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Abstract 

A simulation-based structural reliability analysis method is presented. It is intended as an 

alternate approach to estimate reliability for problems for which most-probable point of 

failure methods fail and when computational resources are limited.   The proposed method 

combines conditional expectation and estimating the PDF or CDF of a selected portion of the 

limit state.   In the proposed approach, complex limit state functions are simplified to two 

random variable problems.  The success of the simplification depends on the quality of the 

CDF estimate.  Results indicate that the method may provide accurate and efficient solutions 

for some difficult reliability problems. 
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Introduction 

For structural reliability problems with well-behaved limit state functions, most probable 

point of failure (MPP) search or reliability index-based methods are often the first choice for 

reliability analysis, as they can typically achieve accurate results with many fewer calls to the 

response function than simulation methods such as Monte Carlo simulation (MCS) or one of 

the various variance reduction techniques (VRTs).  The widely-used reliability-index based 

methods include the first- and second-order reliability methods (FORM, SORM) (Rackwitz 

and Fiessler 1978; Breitung 1984), with many variants presented in the literature (Chen and 

Lind 1983; Wu and Wirsching 1987; Fiessler et al. 1979; Hohenbichler et al. 1987; Tvedt 

1990; Der Kiureghian 1987; Der Kiureghian et al. 1987; Ayyub and Haldar 1984, among 

many others).  VRTs such as importance sampling  (Rubinstein 1981; Engelund and 

Rackwitz 1993) and adaptive importance sampling (Wu 1992; Karamchandani et al. 1989), 

also make use of the MPP concept, and can similarly lead to significant reductions in 

computational effort over MCS.     For ill-behaved or difficult to capture responses, however, 

such as those which may be discontinuous, highly nonlinear, or that contain multiple ‘local’ 

reliability indices on the limit state boundary, as with many complex problems requiring a 

numerical or finite element solution, the most probable point (MPP) search algorithms may 

fail or produce unstable or erroneous results. In such cases, one must rely upon a greatly 

reduced selection of techniques, primarily those from the simulation family that do not rely 

upon an MPP search such as MCS and its advanced variants (Au and Beck 2001; Au et al. 

2007) or stratified sampling methods (Iman and Conover 1980).   

 

An alternative common approach is approximating the true limit state function with a 

response surface (RS), of which many examples exist (Bucher et al. 1990; Gomes et al. 2004; 

Cheng et al. 2009, etc.)  Point integration or point estimation techniques would also be 
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possible, although results may be highly unreliable  (Eamon et al. 2005).  The drawback of 

many sampling techniques is the effort required, particularly for high-reliability problems 

involving a computationally expensive, implicit limit state function.  Similarly, for complex 

responses (highly nonlinear or discontinuous), it is may be difficult to develop a sufficiently 

accurate response surface for reliability analysis without expending considerable 

computational effort.  This is particularly so when the number of random variables becomes 

large.   

 

As the fast and accurate reliability analysis of complex engineering problems is a topic of 

great interest, there have been various recent developments in simulation methods that were 

developed to address these concerns.  One such promising method is subset simulation (Au 

and Beck 2001), several versions of which have been favorably evaluated elsewhere (Au et 

al. 2007).  This paper presents an alternative approach. Similar to existing advanced 

simulation methods,  it describes a simulation-based method that does not rely on an MPP 

search, but that can generate accurate results for difficult limit states of relatively high-

reliability, with a reasonable computational effort.  We refer to this method as Failure 

Sampling (FS), as even though sample points are neither guided by nor correspond to the 

MPP, all samples are taken on the failure boundary. 

 

Concept of Failure Sampling 

The method is based on a combination of conditional expectation (CE), of which there are 

many versions proposed in the literature (see for example, Karamchandani and Cornell 1991; 

Ayyub and Chia 1992; Yasuhiro and Ellingwood 1993, Smarslok et al. 2006, Eamon 2007, 

among others), and estimating either the probability density function (PDF) or cumulative 

distribution function (CDF) of a specific portion of the limit state function by direct MCS.   
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Of course if the PDF (or CDF) of the complete limit state function g can be estimated 

accurately, probability of failure, pf can be easily calculated by numerical integration over the 

failure region using the well-known expression: 

 

∫
∞

∞−

= dxxfxFp qRf )()(       (1) 

 

The difficulty of estimating this curve by MCS is that most samples fall close to the mean of 

g, which may be far from the failure region, making accurate integration of this region 

difficult or impossible.   

 

FS solves this problem by introducing concepts from CE.  Traditional CE involves several 

steps: 1) From an original limit state function g(Xj), a control random variable Q is chosen, 

which is statistically independent from the other random variables and is usually taken as the 

random variable (RV) with largest variability in the original limit state function g.  2) A new 

limit state function g’ is formed such that it has an equivalent failure boundary to that of 

g(Xj), but in g’, Q is separated from the remaining RVs.  That is, at failure, g is expressed as 

g’ = 0 = R(Xi) - Q.  Here R(Xi) is the portion of the limit state that is not a function of Q,  and 

Xi is the set of all RVs (Xj) except Q.  3) MCS is then used to simulate values for the RVs Xi, 

and R(Xi) is evaluated for simulation s (where s is one of the total simulations taken).  4) 

Since at failure (g’ = 0), R(xi)s = qs, the cumulative distribution function (CDF) of Q, FQ, 

evaluated at qs, must also equal the value of FQ evaluated at R(xi)s: FQ(qs) = FQ(R(xi)s).  Thus, 

FQ(R(xi)s) is evaluated for simulation s.  5) pf for simulation s, pfs, can then be calculated as: 

pfs = P(Q > R(xi)s) = 1 - FQ(R(xi)s). 6) Repeat steps 3-5 as desired, for n total simulations.  7) 
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The final pf estimate is calculated as the mean of the n failure probabilities pfs: 

( ) npp
n

s fsf /
1∑ =

= .   

