.  

 When comparing their anti-proliferative activities, it was found that AuL15 was less 

potent than AUL12 against breast cancer MDA-MB-231 cells (IC50 = 13.5 and 4.5 µmol/L, 

respectively) (Fig. 53).  Since both gold compounds own the same ESDT ligand, this finding 

suggests that the observed effect could be mediated by the different oxidation states of the 

gold centers. 

We then set out to investigate if they share the same molecular target as 

[AuBr2(DMDT)]- the proteasome. We performed a cell-free activity assay using a purified 

20S proteasome incubated with each gold compound (Fig. 54).  Interestingly, we found that 

both complexes inhibited the proteasomal chymotrypsin-like activity, but at significantly 

different potencies. Similarly to their anti-proliferative activities, AUL15 was less potent in 

inhibiting the proteasome compared to AUL12 (IC50 = 17.7 and 1.13, µmol/L, respectively) 

(Fig. 54).  
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 To investigate their capability to target and inhibit the cellular proteasome, intact 

MDA-MB-231 cells were treated and a different effect in activity was found.  Proteasomal 

inhibition was measured by decreased proteasomal activity, increased levels of ubiquitinated 

proteins, and accumulation of ubiquitinated form of the proteasomal target protein IκB-α 

(Figs. 55 A-B, 56A-B).  Additionally, cell death induction associated with proteasomal 

inhibition was measured.  We found that the effects of the gold(I) compound were again 

much less pronounced compared to its gold(III) counter-part in the context of cell 

morphological change, the cleaved PARP fragment p65, annexin V-FITC staining, and 

TUNEL (Figs. 57-60 and data not shown). We found that at 4 h, cells round up and 

detachment was observed associated with both apoptotic and non-apoptotic death and 

calpain-mediated PARP cleavage in to fragment p65, but in the absence of TUNEL-positivity 

cells detected.  This suggests that the cell death observed at 4 h is not apoptosis and it may be 

calpain-dependent but DNA-damage-independent necrosis.  However, at 24 h, both apoptosis 

and such necrosis occurred. Therefore both necrosis (or DNA-damage-independent cell 

death) and apoptosis could be induced by these gold compounds and gold(III) has a higher 

effect while AUL15 at higher concentrations induced more non-apoptotic cell death.  Taken 

together, these findings suggest that the lower potency of AUL15 in inhibiting the 

proteasome is, at least partly, responsible for its decreased anti-proliferative and cell death-

inducing effects, compared to the gold(III) compound, AUL12.  We have also found that 

effects of both gold compounds could be blocked by two different reducing agents (DTT and 

NAC):  both were able to reverse the effects induced by the investigated gold complexes in a 

cell-free system and in intact MDA-MB-231 cells (Figs. 61-65).  We noticed that the similar 

potent reversion by NAC on cells treated with AUL15 as compared with cells exposed to 
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AUL12.  We found that in addition to inhibition of ROS production, NAC could also react 

with both gold compounds (unpublished data).  Therefore, the reversion of gold compound-

mediated effects by NAC could be due to two mechanisms: i) ROS inhibition and ii) direct 

binding of these two compounds. 

 It has been shown that many anti-cancer drugs exert their effect through oxidative 

stress and that the proteasome is susceptible to oxidative modification and inactivation upon 

exposure to free radical generating systems [Szweda et al., 2002].  Therefore, in an attempt to 

explain the different potencies of AUL12 and AUL15, we set out to investigate whether they 

could induce the production of ROS.  The results show that treatment with gold(III) 

compound induces the production of ROS, whereas the gold(I) compound produces much 

less (Fig. 66 E-F vs. A-B).  Furthermore, ROS induction by AUL12 could be effectively 

blocked by the addition of the reducing agent NAC (Fig. 66G).  These results show that ROS 

induced by gold(III) but not gold(I) compound could be, at least partially, responsible for the 

observed proteasome inhibition. The observation that the treatment with NAC and AUL12 

could effectively block the production of ROS, argues that the treatment of NAC may 

increase the pool of ROS scavengers, thereby preserving cellular integrity.  The observation 

that the gold(I) compound displayed a lower cytotoxic profile may point to the lower affinity 

of gold(I) to the proteasome, since this different effect was observed under cell free 

conditions and intact cells.  Similarly, it is conceivable that the gold(I) compound may react 

with all the populations of NAC or DTT molecules, which could partially explain the 

reversal of gold(I)-mediated events.  

Our finding that both gold(I) and gold(III) complexes have the same molecular target 

is not surprising since it is well known that metal centers are essential for the biological 
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activity of metal-containing proteins and enzymes, and that metals are often responsible for 

the activity of organic drugs. The classic example is cisplatin, which exerts its anti-tumor 

activity by interacting with DNA [Zhu et al., 2005] forming a unique lesion that has not been 

mimicked by any other organic drugs. However, it has also been known that the activity of 

metal complexes is not determined only by the presence of the metal, especially when metals 

exist in different oxidation states and have rich coordination chemistry [Haas and Franz, 

2009].  In that case, even subtle changes in the charge of a metal can result in a significant 

change in the geometry of the complex, leading to dramatic alterations of its biological 

properties. This might explain the significant differences in the effects of gold(I) and 

gold(III) compounds investigated here.   

 AUL12 and AUL15 show different coordination modes at the gold center, that is, 

tetracoordinate square-planar and dicoordinate linear structure, respectively.  It is worth 

noting that under physiological conditions, AUL12 undergoes hydrolysis, thus delivering two 

moles of halide per mole of starting complex.  Moreover, it has been shown to undergo a 

subsequent reduction process within 24 h, leading to the corresponding dinuclear gold(I) 

analogue AUL15 [Ronconi et al., 2006].  However, this reduction process should not affect 

its cytotoxic properties, since a cytotoxic effect was shown to be exerted mainly within the 

first twelve hours at nanomolar concentrations [Ronconi et al., 2005] and within 4 hours at 

micromolar concentrations.  All together, these observations strongly suggest that different 

activities of gold(I) and gold(III) compounds investigated here is a result of the different 

oxidation states and coordination modes of the gold centers.   

Overall, we hypothesize in this dissertation that there are at least two mechanisms 

responsible for the biological activity of these gold compounds, including ROS production 
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and direct metal binding to the proteasome.  The assertion that gold compounds and other 

metals can only act nonspecifically and inhibit the proteasome by a secondary effect has been 

refuted by previous studies from our lab and others.  It is notable to point out that treatment 

with gold(I) at 30 µM for 4 h resulted in the production of ~72% cells undergoing 

nonapoptotic-related cell death while only producing very low levels of ROS (Figs. 59 vs. 

66B).  We have also shown that zinc-containing dithiocarbamate derivatives could inhibit the 

proteasomal activity, but could not be blocked by DTT or NAC, suggesting that these 

compounds are not acting through ROS (data not shown).  Additionally, it has been 

published previously that zinc does not have a relevant oxidative strength [Amici et al., 

2002].  Furthermore, we have also found that Sn could directly bind and inhibit the cellular 

proteasome [Shi et al., 2009].  Taken together, these results demonstrate that metal-

containing compounds do not exert their effect nonspecifically. 

 In conclusion, the data presented in this dissertation shows that both AUL12 and 

AUL15 inhibit the proteasome under cell-free conditions and in cultured breast cancer cells, 

but with different potencies.  Furthermore, in either case, proteasome inhibition and cell 

death induction can be effectively reversed by the addition of DTT or NAC.  Interestingly, 

the gold(III) complex was able to induce production of ROS in intact breast cancer cells, 

which might be at least partly responsible for the proteasome-inhibitory effect.  Although the 

gold(I) analogue failed to stimulate ROS at any sustained levels, its proteasome-inhibitory 

and cell death-inducing effects were also completely blocked by the reducing agent.  

However, further in depth studies are required to delineate this phenomenon completely.  

Since up to date pharmacologically-employed platinum-containing compounds are strongly 
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associated with non-specific toxicity, the alternative of metal complexes, especially gold 

derivatives, as proteasome inhibitors, seems to be a promising approach in cancer therapy. 
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CHAPTER 6 

The Role of Androgen Receptor in Prostate Tumor Cell Death Induced by 

Proteasome Inhibition and Chemotherapy 

 

Androgen ablation therapy by surgical or medical castration remains the staple of care 

for most prostate cancer patients. However, most eventually relapse to a hormone-refractory 

state that no longer responds to androgen withdrawal. Most approaches used in cancer 

treatment, such as chemotherapy and radiation therapy kill tumor cells by inducing apoptosis.  

However, cancer cells often acquire resistance to these therapies, and no longer respond these 

death signals.  Therefore, increasing attention has been directed toward alternative 

mechanisms of cell death that may help circumvent resistance to cytotoxic agents.  We have 

previously shown that decreasing levels of AR correlate with induction of apoptosis by 

proteasome inhibition.  However, the exact role of AR in modulating the cell death response 

has remained elusive.  To study this effect, an experimental model was used consisting of 

parental PC-3 prostate cancer cells and PC-3 cells stably expressing wild type AR. The data 

in this dissertation reports that proteasome inhibitor and chemotherapy significantly 

increased caspase-3 activity in PC-3 cells compared to PC3-AR.  Higher levels of caspase-3 

activity were associated with apoptotic indices in PC-3 cells.  The observation that caspase-3 

associated cell death occurs in PC-3 cells, while cell death in PC3-AR cells was associated 

with much lower levels of caspase-3 was confirmed in cells transiently expressing AR.  

Interestingly, cotreatment of Velcade and the AR antagonist Casodex caused significant 

decrease in AR expression associated with an increase in caspase-3 activity in AR(+) LNCaP 

cells.  Taken together, the results provided in this chapter show that AR may influence the 
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regulatory events involved in cell death, and further understanding these molecular events 

may have important prognostic and therapeutic potential in the treatment of prostate cancer. 

 

Materials and Methods 

  Materials. Velcade (Bortezomib) was obtained from Millennium Pharmaceuticals 

(Cambridge, MA).  3-[4,5-dimethyltiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), 

DMSO and other chemicals were purchased from Sigma Aldrich (St. Louis, MO).  RPMI-

1640, penicillin, streptomycin, pEntr vector, and pLenti-6 vector were purchased from 

Invitrogen (Carlsbad, CA).  Fluorogenic peptide substrates, Suc-LLVY-AMC (for the 

proteasomal chymotrypsin-like activity) and Ac-DEVD-AMC (for Caspase-3 activity was 

purchased from Calbiochem (San Diego, CA).  Mouse monoclonal antibody against human 

poly(ADP-ribose)polymerase (PARP) was purchased from BIOMOL International LP 

(Plymouth Meeting, PA).  Mouse monoclonal antibodies against Bax, Bcl-2, caspase-8, 

caspase-9, rabbit polyclonal against Androgen Receptor (AR-N20), goat polyclonal antibody 

against actin, and secondary antibodies were from Santa Cruz Biotechnology (Santa Cruz, 

CA).  Cell death ELISA detection kit was purchased from Roche Applied Sciences 

(Indianapolis, IN).  A full-length AR plasmid was purchased from Open Biosystems 

(Lafayette, CO).  Transfection reagent, ExpressFect, was purchased from Denville Scientific 

(Metuchin, NJ). 

  Cell culture and whole-cell extract preparation. Human prostate cancer PC-3 and 

PC-3 cells overexpressing wildtype Androgen Receptor (AR) were obtained from Dr. Fazlul 

Sarkar (Wayne State University, Det, MI).  Human prostate cancer LNCaP cells were 

obtained from American Type Culture Collection (Manassas, VA).  The cell lines were 



 195

grown in RPMI-1640 and supplemented with 10% fetal bovine serum and 100 units/mL of 

penicillin and 100 µg/mL of streptomycin.  All cells were grown at 37° C in a humidified 

incubator with a 5% CO2-enriched atmosphere.  A whole-cell extract was prepared as 

previously described [Daniel et al., 2005].  

 Proteasome activity assay in intact human prostate cancer PC-3 and PC-AR 

cells. Human prostate PC-3 or PC3/AR cells were grown to 70%-80% confluency, treated 

with indicated compound or DMSO as a control under various conditions, harvested, and 

used for whole-cell extract preparation.  Ten micrograms of cell extract was incubated with 

20 µmol/L of the fluorogenic substrate Suc-LLVY-AMC in [50 µmol/L Tris-HCL, pH 7.5] 

for 2h at 37°C (for the proteasomal chymotrypsin-like activity).  After incubation, production 

of hydrolyzed AMC groups was measured with a Wallac Victor3 multilabel counter with an 

excitation filter of 365 nm and emission filter of 460 nm. 

Caspase-3 Activity Assay. Cells were treated with indicated agent, harvested, and 

lysed as described previously.  Ac-DEVD-AMC (40 µmol/L) was then incubated with the 

prepared cell lysates for 24 h and the caspase-3 activity was measured as described above. 

