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CONTINUOUS TRACE C∗-ALGEBRAS, GAUGE GROUPS AND

RATIONALIZATION

JOHN R. KLEIN, CLAUDE L. SCHOCHET, AND SAMUEL B. SMITH

Abstract. Let ζ be an n-dimensional complex matrix bundle over a compact
metric space X and let Aζ denote the C∗-algebra of sections of this bundle.
We determine the rational homotopy type as an H-space of UAζ , the group of
unitaries of Aζ . The answer turns out to be independent of the bundle ζ and
depends only upon n and the rational cohomology of X. We prove analogous
results for the gauge group and the projective gauge group of a principal bundle
over a compact metric space X.

Contents

1. Introduction 1
2. Conventions 5
3. Section spaces 7
4. Rationalization of topological groups 9
5. Preliminary results: finite complexes 12
6. Limits and function spaces 16
7. Localization of function spaces revisited 19
8. Proof of the main results 20
9. Appendix: on the free loop space 22
References 23

1. Introduction

We analyze the rational homotopy theory of certain topological groups arising
from bundles over a compact metric space X . Our results are motivated by the
following situation. Let Un be the unitary group of n×n matrices, and let PUn be
the group given by taking the quotient of Un with its center. Let ζ : T → X be a
principal PUn-bundle over X , let PUn act on Mn = Mn(C) by conjugation and let

T ×PUn
Mn → X

be the associated n-dimensional complex matrix bundle. Define Aζ to be the set of
continuous sections of the latter. These sections have natural pointwise addition,
multiplication, and ∗-operations and give Aζ the structure of a unital C∗-algebra.
The algebra Aζ is called an n-homogeneous C∗-algebra and is the most general
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2 KLEIN, SCHOCHET, AND SMITH

unital continuous trace C∗-algebra as studied, for instance, in the book of Raeburn
and Williams [16]. Let UAζ denote the topological group of unitaries of Aζ . Our
first main result describes the rational homotopy type of UAζ .

Recall that, from the point of view of homotopy theory, the simplest groups are
the Eilenberg-MacLane spaces K(π, n) with multiplication given by

K(π, n)×K(π, n) ≃ K(π × π, n)
K(multiply)
−−−−−−−−→ K(π, n).

Here π is an abelian group and the space K(π, n) satisfies πi(K(π, n)) = π for i = n
and πi(K(π, n)) = 0 for i 6= n. Only some of the constructions of a K(π, n) yield a
bona fide topological group, but all yield an H-space; that is, a space with contin-
uous binary operation and two sided unit. However, this discrepancy is not hard
to rectify: up to homotopy all of these H-space structures on Eilenberg-MacLane
spaces lift to topological group structures in the sense that there is a topological
group G and a homotopy equivalence to the given K(π, n) which preserves the
multiplication up to homotopy.

In fact, the H-space structure on a given Eilenberg-MacLane space is unique up
to multiplicative equivalence and is homotopy commutative. A product

∏
j≥1 K(πj , j)

of Eilenberg-MacLane spaces also has a preferred H-space structure given by the
product of the structures on the factors. This structure, which we refer to as the
standard multiplication, is also homotopy commutative. However, in this case this
structure may not be unique (See [4]).

Given a simply connected CW space X , Sullivan constructed a rationalization
map X → XQ which has the property that the associated homomorphism on the
higher homotopy groups is given by tensoring with the rational numbers ([21];
rationalization is a special case of a more general construction, localization, that
can be made for any set of primes). Later, this theory was extended to include
nilpotent spaces, i.e., spaces with non-trivial nilpotent fundamental group π having
the property that the higher homotopy groups are nilpotent modules over π ([9],
[2]).

It is well-known that topological groups are nilpotent spaces, so one can consider
the rationalization map G → GQ for connected topological groups G (whose un-
derlying space is a CW complex). Since localization commutes with finite products
up to homotopy, it follows that GQ has the structure of an H-space, and further-
more, the rationalization map is an H-map, i.e., it preserves multiplications up to
homotopy. This motivates the following: let us call two H-spaces X and Y ratio-
nally H-equivalent if there is a homotopy equivalence XQ → YQ which is a map of
H-spaces.

To state our calculation of the rational homotopy groups of UAζ , we introduce
some notation. Given Z-graded vector spaces V and W , we grade the tensor product
V ⊗W by declaring that v ⊗ w has degree |v| + |w|. Here |v| denotes the degree
of the element v ∈ V. Let V ⊗̃W be the effect of considering only tensors with
non-negative grading.

Given elements x1, . . . , xn each of homogeneous degree, write Q(x1, . . . , xn) for
the graded vector space with basis x1, . . . , xn. Given a topological group G, write
G◦ for the path component of the identity in G. Let Ȟ∗(X ; Q) denote the Čech
cohomology of a space X with rational coefficients graded nonpositively so that
x ∈ Ȟn(X ; Q) has degree −n.
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Theorem A. Let ζ be a principal PUn bundle over a compact metric space X.
Let Aζ be the associated C∗-algebra, and let UAζ be its group of unitaries. Then
the rationalization of (UAζ)◦ is rationally H-equivalent to a product of rational
Eilenberg-Mac Lane spaces with the standard multiplication, with degrees and di-
mensions corresponding to an isomorphism of graded vector spaces

π∗ ((UAζ)◦)⊗Q ∼= Ȟ∗(X ; Q) ⊗̃Q(s1, . . . , sn) ,

where the basis element si has degree 2i− 1.

Theorem A is a special case of more general calculations of the rational homotopy
theory of gauge groups which we now describe. Write F (X, Y ) for the (function)
space of all continuous maps from X to Y . When G is a topological group, the
space F (X, G) is one also with multiplication of functions taken pointwise. In this
case, the identity component F (X, G)◦ is the space of freely nullhomotopic maps.

Theorem B. Let X be a compact metric space and let G be a connected topological
group having the homotopy type of a finite CW complex. Then

π∗(F (X, G)◦)⊗Q ∼= Ȟ∗(X ; Q) ⊗̃ (π∗(G) ⊗Q) .

Furthermore, F (X, G)◦ is rationally H-equivalent to a product of Eilenberg-Mac Lane
spaces with the standard multiplication, with degrees and dimensions corresponding
to the displayed isomorphism.

When X is a finite complex, Theorem B is a consequence of results of Thom
[22] and a basic localization result for components of F (X, Y ) due to Hilton, Mislin
and Roitberg [9]. The result for X finite in this case is described in [12, §4]. Our
advance here is the extension of this result to the case when X is compact metric.
We deduce Theorem B from an extension of the Hilton-Mislin-Roitberg result to
the case X compact metric (Theorem 7.1).

Addendum C. In Theorem B, the calculation of rational homotopy groups holds
for any connected, group-like H-space G. Furthermore, if G is rationally homotopy
commutative, then F (X, G) is rationally H-equivalent to a product of Eilenberg-
Mac Lane spaces with the standard multiplication.

