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Three different bootstrap confidence intervals (CIs) for coefficient omega were investigated. The CIs 
were assessed through a simulation study with conditions not previously investigated. All methods 
performed well; however, the normal theory bootstrap (NTB) CI had the best performance because it had 
more consistent acceptable coverage under the simulation conditions investigated. 
 
Key words: Coefficient omega, reliability, composite reliability, bootstrap, confidence interval, interval 

estimate. 
 
 

Introduction 
Coefficient omega was proposed in the literature 
over 40 years ago (McDonald, 1970) as a 
reliability measure of homogenous items from a 
measurement instrument. It indexes the 
consistency with which the items measure the 
underlying latent variable (or construct). Based 
on a factor analytic model, coefficient omega 
uses the item factor loading and uniqueness to 
estimate reliability. Therefore, coefficient omega 
can be viewed as a more intuitive measure of 
reliability compared to coefficient alpha. 
However, it is rarely used in practice for two 
reasons: (1) it is largely overshadowed by 
coefficient alpha (Cronbach, 1951; Guttman, 
1945), and (2) its theoretical framework is 
narrow with a limited body of knowledge about 
its properties with respect to statistical inference. 

One issue faced by behavioral/social 
science    researchers    is    the    presence   of  
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measurement error in data collected through 
multiple-item questionnaires, inventories and 
other measurement instruments. The most 
common estimator of reliability used in the 
behavioral/social sciences is coefficient alpha 
(Hogan, Benjamin & Brezinski, 2000), at times 
referred to as Cronbach’s coefficient alpha or 
Cronbach’s alpha (Peterson, 1994). With 
reliability coefficients such as alpha, 
behavioral/social science researchers are able to 
evaluate the reliability of their items to aid in the 
creation of reliable measurement instruments. 

Coefficient alpha’s dominance is a result 
of five features. First and most notably, it is 
relatively simple to calculate and is a common 
option in popular statistical packages such as 
SAS and SPSS. Second, coefficient alpha can be 
calculated after a single test administration as 
opposed to requiring at least two test 
administrations. Third, it can be computed for 
continuous, ordinal or binary items; this 
advantage is notable when working with binary 
items such as right/wrong, true/false, etc. Fourth, 
different types of interval estimates for 
coefficient alpha have been developed (Maydeu-
Olivares, Coffman & Hartmann, 2007; Padilla, 
Divers & Newton, 2012; Romano, Kromrey & 
Hibbard, 2010; van Zyl, Neudecker & Nel, 
2000; Yuan, Guarnaccia & Hayslip, 2003). 
Fifth, a lack of other options, as well as more 
than a half century of cited research gives the 
impression that coefficient alpha is the only 
viable estimate of reliability. 
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Although coefficient alpha is an 
excellent estimator of internal consistency when 
used correctly, it is biased when items are not at 
least Tau-equivalent or essentially Tau-
equivalent (Graham, 2006; Lord, Novick & 
Birnbaum, 1968; McDonald, 1999; Zinbarg, 
Revelle, Yovel & Li, 2005). Tau-equivalence of 
items can best be described within the 
framework of the classical true score model 
(CTSM) from classical test theory. The CTSM 
for items can be ordered from most to least 
restrictive as follows: (1) parallel, (2) Tau - or 
essentially Tau-equivalent, and (3) congeneric. 
For items under conditions 1 and 2, coefficient 
alpha is equal to the reliability of the set of 
items. Under condition 3, coefficient alpha 
underestimates the reliability for a set of items 
(Zinbarg, et al., 2005). However, coefficient 
omega is equal to the reliability of a set of items 
for all 3 conditions (McDonald, 1999; Zinbarg, 
et al., 2005).  

As stated, a reason for the limited use of 
coefficient omega is the limited knowledge 
about its statistical properties. One noteworthy 
drawback is a lack of development and 
investigation of a confidence interval (CI) for 
coefficient omega. 

Raykov (1998) proposed a bootstrap 
percentile CI for the composite reliability of 
congeneric items measuring a common 
dimension (Raykov, 1997). The method is 
specified as a structural equation model (SEM) 
and shows promise. An illustration of the 
method was applied to a small simulation that 
included a sample size of 400, 6 multivariate 
normal congeneric items, and assumed 
unidimensionality. The bootstrap estimates were 
based on 1,000 bootstrap samples. 

