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K, OF THE COMPACT OPERATORS IS ZERO!

L. G. BROWN AND CLAUDE SCHOCHET

ABSTRACT. We prove that K| of the compact operators is zero. This theorem
has the following operator-theoretic formulation: any invertible operator of the
form (identity) + (compact) is the product of (at most eight) multiplicative

commutators (A;B,A7' B! :I, where each B; is of the form (identity) +
Vit B J

(compact). The proof uses results of L. G. Brown, R. G. Douglas, and P. A.
Fillmore on essentially normal operators and a theorem of A. Brown and C.
Pearcy on multiplicative commutators.

1. Statement of results. Let £ be the bounded operators on a separable,
infinite dimensional Hilbert space, K the closed two-sided ideal of compact
operators, and % = £/% the Calkin algebra.

THEOREM. K (%) = 0.

That is, the “algebraic K;” of ¥, regarded as an ideal in £, is zero. The result
may be interpreted as follows. Let G be the set of invertible operators in £ of
the form I + K, where K € . Let H denote the subgroup of G generated by
all multiplicative commutators (u,g) = ugu~'g~! where u € £ is invertible
and g € G. Then G = H. (This uses the definition of K| [8, p. 36] and the fact
that the matrix rings M, (%) and M, () are isomorphic to K and £ respective-
ly.) So the theorem is equivalent to the following operator-theoretic proposi-
tion.

PROPOSITION. Let I + K be invertible with K € K. Then there exist invertible
operators Ajand B; = I + K; (j = L,...,n) with K; € K such that

n
I+K =TI (4;,B)"".
j=1

In fact n < 8. This proposition is proved in §2.

Combining the theorem with known information yields the first six terms of
the Milnor long exact sequence in algebraic K-theory associated to K = £
— U. It reads:

K (X)— K (B) — K(U) — Ky () — Ky () — Ky (A)—> 0
I I I I ! I
0 0 Z y/ 0 0
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2. Proof of the proposition. Let / + K be invertible with K € K. Write
I + K = UP in polar decomposition. Then each of the operators U and P is
of the form I + N where N is compact normal. We may assume that N has an
infinite dimensional null-space 3(,. So it suffices to show that any invertible
operator of the form / + N with N compact normal with infinite dimensional
null-space 3, is a product of (two) multiplicative commutators of the correct
sort.

A. Brown and C. Pearcy show [1, Theorem 3] that I + N = (G, G,) where
G, and G, are invertible and G, is a bilateral shift. An examination of their
proof shows that G is also normal. Then the G; live on g . Let H, and H,
be commuting normals living on 3, such that o(G;) C ¢,(H;) = an annulus
(where o, denotes essential spectrum), and o,(H,) X ¢,(H,) = joint o,{H,, H,}
= X. Then I + N = (G, ® H;,G, ® H,). The operators G, ® H, and G,
® H, thus essentially commute.

Let 7 € Ext (X ) be the extension

0-H— C*{],S‘C,GI eHl,Gz@Hz}—) C(X)—>0,

where C*{T} denotes the C*-algebra generated by {T7} [4], [S]. We claim that
7 = 0; the extension splits. The proof is as follows. The space X is homotopy
equivalent to a torus, hence Ext (X ) = Z & Z via the index map [5]. A direct
check shows that the index of 7(G; ® H;) is zero forj = 1, 2, hence 7 = 0. (A
more economical choice of H; using the fact that G| is unitary would yield
X C R? and allow avoidance of a homotopy argument.)

By the basic Brown-Douglas-Fillmore theorem [5], there exist commuting
normals N, N, and compact operators C; such that

GoH=NI+C) Jj=12
Then
I+N=(G,®H,G,® H,) =(NUI+ C)),N(I + Cy))
= (B, 4,)(4;.By) = (4,.B))”' (4. B))
by direct computation, where
= NNMI+ OGN, A =N,
=NI+C)N'=T1+NCON'eET+X,

& x
[

B, = Ny(I+ C))N,' =1+ NG, N, e 1+ %K.
This completes the proof.

3. Remarks.

REMARK 1. Our interest in K;(¥) arose from the following considerations
(inspired by Helton and Howe [6]; see also [2], [3]). Let @ be a *-subalgebra of
£ containing the trace class § and suppose that @< is commutative. Let
o = K N Q. An invertible operator T in I + ¥, represents zero in K;(¥,) if
T can be represented as a product of commutators (Aj,Bj)il as in the
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proposition, but with 4;, B; € @. If this is so, then det 7 = 1. The same holds
true if @ is replaced by M (202) provided T is also in the determinant class I + 9.

Which hypotheses on @ are really necessary for these conclusions to hold?
Our proof shows that 1f K is compact normal then 7/ + K is a product of
commutators (4;, B; )*! where the 4, ; and B; lie in a *-algebra which is
commutative mod K. Thus the assumption that @ be commutative mod J is
necessary. A more interesting and difficult question is whether the hypothesis
that @ be closed under * can be eliminated. The special case where T is a single
commutator is equivalent to the corresponding question for traces of additive
commutators. In the case T € @, rather than T € M, (®), this special case is
equivalent to the general case.

REMARK 2. The inequality n < 8 of the proposition can be improved to
n < 6 by means of a trick used by Radjavi:

(g 2) - (gsq'> ' ((I)SOT)‘

S0 01 s7'o
<OS_|)=(A,B), whereA=(lO> and B=( 0 1)‘

REMARK 3. A more constructive proof of the proposition (which yields
n < 8) can be given by using an idea from [9]. At the cost of increasing n to
24, one can also require that both 4; and B; be in I + X.

REMARK 4. The fact that Ky(¥) = Z has a number of generalizations. If b
is any proper two sided ideal of £, then K,(b) = Z. Similarly, K(c) = Z for
a large class of dense *-subalgebras of ¥~in particular for ¢ = @ N K where
@/9 is commutative as before and @ is maximal in a certain sense. The
situation for K is quite different. Our result that K, (%) = 0 contrasts with the
fact that K](J ) # 0 (by a determinant argument [2]). However, the methods
alluded to in Remark 3 do apply to the Schatten classes C, for some p. The
fact that K, (b) depends upon the ring in which b is an 1deal complicates such
considerations.

Also
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