The main results of this paper concern extending Theorem B to spaces of sections
of certain bundles. Let G be a topological group and let

ζ : T → X

be a principal G-bundle. Following [1, §2], we form the associated adjoint bundle

Ad(ζ) : T ×G Gad → X

where G acts on Gad = G by conjugation. The gauge group G(ζ) of ζ is the space
of sections of Ad(ζ), with group structure defined by pointwise multiplication of
sections. Alternatively, G(ζ) is the group of G-equivariant bundle automorphisms
of ζ that cover the identity map of X .

Theorem D. Let G be a connected topological group having the homotopy type of
a finite CW complex. Let ζ be a principal G-bundle over a compact metric space
X. Then there is a rational H-equivalence

G(ζ)◦ ≃Q F (X, G)◦ .
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Consequently, G(ζ)◦ is rationally homotopy commutative with rational homotopy
groups given by the isomorphism appearing in Theorem B.

Again, when X is a finite CW complex this result admits a direct proof. In this
case, a result of Gottlieb gives a multiplicative equivalence

G(ζ) ≃ Ωhζ
F (X, BG),

where the right side denotes the loop space of F (X, BG) based at hζ : X → BG,
the classifying map for ζ (see Corollary 9.2, [8, th. 1] and [1, prop. 2.4]). The
equivalence G(ζ) ≃Q F (X, G) then follows from the Hilton-Mislin-Roitberg local-
ization result for function spaces mentioned above and basic rational homotopy
theory. (See Theorem 5.6 below.) The result in this case was recently, indepen-
dently obtained by Félix and Oprea at the level of rational homotopy groups [7, th.
3.1]. Another related result here is due to Crabb and Sutherland, who prove the
fibrewise rationalization of the bundle Ad(ζG) is fibre homotopically trivial, where
ζG is the universal G-bundle [3, prop. 2.2].

The following shows that the homotopy finiteness assumption on G in Theorem
D can sometimes be dispensed with.

Addendum E. Assume G is a topological group such that BG has the rational
homotopy type of a group-like H-space. Then the conclusion of Theorem D holds
for such G.

For example, if G is a connected topological group satisfying rational Bott peri-
odicity, then BG has the rational homotopy type of a group-like H-space.

Let
PG = G/Z(G)

denote the projectivization of G; i.e., the quotient of G by its center. As the center
acts trivially on Gad, one obtains an action of PG on Gad. Given a principal
PG-bundle

ζ : T → X,

form the associated projective adjoint bundle

Pad(ζ) : T ×PG Gad → X.

Define P(ζ) to be the topological group of sections of the bundle Pad(ζ) with
pointwise multiplication again induced by Gad. We call P(ζ) the projective gauge
group of ζ. In Example 3.7 below, we observe that UAζ

∼= P(ζ) corresponds to the
projective adjoint bundle of a principal PUn-bundle. Theorem A is thus a special
case of the following result.

Theorem F. Let G be a compact connected Lie group. Let ζ be a principal PG-
bundle over a compact metric space X. Then there is a rational H-equivalence

P(ζ)◦ ≃Q F (X, G)◦ .

Thus P(ζ)◦ is rationally homotopy commutative with rational homotopy groups
again given by the isomorphism appearing in Theorem B.

Remark 1.1. Suppose that C is a separable C∗-algebra. Then its unitary group
UC (with the usual modification for non-unital C) has the homotopy type of a
countable CW complex. Thus so too does U∞C = lim

−→
UnC, and the latter is an

infinite loop space, by the Bott Periodicity Theorem of R. Wood [24]. Thus U∞C
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satisfies the conditions on G in Addenda C and E. The same is true for UC itself
if C is stable. So our results also apply to C∗-algebras constructed similarly to Aζ

but where the initial fibre Mn(C) is replaced by an appropriate C∗-algebra C. We
develop these ideas in a subsequent paper.

The paper is organized as follows. In Section 2, we establish our basic conven-
tions for spaces, groups and bundles. In Section 3, we prove various foundational
properties of section spaces. In Section 4, we discuss the rationalization of topo-
logical groups and the obstruction to homotopy commutativity. In Section 5, we
prove preliminary versions of the main theorems for X a finite CW complex, as
mentioned above.

By a result of Eilenberg and Steenrod [6], a compact metric space X may be
expressed as the inverse limit lim

←−j
Xj of finite CW complexes. In Section 6, we use

this result and the classical works of Dowker [5] and Spanier [19] to identify the
homotopy groups of the function space F (X, Y ) in terms of the homotopy groups of
the approximating function spaces F (Xj , Y ). This result is subsequently extended
to section spaces. As a consequence, in Section 7, we extend the basic localization
result of Hilton-Mislin-Roitberg [9, th. II.3.11] for function spaces from the case X
finite CW to the case X compact, metric provided the function space component
is a nilpotent space (Theorem 7.1). In Section 8 we deduce Theorems A-F by
combining the finite complex case with the results of Section 6.

Acknowledgments. We thank Daniel Isaksen, Gregory Lupton, and J. Peter May
for many helpful discussions. We are especially grateful to N. Christopher Phillips
for vital assistance given to us. This paper is based in many ways upon our joint
work [12].

2. Conventions

This paper brings together results from classical algebraic topology, which is
most at home in the category of CW complexes, and functional analysis, which
is most at home in the category of compact metric spaces. Many of our technical
results deal with extending classical algebraic topology results from finite complexes
to compact metric spaces via limit arguments.

We work in the category of compactly generated Hausdorff spaces. Whenever
basepoints are required we assume that they are non-degenerate; that is, we assume
that the inclusion of the basepoint into the space is a cofibration. If the space is
a topological group then we take the identity of the group to be the basepoint.
Following the discussion in [23, pp. 20-21], we give the function space F (X, Y ) the
topology obtained by first taking the compact-open topology and then replacing
this with the induced compactly generated topology. In particular, because we are
retopologizing products, by a topological group we mean a topological group object
in the category of compactly generated Hausdorff spaces.

Suppose A ⊂ X is a subspace. Fixing a map g : A→ Y , we let F (X, Y ; g) denote
the subspace of those maps f : X → Y such that f coincides with g on A. In
particular, when A is a point, X and Y obtain the structure of based spaces and
F (X, Y ; g) in this case is just the space of based maps. If f ∈ F (X, Y ; g) is a choice
of basepoint, we let F (X, Y ; g)(f) denote the path component of f .
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An inclusion A ⊂ X of spaces is a cofibration if it satisfies the homotopy extension
property. A Hurewicz fibration is a map p : E → B satisfying the homotopy lifting
problem for all (compactly generated) spaces. A map of fibrations E → E′ over
B is a map of spaces which commutes with projection to B. One says that p
is fibre homotopy trivial if there is a space F and a map q : E → F such that
(p, q) : E → B × F is a homotopy equivalence. Given a map f : Y → B we write
f∗(p) : Y ×B E → Y for the pullback fibration (i.e., the fibre product).

An H-space structure on a based space X is a map m : X × X → X whose
restriction to X × ∗ and ∗ ×X is homotopic to the identity as based maps, where
∗ ∈ X is the basepoint. If an H-space structure on X is understood, we call X an
H-space. One says that X is homotopy associative if the maps m ◦ (m × id) and
m ◦ (id ×m) are homotopic. A homotopy inverse for X is a map ι : X → X such
that the composites m ◦ (ι × id) and m ◦ (id × ι) are homotopic to the identity.
If X comes equipped with a homotopy associative multiplication and a homotopy
inverse, then X is said to be group-like. If X is group-like then the set of path
components π0(X) acquires a group structure.

