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METHODOLOGY ARTICLE Open Access

Copy number variation signature to predict
human ancestry
Melissa Pronold1,2, Marzieh Vali1, Roger Pique-Regi3 and Shahab Asgharzadeh1*

Abstract

Background: Copy number variations (CNVs) are genomic structural variants that are found in healthy populations
and have been observed to be associated with disease susceptibility. Existing methods for CNV detection are often
performed on a sample-by-sample basis, which is not ideal for large datasets where common CNVs must be
estimated by comparing the frequency of CNVs in the individual samples. Here we describe a simple and novel
approach to locate genome-wide CNVs common to a specific population, using human ancestry as the phenotype.

Results: We utilized our previously published Genome Alteration Detection Analysis (GADA) algorithm to identify
common ancestry CNVs (caCNVs) and built a caCNV model to predict population structure. We identified a 73
caCNV signature using a training set of 225 healthy individuals from European, Asian, and African ancestry. The
signature was validated on an independent test set of 300 individuals with similar ancestral background. The error
rate in predicting ancestry in this test set was 2% using the 73 caCNV signature. Among the caCNVs identified,
several were previously confirmed experimentally to vary by ancestry. Our signature also contains a caCNV region
with a single microRNA (MIR270), which represents the first reported variation of microRNA by ancestry.

Conclusions: We developed a new methodology to identify common CNVs and demonstrated its performance by
building a caCNV signature to predict human ancestry with high accuracy. The utility of our approach could be
extended to large case–control studies to identify CNV signatures for other phenotypes such as disease
susceptibility and drug response.

Background
Copy number variations (CNVs) are gains and losses of
genetic material in the human genome that are greater
than 50 base pairs (bp) in size [1]. These structural var-
iants are present in both healthy and diseased popula-
tions, and may confer susceptibility to certain illnesses
through a gene dosage effect [2]. The frequency of CNVs
varies by ethnicity, which may contribute to phenotypic
variations and differences in disease susceptibility across
different ethnic groups [3,4]. An array-based compara-
tive genome hybridization (aCGH) performed on pooled
genomic DNA from the International HapMap Project
populations revealed 26 European population-specific
CNVs, 53 African population-specific CNVs, and 23

Asian population-specific CNVs [5]. Several techno-
logical approaches are used to examine CNVs in the
human genome. Comparative genomic hybridization
techniques utilize thousands of probes to detect CNVs
at a low resolution; single nucleotide polymorphism
(SNP) microarray platforms employ millions of probes
to detect smaller CNVs at precise locations in the gen-
ome; and the most comprehensive assessment of CNVs
can be performed using next-generation sequencing of
the human genome [6-8]. Numerous algorithms have
been developed for array based CNV detection using the
probe signal intensity from these array-based assays
[9,10]. The underlying assumption is that there are two
copies of each autosomal chromosome in the human
genome, and the goal of these algorithms is to estimate
the size and location of regions which are significantly
different from this assumption.
The statistical approaches implemented for the detec-

tion of CNVs are often performed on a sample-by-
sample basis. A Hidden Markov Model and Bayesian
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analysis are statistical approaches commonly used for
single-sample CNV calling [11-18]. We previously devel-
oped the Genome Alteration Detection Analysis (GADA)
algorithm to identify CNVs on aCGH and SNP micro-
array platforms [19,20]. GADA utilizes a Sparse Bayesian
Learning (SBL) technique to determine the possible CNV
locations, and then a backward elimination (BE) proced-
ure is used to rank the CNVs for manual adjustment of
the false discovery rate. The high accuracy and computa-
tional efficiency of GADA has proven its utility in very
large data sets used to identify global variation in copy
number in the human genome [21].
Here we demonstrate a novel and simple method to de-

tect common CNVs, which can then be used to build a
common ancestry (caCNV) signature that is predictive of
ancestry. Our method uses a simple application of the
GADA algorithm on a distribution of t-statistics obtained
by comparing microarray probe signal intensity data of
two different ancestral groups. The t-statistics arranged by
the genomic locations of the probes allow detection of
common genome-wide CNVs. Next the copy number
state of each individual is assessed for the caCNVs and
used as features in a linear discriminant analysis model to
identify a caCNV signature that can predict ancestry.
Lastly, we validated this CNV signature in an independent
dataset of samples with similar ancestry.

