K_1 OF THE COMPACT OPERATORS IS ZERO¹

L. G. BROWN AND CLAUDE SCHOCHET

ABSTRACT. We prove that K_1 of the compact operators is zero. This theorem has the following operator-theoretic formulation: any invertible operator of the form (identity) + (compact) is the product of (at most eight) multiplicative commutators $(A_j B_j A_j^{-1} B_j^{-1})^{\pm 1}$, where each B_j is of the form (identity) + (compact). The proof uses results of L. G. Brown, R. G. Douglas, and P. A. Fillmore on essentially normal operators and a theorem of A. Brown and C. Pearcy on multiplicative commutators.

1. Statement of results. Let \mathcal{C} be the bounded operators on a separable, infinite dimensional Hilbert space, \mathcal{K} the closed two-sided ideal of compact operators, and $\mathfrak{A} = \mathcal{C}/\mathcal{K}$ the Calkin algebra.

Theorem. $K_1(\mathfrak{K}) = 0$.

That is, the "algebraic K_1 " of \mathfrak{K} , regarded as an ideal in \mathfrak{L} , is zero. The result may be interpreted as follows. Let G be the set of invertible operators in \mathfrak{L} of the form I + K, where $K \in \mathfrak{K}$. Let H denote the subgroup of G generated by all multiplicative commutators $(u,g) = ugu^{-1}g^{-1}$ where $u \in \mathfrak{L}$ is invertible and $g \in G$. Then G = H. (This uses the definition of K_1 [8, p. 36] and the fact that the matrix rings $M_n(\mathfrak{K})$ and $M_n(\mathfrak{L})$ are isomorphic to \mathfrak{K} and \mathfrak{L} respectively.) So the theorem is equivalent to the following operator-theoretic proposition.

PROPOSITION. Let I + K be invertible with $K \in \mathcal{K}$. Then there exist invertible operators A_j and $B_j = I + K_j$ (j = 1, ..., n) with $K_j \in \mathcal{K}$ such that

$$I + K = \prod_{j=1}^{n} (A_j, B_j)^{\pm 1}.$$

In fact $n \leq 8$. This proposition is proved in §2.

Combining the theorem with known information yields the first six terms of the Milnor long exact sequence in algebraic K-theory associated to $\mathcal{K} \hookrightarrow \mathcal{L} \to \mathfrak{A}$. It reads:

$K_1(\mathcal{K})$ —	$\rightarrow K_1(\mathcal{L})$ -	$\longrightarrow K_1(\mathfrak{A}) -$	$\longrightarrow K_0 (\mathfrak{K}) -$	$\rightarrow K_0(\mathcal{C}) -$	$\longrightarrow K_0(\mathfrak{A}) \longrightarrow 0$
11		11	11	11	11
0	0	Z	Z	0	0

Received by the editors April 2, 1975 and, in revised form, September 22, 1975.

© American Mathematical Society 1976

AMS (MOS) subject classifications (1970). Primary 47B47, 18F25.

Key words and phrases. Compact operator, essentially normal operator, algebraic K-theory, extensions of C^* -algebras.

¹ Research partially supported by NSF GP 29006.

2. **Proof of the proposition.** Let I + K be invertible with $K \in \mathcal{K}$. Write I + K = UP in polar decomposition. Then each of the operators U and P is of the form I + N where N is compact normal. We may assume that N has an infinite dimensional null-space \mathcal{K}_0 . So it suffices to show that any invertible operator of the form I + N with N compact normal with infinite dimensional null-space \mathcal{K}_0 is a product of (two) multiplicative commutators of the correct sort.

A. Brown and C. Pearcy show [1, Theorem 3] that $I + N = (G_1, G_2)$ where G_1 and G_2 are invertible and G_1 is a bilateral shift. An examination of their proof shows that G_2 is also normal. Then the G_j live on \mathcal{K}_0^{\perp} . Let H_1 and H_2 be commuting normals living on \mathcal{K}_0 such that $\sigma(G_j) \subset \sigma_e(H_j) = an$ annulus (where σ_e denotes essential spectrum), and $\sigma_e(H_1) \times \sigma_e(H_2) = joint \sigma_e\{H_1, H_2\} \equiv X$. Then $I + N = (G_1 \oplus H_1, G_2 \oplus H_2)$. The operators $G_1 \oplus H_1$ and $G_2 \oplus H_2$ thus essentially commute.

Let $\tau \in \text{Ext}(X)$ be the extension

$$0 \to \mathfrak{K} \to C^* \{ I, \mathfrak{K}, G_1 \oplus H_1, G_2 \oplus H_2 \} \to C(X) \to 0,$$

where $C^*{\{T_j\}}$ denotes the C^* -algebra generated by $\{T_j\}$ [4], [5]. We claim that $\tau = 0$; the extension splits. The proof is as follows. The space X is homotopy equivalent to a torus, hence Ext $(X) \cong \mathbb{Z} \oplus \mathbb{Z}$ via the index map [5]. A direct check shows that the index of $\pi(G_j \oplus H_j)$ is zero for j = 1, 2, hence $\tau = 0$. (A more economical choice of H_1 using the fact that G_1 is unitary would yield $X \subset \mathbb{R}^3$ and allow avoidance of a homotopy argument.)