  Cell proliferation assay. MDA-MB-231 cells were seeded in triplicate in a 96-well 

plate and grown until 70% to 80% confluence, followed by treatment with Velcade, cisplatin 

or DMSO (as a control) for 24 h.  Following drug exposure time, the 3-(4,5-dimthylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay was done as previously described [Daniel 

et al., 2005]. 

  Western Blot analysis. PC-3, PC3-AR, and LNCaP breast cancer cells were treated, 

harvested, and lysed.  Cell lysates (40-50 µg) were separated by SDS-PAGE and transferred 

to a nitrocellulose membrane followed by visualization using the HyGLO chemiluminescent 
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HRP detection reagent from Denville Scientific (Metuchin, NJ), as previously described 

[Chen et al., 2005]. 

  Cellular morphology analysis. A Zeiss Axiovert 25 microscope was used for all 

microscopic imaging with phase contrast for cellular morphology.  

Quantification of apoptosis. The Cell Apoptosis ELISA Detection Kit (Roche 

Applied Sciences) was used to detect apoptosis in PC-3 and PC3-AR cells according to the 

manufactures protocol. 

Expression vector and transient transfection. A full-length AR plasmid was 

purchased from Open Biosystems (Lafayette, CO).  Subsequently, it was subcloned into a 

pEntr vector (Invitrogen) and recombinated into pLenti-6 vector (Invitrogen).  The Invitrogen 

Lipofectamine 2000 was used for transient transfection of PC-3 cells. 

Transient Transfection of AR. PC-3 Cells were grown to 70%-80% confluency 

followed by addition of the DNA complex using the ExpressFect reagent as mentioned in the 

manufacturers’ protocol.  Briefly, 1-2 µl ExpressFectTM was added to 30 µl of DMEM 

media, mixing gently to create the polymer solution.  30 µl of the polymer solution was 

added to 30 µl of the DNA solution to create the polymer/DNA complex.  The volume of 

reagents used was based on the final volume of cell culture medium.  After 24h, cells were 

treated with indicated compound and cell lysates were prepared as previously discussed.  
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Results 
 

Velcade suppresses cell proliferation and proteasomal chymotrypsin-like activity 

similarly in parental PC-3 and PC-3 cells stably overexpressing AR.  In our current study 

we investigated the regulatory role of the AR (androgen receptor) and how it may influence 

the molecular events in prostate cancer cells in response to proteasome inhibition and 

chemotherapy.  To test this hypothesis, we used parental PC-3 prostate cancer cells and PC-3 

cells stably expressing wild type AR.  The identified pair of cell lines was chosen as a 

relevant experimental model considering that parental PC-3 cells lack endogenous expression 

of AR, and reengagement of the AR signaling axis through stable overexpression could 

provide important clues relating to therapeutic intervention in prostate cancer.  Importantly 

our study seeks to provide mechanistic insights into the role of the androgen receptor in 

prostate cancer cells in response to cytotoxic stimuli. 

 We first tested the growth inhibitory effect of Velcade toward both prostate cancer 

lines that differ in AR expression, with the solvent DMSO as a control for 24 h followed by 

an MTT assay.  Velcade (PS-341) is a clinically used proteasome inhibitor used in the 

treatment of myeloma and mantle cell lymphoma and also being tested against solid tumors 

[Kane et al., 2003; Kane et al., 2007].  Our results show, although Velcade inhibited cell 

proliferation in both cell lines in a dose dependent fashion, whereas PC-AR cells appeared to 

be slightly more sensitive to treatment at lower drug concentrations (Fig. 67).  For example, 

from 50 nM to 0.5 µM cell proliferation was inhibited 20%-25% more in PC3-AR cells 

compared to its parental cell line, but the trend narrowed between both cell lines in response 

to higher doses, rendering a similar growth inhibitory profile in response to Velcade (Fig. 

67). 
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Figure 67. Velcade inhibits cell proliferation at similar levels in both parental PC-3 and 
PC3 cells stably overexpressing AR.  
  
PC-3 and PC3-AR cells were treated with Velcade for 24 h followed by measurement of cell 
proliferation by MTT assay. 
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We next explored whether this pair of cell lines showed a difference in sensitivity to 

proteasome inhibition in response to Velcade.  Both parental PC-3 and PC-AR cells were 

treated with Velcade (0.25 µM-5 µM) for 24 h.  After treatment, cells were harvested, lysed, 

and cell extract preparations were used to measure proteasomal chymotrypsin-like activity.  

We found both PC-3 and PC3-AR cells showed a similar sensitivity pattern toward inhibition 

of chymotrypsin-like activity at all concentrations tested compared with DMSO control 

treatment (Fig. 68).  These results show both prostate cancer lines that differ in AR status 

show a similar sensitivity toward Velcade as it relates to cell growth and proteasome 

inhibition. 
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Figure 68. Velcade inhibits proteasomal chymotrypsin-like activity at similar levels in 
both parental PC-3 and PC3 cells stably overexpressing AR. 
 
PC-3 and PC3-AR cells were treated with indicated concentrations of Velcade for 24 h 
followed by measurement of proteasomal chymotrypsin-like activities. 
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Velcade induces Caspase-3 associated cell death in parental PC-3 cells and non-

Caspase associated cell death in PC-3 cells stably overexpressing AR.  We have 

previously reported that proteasome inhibitors caused degradation of AR protein in both 

androgen-dependent LNCaP and androgen-independent C4-2B, suggesting that AR is 

intimately linked to apoptosis [Chen et al., 2007b; Kim et al., 2008; Yang et al., 2006b].   

However, whether this observation is restricted to prostate cancer cells harboring endogenous 

AR, or whether AR stability is directly implicated in modulating the cell death pathway has 

yet to be established. 

 Since both PC-3 and PC3-AR cells showed similar sensitivity to Velcade toward 

suppression of cell proliferation and proteasomal activity, we next investigated whether the 

presence of AR could influence the molecular events associated with the cell death program.  

To test this hypothesis, both cell lines were treated with different concentrations of Velcade 

(0.25µM-5 µM) for 24 h or DMSO solvent control, and their prepared cell extracts were used 

for various biochemical assays including caspase activity, PARP cleavage, morphological 

changes, and histone-DNA ELISA.  Significantly higher caspase-3 levels were visible in PC-

3 cells, reaching about 26 fold increase compared to DMSO treated cells (Fig. 69).  When 

PC3-AR cells were treated with Velcade, only about 5 fold increase in caspase-3 activity was 

visible at the highest concentration tested (Fig. 69).  
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Figure 69. Velcade significantly induces higher levels of Caspase-3 in PC-3 cells 
compared to PC3 cells stably overexpressing AR.  
 
PC-3 and PC3-AR cells were treated with Velcade at indicated concentrations for 24 h, 
followed by measurement of capase-3 activity. DMSO (D) was used as solvent control.   
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This striking difference in caspase-3 activity was verified by western blot analysis, which 

showed a dose dependent increase in cleaved caspase-3 protein levels compared to PC-AR 

cells treated with Velcade (Fig. 70).  Additionally, significantly higher levels of cleaved 

caspase-8 and decreased levels of procaspase 9 were visible in aliquots of PC-3 cells, 

whereas PC3-AR cells showed significantly lower levels (Fig. 70). 

 It has been shown that PARP can be cleaved by caspase-3 into its characteristic p85 

fragment and is characteristic of apoptosis [Lazebnik et al., 1994].  Since higher levels of 

caspase 3 activity are associated with PC-3 cells in response to Velcade we would expect 

PARP to be cleaved into its respective p85 fragment.  Treatment of PC-3 but not PC3-AR 

cells resulted in cleaved p85 PARP mostly at higher concentrations, indicative of apoptotic 

cell death (Fig. 70).  Additionally, both the pro- and –antiapoptotic proteins were measured 

in aliquots from both cell cells lines following treatment with Velcade.  We found that both 

Bcl-2 and Bax were present at much higher levels in PC-3 cells compared to PC-3-AR cells 

and no discernable difference was found upon treatment (Fig. 70).  Furthermore, levels of 

AR proteins were slightly increased upon exposure to Velcade compared to DMSO treatment 

(Fig. 70). 
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Figure 70. Velcade significantly induces higher levels of apoptotic indices in PC3 cells 
compared to PC-3 cells stably overexpressing AR.  
 
 PC-3 and PC3-AR cells were treated with Velcade for 24 h, followed by Western blot 
analysis of PARP, caspase-3, 8, 9, AR, BCL-2, and Bax. Actin was used as loading control. 
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We also observed cell morphology following 24 h treatment as a measurement of cell 

death. Changes in cell morphology (cell shrunken, and rounded up) were apparent at 

increasing concentrations of Velcade in both PC-3 and PC3-AR cells (Fig. 71).  However, 

although PC3-AR cells shows significantly lower levels of caspase 3 compared to parental 

cells, abnormal cell morphology was more pronounced at the lowest concentrations tested 

(Fig. 71).  Therefore, these results suggests that the presence of AR may be influencing the 

mechanism of cell death induced by cytotoxic insult; PC-3 cells by a caspase associated 

process and PC3-AR cells by a noncaspase associated mechanism. 
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Figure 71. Morphological changes in response to Velcade treatment. 
 
PC-3 and PC3-AR cells were treated with Velcade for 24 h at indicated concentrations, 
followed by visualization of cellular morphological changes. DMSO (DM) was used as 
solvent control.  
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 To further investigate the molecular basis of Velcade induced cell death of both PC3 

cells and PC-AR cells, histone-DNA ELISA assay was performed to measure apoptosis or 

non apoptotic cell death.  Figure 72 shows a significant increase in apoptotic cells (~7 fold) 

in PC-3 cells treated with Velcade as measured by ELISA.  In contrast, treatment of PC3-AR 

cells under the same experimental conditions resulted in only minimal levels of apoptotic 

cells (Fig. 72).  These results show that although both cell lines exhibited similar sensitivity 

to growth inhibition, stably overexpressing AR in AR-independent prostate cancer cells may 

be influencing the molecular events that facilitate a caspase-associated cell death. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 208

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 72. Velcade significantly induces higher levels of apoptotic cell death in PC-3 
compared to PC3 cells stably overexpressing AR.   
 
Both cells lines were treated with Velcade at 1 µM or 2.5 µM for 24 h followed by 
measurement of histone-DNA ELISA for apoptosis.   
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Cisplatin-induced cytotoxicity elicits Caspase-3 associated cell death (apoptosis) 

in parental PC-3 cells and non-Caspase associated cell death in PC-3 cells stably 

overexpressing AR.  Our results show that AR may play a pivotal role in influencing the 

molecular events leading to cell death in response to proteasome inhibitor treatment.  To 

further investigate this claim, PC3 and PC3-AR cells were treated with cisplatin for 24 h 

followed by measurement of cell proliferation, caspase 3 activity, apoptosis-specific PARP 

cleavage, and cellular morphological changes.  DMSO was used as solvent control.  

Consistent with our results using Velcade, growth inhibition by cisplatin displayed a similar 

sensitivity profile between both cell lines at increasing concentrations (25-100 µM) (Fig. 73).  

Associated with growth inhibition under the same experimental conditions, cisplatin elicited 

significantly higher activation of caspase 3 in parental PC-3 Cells compared to PC-AR cells 

(Fig. 74). 
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Figure 73. Cisplatin inhibits cell proliferation at similar levels in both parental PC-3 
and PC3 cells stably overexpressing AR.  
  
PC-3 and PC3-AR cells were treated with Cisplatin for 24 h followed by measurement of cell 
proliferation by MTT assay. 
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Figure 74. Cisplatin significantly induces higher levels of Caspase-3 in PC-3 compared 
to PC3 cells stably overexpressing AR.  
  
PC-3 and PC3-AR cells were treated with Velcade for 24 h, followed by measurement of 
capase-3 activity. DMSO (D) was used as solvent control.  
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For example, treatment of PC-3 cells with cisplatin at 75 µM resulted in 3-fold higher 

levels of caspase 3 compared to PC-AR cells at the same concentrations (Fig. 74).  

Associated with higher levels of caspase 3 in PC-3 cells was p85 PARP cleavage and cleaved 

caspase 3 protein at higher concentrations of cisplatin (Fig. 75).  Additionally, expression of 

Bcl-2 protein was relatively consistent with that observed in both cell lines with Velcade 

treatment (Fig. 75).  Consistent with a similar growth inhibitory profile, abnormal changes in 

cell morphology (shrunken, detached) were observed for both cell lines at similar levels that 

was characteristic of cell death (Fig. 76). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 213

 

 

 

 

 

 

Cis Pt

AR

PARP

P85/PARP

32 Kd/ Cas-3

~17 Kd/Cas-3

Actin

PC3 PC3-AR

D   25   50 75  100  D 25   50  75  100 µM

Bcl-2

 

Figure 75. Cisplatin significantly induces higher levels of apoptotic markers in PC-3 
cells compared to PC3 cells stably overexpressing AR.  
 