In another study Raykov (2002) derived 
the standard error for composite reliability CIs 
via the delta method. As previously, the model 
was specified through an SEM framework and 
showed promise when illustrated with a small 
simulation (n = 500, 5 multivariate normal 
congeneric items) assuming unidimensionality. 
The delta method CI was also compared to the 
bootstrap percentile CI with 2,000 bootstrap 
samples; both methods had similar results. 

In a parallel study, Raykov and Shrout 
(2002) presented a more general form of 
composite reliability  in a SEM  framework with 

bootstrapped percentile CIs. The method extends 
the previous method by Raykov (1997, 1998). 
The authors applied the method to a small 
simulation with a sample size of 300, 6 
multivariate normal congeneric items, and 
assumed two dimensions. The study results 
show that the composite reliability estimate is 
unbiased and the CIs contain the population 
parameter. The bootstrap percentile CIs were 
based on 1,000 bootstrap samples. 

More recently (Raykov, 2012; Raykov 
& Marcoulides, 2011), the non-bootstrap method 
has been illustrated using large example data 
sets (i.e., n ≥ 350). Results indicate that the 
method is applicable to approximately 
continuous items having a multi-normal 
distribution. In addition, the method is 
applicable to non-normal items with at least 5 to 
7 response categories with the use of the robust 
maximum likelihood estimator (MLR). Study 
results also indicate that the MLR estimator can 
be used with items with less than 5 response 
categories by using parcels. For further details 
about using the MLR estimator with parcels see 
Raykov and Marcoulides (2011). 

Hence, studies of CIs for composite 
reliability have been conducted (Raykov, 1998, 
2002), but there are several limitations. First, it 
is difficult to generalize findings based on small 
simulations or example data. Second, the 
simulation studies designed to test the proposed 
methods were based on continuous items; such 
items are rare in the behavioral/social sciences 
(Raykov, 2002), most are Likert/ordinal or, in 
some cases, binary. Third, the methods require 
large sample sizes based on the asymptotic 
theory that underlies SEMs – recall that 
maximum likelihood (ML) is the standard 
method of estimating SEMs (Bollen, 1989; 
Raykov, 1998, 2002; Raykov & Shrout, 2002). 
Lastly, the methods require specialized SEM 
software (e.g., EQS, Mplus, etc.). 

This study assesses the performance of 
bootstrap CIs for composite reliability as 
specified through coefficient omega in terms of 
a one-factor model under simulation conditions 
that investigate the limitations above. Of 
particular interest is the impact of binary and 
Likert/ordinal (e.g., categorical) items, and a 
sample size less than 300 on the coefficient 
omega bootstrap CIs. 



BOOTSTRAP INTERVAL ESTIMATION OF RELIABILITY 

80 
 

Coefficient Omega and Reliability 
Consider a set of k items 1 2, , ..., kx x x  

designed to measure a single construct or 
attribute. A common procedure in 
behavioral/social science research is to estimate 
the reliability of the composite or sum score 

1

k

i
j

x x
=

= . This represents the reliability of the 

measurement instrument or test reliability. 
Reliability of the composite or sum score is 
defined as 
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where var(.) denotes the variance operator, 2
τσ  

the true score variance, and 2
uσ  the error 

variance. This definition of reliability assumes 
that all items are parallel (Allen & Yen, 1979; 
Crocker & Algina, 1986). 

The analogous composite reliability for 
congeneric items via coefficient omega is 
defined as 
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where λj and ψj are the jth factor loading and 
uniqueness, respectively (McDonald, 1970, 
1999). Note that this model assumes the items 
are measuring a single construct or factor (i.e., a 
one-factor model). Coefficient omega is 
estimated by replacing λj and ψj with the sample 

estimates ˆ
jλ  and ˆ jψ  in equation 2. Although 

several methods are available for estimating the 
factor loadings, ML will be used herein. 
 