Methods
Study populations
Individuals of European, African, and Han Chinese an-
cestry were available from the International HapMap
Project [22]. Genome-Wide Human SNP Array 6.0 (Affy
SNP 6.0) data for the HapMap individuals was obtained
from Affymetrix (http://www.affymetrix.com/index.affx).
The training set includes 60 unrelated HapMap indivi-
duals of European descent from Utah (CEU), 60 unre-
lated HapMap individuals of the African Yoruba from
Nigeria (YRI), and 45 unrelated Han Chinese HapMap
individuals from Beijing, China (CHB).
The test set was obtained through the Cancer Genetic

Markers of Susceptibility (CGEMS) project [23]. The
CGEMS dataset was available from the National Institute
of General Medical Sciences (NIGMS) Human Genetic Cell
Repository through dbGaP (accession: phs000211.v1.p1).
This is a population-based Affy SNP 6.0 dataset of 300
samples (100 Caucasian, 100 African-American, and 100
Han Chinese) collected by the NIGMS to use as normal
healthy controls (http://ccr.coriell.org/Sections/Collections/
NIGMS/?SsId=8). The ethnicities for the African-American
and Caucasian populations were self-identified as reported
in physician records. The inclusion criteria for the Han
Chinese cohort, obtained from subjects living in the Los
Angeles area, were that all four grandparents were born in
Taiwan, China, or Hong Kong.

DNA microarray
The Affy SNP 6.0 consists of 906,600 polymorphic
probes for detection of SNPs and CNVs, and 946,000
non-polymorphic probes for identification of CNVs only.
The average minor allele frequency of SNPs on this plat-
form in the HapMap CEU, CHB, and YRI populations is
19.5%, 18.2%, and 20.6%, respectively. CNV probes were
originally selected for their genomic spacing (744,000,
79%) and based on known CNVs identified in the Data-
base of Genomic Variants (202,000, 21%). The median
distance between all SNP and CNV probes combined is
< 700 base pairs [24].

Statistical analysis
DNA microarray normalization and summarization
Affy SNP 6.0 data were normalized according to the manu-
facturer’s guidelines and using Genotyping Console 3.0
(Affymetrix Inc., Santa Clara, CA). Quantile normalization,
which corrects for fragment-size amplification and GC
content, was performed on data from the training and
test sets using the 270 HapMap samples processed at
Affymetrix, Inc. as the reference group [25]. The result
is a log2ratio, which is the logarithm of the signal inten-
sity of the probe relative to the reference value. For each
polymorphic SNP probe, the log2ratio of the two alleles
are summarized to produce a single log2ratio value; and
one log2ratio value is estimated for each individual non-
polymorphic CNV probe. The entire dataset was
imported into R version 2.9.1 (http://www.r-project.org/).
All the analyses were carried out in R and using R-GADA
package [26].

Identification of common CNVs using genome-wide
T-statistics and GADA
The underlying assumption for human DNA copy num-
ber is that there are two autosomal copies of each
chromosome, with an infrequent occurrence of nonran-
dom copy number gain and copy number loss through-
out the genome. Therefore, under the null hypothesis
that most DNA sequences consist of 2 copies, the probe
signal intensities will follow an approximately normal
distribution, with increases in probe signal intensity cor-
responding with copy number gains; and decreases with
a corresponding copy number loss:

yij ¼ xij þ eij ð1Þ

where yij is the signal intensity of sample i and probe j.
Because the normalization step corrects for experi-

mental bias in probe signal intensities, the number of
probes spanning a CNV will share a common mean
log2ratio xij corresponding to the underlying DNA copy
number value. The noise eij is assumed to be zero-mean,
and Gaussian.
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The t-test can be used to assess whether the mean
measurements of two groups are statistically different
from each other. Here we use the t-test to determine
whether the mean log2ratio in one population (A) is sta-
tistically different from the mean log2ratio in a second
population (B).