PC-3 and PC3-AR cells were treated with Velcade for 24 h, followed by Western blot 
analysis of PARP, caspase-3, AR, Bax, and Bcl-2. Actin was used as loading control. 
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Figure 76. Morphological changes in PC-3 and PC3-AR cells in response to Velcade. 
 
Both cell lines were treated with Velcade for 24 h at indicated concentrations, followed by 
visualization of cellular morphological changes.  DMSO (D) was used as solvent control.  
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To investigate the kinetic effects of apoptosis induction in parental PC-3 cells, 

caspase 3 activity, and PARP cleavage were measured and compared to indices in PC3-AR 

cells treated with 75 µM cisplatin over different time points.  We found significantly higher 

levels of caspase 3 activity primarily during later points compared to PC3-AR cells (Fig. 77).  

For example, we found a 6.5 and 5.5 fold increase in caspase 3 activity in parental PC-3 cells 

compared its AR-containing counterpart after 18 h and 24 h exposure of cisplatin, 

respectively (Fig. 77).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 216

 

 

 

 

 

 

0

2

4

6

8

10

12

14

C
as

-3
 A

ct
iv

it
y 

(f
o

ld
)

PC-3

PC3-AR

D            2          4         8            18         24  h  

Figure 77. Kinetic effect of cisplatin-induced caspase-3 activity in PC-3 cells. 
 
Human prostate PC-3 and PC3-AR cells were treated with 75 µmol cisplatin at indicated 
time points followed by measurement of caspase-3 activity. DMSO (D) was used as solvent 
control.  
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This observation was confirmed with the appearance of low levels of cleaved 

procaspase 3 in PC-3 cells (Fig. 78).  Consistent with apoptosis induction in PC-3 cells was 

the appearance of PARP cleavage during later time points (Fig. 78).  As observed prior, the 

appearance of aberrant morphological changes were similar throughout all time points 

following exposure to cisplatin (data not shown).  Furthermore, Bax and Bcl-2 showed 

relatively stable expression for each cell line in response to treatment compared to DMSO 

control (Fig. 78).  These results show, as demonstrated with Velcade, PC-3 cells undergo cell 

death in a caspase associated process (characteristic of apoptosis), whereas PC3-AR undergo 

cell death by a mechanism not associated with high levels of caspase activity. 
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Figure 78.  Kinetic effect of apoptotic indices in response to cisplatin. 
   
Human prostate PC-3 and PC3-AR cells were treated with 75 µmol cisplatin at indicated 
time points followed by Western blot analysis of Caspase-3, PARP, Bax, Bcl-2, and AR. 
Actin was used as loading control.   
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Proteasome inhibitor and chemotherapy induces caspase 3-associated cell death 

in parental PC-3 cells and cell death in PC-3 cells transiently overexpressing AR not 

associated with caspase-3.  Our results show that the stable overexpression of AR in AR-

independent prostate cancer cells can influence regulatory events that switch the cell death 

program from apoptotic cell death to a form of cell death that is not associated with caspase-3 

activity in response to therapeutic stimuli.  To investigate whether transiently expressing AR 

in PC-3 cells could similarly inhibit caspase-3 activity, we treated parental PC-3 cells and 

PC-3 cells transiently expressing AR with cisplatin, Velcade, or MG-132 for 24 h.  Our 

results showed inhibition of chymotrypsin-like activity by Velcade in both cell lines at the 

same concentrations, but PC-3 AR cells were about 3 fold more sensitive to the proteasome 

inhibitor MG-132 (Fig. 79).  Additionally, cisplatin showed minimal proteasome inhibitory 

activity against either cell line tested compared to DMSO control (Fig. 79).   
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Figure 79. Proteasome inhibitors inhibit proteasomal chymotrypsin-like activity in both 
parental PC-3 cells PC-3 cells transiently expressing AR at similar levels.  
  
Human prostate PC-3 and PC3 cells transiently expressing AR were treated with cisplatin, 
MG-132, or Velcade at indicated concentrations for 24 h followed by measurement of 
proteasomal chymotrypsin-like activity. DMSO was used as solvent control. 
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Consistent with our finding from cells stably expressing AR, both proteasome 

inhibitors were unable to induce significant levels of caspase 3 activity in cells transiently 

expressing AR in response to any therapeutic agent (Fig. 80).  For example, we found 

exposure to Velcade and MG-132 for 24 h induced the activation of Caspase 3 activity about 

2.5- fold and 4- fold higher, respectively, in parental PC-3 cells compared to PC3-AR cells 

(Fig. 80B).  Additionally, neither cell line exhibited a significant difference in caspase 3 

activity when exposed to 50 µM cisplatin (Fig. 80B).  Therefore, consistent with our finding 

from PC-3 cells stably expressing AR, its transient expression acts as a suppressor of capase-

3 activity and may be instrumental in modulating the cell death program to form of cell death 

that is not heavily associated with caspase-3 activity. 
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Figure 80.  Proteasome inhibitor significantly induces higher caspase-3 activity in 
parental PC-3 cells compared to PC-3 cells transiently expressing AR.   
 
Human prostate PC-3 and PC3 cells transiently expressing AR were treated with cisplatin, 
MG-132, or Velcade at indicated concentrations for 24 h followed by measurement of (A) 
AR expression levels, and (B) caspase-3 activity. DMSO was used as solvent control. 
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Androgen receptor suppresses caspase 3 associated cell death in androgen-

dependent AR(+) LNCaP cells in response to proteasome inhibitor.  Our results clearly 

show that AR suppresses caspase-3 associated cell death in both stable and transiently 

expressing PC-3 cells, suggesting the importance AR in regulating cell death.  To further 

investigate its ability to inhibit caspase 3 associated cell death, AR(+) LNCaP cells were 

treated with either Velcade (0.25 µM-5 µM) or Cisplatin (25 µM-100µM) for 24 h followed 

by measurement of caspase-3 activity, PARP cleavage, and apoptosis associated proteins.  

Velcade treatment of parental PC-3 cells was used as a positive control.  The results show 

that treatment of LNCaP cells with Velcade failed to induce any significant levels of caspase-

3, cleaved PARP, or induce any discernable difference in apoptotic-associated proteins (Fig. 

81A, 82).   

 

 

 

 

 

 

 

 

 

 

 

 



 224

 

                    

Figure 81. The effect of Velcade (A) and cisplatin (B) on caspase-3 activity in AR(+) 
LNCaP prostate cancer cells.  
  
Human prostate cancer LNCaP cells were treated for 24 h at indicated concentrations of (A) 
Velcade or (B) followed by measurement of caspase-3 activity.  Parental PC-3 cells were 
used as a positive control.  
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However, cisplatin was able to induce about 3-fold increase in caspase-3 activity 3 at 

25 µM and 50 µM, respectively, associated with discernable levels of cleaved PARP (Fig. 

81B and 82).  Although, proteasome inhibitor failed to induce any significant levels of 

caspase 3, cisplatin, which operates through a different mechanism of action, was still able to 

increase caspase-3 activity at lower concentrations tested.  These results show LNCaP cells 

containing endogenous AR expression were considerably resistant to caspase 3-associated 

cell death by proteasome inhibition, but were increasingly able to activate caspase-3 activity 

in response to cisplatin. 
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Figure 82. Velcade and cisplatin induce different cell death associated indices in AR-
dependent LNCaP prostate cancer cells.  
  
Human prostate cancer LNCaP cells were treated for 24 h with Velcade or cisplatin at 
indicated concentrations, followed by measurement of PARP, caspase-9, Bax, Bcl-2, and AR 
by Western Blot analysis. 
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AR antagonist, Casodex, increases Velcade-induced caspase-3-associated cell 

death in AR(+) LNCaP cells.  Since AR-containing LNCaP cells experienced cell death 

without significant induction of caspase-3 activity in response to cytotoxic stimuli, we next 

investigated whether pretreatment with an AR antagonist could rescue caspase-3 dependent 

cell death.  Casodex  acts as an anti-androgen by binding to the AR and preventing the 

activation of its target genes [Furr, 1996]. In addition, casodex accelerates the degradation of 

the androgen receptor [Waller et al., 2000].  LNCaP cells were treated with Velcade either 

alone for 24 h or pretreated with casodex (100 µM) for 24h, followed by Velcade treatment 

at different concentrations (0.25 µM, 1 µM, 25 µM) for an additional 24h, followed by 

measurement of caspase 3 activity, PARP cleavage, AR, and apoptotic associated proteins.  

Casodex at 100 µM and DMSO control served as controls.  We found that associated with 

Velcade-induced cell death, caspase 3 activity increased only 2-fold compared to solvent 

control and casodex alone (Fig. 83).  However, cotreatment of Velcade and casodex elicited a 

dose dependent increase in caspase 3 activity reaching 4.8 fold increase compared to DMSO 

control and casodex alone (Fig. 83).  In comparison, Velcade alone induced caspase 3 

activity about 2 fold at the highest concentration tested (Fig. 83).   
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Figure 83. Casodex increases Velcade-induced capase-3-associated cell death in AR(+) 
LNCaP cells. 
 
LNCaP cells were treated with either casodex alone (100 µM) for 24 h, Velcade alone for 24 
h, or pretreatment with casodex followed by cotreatment with Velcade for an additional 24 h 
at the indicated concentrations, followed by measurement of caspase-3 activity. DMSO (D) 
was used as solvent control.   
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Higher levels of caspase-3 activity in cotreated cells were associated with visible 

levels of PARP cleavage (Fig. 84).  Furthermore, If AR was associated with suppression of 

caspase-3 activity; we’d expect to see decreased levels of AR in cells cotreated with casodex 

and Velcade.  Interestingly, associated with higher levels of caspase-3 was a significant 

reduction in AR expression (Fig. 84).  These results strongly designate AR as a critical player 

in regulating the cell death program by suppressing caspase-3 activity.  Since the majority of 

hormone resistant prostate cancer (HRPC) remains highly dependent on AR function, 

elimination of AR may prove to be a viable therapeutic strategy in the treatment of prostate 

cancer. 
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Figure 84. Velcade and casodex partially rescue apoptotic cell death in AR-dependent 
LNCaP cells.  
  
LNCaP cells were treated with either casodex alone (100 µM) for 24 h, Velcade alone for 24 
h, or pretreatment with casodex followed by cotreatment with velcade for an additional 24 h 
at the indicated concentrations, followed by measurement of PARP, caspase-3, caspase-9, 
Bax, Bcl-2, and AR by Western Blot analysis. Actin was used as loading control. 
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Discussion 

Many reports have suggested that AR is a critical molecular determinant in driving 

prostate cancers from a hormone sensitive to a hormone refractory state following ablation of 

steroidal androgens [Attard et al., 2009a; Cohen and Rokhlin, 2009; Taplin, 2008].  We have 

previously reported that proteasome inhibitors caused downregulation of AR in both 

androgen-dependent LNCaP cells and androgen-independent C4-2B cells [Chen et al., 

2007b; Yang et al., 2006b], and that calpain involvement is at least partially responsible for 

this effect [Yang et al., 2008].  The finding that AR degradation by proteasome inhibition is 

associated with apoptotic cell death stimulated our investigation into examining the 

regulatory events of AR in driving tumor cell death. 

 Clinical studies have shown that most anticancer agents induce apoptosis, and that 

inhibition of the apoptotic program can trigger chemoresistance [Okada and Mak, 2004].  

Therefore, targeting alternative forms of cell death may provide effective means for maximal 

tumor reduction.  It is likely that both apoptotic and non-apoptotic pathways contribute to 

cell death depending on the cell type and degree of therapeutic insult.   It has also been 

shown that many current anticancer therapies, including DNA-alkylating agents can induce 

necrosis by activation of PARP-1 [Zong et al., 2004].  Increasing evidence suggests that 

death receptor adaptors, including receptor-interacting protein kinase (RIPK1) and tumor 

necrosis factor (TNF) receptor associated factor 2 (TRAF2), as important regulators of 

necrotic cell death [Chan et al., 2003; Holler et al., 2000].  These findings open the 

possibility of exploiting these as potential molecular targets in cancer therapy.  It has also 

been shown that breast cancer cells treated with tamoxifen can induce autophagy by 

accumulating autophagic vesicles before tumor cell death [Bursch et al., 1996; Bursch et al., 
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2000].  However, the molecular events by which tumors cells can control their fate has 

remained unanswered.  Therefore, assessment of the expression of protein signatures 

associated with cell death may have significant implications in the selection of treatment 

strategies for cancer [Bruckheimer and Kyprianou, 2000]. 