Nilpotent Spaces. If (X, ∗) is a based space then its higher homotopy groups
πn(X ; ∗) come equipped with an action of the fundamental group π = π1(X, ∗).
If X is also a connected CW complex, then we say that X is nilpotent if π is a
nilpotent group and also the action of π on the higher homotopy groups is nilpotent.
The latter condition is equivalent to the statement that each πn(X ; ∗) possesses a
finite filtration of π-modules Mn(i) ⊂ Mn(i + 1) ⊂ · · · such that the action on
the associated graded Mn(i + 1)/Mn(i) is trivial. More generally, if X is any
based connected space, then we will call X nilpotent if X has the homotopy type
of a nilpotent CW complex. Topological groups having the homotopy type of a
connected CW complex are nilpotent, since the action of π1 in this case is trivial.

Rationalization. A finitely generated nilpotent group K admits a rationalization,
which is a natural homomorphism K −→ KQ ([9, §2]). The group KQ has the
property that the self map x 7→ xn is a bijection for all integers n ≥ 1 (i.e., KQ is
uniquely divisible). Furthermore, KQ is the smallest group having this property in
the sense that any homomorphism from K to a group with this property uniquely
factors through KQ. When K is abelian, there is a natural isomorphism KQ

∼=
K ⊗Q.

A connected based nilpotent space X admits a rationalization. This is a nilpo-
tent space XQ with rational homotopy (and homology) groups, together with a
natural map X → XQ and a natural map ℓX : X → XQ inducing rationalization on
homotopy groups [9, thms. 3A, 3B]. Again, there is a universal property: if Y is
a rational space (i.e., a nilpotent space whose homotopy groups are rational), and
f : X → Y is a map, then one has a commutative diagram

X //

f

��

XQ

fQ

��

Y ≃
// YQ ,

where the bottom map is a homotopy equivalence since Y is rational. Consequently,
f factors uniquely up to homotopy through XQ, and in particular the rationalization
of X is uniquely determined up to homotopy equivalence. More generally, we call a
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map f :X → Y a rationalization if Y is rational and the induced map fQ : XQ → YQ

is a homotopy equivalence. This is equivalent to demanding f∗ : [Y, Z]→ [X, Z] be
an isomorphism of sets for all rational nilpotent spaces Z.

3. Section spaces

Suppose one is given a lifting problem, i.e., a diagram of spaces

A
g

//

∩

��

E

p

��

X
f

//

>>

B

such that A ⊂ X is a cofibration and E → B is a fibration. Let us denote this
lifting problem by D.

Let

Γ(D)

be the space of solutions to the lifting problem, i.e., the space of maps X → E
making the diagram commute. When f is the identity map and A is trivial, then
one obtains the space of sections of p (it will be denoted by Γ(p) in this instance).

Proposition 3.1. Let D be the lifting problem above. Then one has a fibration

F (X, E; g)
p∗

−−−−→ F (X, B; p ◦ g)

whose fibre at f is given by Γ(D).

Proof. Here p∗ is given by mapping a function a : X → E to p ◦ a : X → B. The
map p∗ is a fibration by the exponential law. The fibre over f is clearly Γ(D). �

CW structure.

Proposition 3.2. With respect to the diagram D above, assume that X is a compact
metric space and suppose E and B have the homotopy type of CW complexes. Then
the section space Γ(D) has the homotopy type of a CW complex.

Proof. Restriction f 7→ f|A defines a fibration

F (X, E)→ F (A, E)

in which both the domain and codomain have the homotopy type of a CW complex
(by [14, th. 1]). Apply [18, prop. 3] (or [10, lem. 2.4]) to deduce that the fibre
F (X, E; g) of this fibration has the homotopy type of a CW complex. Repeating
this argument with the fibration of Proposition 3.1 completes the proof. �

Corollary 3.3. Let X be a compact metric space and G a topological group having
the homotopy type of a CW complex. Let ζ be a principal G-bundle (respectively,
principal PG-bundle) over X. Then G(ζ) (respectively, P(ζ)) has the homotopy
type of a CW complex.

Proof. We only prove the case of the adjoint bundle as the other case is proved
similarly. The fibre bundle ζ is classified by a map f : X → BG by pulling back
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the universal principal G-bundle EG→ BG along f . The space of solutions of the
lifting problem

EG×G Gad

��

X
f

//

99

BG

coincides with the section space Γ(Ad(ζ)). Furthermore EG×G Gad and BG have
the homotopy type of CW complexes because G does. The proof is completed by
applying Proposition 3.2. �

Example 3.4. Suppose that A is a (separable) unital Banach algebra. Then the
group of invertibles GL(A) has the homotopy type of a (countable) CW complex.
If A is a (separable) unital C∗-algebra then the group of unitaries UA has the
homotopy type of a (countable) CW complex.

Here is a proof. As UA is a deformation retraction of GL(A), they both have the
same homotopy type. The group GL(A) is an open subset of a Banach space, and
any such open set has the homotopy type of a CW complex (cf. [11, cor. IV.5.5]). If
A is separable then the open covering involved in the proof of [11, prop. IV.5.4] may
be taken to be countable and then an obvious modification of [11, IV.5.5] implies
that the CW complex constructed is countable.

Nilpotence.

Proposition 3.5. With respect to the hypotheses of Proposition 3.2, assume addi-
tionally that X has the homotopy type of a CW complex and that E is a connected
nilpotent space. Then each component of Γ(D) is nilpotent.

Proof. Consider the commutative diagram

F (X, E; g) //

��

F (X, B; p ◦ g)

��

F (X, E)

��

// F (X, B)

��

F (A, E) // F (A, B)

where the horizontal maps are all fibrations. By [9, th. 2.5], each component of
F (X, E) is nilpotent. It follows that each component of F (X, E; g) is nilpotent by
[9, th. 2.2] applied to the left column of the diagram. After restricting the fibration
on the top line to connected components, it follows again by [9, th. 2.2] that each
component of Γ(D) is nilpotent, since the latter is a fibre by Proposition 3.1. �

Fibrewise Groups.

Definition 3.6. A fibration p : E → B is said to be a fibrewise group if it comes
equipped with a map m : E ×B E → E, a map i : E → E and a section e : B → E,
all compatible with projection to B, such that

• m is associative,
• e is a two sided unit for m,
• i is an inverse for m and e
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(In other words, (p, m, e) defines a group object in the category of spaces over B.)

If (p, m, e) is a fibrewise group, then the space of sections Γ(p) comes equipped
with the structure of a topological group with multiplication defined by pointwise
multiplication of sections.

Here is a recipe for producing fibrewise groups. Suppose ζ :T → X is a principal
G-bundle and F is a topological group such that G acts on F through homomor-
phisms (this means that one has a homomorphism G → aut(F ), where aut(F ) is
the topological group consisting of topological group automorphisms of F ). Then
the associated fibre bundle

T ×G F → X

is easily observed to be a fibrewise group.
An important special case occurs when F is Gad. We infer that Ad(ζ) is a

fibrewise group and so the gauge group G(ζ) has the structure of a topological
group. Similarly, when F is Gad and we let PG act by conjugation, we infer that
P(ζ) has the structure of a topological group.