tj ¼
�yAj � �yBjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2j

1
NA

þ 1
NB

� �r ð2Þ

Si
2 ¼

X
i∈A

yij � �yAi
� �2 þX

i∈B

yij � �yBi
� �2

NA þ NB � 2

�yAj ¼ 1
NA

X
i∈A

yij �yBj ¼ 1
NB

X
i∈B

yij

Pair-wise comparisons of the microarray probe signal
intensity data in CEU versus YRI, CEU versus CHB, and
YRI versus CHB were performed using the t-test. This ap-
proach generated tj (t-statistics) for each of the 1.8 million
probes on the Affy SNP 6.0. Under the null hypothesis
that two human populations will have most DNA
sequences in common, the t-statistics will asymptotically
follow a normal distribution. The t-statistic will approxi-
mate zero for the two populations who share similar dip-
loid genomes. A region with positive t-statistic scores
would then correlate with a region showing evidence of
copy number gain for one population, with the second
population having either neutral or a loss of copy number
for that region. Conversely, regions with negative t-statistic
scores will identify regions of the genome in which copy
number loss is present in one population, and is absent or
contains a copy number gain in the second population. To
identify regions with positive or negative t-statistics, tj for
the 1.8 million SNP and CNV probes are arranged based
on the chromosome location and imported into GADA.
The ordered t-statistics data were used to identify

significant genomic boundaries of positive or negative
tj values. These regions correspond to regions with dis-
criminative copy number variations. The number of
probes spanning a CNV region common to a population
is assumed to share a common t-statistic value. There-
fore, the objective of GADA is to identify the genome-
wide CNVs which are most likely to be shared in one
population, that also differ in another population. This
is a simple modification of the GADA method in
which t-statistics are used in place of the log2ratios.
The GADA method consists of two main steps. The
first step is a Bayesian learning process which gener-
ates a set of candidate breakpoints and segment means
while trying to achieve an optimal balance between
model fit (measured as residual sum of squares) and

model sparseness (the number of breakpoints). The
Bayesian learning process is driven by a prior parameter,
which is determined by the amount of segmentation
expected in the sample. Following the initial segmenta-
tion process, the significance of each segment is esti-
mated as a function of the segment mean and variance.
The second step is then a backward elimination proced-
ure which removes segments with a level of significance
less than the user-predefined threshold. The prior par-
ameter (alpha) was set to a = 0.5 and the significance
threshold (T) was set to T = 9 for identification of break-
points. These estimates for the alpha and T were selected
based on copy number analysis of Affymetrix SNP 6.0
array data previously described and provided the most
parsimonious model [19]. Further, only significant seg-
ments with greater than 10 probes were selected for the
analysis to decrease the potential for false positive
results.

Building the caCNV signature
For each CNVk segment identified by GADA using the
t-statistic data, the sum of the log2ratio values of the
total number of probes spanning the k-th CNV was
calculated for each individual in the training set. Thus
each person was assigned a vector of features, and for
the k-th CNV and the i-th individual:

fik ¼
X

k∈CNVk

yij ð3Þ

We then used a variation of the linear discriminant
analysis (LDA) approach, named nearest shrunken cen-
troids, to identify which of these CNV features are
caCNVs that can accurately be used to predict the an-
cestry of two defined populations. Briefly, the method
computes a standardized centroid for each class, and
then a weighted discriminant is computed to assess if
each sample leans towards one population or the other.
The shrunken centroid method has been implemented
as an R package (prediction analysis for microarrays,
PAMR) and used for this analysis [27]. Finally, a ten-fold
cross validation was performed on the training set to es-
timate the performance of the model. The t-statistics
were calculated and CNV models were identified during
each iteration of the cross-validation routine, without
splitting the parent-offspring trios.

Validation
Validation of the caCNV signature was performed using the
independent CGEMS test set, with the log2ratio sum for
each sample calculated using the Affy SNP 6.0 probes span-
ning the caCNV derived from the training set. The self-
reported ethnicities of the test set were compared to a prin-
cipal component analysis (PCA) of genome-wide SNP data
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using a panel of 4,326 SNPs previously published as ances-
try informative markers (AIMs) for African Americans [28].
ADMIXTURE version 1.21 software was used to estimate
ancestry using a model-based approach from the same
panel of SNPs [29].

Results
Identification of caCNVs
In order to identify common CNVs that differ between
two populations, a series of t-tests were performed on
the mean log2ratio for each Affy SNP 6.0 probe compa-
ring CEU, YRI, and CHB populations (Figure 1). GADA
analysis of the t-statistic values of each pair-wise ana-
lysis, ordered based on the genomic location of its corre-
sponding probe, identified 26, 31, and 16 caCNVs,
respectively, which differed between training set popula-
tions of CEU and YRI ancestry, CEU and CHB ancestry,
and CHB and YRI ancestry (Figure 2). A PCA of the
caCNV values for each individual in the pair-wise com-
parisons verified the separation of these three popula-
tions (Figure 3). Of the 73 total caCNVs identified by
the three pair-wise comparisons, 10 caCNVs were com-
mon in analyses comparing the YRI to the CEU or CHB
populations, and 5 caCNVs were common comparing
CEU or CHB against the other two populations, resul-
ting in 73 unique caCNVs in the signature (Figure 4A).
Scatter plots of the top two principal components in the