 In this study we set out to investigate whether AR can influence the regulatory events 

in modulating the cell death program in prostate cancer cells in response to proteasome 

inhibition and chemotherapy.  Studies have shown that AR expression in PC-3 cells confers a 

less aggressive phenotype by decreasing anchorage independent growth and Matrigel 

invasiveness [Bonaccorsi et al., 2008].  It has also been shown that AR may function as both 

a suppressor and proliferator to suppress or promote tumor cell metastasis depending on the 

cellular context [Niu et al., 2008]. However, whether AR can intrinsically modulate the cell 

death program has yet to be established.  The data in this dissertation shows parental PC-3 

cells and reexpression of AR into AR(-) PC-3 cells showed similar growth inhibitory effects 

in response to proteasome inhibition and chemotherapy (Fig. 67, and 73).  However, greater 

than 4-fold increase in caspase-3 activity was seen in PC-3 cells compared to PC3-AR cells 

at the highest concentration tested, associated with apoptotic indices (Fig. 69, and 70) in 

response to Velcade treatment.  Associated with higher levels of caspase-3 levels in PC-3 

cells were significantly higher levels of apoptotic cells as measured by DNA-histone ELISA 

(Fig. 72).  These results suggest that parental PC-3 cells undergo a caspase-associated form 

of cell death (e.g. apoptosis), whereas PC3-AR cells undergo cell death that is not heavily 

associated with the activation of caspases (e.g. caspase-independent apoptosis, nonapoptotic 

cell death).  These interesting results were also seen when this experimental model was 

treated with cisplatin, although the increase in caspase-3 activity was less pronounced in 
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parental PC-3 cells (Fig. 74, and 75).  Our finding that AR could act as a suppressor of 

caspase-3-dependent cell death was validated in AR(+) LNCaP cells (Fig. 81-82).  

Interestingly, when the AR antagonist Velcade was used in cotreatment with Velcade, 

caspase-3 activity was once again increased, (Fig. 83) demonstrating the intrinsic value AR 

in modulating the cell death response.  Moreover, it was also found that inhibition of caspase 

activity by AR was not by direct binding (data not shown). 

 These interesting results suggest that targeting alternative forms of cell death based 

on protein signatures, such as AR, may provide prognostic and therapeutic opportunities in 

the treatment of prostate cancer.  Furthermore, it is conceivable that targeting AR for its 

elimination by combination strategies may provide effective means for the treatment of 

hormone resistant prostate cancer (HRPC), which remains addicted to AR signaling 

processes. 
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Future Studies 

The data presented in this dissertation presents a compelling rationale for the 

development of metal complexes with asymmetric [NN’O]-containing ligands with gallium, 

zinc, and copper as potential proteasome inhibitors for the potential clinical application in the 

treatment of cancer.  However, an in-depth understanding of the mechanism of actions of 

proteasome inhibitors is essential for their translation into effect drug candidates.  A number 

of studies will be carried out in the future to build upon our initial studies and importantly, to 

validate the potential use of metal-containing complexes as potential anticancer agents that 

target the ubiquitin-proteasome pathway.  This endeavor requires an interdisciplinary 

approach that combines the expertises of both molecular biologists and chemists.  The first 

approach will be to determine the optimal electronic and structural properties of the metal 

ions and ligands necessary for proteasome inhibition.  This goal will be obtained through the 

development of a library of coordination compounds by means of synthesis, structural 

characterization, and pharmacological studies, both under cell free conditions and cultured 

human prostate cancer cells.  The second approach is to determine the inhibition potential of 

metal complexes related to (i) the nature of the metal ion (e.g. charge, oxidation state), (ii) 

the nature of the ligand (e.g. charge, redox innocence, amphiphilicity), (iii) the nature of the 

counterions (e.g. solubility, cell penetration).  To achieve this goal, interactions between 

complexes, the 20S core and the 19S regulatory caps will be studied, and biomimetic and 

computational (in silico) modeling of the active sites for proteasome inhibition and cell death 

induction will be considered.  The third approach will involve the evaluation of metal 

complexes toward proteasome inhibition and cell death using cultured human prostate cancer 

cells and mouse models-bearing human prostate cancer xenografts.  A concerted effort will 
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also be undertaken to identify the biological mechanisms associated with proteasome 

inhibition.  This approach will set out to identify cellular pathways responsible for 

proteasome inhibition and cell death, including NF-ĸB, mTOR, AKT, and their association 

with reactive oxygen species.  Identifying critical signaling programs responsible for metal-

based proteasome inhibition is essential for their development as anticancer drugs. 

An important component of this dissertation demonstrates the critical role of the 

androgen receptor (AR) in influencing the regulatory events involved in prostate tumor cell 

death.  A series of future studies will be carried out with this project that could have future 

implications in the treatment of hormone resistant prostate cancer which remains invariably 

dependent on androgen receptor signaling.  An important finding of this study is that cell 

death in parental PC-3 prostate cancer cells is associated with the induction of capase-3 

activity, while cell death in PC3/AR cells are unable to reach high levels of caspase-3.  To 

validate the reliance of PC-3 cells on caspase-3 activity, a future approach would be to 

measure caspase-3 activity and cell death associated changes in the presence of a caspase-3 

inhibitor and either a proteasome inhibitor or chemotherapy.  Since treatment of PC-AR cells 

is not associated with significant levels of caspase-3 activity, a future approach would be to 

measure protein markers associated with caspase-3 independent cell death, such as necrosis 

(RIPK-1), and autophagy (e.g. LCM3).  Additionally, the results in this dissertation show that 

treatment of AR(+) LNCaP cells with proteasome inhibitor followed by cotreatment with the 

AR antagonist Casodex resulted in significant decreased levels of AR protein associated with 

increased levels of caspase-3 activity.  This is a significant finding since elimination of AR 

may prove to be a curative strategy in hormone resistant prostate cancer.  This interesting 

finding will be validated by future studies in a mouse model-bearing prostate cancer cells that 
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contain AR and can mimic the hormone resistant state.  Mice-bearing prostate cancer 

xenografts (5-8 mice/group) will be either treated with solvent control, proteasome inhibitor, 

casodex alone, or combination of proteasome inhibitor and casodex for up to 30 days.  

Following treatment, tumors will be harvested and used to measure caspase-3 activity, 

expression levels of AR protein, and also cell death associated changes (e.g. PARP cleavage, 

Bax, Bcl-2) in tumor tissue.  These studies could lead to the generation of therapeutic 

strategies that target and eliminate AR, and could play a pivotal role in the treatment of 

prostate cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 237

References 

Abou-Jawde R, Choueiri T, Alemany C, Mekhail T. 2003. An overview of targeted 

treatments in cancer. Clin Ther 25:2121-37. 

Adams J. 2002. Proteasome inhibition: a novel approach to cancer therapy. Trends Mol Med 

8:S49-54. 

Adams J. 2003. The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 

Suppl 1:3-9. 

Adams J. 2004. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349-60. 

Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, 

Prakash S, Elliott PJ. 1999. Proteasome inhibitors: a novel class of potent and 

effective antitumor agents. Cancer Res 59:2615-22. 

Adams JM, Cory S. 2007. The Bcl-2 apoptotic switch in cancer development and therapy. 

Oncogene 26:1324-37. 

Aghajanian C, Dizon DS, Sabbatini P, Raizer JJ, Dupont J, Spriggs DR. 2005. Phase I trial of 

bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin 

Oncol 23:5943-9. 

Alama A, Tasso B, Novelli F, Sparatore F. 2009. Organometallic compounds in oncology: 

implications of novel organotins as antitumor agents. Drug Discov Today 14:500-8. 

Alberts SR, Foster NR, Morton RF, Kugler J, Schaefer P, Wiesenfeld M, Fitch TR, Steen P, 

Kim GP, Gill S. 2005. PS-341 and gemcitabine in patients with metastatic pancreatic 

adenocarcinoma: a North Central Cancer Treatment Group (NCCTG) randomized 

phase II study. Ann Oncol 16:1654-61. 



 238

Amici M, Forti K, Nobili C, Lupidi G, Angeletti M, Fioretti E, Eleuteri AM. 2002. Effect of 

neurotoxic metal ions on the proteolytic activities of the 20S proteasome from bovine 

brain. J Biol Inorg Chem 7:750-6. 

An B, Goldfarb RH, Siman R, Dou QP. 1998. Novel dipeptidyl proteasome inhibitors 

overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent 

kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human 

fibroblasts. Cell Death Differ 5:1062-75. 

Apelgot S, Coppey J, Fromentin A, Guille E, Poupon MF, Roussel A. 1986. Altered 

distribution of copper (64Cu) in tumor-bearing mice and rats. Anticancer Res 6:159-

64. 

Attard G, Cooper CS, de Bono JS. 2009a. Steroid hormone receptors in prostate cancer: a 

hard habit to break? Cancer Cell 16:458-62. 

Attard G, Reid AH, A'Hern R, Parker C, Oommen NB, Folkerd E, Messiou C, Molife LR, 

Maier G, Thompson E, Olmos D, Sinha R, Lee G, Dowsett M, Kaye SB, Dearnaley 

D, Kheoh T, Molina A, de Bono JS. 2009b. Selective inhibition of CYP17 with 

abiraterone acetate is highly active in the treatment of castration-resistant prostate 

cancer. J Clin Oncol 27:3742-8. 

Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S, Barrett M, Parker C, 

Martins V, Folkerd E, Clark J, Cooper CS, Kaye SB, Dearnaley D, Lee G, de Bono 

JS. 2008. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, 

confirms that castration-resistant prostate cancer commonly remains hormone driven. 

J Clin Oncol 26:4563-71. 



 239

Baldin V, Cans C, Knibiehler M, Ducommun B. 1997. Phosphorylation of human CDC25B 

phosphatase by CDK1-cyclin A triggers its proteasome-dependent degradation. J Biol 

Chem 272:32731-4. 

Baumeister W, Walz J, Zuhl F, Seemuller E. 1998. The proteasome: paradigm of a self-

compartmentalizing protease. Cell 92:367-80. 

Becke AD. 1988. Density-functional exchange-energy approximation with correct 

asymptotic behavior. Phys Rev A 38:3098-3100. 

Belch A, Kouroukis CT, Crump M, Sehn L, Gascoyne RD, Klasa R, Powers J, Wright J, 

Eisenhauer EA. 2007. A phase II study of bortezomib in mantle cell lymphoma: the 

National Cancer Institute of Canada Clinical Trials Group trial IND.150. Ann Oncol 

18:116-21. 

Bernardi R, Liebermann DA, Hoffman B. 2000. Cdc25A stability is controlled by the 

ubiquitin-proteasome pathway during cell cycle progression and terminal 

differentiation. Oncogene 19:2447-54. 

Bernstein LR. 1998. Mechanisms of therapeutic activity for gallium. Pharmacol Rev 50:665-

82. 

Biswas DK, Iglehart JD. 2006. Linkage between EGFR family receptors and nuclear factor 

kappaB (NF-kappaB) signaling in breast cancer. J Cell Physiol 209:645-52. 

Blagosklonny MV. 2002. P53: an ubiquitous target of anticancer drugs. Int J Cancer 98:161-

6. 

Blair HC, Teitelbaum SL, Tan HL, Schlesinger PH. 1992. Reversible inhibition of 

osteoclastic activity by bone-bound gallium (III). J Cell Biochem 48:401-10. 



 240

Bonaccorsi L, Nosi D, Quercioli F, Formigli L, Zecchi S, Maggi M, Forti G, Baldi E. 2008. 

Prostate cancer: a model of integration of genomic and non-genomic effects of the 

androgen receptor in cell lines model. Steroids 73:1030-7. 

Brewer GJ. 2007. Iron and copper toxicity in diseases of aging, particularly atherosclerosis 

and Alzheimer's disease. Exp Biol Med (Maywood) 232:323-35. 

Brewer GJ, Dick RD, Grover DK, LeClaire V, Tseng M, Wicha M, Pienta K, Redman BG, 

Jahan T, Sondak VK, Strawderman M, LeCarpentier G, Merajver SD. 2000. 

Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic 

agent: Phase I study. Clin Cancer Res 6:1-10. 

Bruckheimer EM, Kyprianou N. 2000. Apoptosis in prostate carcinogenesis. A growth 

regulator and a therapeutic target. Cell Tissue Res 301:153-62. 

Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. 1999. Biochemical pathways of caspase 

activation during apoptosis. Annu Rev Cell Dev Biol 15:269-90. 

Burnstein KL. 2005. Regulation of androgen receptor levels: implications for prostate cancer 

progression and therapy. J Cell Biochem 95:657-69. 

Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, Walker R, Hermann RS. 

1996. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in 

human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. 

Carcinogenesis 17:1595-607. 

Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS. 2000. Autophagic 

and apoptotic types of programmed cell death exhibit different fates of cytoskeletal 

filaments. J Cell Sci 113 ( Pt 7):1189-98. 



 241

Chakravarty PK, Ghosh A, Chowdhury JR. 1986. Zinc in human malignancies. Neoplasma 

33:85-90. 

Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, Orenstein J, Moss B, Lenardo 

MJ. 2003. A role for tumor necrosis factor receptor-2 and receptor-interacting protein 

in programmed necrosis and antiviral responses. J Biol Chem 278:51613-21. 

Chang KL, Hung TC, Hsieh BS, Chen YH, Chen TF, Cheng HL. 2006. Zinc at 

pharmacologic concentrations affects cytokine expression and induces apoptosis of 

human peripheral blood mononuclear cells. Nutrition 22:465-74. 

Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, 

Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao TH, Neuteboom ST, 

Richardson P, Palladino MA, Anderson KC. 2005. A novel orally active proteasome 

inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from 

Bortezomib. Cancer Cell 8:407-19. 

Chauhan D, Hideshima T, Anderson KC. 2006. A novel proteasome inhibitor NPI-0052 as an 

anticancer therapy. Br J Cancer 95:961-5. 

Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, 

Palladino MA, Anderson KC. 2008. Combination of proteasome inhibitors 

bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple 

myeloma. Blood 111:1654-64. 

Chauhan D, Singh AV, Ciccarelli B, Richardson PG, Palladino MA, Anderson KC. 

Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in 

vitro and in vivo synergistic cytotoxicity in multiple myeloma. Blood 115:834-45. 



 242

Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA, Anderson 

KC. 1996. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone 

marrow stromal cells involves activation of NF-kappa B. Blood 87:1104-12. 

Chen C, Edelstein LC, Gelinas C. 2000. The Rel/NF-kappaB family directly activates 

expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20:2687-95. 

Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL. 

2004a. Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33-

9. 

Chen D, Cui QC, Yang H, Barrea RA, Sarkar FH, Sheng S, Yan B, Reddy GP, Dou QP. 

2007a. Clioquinol, a therapeutic agent for Alzheimer's disease, has proteasome-

inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor 

activities in human prostate cancer cells and xenografts. Cancer Res 67:1636-44. 

Chen D, Cui QC, Yang H, Dou QP. 2006. Disulfiram, a clinically used anti-alcoholism drug 

and copper-binding agent, induces apoptotic cell death in breast cancer cultures and 

xenografts via inhibition of the proteasome activity. Cancer Res 66:10425-33. 

Chen D, Dou QP. 2008. New uses for old copper-binding drugs: converting the pro-

angiogenic copper to a specific cancer cell death inducer. Expert Opin Ther Targets 

12:739-48. 

Chen D, Frezza M, Shakya R, Cui QC, Milacic V, Verani CN, Dou QP. 2007b. Inhibition of 

the proteasome activity by gallium(III) complexes contributes to their anti prostate 

tumor effects. Cancer Res 67:9258-65. 

Chen D, Milacic V, Frezza M, Dou QP. 2009. Metal complexes, their cellular targets and 

potential for cancer therapy. Curr Pharm Des 15:777-91. 



 243

Chen D, Peng F, Cui QC, Daniel KG, Orlu S, Liu J, Dou QP. 2005. Inhibition of prostate 

cancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex 

is associated with suppression of proliferation and induction of apoptosis. Front 

Biosci 10:2932-9. 

Chen F, Zhang Z, Bower J, Lu Y, Leonard SS, Ding M, Castranova V, Piwnica-Worms H, 

Shi X. 2002. Arsenite-induced Cdc25C degradation is through the KEN-box and 

ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 99:1990-5. 

Chen W, Lee J, Cho SY, Fine HA. 2004b. Proteasome-mediated destruction of the cyclin 

a/cyclin-dependent kinase 2 complex suppresses tumor cell growth in vitro and in 

vivo. Cancer Res 64:3949-57. 

Chen Y, Sawyers CL, Scher HI. 2008. Targeting the androgen receptor pathway in prostate 

cancer. Curr Opin Pharmacol 8:440-8. 

Chen ZJ. 2005. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758-65. 

Chen ZJ, Parent L, Maniatis T. 1996. Site-specific phosphorylation of IkappaBalpha by a 

novel ubiquitination-dependent protein kinase activity. Cell 84:853-62. 

Chitambar CR. 2004a. Apoptotic mechanisms of gallium nitrate: basic and clinical 

investigations. Oncology (Williston Park) 18:39-44. 

Chitambar CR. 2004b. Gallium compounds as antineoplastic agents. Curr Opin Oncol 

16:547-52. 

Chitambar CR, Matthaeus WG, Antholine WE, Graff K, O'Brien WJ. 1988. Inhibition of 

leukemic HL60 cell growth by transferrin-gallium: effects on ribonucleotide 

reductase and demonstration of drug synergy with hydroxyurea. Blood 72:1930-6. 



 244

Chitambar CR, Narasimhan J. 1991. Targeting iron-dependent DNA synthesis with gallium 

and transferrin-gallium. Pathobiology 59:3-10. 

Ciechanover A. 1998. The ubiquitin-proteasome pathway: on protein death and cell life. 

EMBO J 17:7151-60. 

Ciechanover A, Orian A, Schwartz AL. 2000. Ubiquitin-mediated proteolysis: biological 

regulation via destruction. Bioessays 22:442-51. 

Cohen MB, Rokhlin OW. 2009. Mechanisms of prostate cancer cell survival after inhibition 

of AR expression. J Cell Biochem 106:363-71. 

Cohen SM. 2007. New approaches for medicinal applications of bioinorganic chemistry. 

Curr Opin Chem Biol 11:115-20. 

Collery P, Domingo JL, Keppler BK. 1996. Preclinical toxicology and tissue gallium 

distribution of a novel antitumour gallium compound: tris (8-quinolinolato) gallium 

(III). Anticancer Res 16:687-91. 

Coux O, Tanaka K, Goldberg AL. 1996. Structure and functions of the 20S and 26S 

proteasomes. Annu Rev Biochem 65:801-47. 

Crawford LJ, Walker B, Ovaa H, Chauhan D, Anderson KC, Morris TC, Irvine AE. 2006. 

Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, 

PS-341, and MG-132. Cancer Res 66:6379-86. 

Culig Z. 2004. Androgen receptor cross-talk with cell signalling pathways. Growth Factors 

22:179-84. 

Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker 

H. 1994. Androgen receptor activation in prostatic tumor cell lines by insulin-like 



 245

growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 

54:5474-8. 

Cvek B, Milacic V, Taraba J, Dou QP. 2008. Ni(II), Cu(II), and Zn(II) 

diethyldithiocarbamate complexes show various activities against the proteasome in 

breast cancer cells. J Med Chem 51:6256-8. 

Daniel KG, Chen D, Orlu S, Cui QC, Miller FR, Dou QP. 2005. Clioquinol and pyrrolidine 

dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis 

inducers in human breast cancer cells. Breast Cancer Res 7:R897-908. 

Daniel KG, Gupta P, Harbach RH, Guida WC, Dou QP. 2004. Organic copper complexes as 

a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. 

Biochem Pharmacol 67:1139-51. 

Davies AM, Ho C, Metzger AS, Beckett LA, Christensen S, Tanaka M, Lara PN, Lau DH, 

Gandara DR. 2007. Phase I study of two different schedules of bortezomib and 

pemetrexed in advanced solid tumors with emphasis on non-small cell lung cancer. J 

Thorac Oncol 2:1112-6. 

de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-

Funes H, Cervantes A, Freyer G, Papamichael D, Le Bail N, Louvet C, Hendler D, de 

Braud F, Wilson C, Morvan F, Bonetti A. 2000. Leucovorin and fluorouracil with or 

without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 

18:2938-47. 

DeMartino GN, Slaughter CA. 1999. The proteasome, a novel protease regulated by multiple 

mechanisms. J Biol Chem 274:22123-6. 



 246

Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis 

ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallone MK, Woo TM, Molineaux 

CJ, Bennett MK. 2007. Antitumor activity of PR-171, a novel irreversible inhibitor of 

the proteasome. Cancer Res 67:6383-91. 

Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. 1995. Mice lacking p21CIP1/WAF1 

undergo normal development, but are defective in G1 checkpoint control. Cell 

82:675-84. 

Desoize B. 2004. Metals and metal compounds in cancer treatment. Anticancer Res 24:1529-

44. 

Diehl JA, Zindy F, Sherr CJ. 1997. Inhibition of cyclin D1 phosphorylation on threonine-286 

prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 

11:957-72. 

Diez M, Arroyo M, Cerdan FJ, Munoz M, Martin MA, Balibrea JL. 1989. Serum and tissue 

trace metal levels in lung cancer. Oncology 46:230-4. 

Dou QP, Li B. 1999. Proteasome inhibitors as potential novel anticancer agents. Drug Resist 

Updat 2:215-223. 

Edwards J, Krishna NS, Grigor KM, Bartlett JM. 2003. Androgen receptor gene 

amplification and protein expression in hormone refractory prostate cancer. Br J 

Cancer 89:552-6. 

Einhorn L. 2003. Gallium nitrate in the treatment of bladder cancer. Semin Oncol 30:34-41. 

Engel RH, Brown JA, Von Roenn JH, O'Regan RM, Bergan R, Badve S, Rademaker 

A, Gradishar WJ. 2007. A phase II study of single agent bortezomib in patients with 

metastatic breast cancer: a single institution experience. Cancer Invest 25:733-7. 



 247

Engman L, McNaughton M, Gajewska M, Kumar S, Birmingham A, Powis G. 2006. 

Thioredoxin reductase and cancer cell growth inhibition by organogold(III) 

compounds. Anticancer Drugs 17:539-44. 

Federico A, Iodice P, Federico P, Del Rio A, Mellone MC, Catalano G. 2001. Effects of 

selenium and zinc supplementation on nutritional status in patients with cancer of 

digestive tract. Eur J Clin Nutr 55:293-7. 

Fesik SW. 2005. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev 

Cancer 5:876-85. 

Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, Epner E, 

Krishnan A, Leonard JP, Lonial S, Stadtmauer EA, O'Connor OA, Shi H, Boral AL, 

Goy A. 2006. Multicenter phase II study of bortezomib in patients with relapsed or 

refractory mantle cell lymphoma. J Clin Oncol 24:4867-74. 

Ford OH, 3rd, Gregory CW, Kim D, Smitherman AB, Mohler JL. 2003. Androgen receptor 

gene amplification and protein expression in recurrent prostate cancer. J Urol 

170:1817-21. 

Fraker PJ, Lill-Elghanian DA. 2004. The many roles of apoptosis in immunity as modified 

by aging and nutritional status. J Nutr Health Aging 8:56-63. 

Frankel A, Man S, Elliott P, Adams J, Kerbel RS. 2000. Lack of multicellular drug resistance 

observed in human ovarian and prostate carcinoma treated with the proteasome 

inhibitor PS-341. Clin Cancer Res 6:3719-28. 

Franklin RB, Costello LC. 2007. Zinc as an anti-tumor agent in prostate cancer and in other 

cancers. Arch Biochem Biophys 463:211-7. 



 248

Franklin RB, Costello LC. 2009. The important role of the apoptotic effects of zinc in the 

development of cancers. J Cell Biochem 106:750-7. 

Frezza M, Hindo SS, Tomco D, Allard MM, Cui QC, Heeg MJ, Chen D, Dou QP, Verani 

CN. 2009. Comparative Activities of Nickel(II) and Zinc(II) Complexes of 

Asymmetric [NN'O] Ligands as 26S Proteasome Inhibitors. Inorg Chem. 

Fricker SP. 2007. Metal based drugs: from serendipity to design. Dalton Trans:4903-17. 

Fuertes MA, Castilla J, Alonso C, Perez JM. 2002. Novel concepts in the development of 

platinum antitumor drugs. Curr Med Chem Anticancer Agents 2:539-51. 

Fulda S, Debatin KM. 2004. Signaling through death receptors in cancer therapy. Curr Opin 

Pharmacol 4:327-32. 

Fulda S, Debatin KM. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer 

chemotherapy. Oncogene 25:4798-811. 

Furr BJ. 1996. The development of Casodex (bicalutamide): preclinical studies. Eur Urol 29 

Suppl 2:83-95. 

Galanski M. 2006. Recent developments in the field of anticancer platinum complexes. 

Recent Pat Anticancer Drug Discov 1:285-95. 

Galanski M, Arion VB, Jakupec MA, Keppler BK. 2003. Recent developments in the field of 

tumor-inhibiting metal complexes. Curr Pharm Des 9:2078-89. 

Gao G, Dou QP. 2000. N-terminal cleavage of bax by calpain generates a potent proapoptotic 

18-kDa fragment that promotes bcl-2-independent cytochrome C release and 

apoptotic cell death. J Cell Biochem 80:53-72. 

Glotzer M, Murray AW, Kirschner MW. 1991. Cyclin is degraded by the ubiquitin pathway. 

Nature 349:132-8. 



 249

Godfrey EG, Stewart J, Dargie HJ, Reid JL, Dominiczak M, Hamilton CA, McMurray J. 