Bootstrapped Coefficient Omega CIs 

The bootstrapping algorithm for 
coefficient omega can be summarized in three 

steps.   Suppose   ( )1 2, , ...,
t

n=X x x x    are   the  

observed data where each xi is a 1 × k vector. 
First, obtain a bootstrap sample 

( ) ( ) ( ) ( )( )1 2, , ...,
t

b b b b
n=X x x x , which is the bth 

random resample from X selected with 
replacement. Note that X and X(b) have the same 
sample size. Second, compute the bth bootstrap 

estimate of coefficient omega ( )( )ˆ bω  from 

( )bX . Lastly, (1) (2) ( )ˆ ˆ ˆ, , , Bω ω ω  represents the 

empirical sampling distribution (ESD) for ω̂  for 
1, 2, ,b B=   bootstrap samples. The ESD can 

then be summarized for statistical inference 
about ω. Typical parameter estimates are the 
bootstrap mean, percentiles, quantiles and 
standard error (SE). The bootstrap estimate of 
SE is 
 

( ) ( )
1/2

2( )

1

1
ˆ ˆ

1

B
b

b

SE
B

ω ω ω
=

 = − − 
    (3) 

 
where 
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1
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The three most common bootstrap CIs 

were examined. First, the normal theory 
bootstrap (NTB) CI is computed as 

( )/2
ˆ ˆZ SEαω ω± . Second, the percentile based 

(PB) CI is obtained by computing the 2α  and 

1 2α−  percentiles from the ω̂  ESD where α is 
the type I error rate. Third, the bias-corrected 
and accelerated (BCa) CI is an improved version 
of the PB CI in that it adjusts the PB CI 2α  
and 1 2α−  percentiles in two ways: (1) it 
makes a correction for bias, and (2) a correction 
for skewness (or acceleration). Note that the 
NTB CI assumes that the ESD is normally 
distributed, whereas the PB and BCa make no 
assumption about the shape of the ESD. For 
technical and theoretical details concerning the 
three bootstrap CIs investigated see Efron and 
Tibshirani (1998). 
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Methodology 
Simulation Design 

Four different conditions were 
investigated in a 4 (number of items) × 3 
(correlation type) × 5 (number of item response 
categories) × 4 (sample size) Monte Carlo 
simulation design. A total of 240 conditions 
were investigated. All simulated items were 
binary or Likert-type (ordinal) in order to mimic 
items commonly found in behavioral/social 
science research; none of the items were 
continuous. For each simulation condition, 1,000 
replications were obtained. 

Binary and Likert-type items were 
generated using the Maydeu-Olivares et al. 
(2007) method. In brief, the method is: 
 
1. Select a k × k population correlation matrix 

P, where k is the number of items and a set 
of thresholds τ for categorization so that 
resultant items have a predetermined 
skewness and kurtosis. 

 
2. Generate an n × k multivariate data           

X* ~ N(0, P), where n is the sample size. 
 
3. Categorize the generated data X* with τ into 

data X. Each variable x in X is categorized 
by the thresholds as follows: x m=  if 

1*m mxτ τ +< <  for 0,  1,  ...,  1m M= −  

where 0τ = −∞  and Mτ = ∞ , and M is the 

number of categories. 
 
4. Compute the true population coefficient 

omega (ω) according to P and the thresholds 
in τ. See Maydeu-Olivares et al. (2007) for 
details. 

 

5. Estimate coefficient omega ( )ω̂  

bootstrapped CIs from the categorized data 
X. 

 
6. Determine if the bootstrapped CIs includes 

the population coefficient omega (ω). 
 
The specific simulation conditions investigated 
are as follows. 
 
 

Number of Items (k). 
Past research on coefficient alpha has 

examined various numbers of items ranging 
from two to twenty (Duhachek & Iacobucci, 
2004; Enders, 2003; Maydeu-Olivares et al. 
(2007). To make results consistent, the 
following number of items were selected for this 
study: 5,10,15, 20k = . 
 
Correlation Type (ρ). 

Three different item correlation 
structures for P were investigated. The first two 
correlation structures were from a parallel-item 
one-factor model with common loadings 

.55 or .705λ = . These two models generated 
compound symmetric item correlation structures 
with .30 or .50ρ = , respectively. The third 
correlation structure was generated from a 
congeneric item one-factor model with loadings 
of .3, .4, .5, .6, .7λ = . The third item 
correlation was unstructured, and the same as 
the one generated by Maydeu-Olivares et al. 
(2007), but modified for cases with multiples of 
5 items (the original called for multiples of 7 
items). 
 
Item Response Categories (IRCs). 