Example 3.7. Returning to the C∗-algebra setting, we now show that the group
UAζ in the Introduction corresponds to a projective gauge group.

Let X be a compact space and let

ζ : T → X

be a principal PUn-bundle over X with associated C∗-algebra Aζ . Then there is
an natural isomorphism of topological groups

UAζ
∼= P(ζ).

The proof is as follows: passing from Mn to the subspace Un of unitaries in each
fibre of ζ yields a bundle

Uζ : T ×PUn
Un → X .

The sections of this bundle are exactly UAζ but it is immediate that the bundle
itself is the bundle Pad(ζ).

Remark 3.8. Note that if f : Y → X is continuous then f induces a map of unital
C⋆-algebras f∗ : Aζ → Af∗ζ and this restricts to a homomorphism of unitary
groups U(Aζ) −→ U(Af∗(ζ)). The naturality in the result above is with respect to
these maps.

4. Rationalization of topological groups

Now suppose that G is a topological group having the homotopy type of a CW
complex. As rationalization commutes with products only up to homotopy, the
rationalization of the product structure gives a map

GQ ×GQ → GQ

which may fail to be a group structure. It is, however, a group-like H-space.
The map G→ GQ is a homomorphism of H-spaces in the sense that the diagram

G×G //

��

G

��

GQ ×GQ
// GQ
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commutes up to homotopy (and the homomorphism is compatible with homotopy
associativity).

Homotopy commutativity and rationalization.

Definition 4.1. A group-like H-space X is homotopy commutative if the commu-
tator map [ , ] : X ×X → X is null homotopic. It is said to be rationally homotopy
commutative if its rationalization XQ is homotopy commutative.

The commutator map induces an operation on homotopy groups called the
Samelson product. After tensoring with the rationals, one obtains a graded Lie
algebra structure ([23, chap. X.5]).

Definition 4.2. A homomorphism X → Y of connected H-spaces of CW type
is said to be rational H-equivalence if its rationalization XQ → YQ is a homotopy
equivalence.

Proposition 4.3 (Scheerer [17, cor. 1]). Let X and Y be connected group-like
H-spaces having the homotopy type of a CW complex. Then there is a rational
H-equivalence

XQ ≃ YQ

if and only if there is an isomorphism of Samelson Lie algebras

(π∗(X)⊗Q, [ , ]) ∼= (π∗(Y )⊗Q, [ , ]) .

We observe that the rationalization of such a space X has the homotopy type of
a generalized Eilenberg Mac Lane space:

(1) XQ ≃
∏

j≥1

K(πj(X)⊗Q, j).

However, as pointed out in the introduction, the multiplication on XQ need not
correspond to the standard multiplication. We may detect when this identification
is multiplicative in several ways.

Proposition 4.4 (cf. [12, th. 4.25]). Let X be a homotopy associative H-space
having the homotopy type of a connected CW complex. Then the following are
equivalent:

(a) There is a homotopy equivalence

XQ
∼
→ (

∏

j≥1

K(πj(X)⊗Q, j)

which is also an H-map, where the target has the standard multiplication.
(b) The commutator map XQ ×XQ → XQ is null homotopic.
(c) The Samelson Lie algebra (π∗(X)⊗Q, [ , ]) is abelian; i.e., [ , ] = 0.

Corollary 4.5. Suppose G is a connected topological group such that BG has the
rational homotopy type of a loop space, i.e. there is a based space Y and a rational
homotopy equivalence BG ≃Q ΩY . Then GQ is a homotopy commutative H-space
and is homotopy equivalent to a product of Eilenberg-Mac Lane spaces with standard
multiplication.
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Example 4.6. A topological group G is said to satisfy rational Bott periodicity if
there is rational homotopy equivalence BG ≃Q ΩjG for some j > 0. Any such G
satisfies Corollary 4.5, and is consequently rationally homotopy commutative. In
particular, the infinite unitary group U∞ is rationally homotopy commutative (cf.
Remark 1.1).

Example 4.7. Suppose that the topological group G is a direct limit lim
−→n

Gn,

where each Gn is rationally homotopy commutative. Then G is rationally ho-
motopy commutative. This gives a second proof that U∞ is rationally homotopy
commutative (cf. Remark 1.1).

We now discuss the various hypotheses on the group G in our main results.
Recall from Theorem D we require that G be a topological group of the homotopy
type of a finite complex. We first observe that this class includes the connected Lie
groups.

Lemma 4.8. Every connected Lie group G has the homotopy type of a finite CW
complex.

Proof. By [23, th. A.1.2], G has a maximal compact subgroup K, unique up to
conjugacy, such that the inclusion K ⊂ G is a homotopy equivalence. Then K,
being a compact Lie group, has the homotopy type of a finite CW complex. �

We will make use of the following results whose proofs are classical.

Proposition 4.9. Suppose that G is a connected, topological group having the
homotopy type of a finite CW complex. Then the following are true:

(a) The commutator map GQ ×GQ → GQ is null homotopic.
(b) π2(G) is a finite group.
(c) The classifying space BG has the rational homotopy type of a generalized

Eilenberg-Mac Lane space and in particular is rationally homotopy equiva-
lent to a loop space.

Proof. The basic results of Milnor and Moore [15] on the structure of Hopf algebras
of characteristic zero imply H∗(G; Q) is an exterior algebra on a finite number of
odd degree generators. It follows that H∗(BG; Q) is a polynomial algebra on a
finite number of generators of even degree. Represent each generator by a map
xi : BG → K(Q, ni). Then the product map f =

∏
xi : BG →

∏
i K(Q, ni) gives

an isomorphism on rational homotopy groups. This proves (c). Applying the loop
space functor to the map f gives (a) by Proposition 4.4.

To compute π2 we may pass to universal covers and hence assume that the
groups are simply connected. Then H∗(G; Q) = 0 in degrees 1 and 2. This im-
plies that H2(G; Z) is a finite group. The Hurewicz map π2(G) → H2(G; Z) is an
isomorphism, so π2(G) is a finite group. �

Corollary 4.10. If G is a connected topological group having the homotopy type of
a finite CW complex, then GQ is a homotopy commutative H-space. In particular,
GQ is homotopy equivalent as an H-space to a product of Eilenberg-Mac Lane spaces
with standard multiplication.

Finally, in Theorem F we restrict to the class of compact Lie groups G. This
restriction is chosen to govern the rational homotopy theory of PG as we explain
now. First we have the following general fact.
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Lemma 4.11. Let G be a connected Lie group. Then

(a) PG is a connected Lie group;
(b) the inclusion Z(G)→ G induces a monomorphism

π1(Z(G)) ⊗Q→ π1(G) ⊗Q.

Proof. PG is a Lie group and it is connected since it is a quotient space of G. By
Proposition 4.9, π2(PG) is a finite group which implies the second statement. �

The preceding results imply in particular that G and PG×Z(G) have the same
homotopy type after rationalization. Note, however, that there is no obvious map
in either direction. We need to sharpen this identification for our proof of Theorem
F. The following classical fact due to E. Cartan explains our restriction there to
compact Lie groups.