1994. Effects of ACE inhibitors on oxidation of human low density lipoprotein. Br J 

Clin Pharmacol 37:63-6. 

Goldberg AL. 2003. Protein degradation and protection against misfolded or damaged 

proteins. Nature 426:895-9. 

Goldberg AL, Cascio P, Saric T, Rock KL. 2002. The importance of the proteasome and 

subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 

39:147-64. 

Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F, Fayad L, Dang NH, 

Samaniego F, Wang M, Broglio K, Samuels B, Gilles F, Sarris AH, Hart S, Trehu E, 

Schenkein D, Cabanillas F, Rodriguez AM. 2005. Phase II study of proteasome 

inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin 

Oncol 23:667-75. 

Green DR, Reed JC. 1998. Mitochondria and apoptosis. Science 281:1309-12. 

Green MA, Welch MJ. 1989. Gallium radiopharmaceutical chemistry. Int J Rad Appl 

Instrum B 16:435-48. 

Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS, Wilson EM. 2001. A 

mechanism for androgen receptor-mediated prostate cancer recurrence after androgen 

deprivation therapy. Cancer Res 61:4315-9. 

Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R. 1997. Structure of 

20S proteasome from yeast at 2.4 A resolution. Nature 386:463-71. 



 250

Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf DH, Huber R. 1999. The 

catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational 

and crystallographic study. Proc Natl Acad Sci U S A 96:10976-83. 

Groll M, Huber R, Potts BC. 2006. Crystal structures of Salinosporamide A (NPI-0052) and 

B (NPI-0047) in complex with the 20S proteasome reveal important consequences of 

beta-lactone ring opening and a mechanism for irreversible binding. J Am Chem Soc 

128:5136-41. 

Grumont RJ, Rourke IJ, Gerondakis S. 1999. Rel-dependent induction of A1 transcription is 

required to protect B cells from antigen receptor ligation-induced apoptosis. Genes 

Dev 13:400-11. 

Gupta SK, Singh SP, Shukla VK. 2005. Copper, zinc, and Cu/Zn ratio in carcinoma of the 

gallbladder. J Surg Oncol 91:204-8. 

Gupte A, Mumper RJ. 2009. Elevated copper and oxidative stress in cancer cells as a target 

for cancer treatment. Cancer Treat Rev 35:32-46. 

Haas KL, Franz KJ. 2009. Application of metal coordination chemistry to explore and 

manipulate cell biology. Chem Rev 109:4921-60. 

Habib FK, Dembinski TC, Stitch SR. 1980. The zinc and copper content of blood leucocytes 

and plasma from patients with benign and malignant prostates. Clin Chim Acta 

104:329-35. 

Hainsworth JD, Meluch AA, Spigel DR, Barton J, Jr., Simons L, Meng C, Gould B, Greco 

FA. 2007. Weekly docetaxel and bortezomib as first-line treatment for patients with 

hormone-refractory prostate cancer: a Minnie Pearl Cancer Research Network phase 

II trial. Clin Genitourin Cancer 5:278-83. 



 251

Hambley TW. 2007. Developing new metal-based therapeutics: challenges and opportunities. 

Dalton Trans:4929-37. 

Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57-70. 

Haq RU, Wereley JP, Chitambar CR. 1995. Induction of apoptosis by iron deprivation in 

human leukemic CCRF-CEM cells. Exp Hematol 23:428-32. 

Harrap KR. 1985. Preclinical studies identifying carboplatin as a viable cisplatin alternative. 

Cancer Treat Rev 12 Suppl A:21-33. 

Hart MM, Adamson RH. 1971. Antitumor activity and toxicity of salts of inorganic group 3a 

metals: aluminum, gallium, indium, and thallium. Proc Natl Acad Sci U S A 68:1623-

6. 

Hart MM, Smith CF, Yancey ST, Adamson RH. 1971. Toxicity and antitumor activity of 

gallium nitrate and periodically related metal salts. J Natl Cancer Inst 47:1121-7. 

He XM, Carter DC. 1992. Atomic structure and chemistry of human serum albumin. Nature 

358:209-15. 

Hedley DW, Tripp EH, Slowiaczek P, Mann GJ. 1988. Effect of gallium on DNA synthesis 

by human T-cell lymphoblasts. Cancer Res 48:3014-8. 

Heinlein CA, Chang C. 2002. Androgen receptor (AR) coregulators: an overview. Endocr 

Rev 23:175-200. 

Heinlein CA, Chang C. 2004. Androgen receptor in prostate cancer. Endocr Rev 25:276-308. 

Hengartner MO. 2000. The biochemistry of apoptosis. Nature 407:770-6. 

Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu Rev Biochem 67:425-79. 



 252

Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC. 

2001. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and 

overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071-6. 

Hindo SS, Frezza M, Tomco D, Heeg MJ, Hryhorczuk L, McGarvey BR, Dou QP, Verani 

CN. 2009. Metals in anticancer therapy: copper(II) complexes as inhibitors of the 20S 

proteasome. Eur J Med Chem 44:4353-61. 

Ho E. 2004. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15:572-8. 

Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, 

Seed B, Tschopp J. 2000. Fas triggers an alternative, caspase-8-independent cell 

death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489-95. 

Holm RH, Kennepohl P, Solomon EI. 1996. Structural and Functional Aspects of Metal Sites 

in Biology. Chem Rev 96:2239-2314. 

Hoyt MA, Coffino P. 2004. Ubiquitin-free routes into the proteasome. Cell Mol Life Sci 

61:1596-600. 

Huang DC, Strasser A. 2000. BH3-Only proteins-essential initiators of apoptotic cell death. 

Cell 103:839-42. 

Hunter AM, LaCasse EC, Korneluk RG. 2007. The inhibitors of apoptosis (IAPs) as cancer 

targets. Apoptosis 12:1543-68. 

Imbert C, Hratchian HP, Lanznaster M, Heeg MJ, Hryhorczuk LM, McGarvey BR, Schlegel 

HB, Verani CN. 2005. Influence of ligand rigidity and ring substitution on the 

structural and electronic behavior of trivalent iron and gallium complexes with 

asymmetric tridentate ligands. Inorg Chem 44:7414-22. 



 253

Itoh S, Taki M, Takayama S, Nagatomo S, Kitagawa T, Sakurada N, Arakawa R, Fukuzumi 

S. 1999. Oxidation of Benzyl Alcohol with Cu(II) and Zn(II) Complexes of the 

Phenoxyl Radical as a Model of the Reaction of Galactose Oxidase. Angew Chem Int 

Ed Engl 38:2774-2776. 

Jabbour E, Cortes JE, Giles FJ, O'Brien S, Kantarjian HM. 2007. Current and emerging 

treatment options in chronic myeloid leukemia. Cancer 109:2171-81. 

Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, Niesvizky R, 

Alexanian R, Limentani SA, Alsina M, Adams J, Kauffman M, Esseltine DL, 

Schenkein DP, Anderson KC. 2004. A phase 2 study of two doses of bortezomib in 

relapsed or refractory myeloma. Br J Haematol 127:165-72. 

Jagannath S, Barlogie B, Berenson JR, Siegel DS, Irwin D, Richardson PG, Niesvizky R, 

Alexanian R, Limentani SA, Alsina M, Esseltine DL, Anderson KC. 2008. Updated 

survival analyses after prolonged follow-up of the phase 2, multicenter CREST study 

of bortezomib in relapsed or refractory multiple myeloma. Br J Haematol 143:537-40. 

Jakob C, Egerer K, Liebisch P, Turkmen S, Zavrski I, Kuckelkorn U, Heider U, Kaiser M, 

Fleissner C, Sterz J, Kleeberg L, Feist E, Burmester GR, Kloetzel PM, Sezer O. 2007. 

Circulating proteasome levels are an independent prognostic factor for survival in 

multiple myeloma. Blood 109:2100-5. 

Jakupec MA, Galanski M, Arion VB, Hartinger CG, Keppler BK. 2008. Antitumour metal 

compounds: more than theme and variations. Dalton Trans:183-94. 

Jakupec MA, Keppler BK. 2004a. Gallium and other main group metal compounds as 

antitumor agents. Met Ions Biol Syst 42:425-62. 



 254

Jakupec MA, Keppler BK. 2004b. Gallium in cancer treatment. Curr Top Med Chem 4:1575-

83. 

Jamieson ER, Lippard SJ. 1999. Structure, Recognition, and Processing of Cisplatin-DNA 

Adducts. Chem Rev 99:2467-98. 

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. 2008. Cancer statistics, 2008. 

CA Cancer J Clin 58:71-96. 

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. 2009. Cancer statistics, 2009. CA Cancer 

J Clin 59:225-49. 

Jia L, Shen HC, Wantroba M, Khalid O, Liang G, Wang Q, Gentzschein E, Pinski JK, 

Stanczyk FZ, Jones PA, Coetzee GA. 2006. Locus-wide chromatin remodeling and 

enhanced androgen receptor-mediated transcription in recurrent prostate tumor cells. 

Mol Cell Biol 26:7331-41. 

Joazeiro CA, Anderson KC, Hunter T. 2006. Proteasome inhibitor drugs on the rise. Cancer 

Res 66:7840-2. 

Kalejta RF, Shenk T. 2003. Proteasome-dependent, ubiquitin-independent degradation of the 

Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc 

Natl Acad Sci U S A 100:3263-8. 

Kane RC, Bross PF, Farrell AT, Pazdur R. 2003. Velcade: U.S. FDA approval for the 

treatment of multiple myeloma progressing on prior therapy. Oncologist 8:508-13. 

Kane RC, Dagher R, Farrell A, Ko CW, Sridhara R, Justice R, Pazdur R. 2007. 

Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res 13:5291-4. 

Kelland L. 2007. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 

7:573-84. 



 255

Kim BE, Nevitt T, Thiele DJ. 2008. Mechanisms for copper acquisition, distribution and 

regulation. Nat Chem Biol 4:176-85. 

King RW, Deshaies RJ, Peters JM, Kirschner MW. 1996. How proteolysis drives the cell 

cycle. Science 274:1652-9. 

Kirin SI, Dubon P, Weyhermuller T, Bill E, Metzler-Nolte N. 2005. Amino acid and peptide 

bioconjugates of copper(II) and zinc(II) complexes with a modified N,N-bis(2-

picolyl)amine ligand. Inorg Chem 44:5405-15. 

Kong X, Alvarez-Castelao B, Lin Z, Castano JG, Caro J. 2007. Constitutive/hypoxic 

degradation of HIF-alpha proteins by the proteasome is independent of von Hippel 

Lindau protein ubiquitylation and the transactivation activity of the protein. J Biol 

Chem 282:15498-505. 

Kostova I. 2006. Platinum complexes as anticancer agents. Recent Pat Anticancer Drug 

Discov 1:1-22. 

Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, Demo SD, Bennett MK, 

van Leeuwen FW, Chanan-Khan AA, Orlowski RZ. 2007. Potent activity of 

carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, 

against preclinical models of multiple myeloma. Blood 110:3281-90. 

Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH. 2002. Serum and tissue trace elements in 

patients with breast cancer in Taiwan. Biol Trace Elem Res 89:1-11. 

Lanznaster M, Hratchian HP, Heeg MJ, Hryhorczuk LM, McGarvey BR, Schlegel HB, 

Verani CN. 2006. Structural and electronic behavior of unprecedented five-coordinate 

iron(III) and gallium(III) complexes with a new phenol-rich electroactive ligand. 

Inorg Chem 45:955-7. 



 256

Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. 1994. Cleavage of 

poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 

371:346-7. 

Lee DK, Chang C. 2003. Endocrine mechanisms of disease: Expression and degradation of 

androgen receptor: mechanism and clinical implication. J Clin Endocrinol Metab 

88:4043-54. 

Li B, Dou QP. 2000. Bax degradation by the ubiquitin/proteasome-dependent pathway: 

involvement in tumor survival and progression. Proc Natl Acad Sci U S A 97:3850-5. 

Lin HK, Altuwaijri S, Lin WJ, Kan PY, Collins LL, Chang C. 2002. Proteasome activity is 

required for androgen receptor transcriptional activity via regulation of androgen 

receptor nuclear translocation and interaction with coregulators in prostate cancer 

cells. J Biol Chem 277:36570-6. 

Lopes UG, Erhardt P, Yao R, Cooper GM. 1997. p53-dependent induction of apoptosis by 

proteasome inhibitors. J Biol Chem 272:12893-6. 

Ma MH, Yang HH, Parker K, Manyak S, Friedman JM, Altamirano C, Wu ZQ, Borad MJ, 

Frantzen M, Roussos E, Neeser J, Mikail A, Adams J, Sjak-Shie N, Vescio RA, 

Berenson JR. 2003. The proteasome inhibitor PS-341 markedly enhances sensitivity 

of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 

9:1136-44. 