Five item response categories were 
investigated: 2, 2, 3, 5 and 7. None of the items 
were continuous. For each response category, 
the first category was set to 0. For example, for 
an item with seven categories, the first category 
was set to 0 and the last to 6. The data generated 
from the specified item correlation matrix above 
(P) were categorized with τ using the same 
methodology as Maydeu-Olivares et al. (2007). 

For the binary items, τ was chosen so 
that the resultant categorized items had 
skewness = 0 and kurtosis = −2, and skewness = 
0.41 and kurtosis = −1.83, respectively. The 
second condition was investigated by Maydeu-
Olivares et al. (2007). For the Likert-type items, 
τ was chosen so that the resultant categorized 
items had skewness = kurtosis = 0. 

Sample Size (n). The following sample 
sizes were investigated: n = 50, 100, 150, 200. 
These are common sample sizes in 
behavioral/social science research. In addition, 
Duhachek and Iacobucci (2004) noted that going 
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beyond a sample size of 200 reaches a point of 
diminishing returns for reliability estimates. 

In each simulation replication, 
coefficient omega was estimated along with its 
corresponding bootstrap CIs. In this study, the 
100(1 – α)% CIs for coefficient omega were 
estimated from a total of 2,000 bootstrap 
samples, where .05α = . Relative bias for 
coefficient omega was calculated as 
 

bias

ˆ
ˆ

ω ωω
ω
−= .                        (5) 

 
CI coverage was assessed using 

Bradley’s (1978) liberal criteria, which is 
defined as 1 1.5 1 * 1 0.5α α α− ≤ − ≤ −  where 
α* is the true Type I error probability. Coverage 
is defined as the proportion of estimated CIs that 
contain the true population coefficient omega. 
Therefore, acceptable coverage for .05α =  is 

given by [ ].925,  .975 . 

 
Results 

Point Estimate Bias 
The estimate of bias was investigated 

because it can have a major impact on bootstrap 
CIs. However, tables with all combinations of 
the simulation conditions were inspected and no 
bias was observed. In fact, the largest bias 
observed was biasˆ .04ω = . 

 
Confidence Interval Coverage 

The NTB method had the best 
performance in terms of coverage. However, the 
major impact on the CIs was the number of 
items. Thus, results are presented in the context 
of number of items. 
 
5 Items 

Only the BCa method was impacted by 
5 items (see Table 1). The PB method had 
acceptable coverage under all simulation 
conditions, however, the BCa method tended to 
be impacted when the sample size was 100 or 
less. In this case the BCa coverage probability 
was below the acceptable range. There were 
three instances where the BCa coverage 
probability was below the acceptable range 
when the sample size was 150 or more. 

10 Items 
The NTB and PB methods had 

unacceptable coverage in one instance each (see 
Table 2). In each case the unacceptable coverage 
occurred with a sample size of 50 and with a 
compound item correlation matrix with 

0.56.ρ =  
 
15 Items 

In this situation, all methods had at least 
one instance of unacceptable coverage (see 
Table 3). The NTB method had unacceptable 
coverage for the unstructured item covariance 
matrix with a sample size of 50 and 2 and 3 item 
response categories. For the PB method, 
unacceptable coverage occurred in two instances 
with a sample size of 50 and 3 item response 
categories. For the BCa method, the 
unacceptable coverage occurred with a sample 
size of 150 and 5 item response categories. 
 
20 Items 

In this condition, only the NTB and PB 
methods were impacted (see Table 4). The NTB 
method had unacceptable coverage in two 
instances in the unstructured item covariance 
matrix with a sample size of 50 and 2 item 
response categories. Conversely, unacceptable 
coverage for the PB method occurred with 3 or 
more item response categories and with a sample 
size of 100 or less. 
 
CI Coverage Bands 

In Figure 1 the 95% CI coverage band is 
displayed for each method by number of items 
across all simulation conditions and shows the 
impact of five items on all methods. In 
particular, the BCa is most impacted by five 
items because it tended to be the furthest from 
acceptable coverage and has the most variance. 
Another noticeable feature is that the NTB 
method tended to have coverage bands that were 
slightly above 95%, whereas the PB and BCa 
methods tended to have coverage bands below 
95%. The PB method appears to be the most 
conservative. 
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Table 1: 95% Coverage Probabilities for 5 Items 