Proposition 4.12. Let G be a compact, connected Lie group. Then there is a
compact, connected Lie group G0 such that the following hold.

(a) There is a homomorphism q : G0 → G which is a rational homotopy equiv-
alence.

(b) There is a splitting G0
∼= P (G0)× Z(G0)

(c) The map q carries Z(G0) to Z(G) and induces an isomorphism P (G0) ∼=
PG.

Proof. By [23, th. A.1.1], G has a finitely-sheeted covering group q : G0 → G with
G0 = T ℓ×G′, where G′ is a simply connected compact Lie group with trivial center
and T ℓ is the product of ℓ-copies of S1. The results follow directly. �

5. Preliminary results: finite complexes

In this section, we prove Theorems B, D and F when X is a finite CW complex.
For Theorem B, the result is a direct consequence of classical work of Thom and a
localization theorem for function spaces due to Hilton, Mislin and Roitberg. The
proof of Theorem D makes use of Gottlieb’s identity [8, th. 1] for the gauge group
in addition to the previous ingredients. We deduce Theorem F from Theorem D
and Proposition 4.12.

First, we have the famous result of H. Hopf, generalized by Thom [22]:

(2) πq(F (X, K(π, p))) = Hp−q(X ; π) .

Next we have the results [9, th. II.3.11, cor. II.2.6] of Hilton-Mislin-Roitberg on the
function space F (X, Y ):

Proposition 5.1 (Hilton-Mislin-Roitberg [9]). Let X be a finite CW complex
and Y be a connected nilpotent space. Then the induced map

F (X, Y )→ F (X, YQ)

is a rationalization map on connected components.

(More precisely, for any map h : X → Y , the map F (X, Y )(h) → F (X, Y )(ℓY ◦h) is a
rationalization map.)

Proposition 5.2 (cf. [12, th. 4.28]). Let G be a topological group having the homo-
topy type of a finite connected CW complex. Let X be a finite CW complex. Then
the rationalization of F (X, G)◦ is a homotopy commutative H-space.
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Proof. Recall that F (X, G)◦ is the component of F (X, G) containing the constant
map. By Corollary 4.10, GQ is homotopy commutative. It follows that F (X, GQ)◦ is
also homotopy commutative. The result now follows from observing that F (X, GQ)◦
is the rationalization of F (X, G)◦ by Proposition 5.1. �

Remark 5.3. The preceding result holds in greater generality: for F (X, G) to be
rationally homotopy commutative, one only needs to assume that G is a rationally
homotopy commutative H-space (see [12, th. 4.10]).

We can now prove Theorem B under the assumption that X is a finite complex
as in [12, th. 4.28].

Theorem 5.4 (Preliminary version of Theorem B). Let X be a finite CW
complex and let G be a connected topological group having the homotopy type of a
finite CW complex. Then

(3) π∗(F (X, G)◦)⊗Q ∼= H∗(X ; Q) ⊗̃ (π∗(G) ⊗Q) .

Furthermore, F (X, G)◦ is rationally H-equivalent to a product of Eilenberg-Mac Lane
spaces with the standard loop multiplication, with degrees and dimensions corre-
sponding to (3).

Proof. Using Proposition 5.1, we have

π∗(F (X, G)◦)⊗Q ∼= π∗(F (X, GQ)◦)

and we may compute the latter using the identification (1) and Thom’s formula
(2). The identification of the rational H-type of F (X, G)◦ is a direct consequence
of Proposition 5.2. �

Remark 5.5. Since the identification (1) only requires a group-like H-space, the
homotopy group calculation holds when G is group-like.

The assumption that G is homotopy finite is used only to conclude that GQ is
homotopy commutative via Proposition 5.2. Consequently, the second conclusion
of Theorem 5.4 holds when G is a group-like H-space such that GQ is homotopy
commutative.

We next prove Theorem D for X a finite CW complex.

Theorem 5.6 (Preliminary version of Theorem D). Let G be a topological
group having the homotopy type of a finite connected CW complex. Let ζ be a
principal G-bundle over a finite CW complex X. Then there is a rational H-
equivalence

G(ζ)◦ ≃Q F (X, G)◦ .

Proof. By [8, th. 1] (see also Corollary 9.2 below), there is a homotopy equivalence
of H-spaces

G(ζ) ≃ ΩhF (X, BG) ,

where the space on the right is the based loop space of the function space F (X, BG)
with basepoint given by the classifying map h : X → BG for the bundle ζ. Recall
that F (X, BG)(h) denotes the path component of F (X, BG) containing h. By
Proposition 5.1 above,

F (X, BG)(h) → F (X, (BG)Q)(h′)
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is a rationalization map, where h′ is ℓBG ◦ h, where ℓBG : BG → (BG)Q is the ra-
tionalization map. In particular, the displayed map is a rational homotopy equiva-
lence.

By Corollary 4.10, (BG)Q has the homotopy type of a loop space. It follows that
all the components of F (X, (BG)Q) have the same homotopy type. Consequently,
there is a rational homotopy equivalence

F (X, BG)(h) ≃Q F (X, (BG)Q)◦ .

The result now follows by taking the based loop space of both sides. �

Remark 5.7. It is clear from our proof that the finiteness assumption on G was
used only to conclude that (BG)Q has the homotopy type of a loop space. In fact,
one sees that the above argument works, without the finiteness assumption on G,
at the expense of assuming that (BG)Q has the structure of a group-like H-space.

While the identity
G(ζ) ≃ ΩhF (X, BG)

does extend to more general spaces X (see Corollary 9.2)), the method of proof
above is limited by Proposition 5.1. Both the nilpotence result [9, th. 2.5] and
the localization result Proposition 5.1 for F (X, Y ) require X to be a finite CW
complex. In Section 7, we extend the localization result to X compact metric
assuming nilpotence. However, the nilpotence of the components of F (X, Y ) is not
expected to hold for general X .

The last goal of this section is to prove Theorem F when X is a finite complex.

Theorem 5.8 (Preliminary version of Theorem F). Let G be a compact con-
nected Lie group, and let ζ : T → X be a principal PG-bundle over a finite CW
complex X. Then there is a rational homotopy equivalence of H-spaces

P(ζ)◦ ≃Q F (X, G)◦.

Proof. Case 1. Suppose first that G splits as Z(G) × P (G). Then one has an
isomorphism of bundles over X with total spaces

(T × Z(G))×G Gad ∼= T ×PG Gad .

The result follows now by Theorem 5.6 applied to the bundle on the left.