Marcon G, Carotti S, Coronnello M, Messori L, Mini E, Orioli P, Mazzei T, Cinellu MA, 

Minghetti G. 2002. Gold(III) complexes with bipyridyl ligands: solution chemistry, 

cytotoxicity, and DNA binding properties. J Med Chem 45:1672-7. 



 257

Margalioth EJ, Schenker JG, Chevion M. 1983. Copper and zinc levels in normal and 

malignant tissues. Cancer 52:868-72. 

Marzano C, Pellei M, Tisato F, Santini C. 2009. Copper complexes as anticancer agents. 

Anticancer Agents Med Chem 9:185-211. 

Meggers E. 2009. Targeting proteins with metal complexes. Chem Commun (Camb):1001-

10. 

Melchior M, Rettig SJ, Liboiron BD, Thompson KH, Yuen VG, McNeill JH, Orvig C. 2001. 

Insulin-enhancing vanadium(III) complexes. Inorg Chem 40:4686-90. 

Mertz W. 1993. Essential trace metals: new definitions based on new paradigms. Nutr Rev 

51:287-95. 

Messersmith WA, Baker SD, Lassiter L, Sullivan RA, Dinh K, Almuete VI, Wright JJ, 

Donehower RC, Carducci MA, Armstrong DK. 2006. Phase I trial of bortezomib in 

combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res 

12:1270-5. 

Messori L, Marcon G, Orioli P. 2003. Gold(III) Compounds as New Family of Anticancer 

Drugs. Bioinorg Chem Appl:177-87. 

Messori L, Orioli P, Tempi C, Marcon G. 2001. Interactions of selected gold(III) complexes 

with calf thymus DNA. Biochem Biophys Res Commun 281:352-60. 

Milacic V, Chen D, Giovagnini L, Diez A, Fregona D, Dou QP. 2008a. Pyrrolidine 

dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells 

by inhibiting the proteasomal activity. Toxicol Appl Pharmacol 231:24-33. 

Milacic V, Chen D, Ronconi L, Landis-Piwowar KR, Fregona D, Dou QP. 2006. A novel 

anticancer gold(III) dithiocarbamate compound inhibits the activity of a purified 20S 



 258

proteasome and 26S proteasome in human breast cancer cell cultures and xenografts. 

Cancer Res 66:10478-86. 

Milacic V, Fregona D, Dou QP. 2008b. Gold complexes as prospective metal-based 

anticancer drugs. Histol Histopathol 23:101-8. 

Minucci S, Pelicci PG. 2006. Histone deacetylase inhibitors and the promise of epigenetic 

(and more) treatments for cancer. Nat Rev Cancer 6:38-51. 

Mirabelli CK, Johnson RK, Hill DT, Faucette LF, Girard GR, Kuo GY, Sung CM, Crooke 

ST. 1986. Correlation of the in vitro cytotoxic and in vivo antitumor activities of 

gold(I) coordination complexes. J Med Chem 29:218-23. 

Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D, Fanourakis G, 

Gu X, Bailey C, Joseph M, Libermann TA, Schlossman R, Munshi NC, Hideshima T, 

Anderson KC. 2003. The proteasome inhibitor PS-341 potentiates sensitivity of 

multiple myeloma cells to conventional chemotherapeutic agents: therapeutic 

applications. Blood 101:2377-80. 

Montana AM, Batalla C. 2009. The rational design of anticancer platinum complexes: the 

importance of the structure-activity relationship. Curr Med Chem 16:2235-60. 

Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, 

Nelson PS. 2008. Maintenance of intratumoral androgens in metastatic prostate 

cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447-54. 

Mortenson MM, Schlieman MG, Virudachalam S, Lara PN, Gandara DG, Davies AM, Bold 

RJ. 2005. Reduction in BCL-2 levels by 26S proteasome inhibition with bortezomib 

is associated with induction of apoptosis in small cell lung cancer. Lung Cancer 

49:163-70. 



 259

Murakami M, Hirano T. 2008. Intracellular zinc homeostasis and zinc signaling. Cancer Sci 

99:1515-22. 

Nalepa G, Rolfe M, Harper JW. 2006. Drug discovery in the ubiquitin-proteasome system. 

Nat Rev Drug Discov 5:596-613. 

Nayak SB, Bhat VR, Upadhyay D, Udupa SL. 2003. Copper and ceruloplasmin status in 

serum of prostate and colon cancer patients. Indian J Physiol Pharmacol 47:108-10. 

Neidle S, Thurston DE. 2005. Chemical approaches to the discovery and development of 

cancer therapies. Nat Rev Cancer 5:285-96. 

Nencioni A, Grunebach F, Patrone F, Ballestrero A, Brossart P. 2007. Proteasome inhibitors: 

antitumor effects and beyond. Leukemia 21:30-6. 

Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA, Messing EM, Yao J, Yeh S, Chang C. 

2008. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. 

Proc Natl Acad Sci U S A 105:12182-7. 

O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, 

Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams 

J, Schenkein D, Zelenetz AD. 2005. Phase II clinical experience with the novel 

proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma 

and mantle cell lymphoma. J Clin Oncol 23:676-84. 

Okada H, Mak TW. 2004. Pathways of apoptotic and non-apoptotic death in tumour cells. 

Nat Rev Cancer 4:592-603. 

Olaleye SB, Farombi EO. 2006. Attenuation of indomethacin- and HCl/ethanol-induced 

oxidative gastric mucosa damage in rats by kolaviron, a natural biflavonoid of 

Garcinia kola seed. Phytother Res 20:14-20. 



 260

Orlowski RZ. 1999. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death 

Differ 6:303-13. 

Orlowski RZ, Baldwin AS, Jr. 2002. NF-kappaB as a therapeutic target in cancer. Trends 

Mol Med 8:385-9. 

Orlowski RZ, Kuhn DJ. 2008. Proteasome inhibitors in cancer therapy: lessons from the first 

decade. Clin Cancer Res 14:1649-57. 

Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, 

Esseltine DL, Elliott PJ, Pien CS, Guerciolini R, Anderson JK, Depcik-Smith ND, 

Bhagat R, Lehman MJ, Novick SC, O'Connor OA, Soignet SL. 2002. Phase I trial of 

the proteasome inhibitor PS-341 in patients with refractory hematologic 

malignancies. J Clin Oncol 20:4420-7. 

Orosz CG, Wakely E, Bergese SD, VanBuskirk AM, Ferguson RM, Mullet D, Apseloff G, 

Gerber N. 1996. Prevention of murine cardiac allograft rejection with gallium nitrate. 

Comparison with anti-CD4 monoclonal antibody. Transplantation 61:783-91. 

Orvig C, Abrams MJ. 1999. Medicinal inorganic chemistry: introduction. Chem Rev 

99:2201-4. 

Ott I, Gust R. 2007. Non platinum metal complexes as anti-cancer drugs. Arch Pharm 

(Weinheim) 340:117-26. 

Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta 

GF, Rolfe M. 1995. Role of the ubiquitin-proteasome pathway in regulating 

abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682-5. 



 261

Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. 1994. The ubiquitin-proteasome 

pathway is required for processing the NF-kappa B1 precursor protein and the 

activation of NF-kappa B. Cell 78:773-85. 

Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X, Pien CS, Millikan RE, Tu 

SM, Pagliaro L, Kim J, Adams J, Elliott P, Esseltine D, Petrusich A, Dieringer P, 

Perez C, Logothetis CJ. 2004. Phase I trial of the proteasome inhibitor bortezomib in 

patients with advanced solid tumors with observations in androgen-independent 

prostate cancer. J Clin Oncol 22:2108-21. 

Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D. 2006. The 

proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through 

generation of ROS and Noxa activation independent of p53 status. Blood 107:257-64. 

Peters JM, Cejka Z, Harris JR, Kleinschmidt JA, Baumeister W. 1993. Structural features of 

the 26 S proteasome complex. J Mol Biol 234:932-7. 

Pink JJ, Wuerzberger-Davis S, Tagliarino C, Planchon SM, Yang X, Froelich CJ, Boothman 

DA. 2000. Activation of a cysteine protease in MCF-7 and T47D breast cancer cells 

during beta-lapachone-mediated apoptosis. Exp Cell Res 255:144-55. 

Prasad AS. 1995. Zinc: an overview. Nutrition 11:93-9. 

Prasad AS, Beck FW, Doerr TD, Shamsa FH, Penny HS, Marks SC, Kaplan J, Kucuk 

O, Mathog RH. 1998. Nutritional and zinc status of head and neck cancer patients: an 

interpretive review. J Am Coll Nutr 17:409-18. 

Provinciali M, Di Stefano G, Fabris N. 1995. Dose-dependent opposite effect of zinc on 

apoptosis in mouse thymocytes. Int J Immunopharmacol 17:735-44. 



 262

Radisky D, Kaplan J. 1999. Regulation of transition metal transport across the yeast plasma 

membrane. J Biol Chem 274:4481-4. 

Rattan AK, Arad Y. 1998. Temporal and kinetic determinants of the inhibition of LDL 

oxidation by N-acetylcysteine (NAC). Atherosclerosis 138:319-27. 

Redman BG, Esper P, Pan Q, Dunn RL, Hussain HK, Chenevert T, Brewer GJ, Merajver SD. 

2003. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. 

Clin Cancer Res 9:1666-72. 

Reed JC. 1997. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in 

hematologic malignancies. Semin Hematol 34:9-19. 

Reedijk J. 2003. New clues for platinum antitumor chemistry: kinetically controlled metal 

binding to DNA. Proc Natl Acad Sci U S A 100:3611-6. 

Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, 

Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, 

Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson 

KC. 2003. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J 

Med 348:2609-17. 

Richardson PG, Sonneveld P, Schuster M, Irwin D, Stadtmauer E, Facon T, Harousseau JL, 

Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, Miguel JS, Blade J, Boccadoro 

M, Cavenagh J, Alsina M, Rajkumar SV, Lacy M, Jakubowiak A, Dalton W, Boral A, 

Esseltine DL, Schenkein D, Anderson KC. 2007. Extended follow-up of a phase 3 

trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. 

Blood 110:3557-60. 



 263

Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau 

JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, 

Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein 

D, Anderson KC. 2005. Bortezomib or high-dose dexamethasone for relapsed 

multiple myeloma. N Engl J Med 352:2487-98. 

Ronconi L, Giovagnini L, Marzano C, Bettio F, Graziani R, Pilloni G, Fregona D. 2005. 

Gold dithiocarbamate derivatives as potential antineoplastic agents: design, 

spectroscopic properties, and in vitro antitumor activity. Inorg Chem 44:1867-81. 

Ronconi L, Marzano C, Zanello P, Corsini M, Miolo G, Macca C, Trevisan A, Fregona D. 

2006. Gold(III) dithiocarbamate derivatives for the treatment of cancer: solution 

chemistry, DNA binding, and hemolytic properties. J Med Chem 49:1648-57. 

Rorabacher DB. 2004. Electron transfer by copper centers. Chem Rev 104:651-97. 

Roth W, Reed JC. 2002. Apoptosis and cancer: when BAX is TRAILing away. Nat Med 

8:216-8. 

Ryan DP, O'Neil BH, Supko JG, Rocha Lima CM, Dees EC, Appleman LJ, Clark J, Fidias P, 

Orlowski RZ, Kashala O, Eder JP, Cusack JC, Jr. 2006. A Phase I study of 

bortezomib plus irinotecan in patients with advanced solid tumors. Cancer 107:2688-

97. 

Saggioro D, Rigobello MP, Paloschi L, Folda A, Moggach SA, Parsons S, Ronconi L, 

Fregona D, Bindoli A. 2007. Gold(III)-dithiocarbamato complexes induce cancer cell 

death triggered by thioredoxin redox system inhibition and activation of ERK 

pathway. Chem Biol 14:1128-39. 



 264

Sarkar FH, Li Y. 2009. Harnessing the fruits of nature for the development of multi-targeted 

cancer therapeutics. Cancer Treat Rev 35:597-607. 

Schwartz AE, Leddicotte GW, Fink RW, Friedman EW. 1974. Trace elements in noraml and 

malignant human breast tissue. Surgery 76:325-9. 

Scott LE, Orvig C. 2009. Medicinal inorganic chemistry approaches to passivation and 

removal of aberrant metal ions in disease. Chem Rev 109:4885-910. 

Serrano M, Gomez-Lahoz E, DePinho RA, Beach D, Bar-Sagi D. 1995. Inhibition of ras-

induced proliferation and cellular transformation by p16INK4. Science 267:249-52. 

Shah JJ, Orlowski RZ. 2009. Proteasome inhibitors in the treatment of multiple myeloma. 

Leukemia 23:1964-79. 

Shakya R, Imbert C, Hratchian HP, Lanznaster M, Heeg MJ, McGarvey BR, Allard M, 

Schlegel HB, Verani CN. 2006a. Structural, spectroscopic, and electrochemical 

behavior of trans-phenolato cobalt(III) complexes of asymmetric NN'O ligands as 

archetypes for metallomesogens. Dalton Trans:2517-25. 