By the basic Brown-Douglas-Fillmore theorem [5], there exist commuting normals N_1 , N_2 and compact operators C_i such that

$$G_i \oplus H_i = N_i(I+C_i), \qquad j = 1, 2.$$

Then

$$I + N = (G_1 \oplus H_1, G_2 \oplus H_2) = (N_1(I + C_1), N_2(I + C_2))$$
$$= (B_1, A_1)(A_2, B_2) = (A_1, B_1)^{-1}(A_2, B_2)$$

by direct computation, where

$$A_{1} = N_{1} N_{2} (I + C_{2}) N_{1}^{-1}, \qquad A_{2} = N_{1},$$

$$B_{1} = N_{1} (I + C_{1}) N_{1}^{-1} = I + N_{1} C_{1} N_{1}^{-1} \in I + \mathcal{K},$$

$$B_{2} = N_{2} (I + C_{2}) N_{2}^{-1} = I + N_{2} C_{2} N_{2}^{-1} \in I + \mathcal{K}.$$

This completes the proof.

3. Remarks.

REMARK 1. Our interest in $K_1(\mathfrak{K})$ arose from the following considerations (inspired by Helton and Howe [6]; see also [2], [3]). Let \mathfrak{C} be a *-subalgebra of \mathfrak{L} containing the trace class \mathfrak{T} and suppose that $\mathfrak{C}/\mathfrak{T}$ is commutative. Let $\mathfrak{K}_0 = \mathfrak{K} \cap \mathfrak{C}$. An invertible operator T in $I + \mathfrak{K}_0$ represents zero in $K_1(\mathfrak{K}_0)$ if T can be represented as a product of commutators $(A_j, B_j)^{\pm 1}$ as in the License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

120

proposition, but with A_j , $B_j \in \mathcal{Q}$. If this is so, then det T = 1. The same holds true if \mathcal{Q} is replaced by $M_n(\mathcal{Q})$ provided T is also in the determinant class $I + \mathfrak{T}$.

Which hypotheses on \mathscr{A} are really necessary for these conclusions to hold? Our proof shows that if K is compact normal then I + K is a product of commutators $(A_j, B_j)^{\pm 1}$ where the A_j and B_j lie in a *-algebra which is commutative mod \mathscr{K} . Thus the assumption that \mathscr{A} be commutative mod \mathfrak{T} is necessary. A more interesting and difficult question is whether the hypothesis that \mathscr{A} be closed under * can be eliminated. The special case where T is a single commutator is equivalent to the corresponding question for traces of additive commutators. In the case $T \in \mathscr{A}$, rather than $T \in M_n(\mathscr{A})$, this special case is equivalent to the general case.

REMARK 2. The inequality $n \le 8$ of the proposition can be improved to $n \le 6$ by means of a trick used by Radjavi:

$$\begin{pmatrix} S & 0 \\ 0 & T \end{pmatrix} = \begin{pmatrix} S & 0 \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & ST \end{pmatrix}.$$

Also

$$\begin{pmatrix} S & 0\\ 0 & S^{-1} \end{pmatrix} = (A, B), \text{ where } A = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} S^{-1} & 0\\ 0 & 1 \end{pmatrix}.$$

REMARK 3. A more constructive proof of the proposition (which yields $n \leq 8$) can be given by using an idea from [9]. At the cost of increasing *n* to 24, one can also require that both A_i and B_j be in $I + \mathcal{K}$.

REMARK 4. The fact that $K_0(\mathfrak{K}) = \mathbb{Z}$ has a number of generalizations. If b is any proper two sided ideal of \mathfrak{L} , then $K_0(\mathfrak{b}) = \mathbb{Z}$. Similarly, $K_0(\mathfrak{c}) = \mathbb{Z}$ for a large class of dense *-subalgebras of \mathfrak{K} -in particular for $\mathfrak{c} = \mathfrak{C} \cap \mathfrak{K}$ where $\mathfrak{C}/\mathfrak{T}$ is commutative as before and \mathfrak{C} is maximal in a certain sense. The situation for K_1 is quite different. Our result that $K_1(\mathfrak{K}) = 0$ contrasts with the fact that $K_1(\mathfrak{T}) \neq 0$ (by a determinant argument [2]). However, the methods alluded to in Remark 3 do apply to the Schatten classes \mathfrak{C}_p for some p. The fact that $K_1(\mathfrak{b})$ depends upon the ring in which \mathfrak{b} is an ideal complicates such considerations.

References

1. A. Brown and C. Pearcy, Multiplicative commutators of operators, Canad. J. Math. 18 (1966), 737-749. MR 34 #608.

2. L. G. Brown, *The determinant invariant for operators with trace class self-commutators*, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1973.

3. ——, Operator algebras and algebraic K-theory, Bull. Amer. Math. Soc. 81 (1975), 1119–1121.

4. L. G. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^* -algebras, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1973.

5. ____, Extensions of C*-algebras, operators with compact self-commutators, and K-homology, Bull. Amer. Math. Soc. 79 (1973), 973–978.

6. J. W. Helton and R. E. Howe, *Integral operators: commutators, traces, index and homology*, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1973.

7. J. Kaminker and C. Schochet, Steenrod homology and operator algebras, Bull. Amer. Math. Soc. 81 (1975), 431-434.

8. J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Studies, no. 72, Princeton Univ. Press, Princeton, N. J., 1971.

9. C. Pearcy and D. Topping, On commutators in ideals of compact operators, Michigan Math. J. 18 (1971), 247-252. MR 44 # 2077.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907 (Current address of L. Brown)

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47401

Current address: (C. Schochet): Department of Mathematics, Wayne State University, Detroit, Michigan 48202