PCA of the 73 caCNV values generated for each individ-
ual in the training set verified the separation of these
three populations (Figure 4B). The median genomic size
of the caCNV signature was 29.3 kilobases (range 1.4 –
1544.1 kilobases). The caCNVs were located on all auto-
somal chromosomes except for chromosomes 21 and 22.
Figure 5 shows the distribution of copy number gains
and losses of the 73 caCNVs across individuals of the
three ancestral groups. Among the caCNVs, losses were
more commonly observed across the three populations.
The individual CNVs detected for each sample are listed
in Additional file 1: Table S1.

CaCNV signature-based ancestry classification
Nearest shrunken centroid analysis using the 73 caCNV
signature in the training set separated the CEU, YRI, and
CHB populations with 1.7% error using the ten-fold
cross-validation routine (Figure 4C, Additional file 2:
Table S2). As few as 25 caCNVs could be used to predict
ancestry with less than 10% error. The most significant
caCNV was located in chromosome 4q13.2, with 43%,
60%, and 4% of the CEU, YRI, and CHB populations
exhibiting copy number gains; and 10%, 4%, and 73%
with copy number losses. This region encompassing the
UDP-glucuronosyltransferase 2B17 (UGT2B17) gene has
previously been reported to be deleted in East Asian
populations by DNA sequencing [30-32]. The second

Figure 1 Overview of Method. Affymetrix SNP6.0 probe signal intensity data are normalized and summarized for copy number analysis. The
mean log2ratio of each probe is compared between two populations of different ancestries using the t-test. The resulting t-statistic for each
probe is formatted with chromosome position and imported into GADA to identify common ancestry CNVs (caCNVs). The t-statistics follow a
normal distribution, with the t-statistic values in the tails representing the common ancestry probes. Finally, the sum of the log2ratios for each
CNV is calculated and used as features in linear discriminant analysis to identify a minimum set of caCNVs required to classify the populations.
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most significant caCNV was located on chromosome
3q26.1 and contains only a microRNA (MIR720). The
third most significant caCNV is a duplicated region of
chromosome 17q21.31 found only in Europeans, which
has been validated experimentally by fluorescence in situ
hybridization (FISH) and next-generation sequencing
techniques [31,33].

Independent validation of the caCNV signature
The entire test set of 100 Han Chinese samples, 98 out
of the 100 African-American samples, and 96 out of the
100 European samples were correctly classified using the
73 caCNV signature, with overall misclassification error
rate of 2% (Figure 6). PCA was performed on a panel of
4,326 genome-wide SNPs used as AIMs to verify the

Figure 2 GADA Identifies Common Ancestry CNVs Between Populations of Different Ancestry. GADA identifies common ancestry CNVs
(caCNVs) in pair-wise analysis of the three training sets (CEU, YRI, and CHB). The distribution of the caCNVs are shown for the A) 36 caCNVs which
differ between the CEU and YRI populations (median caCNV size of 107 KB), B) 36caCNVs which differ between the CEU and CHB populations
(median caCNV size of 73 KB), and C) 20 caCNVs which differ between the African and Han Chinese populations (median caCNV size of 140 kb).
The frequency of caCNVs is plotted by chromosome and the color of the bar indicates the size of the caCNV.

Figure 3 Principal Component Analysis (PCA) using caCNVs Clusters Samples by Ancestry. For each individual, the sum of log2ratios of the
caCNVs identified using pair-wise analyses were calculated and used for PCA analyses. Scatter plots of the first two principal components of A)
the 36 caCNVs comparing CEU versus YRI populations, B) the 36 caCNVs comparing CEU versus CHB populations, and C) the 20 caCNVs comparing
YRI versus CHB populations shows good separation of individuals based on ancestry (red squares: CEU; yellow triangle: YRI; blue circle: CHB).