Shakya R, Peng F, Liu J, Heeg MJ, Verani CN. 2006b. Synthesis, structure, and anticancer 

activity of gallium(III) complexes with asymmetric tridentate ligands: growth 

inhibition and apoptosis induction of cisplatin-resistant neuroblastoma cells. Inorg 

Chem 45:6263-8. 

Shen HC, Balk SP. 2009. Development of androgen receptor antagonists with promising 

activity in castration-resistant prostate cancer. Cancer Cell 15:461-3. 

Sherr CJ, Roberts JM. 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes 

Dev 9:1149-63. 



 265

Shi G, Chen D, Zhai G, Chen MS, Cui QC, Zhou Q, He B, Dou QP, Jiang G. 2009. The 

proteasome is a molecular target of environmental toxic organotins. Environ Health 

Perspect 117:379-86. 

Shimazaki Y, Huth S, Odani A, Yamauchi O. 2000. A Structural Model for the Galactose 

Oxidase Active Site which Shows Counteranion-Dependent Phenoxyl Radical 

Formation by Disproportionation This work was supported by Grants-in-Aid for 

Scientific Research (No. 09304062 and 0149219 (Priority Areas) to O.Y. and No. 

07CE2004(COE) to A.O.) from the Ministry of Education, Science, Sports, and 

Culture of Japan, for which we express our thanks. Angew Chem Int Ed Engl 

39:1666-1669. 

Siddik ZH. 2003. Cisplatin: mode of cytotoxic action and molecular basis of resistance. 

Oncogene 22:7265-79. 

Solit DB, Rosen N. 2006. Hsp90: a novel target for cancer therapy. Curr Top Med Chem 

6:1205-14. 

Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. 2006. Zinc: a multipurpose trace 

element. Arch Toxicol 80:1-9. 

Steinkamp MP, O'Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S, 

Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM. 2009. 

Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple 

mechanisms to evade therapy. Cancer Res 69:4434-42. 

Sterz J, von Metzler I, Hahne JC, Lamottke B, Rademacher J, Heider U, Terpos E, Sezer O. 

2008. The potential of proteasome inhibitors in cancer therapy. Expert Opin Investig 

Drugs 17:879-95. 



 266

Storr T, Sugai Y, Barta CA, Mikata Y, Adam MJ, Yano S, Orvig C. 2005. Carbohydrate-

appended 2,2'-dipicolylamine metal complexes as potential imaging agents. Inorg 

Chem 44:2698-705. 

Szweda PA, Friguet B, Szweda LI. 2002. Proteolysis, free radicals, and aging. Free Radic 

Biol Med 33:29-36. 

Tapiero H, Townsend DM, Tew KD. 2003. Trace elements in human physiology and 

pathology. Copper. Biomed Pharmacother 57:386-98. 

Taplin ME. 2008. Androgen receptor: role and novel therapeutic prospects in prostate cancer. 

Expert Rev Anticancer Ther 8:1495-508. 

Taplin ME, Balk SP. 2004. Androgen receptor: a key molecule in the progression of prostate 

cancer to hormone independence. J Cell Biochem 91:483-90. 

Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von 

Eschenbach AC, Chung LW. 1994. Androgen-independent cancer progression and 

bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54:2577-

81. 

Thompson KH, Orvig C. 2003. Boon and bane of metal ions in medicine. Science 300:936-9. 

Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, 

Jing X, Cao Q, Han B, Yu J, Wang L, Montie JE, Rubin MA, Pienta KJ, Roulston D, 

Shah RB, Varambally S, Mehra R, Chinnaiyan AM. 2007. Distinct classes of 

chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. 

Nature 448:595-9. 

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, 

Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, 



 267

Chinnaiyan AM. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor 

genes in prostate cancer. Science 310:644-8. 

Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo 

D, Kwon A, Wasielewska T, Welsbie D, Chen CD, Higano CS, Beer TM, Hung DT, 

Scher HI, Jung ME, Sawyers CL. 2009. Development of a second-generation 

antiandrogen for treatment of advanced prostate cancer. Science 324:787-90. 

Tsai MJ, O'Malley BW. 1994. Molecular mechanisms of action of steroid/thyroid receptor 

superfamily members. Annu Rev Biochem 63:451-86. 

Turecky L, Kalina P, Uhlikova E, Namerova S, Krizko J. 1984. Serum ceruloplasmin and 

copper levels in patients with primary brain tumors. Klin Wochenschr 62:187-9. 

Vaidyanathan M, Viswanathan R, Palaniandavar M, Balasubramanian T, Prabhaharan 

P, Muthiah TP. 1998. Copper(II) Complexes with Unusual Axial Phenolate 

Coordination as Structural Models for the Active Site in Galactose Oxidase: X-ray 

Crystal Structures and Spectral and Redox Properties of [Cu(bpnp)X] Complexes. 

Inorg Chem 37:6418-6427. 

Waller AS, Sharrard RM, Berthon P, Maitland NJ. 2000. Androgen receptor localisation and 

turnover in human prostate epithelium treated with the antiandrogen, casodex. J Mol 

Endocrinol 24:339-51. 

Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr. 1998. NF-kappaB 

antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress 

caspase-8 activation. Science 281:1680-3. 

Wang D, Lippard SJ. 2005. Cellular processing of platinum anticancer drugs. Nat Rev Drug 

Discov 4:307-20. 



 268

Wang Y, He QY, Sun RW, Che CM, Chiu JF. 2005. GoldIII porphyrin 1a induced apoptosis 

by mitochondrial death pathways related to reactive oxygen species. Cancer Res 

65:11553-64. 

Weick JK, Stephens RL, Baker LH, Jones SE. 1983. Gallium nitrate in malignant lymphoma: 

a Southwest Oncology Group study. Cancer Treat Rep 67:823-5. 

Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP. 2000. 

Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 

408:115-20. 

Won KA, Reed SI. 1996. Activation of cyclin E/CDK2 is coupled to site-specific 

autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J 

15:4182-93. 

Wood DE, Newcomb EW. 2000. Cleavage of Bax enhances its cell death function. Exp Cell 

Res 256:375-82. 

Yan YK, Melchart M, Habtemariam A, Sadler PJ. 2005. Organometallic chemistry, biology 

and medicine: ruthenium arene anticancer complexes. Chem Commun (Camb):4764-

76. 

Yang CH, Gonzalez-Angulo AM, Reuben JM, Booser DJ, Pusztai L, Krishnamurthy S, 

Esseltine D, Stec J, Broglio KR, Islam R, Hortobagyi GN, Cristofanilli M. 2006a. 

Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological 

effects, and prediction of clinical benefits. Ann Oncol 17:813-7. 

Yang H, Chen D, Cui QC, Yuan X, Dou QP. 2006b. Celastrol, a triterpene extracted from the 

Chinese "Thunder of God Vine," is a potent proteasome inhibitor and suppresses 

human prostate cancer growth in nude mice. Cancer Res 66:4758-65. 



 269

Yang H, Murthy S, Sarkar FH, Sheng S, Reddy GP, Dou QP. 2008. Calpain-mediated 

androgen receptor breakdown in apoptotic prostate cancer cells. J Cell Physiol 

217:569-76. 

Yang H, Zonder JA, Dou QP. 2009. Clinical development of novel proteasome inhibitors for 

cancer treatment. Expert Opin Investig Drugs 18:957-71. 

Zhao G, Lin H. 2005. Metal complexes with aromatic N-containing ligands as potential 

agents in cancer treatment. Curr Med Chem Anticancer Agents 5:137-47. 

Zhao H, Eide D. 1996. The yeast ZRT1 gene encodes the zinc transporter protein of a high-

affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A 93:2454-

8. 

Zhou D, Brown SA, Yu T, Chen G, Barve S, Kang BC, Thompson JS. 1999. A high dose of 

ionizing radiation induces tissue-specific activation of nuclear factor-kappaB in vivo. 

Radiat Res 151:703-9. 

Zhu C, Raber J, Eriksson LA. 2005. Hydrolysis process of the second generation platinum-

based anticancer drug cis-amminedichlorocyclohexylamineplatinum(II). J Phys Chem 

B 109:12195-205. 

Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. 2004. Alkylating DNA 

damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272-82. 

Zowczak M, Iskra M, Torlinski L, Cofta S. 2001. Analysis of serum copper and zinc 

concentrations in cancer patients. Biol Trace Elem Res 82:1-8. 

 
 
 
 
 
 



 270

ABSTRACT 
 

ACTIVATION OF TUMOR CELL DEATH PROGRAM BY TARGETING THE 
UBIQUITIN-PROTEASOME PATHWAY: SIGNIFICANCE IN CANCER 

TREATMENT AND PREVENTION 
 

by 
 

MICHAEL FREZZA 
 
 

August 2010 
 

Advisor: Dr. Q. Ping Dou 
 
Major: Cancer Biology 
 
Degree: Doctor of Philosophy 
 
 The ubiquitin-proteasome pathway serves as a quality control mechanism to regulate 

the degradation of intracellular proteins involved in a wide array of cellular processes 

including tumorigeneis.  Thus targeting key features of protein turnover responsible for the 

growth and proliferation of cancer have emerged as a favorable approach in cancer therapy.  

Both in vitro and in vivo experimental and clinical results have demonstrated the potential 

use of proteasome inhibitors as novel anticancer drugs.  The widespread clinical success of 

platinum-containing drugs served as a catalyst for investigating other metal complexes for 

the treatment of human cancer.  In an effort to improve upon the limitations of platinum 

anticancer drugs, different metals and metal complexes that pose different mechanisms of 

action has been investigated as potential anticancer drugs.  We have previously found that 

different metal containing complexes, including those of copper, zinc, gold, and tin could 

activate tumor cell death by inhibiting the proteasome.  Therefore, it is proposed that gallium 

could similarly act as a proteasome inhibitor and apoptosis inducer in human tumor cells.  

The data presented in this dissertation strongly supports this hypothesis.  We found that 
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gallium-cotaining [NN’O] tridentate ligands appended with halogen substituents could 

inhibit the proteasomal activity in vitro and in human prostate cancer cells.  Importantly, the 

most biologically active complex (5) could inhibit tumor growth in mice-bearing prostate 

cancer xenografts associated with inhibition of proteasomal activity and apoptosis.  Based on 

the favorable cytotoxic activity of [NN’O] ligands complexed with gallium, subsequent 

studies relied on this model architecture complexed to different bivalent transistion metals to 

gain insight into the pharmacophore responsible for their proteasome-inhibitory effects. 

Since elevated levels of copper are a trademark of many tumors, targeting heightened levels 

of copper with copper-binding compounds as a means of tumor growth ablation was 

proposed.  It was found that that these copper complexes (1-3), with distinct stoichiometries 

and protonation states, acted as proteasome inhibitiors and apoptosis inducers in cultured 

prostate cancer cells, and importantly the species [CuLI]+ as the minimal pharmacophore 

responsible for this effect.  This hypothesis was further substantiated by the finding that 

Zinc-containing [NN’O] complex (2), but not Nickel (1) could inhibit the proteasomal 

activity of a purified 20S proteasome and culture prostate cancer cells associated with 

massive tumor cell death.  These results strengthen our current working hypothesis that fast 

ligand dissociation (Zn-complex) is required to free up the [MLIA]+ capable of interaction 

with the proteasome.  This is in agreement with previous studies showing that proteasome 

inhibition by zinc-containing dithiocarbamate derivatives is assoiciated with apoptosis 

induction.  In contrast, chapters 5 and 6 were primarily focused on the mechanistic properties 

of proteasome inhibition and its downstream events.  Since we have previously reported on a 

gold(III) complex showing potent in vitro and in vivo growth inhibitory activity associated 

with proteasome inhibition and apoptosis, two gold compounds that differ in the oxidation 
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state of the metal were investigated to gain mechanistic insight into their biological activities.  

The data in this dissertation provides compelling evidence for the involvement of ROS-

mediated proteasome inhibition by gold(III), but not gold(I), and highlights distinct 

mechanisms of action associated with their biological effects.   Since it has been shown that 

proteasome inhibition is tightly linked to apoptosis in AR (+) prostate cancer cells, it is 

proposed that AR can influence the regulatory events associated with cell death in prostate 

cancer cells.  Mechanistic studies from chapter 6 provide convincing evidence that 

proteasome inhibitor- or chemotherapy- induced cell death resulted in significantly higher 

levels of caspase-3 activity in AR independent prostate cancer cells compared to stably or 

transiently expressing AR cells.  Interestingly, lower levels of caspase 3 activity were 

partially reversed with the addition of an AR antagonist in AR-dependent prostate cancer 

cells.  These important findings could help facilitate the design of novel therapeutic strategies 

in the treatment of prostate cancer. Taken together, the studies presented in this dissertation 

could hold tremendous prognostic and therapeutic potential in the treatment of human cancer. 
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