IRC n 

ρ = 0.30 ρ = 0.56 ρ = Unstructured 

50 100 150 200 50 100 150 200 50 100 150 200 

2a 

NTB .945 .932 .944 .951 .940 .948 .944 .941 .925 .935 .942 .934 

PB .949 .941 .945 .954 .949 .956 .948 .944 .944 .939 .940 .947 

BCa .928 .919 .934 .948 .948 .952 .951 .945 .953 .926 .917 .920 

2b 

NTB .936 .940 .937 .949 .940 .950 .952 .940 .940 .936 .948 .949 

PB .954 .944 .943 .954 .942 .948 .946 .945 .954 .946 .942 .955 

BCa .940 .929 .939 .949 .942 .950 .950 .945 .941 .932 .928 .934 

3 

NTB .936 .950 .953 .937 .953 .940 .940 .949 .943 .950 .945 .938 

PB .935 .941 .963 .937 .939 .939 .939 .944 .958 .948 .939 .940 

BCa .912 .929 .957 .929 .936 .938 .938 .947 .934 .926 .923 .928 

5 

NTB .938 .940 .944 .932 .948 .943 .943 .945 .933 .940 .947 .950 

PB .936 .947 .940 .942 .933 .940 .940 .943 .937 .937 .951 .956 

BCa .920 .939 .938 .937 .932 .936 .936 .943 .920 .914 .932 .953 

7 

NTB .940 .930 .946 .943 .941 .949 .949 .935 .937 .940 .956 .944 

PB .942 .934 .935 .944 .935 .943 .943 .936 .949 .953 .954 .948 

BCa .925 .926 .935 .938 .932 .946 .946 .934 .927 .938 .945 .944 

Notes: For IRC = 2a, skewness = 0 and kurtosis = −2; for IRC = 2b skewness = 0.41 and kurtosis = −1.83. 
Bold numbers indicate unacceptable coverage outside [0.925, 0.975]. NTB = normal theory bootstrap; PB 
= percentile bootstrap; BCa = biased-corrected and accelerated bootstrap. All methods based on 2,000 
bootstrap samples. 
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Table 2: 95% Coverage Probabilities for 10 Items 

IRC n 

ρ = 0.30 ρ = 0.56 ρ = Unstructured 

50 100 150 200 50 100 150 200 50 100 150 200 

2a 

NTB .970 .961 .957 .957 .958 .957 .940 .957 .974 .968 .967 .949 

PB .954 .955 .946 .950 .945 .949 .936 .961 .954 .964 .958 .945 

BCa .964 .956 .951 .955 .950 .957 .939 .960 .963 .971 .964 .944 

2b 

NTB .970 .963 .951 .970 .979 .946 .945 .941 .968 .961 .952 .956 

PB .953 .952 .944 .963 .970 .947 .942 .941 .957 .948 .955 .944 

BCa .955 .954 .944 .964 .975 .952 .944 .944 .957 .964 .962 .947 

3 

NTB .965 .955 .944 .950 .951 .957 .951 .954 .950 .964 .950 .957 

PB .926 .937 .951 .938 .927 .944 .944 .948 .926 .943 .943 .951 

BCa .942 .942 .949 .944 .938 .955 .946 .954 .930 .952 .947 .950 

5 

NTB .961 .957 .946 .947 .960 .950 .949 .960 .966 .955 .950 .946 

PB .941 .945 .944 .941 .944 .943 .942 .950 .936 .949 .947 .947 

BCa .952 .953 .941 .944 .948 .941 .946 .953 .941 .945 .948 .945 

7 

NTB .961 .956 .947 .943 .946 .942 .943 .952 .964 .951 .938 .945 

PB .931 .951 .944 .938 .923 .928 .943 .945 .9630 .936 .933 .942 

BCa .935 .950 .946 .937 .928 .933 .939 .947 .939 .941 .934 .942 

Notes: For IRC = 2a, skewness = 0 and kurtosis = −2; for IRC = 2b skewness = 0.41 and kurtosis = −1.83. 
Bold numbers indicate unacceptable coverage outside [0.925, 0.975]. NTB = normal theory bootstrap; PB 
= percentile bootstrap; BCa = biased-corrected and accelerated bootstrap. All methods based on 2,000 
bootstrap samples. 
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Table 3: 95% Coverage Probabilities for 15 Items 