Case 2. This is the general case. By Proposition 4.12, there is a compact Lie group
G0 and a homomorphism q : G0 → G which is a rational homotopy equivalence.
Furthermore, this homomorphism induces an isomorphism P (G0) ∼= P (G) and one
also has a splitting G0

∼= Z(G0)× P (G0).
By Proposition 5.12 below, the evident map

Q0 := EPG×PG Gad
0 → EPG×PG Gad := Q

of fibrewise groups is a rational homotopy equivalence of nilpotent spaces. Let
h : X → BPG classify the bundle with total space T ×PG Gad; then h also classifies
the bundle with total space T ×PG Gad

0 .
Denote the lifting problem

Q

��

X

<<

h
// BPG
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by D. Then the space of lifts Γ(D) is the projective gauge group P(ζ). Denote the
corresponding lifting problem with Q replaced by Q0 by D0. Then the map

Γ(D0)→ Γ(D)

induced by the homomorphism q : G0 → G is both a rational homotopy equivalence
on components and a map of H-spaces (this is by a straightforward induction using
the cell structure for X). Similarly, q induces a rational homotopy equivalence of
H-spaces F (X, G0)→ F (X, G).

By Case 1, we also have a rational equivalence of H-spaces

Γ(D0)◦ ≃ F (X, G0)◦ .

Assembling these three equivalences completes the proof. �

The remainder of this section is devoted to proving Proposition 5.12 used in the
proof above. We need some preliminary lemmas.

Lemma 5.9. Assume G is a compact connected Lie group. Let E = EG ×G Gad

and Q = EPG×PG Gad. Then the map

E → Q

induces a surjection on homotopy groups in each degree.

Proof. There is a homotopy fibre sequence

BZ(G)→ E → Q .

Taking the long exact homotopy sequence, we infer that π∗(E) → π∗(Q) is an
isomorphism when ∗ 6= 3 (here we are using the fact Z(G) is a torus). Consequently,
we have an exact sequence

0→ π3(E)→ π3(Q)→ Zℓ → π2(E)→ π2(Q)→ 0

where ℓ = rank of Z(G).
We can calculate π3(E) using the long exact sequence of the fibration E → BG;

one sees (using the fact that π2(G) = 0) that it is isomorphic to π3(G). Likewise, we
see that π3(Q) is also isomorphic to π3(G) and the homomorphism π3(E)→ π3(Q)
is in fact an isomorphism. �

Lemma 5.10. If E → B is a fibration of connected spaces having the homotopy
type of a CW complex. Assume π∗(E) → π∗(B) is surjective in every degree and
E is nilpotent. Then B is nilpotent.

Proof. The quotient of a nilpotent group is again nilpotent, so π1(B) is nilpotent.
Furthermore, when k ≥ 2, we have a short exact sequence of π1(E) modules

0→ πk(F )→ πk(E)→ πk(B)→ 0

where F denotes the fibre at the basepoint. The nilpotency of the middle module
guarantees that πk(B) is also a nilpotent π1(E)-module (see [9, prop. 4.3]). This
module structure arises from the homomorphism π1(E) → π1(B) by restriction.
Since this homomorphism is surjective, it follows that πk(B) is a nilpotent π1(B)-
module. �

Lemma 5.11. Let G be a compact connected Lie group. Then the space Q =
EP (G)×P (G) Gad is nilpotent.
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Proof. There is a homotopy fibre sequence

BZ(G)→ E → Q ,

where E = EG ×G Gad. Then E is homotopy equivalent to LBG, the free loop
space of BG (cf. Lemma 9.1). We infer that E is nilpotent by [9, th. 2.5]. Now
apply the preceding lemmas. �

Proposition 5.12. Let G be a compact connected Lie group and let q : G0 → G be
as in Proposition 4.12. Then the map of fibrewise groups

Q0 := EP (G)×P (G) Gad
0 → EP (G)×P (G) Gad =: Q

is a rational homotopy equivalence of nilpotent spaces.

Proof. Both Q and Q0 are nilpotent by Lemma 5.11. By applying rationalization
to the diagram

Gad
0

//

q

��

Q0
//

��

BP (G)

Gad // Q // BP (G)

whose rows are fibre sequences, and using the fact that rationalization preserves
fibrations ([9, th. 3.12]) we infer that the map Q0 → Q is a rational homotopy
equivalence. �

6. Limits and function spaces

When X is a compact metric space, a classical result of Eilenberg and Steenrod
[6, th. X.10.1] gives an inverse system of finite simplicial (CW) complexes Xj and
compatible maps hj : X → Xj such that the induced map

h : X → lim
←−

j

Xj

is a homeomorphism. This result and its generalization are at the core of our
method for passing from finite complexes to compact metric spaces.

In this and subsequent sections, we consider both direct and inverse limits. Sup-
pose {Xj, pij} is an inverse system of spaces, where pij : Xi → Xj are maps, j ≤ i.
Given compatible maps hj : X → Xj , one has an induced map h = lim

←−j
hj : X →

lim
←−j

Xj.

We record the following basic result.

Proposition 6.1 (Eilenberg-Steenrod [6, th. X.10.1, X.11.9]). Let X be a com-
pact Hausdorff space.

(a) There exists an inverse system of finite CW complexes {Xj, pij} and com-
patible maps hj : X → Xj inducing a homeomorphism

h = lim
←−

j

hj : X → lim
←−

j

Xj .

(b) Given a map f : X → Y in which Y is a CW complex, there exists an index
m and a cellular map fm : Xm → Y such that the composite

X
hm−−−−→ Xm

fm
−−−−→ Y

is homotopic to f .
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Proposition 6.2. Under the hypotheses of Proposition 6.1, the map of sets

lim
−→

j

[Xj , Y ]→ [X, Y ]

is a bijection.

Proof. Surjectivity is a direct consequence of Proposition 6.1 (b). Injectivity is
a consequence of Spanier’s method of proof of [19, th. 13.4]. In Spanier’s case,
Y = Sn and X has Lebesgue covering dimension at most 2n − 2 and his limit
is taken in the category of abelian groups. However, Spanier remarks that the
dimension condition can be dropped provided that the limit is taken in the category
of sets [19, p. 228]. Furthermore, an inspection of his proof shows that it generalizes
without change to Y an arbitrary finite simplicial complex. The argument is then
completed by recalling that any finite CW complex has the homotopy type of a
simplicial complex. �

We will need to extend this proposition to a certain class of pairs. Suppose now
that (X, A) is a pair, where X is a compact Hausdorff space and A ⊂ X is a closed
cofibration. We assume that (X, A) is expressed as an inverse limit of pairs (Xj , Aj)
where the latter is a finite CW pair. Such a decomposition exists by the relative
version of [6, Ch. X, th. 10.1, 11.9]. As above, write pij : Xi → Xj for j ≤ i and
hj : X → Xj for the structure maps. We use the same notation for the restrictions
of these maps to Aj and to A, respectively. Let Y be a CW complex, and suppose
that one is given a fixed map gm : Am → Y for some m and define gj : Aj → Y for
j > m by gm ◦ pjm. Define g to be the composite gm ◦ hm. Let

[X, Y ; g]

denote the set of homotopy classes of maps X → Y which coincide with g on the
subspace A (where homotopies are required to be constant on A). Similarly, we
have [Xj , Y ; gj ] and a map of sets

[Xj , Y ; gj ]→ [X, Y ; g]

(for j ≥ m) which is compatible with the index j.

Lemma 6.3. Assume there are compatible retractions rj : Xj → Aj inducing a
retraction r : X → A. Then the map

lim
−→

j

[Xj, Y ; gj]→ [X, Y ; g]

is a bijection.