Pronold et al. BMC Bioinformatics 2012, 13:336 Page 5 of 10
http://www.biomedcentral.com/1471-2105/13/336



separation of these three populations by self-reported
ancestry (Additional file 3: Figure S1A) [28]. To further
investigate the effects of admixture on classification,
ADMIXTURE version 1.21 software was used to esti-
mate ancestry using a model-based approach from the
same AIMs panel of 4,326 SNPs [29]. The estimates
of ancestry for each individual using the caCNV sig-
nature and genome-wide SNPs were correlated in the
Han Chinese (R2 = 0.974), Europeans (R2 = 0.924), and
African-Americans (R2 = 0.914), confirming the accuracy
of the caCNV signature (Additional file 3: Figure S1).

Discussion
This study shows a novel methodology for identifying a
common CNV signature that could predict ancestry with
an extremely high accuracy. Our 73 caCNV signature
distinguishes European, African, and Han Chinese an-
cestry with an error rate of only 2%. In our signature, we
also report the identification of the first microRNA
caCNV. Importantly, our approach is applicable to a
wide range of biomedical research aimed at identifying
CNV signatures predictive of population phenotypes.
Existing methods for CNV detection are often per-

formed on a sample-by-sample basis, which is not ideal
for large datasets where common CNVs must be esti-
mated by comparing the CNVs of the individual sam-
ples. Our proposed method identifies population-level
CNVs using an application of our published GADA
method. Common CNVs are determined directly from

the t-statistics estimated by comparing the microarray
probe signal intensities of populations of different ances-
try. When used in a linear discriminant analysis model, a
subset of 73 CNVs could accurately predict population
structure. The average Vst for the caCNVs identified in
our study was 0.31 (range 0.04 - 0.82). Vst calculations
range from 0 (no population differentiation) to 1
(complete population differentiation). The distribution
of CNVs in the human genome has previously been
shown to vary by ethnic populations [34]. In total, 53/73
(73%) caCNVs discovered using our method has previ-
ously been identified as population differentiated. Our
method identified 52 caCNVs which overlapped with a
human CNV map previously developed using the same
HapMap populations [35]. Many of the caCNVs we dis-
covered have previously been validated experimentally
(Additional file 2: Table S2). For instance, 14 of the
caCNVs in our signature were previously reported as
population differentiated using the HapMap samples
using multiplex ligation-dependent probe amplification
[5]. We have also identified caCNVs on chromosomes
4q13.2, 16p13.11, 17p11.2, 17q12 and 17q21.31 that have
been confirmed by DNA sequencing [31]. In addition to
sequencing, the caCNV on chromosome 17q21.31 has
been validated using FISH analysis and the caCNV on
chromosome 17q12 was validated using quantitative
PCR [33]. The most significant caCNV we identified in
our analysis was on chromosome 4q13.2. This region
encompassing the UGT 2B17 gene shows exceptionally

Figure 4 Identification of unique caCNVs among European, African, and Han Chinese Populations. A) Venn diagram of the 92 caCNVs
identified from the pair-wise population comparisons identifies 73 unique caCNVs. B) Scatter plot of the top two principal components using
data generated from the 73 unique caCNVs shows good separation of individuals based on ancestry (red square: CEU; yellow triangle: YRI; blue
circle: CHB). C) Plot of the misclassification error rate for predicting ancestry using decreasing numbers of the caCNVs identified using ten-fold
cross validation analyses of the training set.
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increased population variation, and is most frequently
deleted in East Asian populations [30-32]. Another signifi-
cant caCNV in our analysis was in the region of chromo-
some 3q26.1. W report a copy number loss in 80% of the
Han Chinese population, which is consistent with previ-
ous reports [5,34]. This region contains only a microRNA
(MIR720) that has been shown to be expressed in melano-
cytes and melanoma [36]. Finally, we demonstrate novel
caCNVs located throughout the genome on chromosomes
3p24.3, 3q12.1, 3q13.12, 4p16.1,7q31.1, 8p23.1, and
14q32.33.
Our approach in building a common CNV signature has

several advantages. First, the proposed t-test approach is a

quick and simple method to identify regions of DNA copy
number which are significantly different in two popula-
tions. The GADA prior parameters provide users the flexi-
bility to control sensitivity and specificity in identifying
boundaries of common CNVs on the t-statistic data.
These adjustments can be made in real-time as only one
dataset (t-statistic values) is analyzed in GADA. In com-
parison, the Significance Testing for Aberrant Copy Num-
ber (STAC) algorithm creates a binary matrix from the
normalized microarray probe signal intensities of individ-
ual samples, assigning genomic regions with no copy
number change to zero and genomic regions with copy
number gains or losses to one. Regions of copy number

