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Abstract 

Frataxin, a nuclear encoded protein targeted to the mitochondrial matrix, has recently been 

implicated as an iron chaperone that delivers ferrous iron to the iron-sulfur assembly 

enzyme IscU.  During transport across the mitochondrial membrane, the N-terminal 

mitochondrial targeting sequence of frataxin is cleaved in a two-step process to produce the 

mature protein found in the matrix, however N-terminal extended forms of the protein have 

also been observed in vivo.  The recent structural characterization studies of the human 

frataxin ortholog were performed on a truncated variant of the protein.  Here we report the 

NMR spectral assignment of an extended form of the mature human frataxin ortholog as 

the basis for understanding the role of the N-terminal domain in protein function.    
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Biological Context  

Frataxin, a highly conserved protein found in prokaryotes and eukaryotes, is essential for cellular 

iron homeostasis (Babcock, 1997).  Protein deficiency in humans is the cause of the cardio- and 

neurodegenerative disorder Friedreich’s ataxia (FRDA), which affects 1 in 50,000 (Delatycki, 2000).  

Although expressed ubiquitously in humans, tissues with high metabolic rates like those in cardio-

muscle, nerve, kidney and liver are most affected by frataxin deficiency (Campuzano, 1996).  At a 

cellular level, the effects of frataxin deficiency include an increase mitochondrial iron levels and a 

decrease in activity of iron-sulfur (ISC)-containing proteins (Babcock, 1997; Rotig, 1997; Pandolfo, 

2002).  Accumulating evidence suggests frataxin participates directly in Fe-S cluster bioassembly, 

either by serving as an iron chaperone that delivers Fe(II) to the cluster assembly enzyme IscU 

(Yoon,  2003; Kondapalli, 2008).  An alternative hypothesis, with frataxin serving as a regulatory 

protein that controls assembly by interacting with partners within the pathway, has also been 

reported (Adinolfi, 2009).  Frataxin’s globular domain structure is conserved between prokaryotes 

and eukaryotes (see review (Bencze, 2006)) suggesting a conserved function. 

In eukaryotes, frataxin maturation occurs following a two-step proteolytic processing of the 

protein’s N-terminus (Condo, 2007).  Processing of human frataxin’s N-terminus involves cleaving 

residues 1-41 in the initial step and residues 42-80 in the final step (Condo, 2007; Schmucker, 2008). 

Additional extended variants of the “mature” (residues 81-210) human frataxin have also been 

found in vivo when maturation is impaired, including example constructs that span residues 56-210 

and 78-210 (Schmucker, 2008).  The structure of human frataxin has been solved, both by NMR and 

X-ray crystallography, however complications from proteolysis and degradation of the protein’s N-

terminus hindered the characterization beyond residues 88-210 (Musco, 1999; Dhe-Paganon, 2000; 

Musco, 2000). Preliminary biochemical data suggests the region N-terminal to residue 88 in human 

frataxin may be important in regulating the interaction between the protein and its partner IscU 

(Yoon, 2007).  A section of the N-terminal region in mature yeast frataxin is structured, suggesting 

this region that is extended beyond the globular domain of the protein may play a functional role 

(He, 2004).  In order to provide a structural basis for understanding the significance of the N-

terminal region in full-length human frataxin, and the N-terminal extension section in processing 

variants, towards iron and protein partner binding, we characterized a stable extended full-length 

human frataxin construct spanning residues 45-210 by NMR spectroscopy and obtained nearly 

complete resonance assignments of these residues.  These assignments set the basis for solving the 

complete solution structure of full-length human frataxin and for mapping intermolecular 

interactions between full-length human frataxin and binding partners. 
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Figure 1.  Figure 1.  Figure 1.  Figure 1.  15N-HSQC spectrum of human frataxin (residues 45-210) in NMR buffer.  Data were collected at a 

temperature of 300° K on a 600 MHz Varian INOVA with a cold probe.  Dashed red lines indicate weak peaks 

(amide resonance for residues 61, 82 and 89) just below the threshold level of the plot.  NH2 side chain 

resonances are connected by black dashed lines. 