Proof. Let i : A → X and ij : Aj → Xj be the inclusions, and let u : [X, Y ; g] →
[X, Y ] and uj : [Xj, Y ; gj] → [X, Y ] be the evident maps. For each j, one has a
commutative diagram of sets

[Xj , Y ; gj ] //

uj

��

[X, Y ; g]

u

��

[Xj , Y ]
h∗

j
//

i∗j

��

[X, Y ]

i∗

��

[Aj , Y ] // [A, Y ]
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where the bottom terms are pointed sets. Furthermore, if r :X → A is a retraction,
then g ◦ r is a basepoint for [X, Y ] making i∗ into a split surjection of based sets.
The right column is in fact the tail-end of the long exact homotopy sequence of the
fibration F (X, Y )→ F (A, Y ), which is also equipped with section. It follows from
this observation that u is one-to-one. Similarly uj is one-to-one.

Taking direct limits results in a diagram such that middle and bottom maps are
isomorphisms. The rest of the argument follows from an elementary diagram chase,
using the fact that uj and u are one-to-one (we leave the details to the reader). �

Now, let fm : Xm → Y be a fixed map and define fj : Xj → Y for j > m by
fm ◦ pjm. Define f to be the composite fm ◦ hm. Then the map of function spaces
F (Xj , Y ) → F (X, Y ) sends fj to f , so we have a map of based spaces that is
compatible with the inverse system.

Theorem 6.4. The inverse system of based spaces above induces an isomorphism
of groups

lim
−→

j

πn(F (Xj , Y ); fj) ∼= πn(F (X, Y ); f)

in all degrees.

Proof. By [13, prop. IX.2], the limit of a direct system of (abelian) groups coincides
with the limit taken in the category of sets.

Case 1. n = 0. This case is just a reformulation of Proposition 6.2.

Case 2. n > 0. Observe that

[X × Sn, Y ; f ] = πn(F (X, Y ); f) ,

where on the left we are taking homotopy classes of maps X × Sn → Y which
coincide with f on X × ∗ = X . Note that each inclusion Xj × ∗ ⊂ Xj × Sn is a
retract, and these retractions are compatible. The result then follows from
Lemma 6.3 with X × Sn in place of X , X × ∗ in place of A, Xj × Sn in place of
Xj and Xj × ∗ in place of Aj . �

Limits and section spaces. Assume that (X, A) = lim
←−j

(Xj , Aj) as above, where

each (Xj , Aj) is a finite CW pair. Suppose that for some index m one is given a
lifting problem

Am

gm
//

∩

��

E

p

��

Xm
fm

//

>>

B

denoted Dm. Here we assume that p : E → B is a fibration in which E and B have
the homotopy type of CW complexes. Using the maps (Xj , Aj) → (Xm, Am), we
obtain another lifting problem, denoted Dj . Then one has maps Γ(Dj)→ Γ(Dj+1)

for j ≥ m. Let f̃m : Xm → E be any lift. Then we obtain basepoints f̃j ∈ Dm for
j ≥ m.

Let f : X → B denote the composite of hm ◦ fm and similarly, let g : A → E be
the composite hm ◦ gm, where hm : (X, A)→ (Xm, Am) is the structure map. Then
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we get a lifting problem D

A
g

//

∩

��

E

p

��

X
f

//

==

B .

Let f̃ : X → E be the basepoint of D determined by f̃m.

Theorem 6.5. The map of based sets

lim
−→

j

πn(Γ(Dj); f̃j)→ πn(Γ(D); f̃ )

is an isomorphism in every degree n ≥ 0, where the direct limit is taken in the
category of sets.

Proof. For each n, one has a map of long exact homotopy sequences

· · ·
∂

// πn(Γ(Dj); f̃j)
aj

//

c

��

πn(F (Xj , E); gj)
bj

//

d

��

πn(F (Xj , B); fj) //

e

��

· · ·

· · ·
∂

// πn(Γ(D); f̃ ) a
// πn(F (X, E); g)

b
// πn(F (Xj , B); f) // · · ·

as given by Proposition 3.1.
To prove surjectivity, let x ∈ πn(Γ(D); f̃ ) be any element. By Theorem 6.4,

a(x) = d(y) for some y, provided that j is sufficiently large. Then bj(y) is trivial
provided j is large, again by 6.4. It follows that y = aj(z) for some z. Then
a(c(z) − x) = 0, so x = c(z) − ∂u for some u. If j is large, one has u = e(u′) for
some u′. Consequently, x = c(z − ∂u′). This establishes surjectivity. A similar
diagram chase, which we omit, gives injectivity. �

7. Localization of function spaces revisited

The purpose of this section is to extend the Hilton-Mislin-Roitberg localization
result (Proposition 5.1) for function spaces F (X, Y ) to the case X compact metric
and Y nilpotent CW provided the particular function space component is known,
a priori, to be nilpotent.

Suppose that X is a compact metric space and X = lim
←−j

Xj as above, where

each Xj is a finite CW complex. Let Y be a nilpotent space. Let ℓY : Y → YQ be
the rationalization map. Let f : X → Y be a fixed map and consider the connected
component F (X, Y )(f) of the function space.

Theorem 7.1. If F (X, Y )(f) is nilpotent, then the induced map

F (X, Y )(f) → F (X, YQ)(ℓY ◦f)

is a rationalization map.

Proof. By Proposition 6.1, we can assume without loss in generality that f factors
as X → Xm → Y . Let fm : Xm → Y denote the factorizing map, and define
fj : Xj → Y for j > m to be the composite pjm ◦ fm, where pjm : Xj → Xm is the
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structure map in the inverse system. The approximation X ∼= lim
←−j

Xj gives rise to

a commutative diagram

lim
−→j

πn(F (Xj , Y ); fj)
∼=

//

��

πn(F (X, Y ); f)

��

lim
−→j

πn(F (Xj , YQ); ℓY ◦ fj) ∼=
// πn(F (X, YQ); ℓY ◦ f)

where the horizontal maps are bijections by Theorem 6.4. Apply the rationalization
functor to the diagram and use the fact that rationalization commutes with direct
limits. This results in a commutative diagram

lim
−→j

πn(F (Xj , Y ); fj)Q
∼=

//

∼=

��

πn(F (X, Y ); f)Q

��

lim
−→j

πn(F (Xj , YQ); ℓY ◦ fj)
∼=

// πn(F (X, YQ); ℓY ◦ f)

where the left vertical map is an isomorphism by Proposition 5.1. It follows that
the right vertical map is an isomorphism as well. �

8. Proof of the main results

We are now in a position to prove the main theorems in their complete generality.

Proof of Theorem B. Recall we are assuming X is a compact metric space and G
is a connected CW topological group having the homotopy type of a finite complex.
We need to establish an isomorphism

π∗(F (X, G)◦)⊗Q ∼= Ȟ∗(X, Q)⊗̃
(
π∗(G) ⊗Q

)
.

By Theorem 5.4, the corresponding result holds for Xj a finite CW complex. Write
X = lim

←−
Xj as usual for finite complexes Xj . Then for each j we have a natural

isomorphism

π∗(F (Xj , G)◦)⊗Q ∼= H∗(Xj ; Q)⊗̃
(
π∗(G) ⊗Q

)
.