IRC n 

ρ = 0.30 ρ = 0.56 ρ = Unstructured 

50 100 150 200 50 100 150 200 50 100 150 200 

2a 

NTB .968 .973 .954 .949 .964 .955 .937 .943 .979 .966 .952 .952 

PB .956 .963 .956 .952 .950 .950 .938 .944 .968 .950 .945 .951 

BCa .966 .966 .962 .956 .959 .949 .942 .948. .980 .955 .950 .953 

2b 

NTB .971 .965 .943 .955 .954 .949 .959 .944 .972 .961 .953 .943 

PB .949 .944 .940 .956 .945 .944 .958 .941 .946 .951 .941 .944 

BCa .965 .957 .947 .958 .947 .948 .959 .945 .961 .962 .943 .951 

3 

NTB .970 .953 .949 .953 .951 .955 .952 .954 .976 .957 .949 .953 

PB .934 .938 .945 .945 .921 .940 .944 .950 .922 .937 .947 .946 

BCa .952 .946 .949 .949 .933 .945 .954 .952 .954 .939 .945 .951 

5 

NTB .956 .947 .930 .950 .956 .950 .949 .941 .965 .948 .951 .946 

PB .928 .941 .926 .952 .934 .943 .947 .947 .939 .950 .950 .945 

BCa .934 .945 .919 .952 .941 .950 .952 .937 .949 .944 .950 .947 

7 

NTB .974 .945 .955 .947 .939 .950 .946 .940 .960 .950 .958 .944 

PB .937 .930 .939 .941 .929 .947 .947 .931 .928 .943 .950 .945 

BCa .943 .931 .942 .938 .929 .951 .947 .933 .932 .943 .952 .945 

Notes: For IRC = 2a, skewness = 0 and kurtosis = −2; for IRC = 2b skewness = 0.41 and kurtosis = −1.83. 
Bold numbers indicate unacceptable coverage outside [0.925, 0.975]. NTB = normal theory bootstrap; PB 
= percentile bootstrap; BCa = biased-corrected and accelerated bootstrap. All methods based on 2,000 
bootstrap samples. 
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Table 4: 95% Coverage Probabilities for 20 Items 

IRC n 

ρ = 0.30 ρ = 0.56 ρ = Unstructured 

50 100 150 200 50 100 150 200 50 100 150 200 

2a 

NTB .971 .961 .943 .955 .965 .944 .935 .956 .976 .964 .948 .947 

PB .953 .955 .940 .957 .955 .942 .941 .963 .940 .956 .945 .950 

BCa .971 .960 .943 .960 .960 .949 .942 .961 .966 .966 .952 .953 

2b 

NTB .972 .969 .963 .965 .945 .947 .947 .951 .979 .958 .958 .958 

PB .947 .964 .961 .965 .941 .949 .945 .944 .956 .943 .947 .955 

BCa .968 .972 .966 .960 .943 .953 .949 .944 .965 .948 .951 .958 

3 

NTB .971 .947 .956 .958 .948 .949 .958 .951 .973 .947 .947 .945 

PB .913 .941 .951 .958 .927 .936 .953 .960 .947 .936 .943 .938 

BCa .940 .942 .955 .957 .935 .939 .958 .956 .963 .935 .946 .942 

5 

NTB .965 .936 .957 .949 .956 .948 .943 .949 .968 .959 .953 .945 

PB .939 .922 .948 .949 .924 .934 .936 .946 .923 .952 .948 .946 

BCa .940 .934 .947 .946 .933 .939 .941 .948 .932 .950 .950 .942 

7 

NTB .961 .939 .944 .944 .953 .943 .956 .938 .966 .940 .939 .957 

PB .929 .934 .940 .947 .928 .932 .949 .936 .921 .929 .939 .952 

BCa .934 .934 .938 .947 .937 .939 .953 .944 .929 .931 .935 .952 

Notes: For IRC = 2a, skewness = 0 and kurtosis = −2; for IRC = 2b skewness = 0.41 and kurtosis = −1.83. 
Bold numbers indicate unacceptable coverage outside [0.925, 0.975]. NTB = normal theory bootstrap; PB 
= percentile bootstrap; BCa = biased-corrected and accelerated bootstrap. All methods based on 2,000 
bootstrap samples. 
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Conclusion 
Coefficient omega bootstrap CIs were proposed 
and their performance was investigated under 
several simulation conditions. Coefficient omega 
is a reliability index for a composite of 
congeneric items measuring a common 
dimension (i.e., factor or latent variable). To 
date, no study has investigated the performance 
of composite reliability CIs for congeneric items 
measuring a common dimension in such a 
simulation design. Results indicate that the NTB 
CI had the best coverage across all of the 
simulation conditions investigated. Even so, the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
major impact on the coefficient omega bootstrap 
CIs were the number of items. 