Figure 5 Frequency of Copy Number Gains and Losses for the 73 unique caCNVs among the HapMap Training Set of A) European
ancestry (CEU), B) African ancestry (YRI), and C) Han Chinese ancestry (CHB). The panel is shown in ascending order (top to bottom) by
statistical significance obtained using the nearest shrunken centroid analysis. The genomic coordinates of the caCNVs are based on NCBI Build 36,
UCSC Version hg18. The caCNVs that affect coding sequence are designated with (cds) following the genomic coordinates. Those caCNVs that are
novel to this analysis are indicated with an asterisk after the genomic coordinates. (copy number losses: black; copy number gains: grey).
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variation are then determined by their length and fre-
quency of occurrence. STAC uses non-overlapping win-
dows to search for evidence of CNVs in each chromosome,
which can be computationally expensive when using small
window sizes. Mei et al. ran the STAC algorithm longer
than 48 hours on a 3 GHz windows PC with 4 Gb of RAM
to analyze >32,780 non-overlapping windows of chromo-
somes 1–22 of 112 HapMap samples [37]. While GADA
provides significant speed and flexibility in controlling for
false discovery rate, the breakpoint detection analysis of
the t-statistics values could be accomplished using other
approaches such as Circularly Binary Segmentation. An-
other advantage of our approach is the elimination of data
reduction techniques such as principal component ana-
lyses to identify common CNVs or the use of principal
component values as features in a classifier algorithm
[38-41]. Through our simple procedure, common CNV
signatures can be identified that can be readily applied to
other datasets with similar data types as demonstrated
with our use of a test set in this report. These advantages
along with our reported and validated caCNV signature
gives credence to our novel approach which could also
easily be implemented to identify CNVs as susceptibility
loci in case–control studies.
Admixture in the test set is a possible limitation of our

study. Admixture was expected in African-American co-
hort, and the probabilities of identifying African ancestry
in the test set was lower than that obtained in our training
set. Nonetheless, we showed high correlation between the

estimated posterior probability of ancestry from the
caCNV signature to estimates of admixture from genome-
wide SNP data using ADMIXTURE software.
Application of common CNVs can complement in-

formative SNPs in ancestral studies or case–control
studies. Common CNVs may encompass genes giving
rise to the observed phenotype, and do not necessarily
rely on linkage disequilibrium with the underlying causal
variant. The likelihood of gene dosage effects of CNVs
can also provide insight to the biological differences
observed between populations. Finally, future studies
could explore the combination of CNVs and SNPs to
identify population stratification.

Conclusions
In summary, we described a new methodology to identify
common CNVs and demonstrated its performance by
building a caCNV signature to predict human ancestry.
Our novel approach reveals a 73 caCNV signature, which
73% of the caCNVs have been confirmed by other
approaches and can be used to infer human population
structure with extremely high accuracy. A simple modifica-
tion of the GADA method allowed for direct segmentation
of t-statistics to identify the caCNVs. The efficiency of our
method in finding CNV signatures will facilitate the use of
a new type of structural variation important in human gen-
omic studies. The success of our methodology has implica-
tions for improving admixture mapping and the min-
imization of population stratification in case–control and

Figure 6 Estimated Probability of Ancestry Classification using caCNV Signature. The 100 European, 100 African-American, and 100 Han
Chinese test samples are plotted against the estimated probability of belonging to each population. Each vertical bar represents an individual.
The height of each bar is proportional to the probability that the individual belongs to a given ancestry (red bars: European; yellow bars:
African-American; blue bars: Han Chinese).
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genome-wide association studies. This methodology can be
easily expanded to large studies aimed to identify a genetic
susceptibility CNV signature specific to other phenotypes
such as disease or drug response.

Additional files

Additional file 1: Table S1. CNVs identified in individual samples.

Additional file 2: Table S2. Detailed list of the 73 caCNV signature.

Additional file 3: Figure S1. Accuracy of Ancestry Prediction in Test
Set using PCA of Genome-Wide SNPs. A) Scatter plot of the top two
principal components using data generated from 4,326 genome-wide
SNPs selected as ancestry informative markers (AIMs) shows separation of
100 European, 100 African-American, and 100 Han Chinese test samples
based on self-reported ancestry (red square: European; yellow triangle:
African-American; blue circle: Han Chinese). B) Scatter plot of ancestry
estimates using SNPs versus caCNV signature in Africans (R2 = 0.914),
C) Europeans (R2 = 0.924), and D) Han Chinese (R2 = 0.974).
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