Take direct limits on both sides and use the fact that

lim
−→

(Aj ⊗B) ∼= (lim
−→

Aj)⊗B

for abelian groups to obtain the isomorphism

(
lim
−→

π∗(F (Xj , G)◦)
)
⊗Q ∼=

(
lim
−→

H∗(Xj ; Q)

)
⊗̃

(
π∗(G)⊗Q

)
.

The continuity property of Čech cohomology [6, th. 12.1] implies that

lim
−→

H∗(Xj ; Q) ∼= Ȟ∗(X ; Q) .

Then use Theorem 6.4 to identify

lim
−→

π∗(F (Xj , G)◦) ∼= π∗(F (X, G)◦)

which gives the result at the level of homotopy groups.
Finally, use Theorem 7.1 to obtain a homotopy equivalence of H-spaces

(F (X, G)◦)Q ≃ F (X, GQ)◦ .
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The last part of Theorem B now follows from Propositions 5.2 and 4.4. �

Proof of Addendum C. As was observed in Remark 5.5, the homotopy group
calculation of Theorem 5.4 holds when G is a group-like H-space, and the homo-
topy commutativity holds whenever G is rationally homotopy commutative. The
above proof of Theorem B, which uses Theorem 5.4, therefore holds in the stated
generality. �

We refocus on the case of the adjoint and projective adjoint bundles. As usual,
let X be a compact metric space, and write X = lim

←−j
Xj for an inverse system of

finite complexes Xj. Let

ζ : T → X

be the given principal G-bundle, where G is of CW type. Let f : X → BG be a
classifying map for ζ. By Proposition 6.2, we can assume without loss in generality
that f factors as

X → Xm
fm
→ BG

for some index m. For j > m, define fj : Xj → BG by taking the composite of fm

with the map Xj → Xm. This defines a principal G-bundle ζj : Tj → Xj for each
j ≥ m.

For each j we have a lifting problem

EG×G Gad

Ad(ζ)

��

Xj
fj

//
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BG

whose space of sections is just the gauge group G(ζj). Furthermore, one has a direct
system of topological groups

G(ζm)→ G(ζm+1)→ · · ·

equipped with compatible homomorphisms G(ζj) → G(ζ). By Theorem 6.5, the
homomorphism

lim
−→

j

πn(G(ζj)◦)→ πn(G(ζ)◦)

is an isomorphism for n ≥ 0. A similar statement holds in the projective bundle
case. Summarizing, we obtain the following description of the homotopy groups of
the gauge group and of the projective gauge group.

Proposition 8.1. Let X be a compact metric space and suppose X = lim
←−j

Xj for

an inverse system of finite complexes Xj. Then, with notation as above,

π∗(G(ζ)◦) ∼= lim
−→

π∗(G(ζj)◦) and π∗(P(ζ)◦) ∼= lim
−→

π∗(P(ζj)◦).

After rationalization, these become isomorphisms of rational Samelson algebras.

Proof. The only thing we need to prove is the last statement. This follows because
the map inducing the isomorphism in each case is induced from maps of H-spaces.
They thus induce isomorphisms of rational Samelson Lie algebras. �
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Proof of Theorem D. Combining Proposition 8.1 and the preliminary version of
Theorem D for finite complexes (Theorem 5.6) with Theorem B one sees that G(ζ)◦
has rational homotopy groups given by Theorem B. Further, since a direct limit of
abelian Lie algebras is abelian, we conclude G(ζ)◦ has abelian rational Samelson Lie
algebra. This, in turn, implies there exists an H-equivalence G(ζ)◦ ≃Q F (X, G)◦
by Proposition 4.3. �

Proof of Theorem F. The proof is similar to the preceding one. In this case,
one combines Proposition 8.1 and the preliminary version of Theorem F for finite
complexes (Theorem 5.8) to get that P(ζ)◦ has rational homotopy groups given by
Theorem B. The rest of the argument is as in the proof of Theorem D. �

Proof of Addendum E. See Remark 5.7. �

Proof of Theorem A. The proof is a direct consequence of Example 3.7, Theo-
rem F for G = U(n), and the well-known result

π∗(U(n)) ⊗Q ∼= Q(s1, . . . , sn)

where |si| = 2i− 1. �

9. Appendix: on the free loop space

In this section, we sketch a proof of “Gottlieb’s identity” for the gauge group
used in the proof of Theorem 5.6. While Gottlieb’s original proof requires the base
space X of the given principal G-bundle to be a finite CW complex, our proof
requires only that the bundle be a pullback of the universal principal G-bundle.

Given a space X , let LX = F (S1, X) be its space of unbased loops. Evaluating
loops at their basepoints gives a fibration LX → X . For a topological group G of
CW type, let ξ : EG→ BG be the universal bundle, and let Ad(ξ) : EG×G Gad →
BG be the associated adjoint bundle. Then the following result is folklore.

Lemma 9.1. Let G be any topological group of CW type. Then there is a fibrewise
homotopy equivalence

L(BG) ≃ EG×G Gad

of fibrewise H-spaces over BG.

Proof. Let G×G act on Gad by the rule (g, h) · x = gxh−1. Then the restriction of
this action to the image of the diagonal ∆ : G → G × G coincides with the given
action of G on Gad. We have a pullback square

E(G×G)×G Gad E∆
//

��

E(G×G)×(G×G) Gad

��

BG = E(G ×G)/G
B∆

// B(G ×G)

in which the vertical maps are fibrations and the horizontal maps are induced by
∆. The space E(G×G)×(G×G) Gad may be identified with BG. To show this, we
first quotient out by the action of the left-hand copy of G in G × G. Since this
action is free, we obtain EG. Thus when we take the quotient by the right-hand
copy of G we get EG/G = BG. It follows that EG×G Gad = E(G×G)×G Gad is
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identified with the homotopy pullback of the diagonal of BG with itself. But the
latter coincides with the actual pullback of the diagram

(BG)I

p

��

BG
B∆

// BG×BG

where (BG)I = F (I, BG) is the free path space of BG, and p is the fibration
which evaluates a path at its endpoints. This pullback identically coincides with
L(BG). �

Corollary 9.2 (“Gottlieb’s Identity” [8, th. 1]). Let G be any topological group
of CW type. Let ζ : T → X be a principal G-bundle induced from the universal
principal G-bundle by a map hζ : X → BG. Then there is a homotopy equivalence
of H-spaces

Γ(Ad(ζ)) ≃ Ωhζ
F (X, BG) ,

where the right side denotes the based loop space of F (X, BG) with loops based at
hζ .

Proof. Γ(Ad(ζ)) coincides with the space of solutions to the lifting problem

EG×G Gad

��

X
hζ

//

99

BG .

Denote this lifting problem by D. Using Lemma 9.1, we see that Γ(D) is homotopy
equivalent as an H-space to the space of lifts

L(BG)

��

X
hζ

//

;;

BG .

An unraveling of definitions shows that the latter is the space of maps X×S1 → BG
whose restriction to X × ∗ coincides with hζ . But this is identical to the space
Ωhζ

F (X, BG) by means of the exponential law. �
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