Although the number of items impacted 
all three bootstrap CIs, it was most noticeable 
for the BCa method. In general, all methods 
were impacted when the number of items was 
set to five in that they tended to have coverage 
probability below 95% on average. However, 
only the BCa method had unacceptable coverage 
with five items. In fact, it had unacceptable 
coverage in eight instances, five of which had 
the unstructured covariance matrix. This 
suggests that unstructured covariance matrices 

Figure 1: Distribution of 95% Bootstrap CI coverage for Estimation Method by 
Number of Items 

 

 
 

Notes: CI = confidence interval; NTB = normal theory bootstrap; PB = percentile 
bootstrap; BCa = biased-corrected and accelerated bootstrap; dashed line is at 0.95. 
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for five items do not provide enough information 
for the BCa method to make the proper 
adjustments. 

When there are ten or more items, with 
the exception of the BCa method, the results 
were somewhat sporadic. In this case, the BCa 
method had acceptable coverage under all but 
two simulation conditions. The NTB method 
tended to have unacceptable coverage with 
fifteen or more items, a sample size of 50, and 
an unstructured item covariance matrix. 
Conversely, the PB method tended to have 
unacceptable coverage with a sample size of 50. 
For the NTB and PB method, most of the 
unacceptable coverage was so close to the 

[ ].925,  .975  boundaries that failure to fall 

within the interval was likely due to sampling 
variability. 

Within the contexts of the simulation 
conditions investigated there is a clear order of 
preference of the bootstrap CIs investigated. The 
NTB method had the best performance in that it 
had consistent acceptable coverage under all but 
five simulation conditions (235/240 = 0.979). 
This was followed by the PB and BCa methods, 
whose performances were comparable (232/240 
= 0.967 for PB vs. 230/240 = 0.958 for BCa). 
Another noticeable feature was that the NTB 
method tended to be the most liberal and the PB 
method most conservative. Nevertheless, a 
recommendation can be made. When there are 
10 or less items the NTB method performed 
well, however, when there are 15 or more items, 
the BCa method was superior. In light of these 
findings, it is important to emphasize that all 
three methods had an acceptable range of 
coverage within the context of the investigated 
simulation conditions. 

Despite these promising results, more 
research is needed. These results were obtained 
assuming that the Likert/ordinal items were 
normally distributed or that the underlying 
distribution did not depart greatly from 
normality. However, it is unlikely that data will 
follow a normal distribution in applied settings. 
Therefore, future research should focus on the 
CI estimation of coefficient omega using data 
that deviate from normality. 
 

Through the simulation results provided 
and because coefficient omega is a general index 
of reliability, five advantages can be pointed out 
about its corresponding bootstrap CIs. First, the 
investigated items were not continuous and this 
had no significant impact on the CIs (recall that 
all items investigated were binary or 
Likert/ordinal with response categories that 
ranged from 2 to 7). Second, a sample size of 50 
to 200 did not have a major impact. This is a 
significant finding because the factor loadings 
that are used by coefficient omega are estimated 
through ML which is based on the law of large 
numbers. Therefore, the literature has noted that 
this is a condition in need of investigation 
(Raykov, 1998, 2002; Raykov & Shrout, 2002). 
Only the PB method appeared to be somewhat 
affected by a small sample size. Third, the type 
of correlation structure did not have a major 
impact, thus, coefficient omega appears to be 
appropriate for items that range from parallel to 
congeneric. Fourth, though not investigated in 
this study, coefficient omega can be used with 
measures that have multiple factors or latent 
variables (McDonald, 1970, 1999). Lastly, the 
methods investigated do not require specialized 
SEM software; they only require the freely 
available and general R statistical package 
(http://www.r-project.org/). As such, interested 
researchers can obtain an easy-to-use R function 
for the coefficient omega bootstrap CIs with 
example data free of charge by visiting the 
corresponding author’s website 
(http://www.omegalab-padilla.org/). 
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