 

Preliminary data suggest a high structural similarity between our 45-210 construct and the 

truncated forms of the proteins that have been solved previously by NMR (Musco, 2000). Dispersion 

of amide resonances in the 15N HSQC spectra of labeled human frataxin (Figure 1) indicates the 

protein is well folded.  Overlays of 15N HSQC spectra for truncated  human frataxin (residues 91-

210) (Musco, 1999) and our N-terminally extended construct indicate the general structure of the 

previously characterized globular domain of the protein is maintained.  A subset of amide 

resonances in the additional N-terminal region of our 45-210 construct are well dispersed, 

suggesting a possible partial fold for this N-terminal domain beyond the globular domain of the 

protein.  Analysis of chemical shift values for these N-terminal residues (45-90) following chemical 

shift indices (CSI) protocols (Wishart, 1991) suggests that while a subset of residues in this region 
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(residues 54, 58, 60, 62, 66, 69 and 70) show real propensity for helix formation based on HN, N, Hα, 

Cα and Cβ chemical shifts, there is no real pattern to suggest a fully formed secondary structural 

unit in this region (data not shown).  Based on CSI analysis, residues in the region between 81-90 

have chemical shifts consistent with this region being unfolded. 

 

Methods and Experiments 

Labeling, Expression and Purification of Human Frataxin - 15N-labeled and 13C/15N doubly labeled 

human frataxin spanning amino acids 45 to 210 were obtained from bacteria grown in M9 minimal 

medium with 15NH4Cl and U-13C6 D-glucose as the sole nitrogen and carbon sources respectively.  

The construct contained an N-terminal poly-His tag which was included for purification purposes 

and not removed (Yoon, 2007). The constructs were expressed in E. coli BL21 (DE3) strain 

transformed with a modified pET 28b(+) vector DNA.  For protein expression, the cells were 

inoculated into 4 liters of M9 medium with kanamycin (50 mg/L) induced for 16 hours by addition of 

0.3 mM IPTG after the cultures reached an optical density between 0.4 – 0.6 at 600 nm.  

Cell pellets were resuspended in buffer A (50 mM sodium phosphate, 300 mM NaCl, 10% glycerol, 

pH 7.0) supplemented with 1 mM TCEP, 0.1% Triton X-100, 75 ng/mL lysozyme, DNase I.  Cell lysis 

was achieved by sonication (10 s pulse / 2 min) for 30 min at 4°C.  Lysate was centrifuged at 15,000 

rpm for 30 min at 4°C. The supernatant was loaded onto a TALON resin preequilibrated with buffer 

A.  Subsequently, the loaded resin was washed with 10 bed volumes of buffer A, 5 bed volumes of 

buffer A with 5 mM imidazole and 5 bed volumes of buffer A with 10 mM imidazole.  Protein was 

eluted with buffer A and 200 mM imidazole, pH 7.0.  Protein purity was assessed by SDS-PAGE.  

For NMR experiments, buffer was exchanged by dialysis against 100 mM sodium phosphate, pH 7.5.  

Concentration was determined by absorbance at 280 nm (ε280 = 33920 M-1 cm-1).  

Nuclear Magnetic Resonance Spectroscopy (NMR) - Frataxin samples used in the structure 

determination were prepared at 1 mM concentration in NMR buffer (100 mM sodium phosphate, pH 

7.5, 90% H2O and 10% D2O).  NMR spectra were acquired at 300 K on an Varian INOVA 600 MHz 

spectrometer equipped with a triple resonance 1H/13C/15N Varian cold probe with z-axis pulsed field 

gradients.  Sequence specific backbone assignments were done using the following experiments: 15N-

HSQC, HNCACB, CBCA(CO)NH and HNCO (Cavanagh 1996).  Side chain atom assignments were 

made using 1H-13CHSQC, H(CCO)NH-TOCSY, C(CO)NHTOCSY and 15N-filtered TOCSY 

experiments.  All spectra were analyzed according to established lab protocols (He, Alam et al. 2004) 
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using the processing programs NMRPipe (Delaglio, Grzesiek et al. 1995) and Sparky (Goddard and 

Kneller 2001). 

 

Assignments and Data Deposition 

Residue assignments for the full-length human frataxin protein are provided in the high-resolution 

15N-HSQC spectrum for the protein (Figure 1).  Full backbone and side chain assignments was 

achieved for 160 out of 167 possible residues.  For further reference, the residue sequence for full-

length human frataxin can be found at http://www.uniprot.org/uniprot/Q16595.  Chemical shift 

assignments are deposited in the Biological Magnetic Resonance Bank (http://www.bmrb.wisc.edu/) 

under the accession code BMRB-15736.  
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