 

To clarify the above process with an example, consider a simple limit state function g = X1X2 

- X3/X4.   Assume X3 is chosen as the control variable Q.   An equivalent limit state boundary 

is formed by rewriting g as g’ such that X3 is separated from the remaining RVs.  The new 

limit state boundary is written as g’ = 0 =  X1X2X4 - X3.  Here, X1X2X4 = R(Xi) and X3 = Q.   

pf of g’ can be calculated as: pf = P(X3 > X1X2X4).    To calculate pf, MCS is used to simulate 

values for X1, X2, and X4.  Using these simulated values, pf for simulation s can be written as: 

pfs = P(X3 > x1x2x4) = 1 - FQ(x3s), where x3s is the value of X3 that would cause a failure (g’ = 

0) for simulation s.  Since at failure, x3 =  x1x2x4, pf can also be written as: pf = 1- FQ(x1x2x4).  

Multiple simulations are conducted, and the average pf result from all simulations is taken as 

the final pf estimate. 

 

FS shares steps 1-3 above with CE, but replaces steps 4-7 with a different procedure.  In CE, 

neither the PDF nor CDF of R(Xi) is determined, but only the response of R for a simulated 

set of RV values (xi). In contrast, with the FS approach, estimating the PDF or CDF (as 

needed) of R(Xi) is the primary concern.  Consider the reformulated limit state per step 2 of 

CE as a starting point (and renaming g’ to gfs):  

 

gfs = R(Xi) - Q        (2) 

 

As with CE, the limit state boundary of gfs is simply the boundary of g rewritten, separating Q 

from the remaining RVs. There is no theoretical limitation to the selection of the control 

variable Q, other than statistical independence from the remaining RVs Xi, and thus Xi and Q 
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are not required to be the actual resistance and load RVs of the problem.  Note that gfs can be 

completely implicit, and there is no need for an analytical or closed-form formulation. 

  

The advantage of estimating the PDF (or CDF) of R(Xi), rather than the entire PDF of g, is 

twofold.  First, as with CE, the variance of the control variable is removed from the Monte 

Carlo simulation.  More importantly, the value of R(Xi) at the MPP of gfs is generally closer 

to the central region of the PDF of R(Xi), fR, than g(Xj) = 0 is to the central region of the PDF 

of g, fg.  Therefore, if fR is estimated, such as by MCS, the calculation of pf of gfs becomes 

less sensitive to the tail region of fR, than is the pf of g to the tail of fg.  This allows a more 

accurate computation of pf  of gfs than the pf of g, with the same number of simulations.  This 

is illustrated in Figure 1, which represents the results of example problem 1, discussed below.  

Clearly, the failure region of gfs that is associated with fR is larger (lower graph in the figure), 

and thus easier to capture for the same number of simulations, than the failure region of fg 

(upper graph in the figure). 

 

When compared to CE, the advantage of  FS is that (an estimate of) the PDF or CDF is used 

to calculate pf rather than the independent data points xi.   For reasonable reliability problems, 

this typically results in a greater number of data available in the area of interest, that 

representing the lowest values of R(Xi).   That is (assuming the number of simulations is kept 

constant between CE and FS), for FS, more data are available in the tail region of the PDF or 

CDF estimate of R(Xi), for use in eq (2), then are available in the tail region of the direct 

R(xi) samples used in the CE expression ( ) nxRFp
n

s siQf /))((1(
1∑ =

−= .  This higher data 

density in the area of interest for FS leads to a more accurate estimate of pf.    For example, 

consider the CDFs shown in Figure 2, which are from the results of example problems 

described in detail below.  The CDF to the left is calculated directly from the cumulative 
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probability of 1000 MCS samples: FR(xi) =  s/(1+n).  These R(xi) values would be used in the 

CE pf calculation above.  The CDF to the right represents an (50 point) estimated FR from the 

same 1000 samples, which is used in FS.   Although there are 20 times as many samples that 

define the CDF to the left in the Figures, they are clearly less dense in the lower tail of the 

distribution, the region which is most critical to  the pf estimate, than is the CDF estimate to 

the right.   These results are typical.   

 

As with CE, complex reliability problems solved with FS are simplified to a algebraically 

linear, two random variable problem.  By doing so, the complexity of the original model is 

clearly lost in the solution of the surrogate problem.  Using this approach, how well the 

solution of the surrogate problem represents that of the true problem critically depends on 

how accurately fR (or FR, as needed) is estimated.  Details on obtaining a suitable estimate of 

fR or FR from the R(xi) samples are discussed below 

 

For FS, the estimation of fR or FR is conducted by imposing the condition gfs = 0.  For many 

practical (i.e. nonlinear and implicit) problems, imposing gfs = 0 generally requires a higher 

computational cost per FS sample than a MCS sample, as each FS sample requires solution of 

gfs = 0 for q.  For an implicit, nonlinear problem, this may require multiple iterations.  

However, as will be shown, this cost is greatly outweighed by the savings in overall number 

of samples required, especially as pf decreases. 

 

FS Algorithm 

The FS algorithm is simple to implement and works as follows. 

  



 8 

1. Choose a control RV and reformulate g to gfs as per eq. (2). Although it is not required 

to explicitly re-write the limit state in terms of the control variable, doing so would 

avoid the need for a nonlinear solution and decrease overall computational effort.  The 

control variable is best taken as the RV with highest variability, but is often most 

easily taken as a load magnitude RV for implicit problems.  The only restrictions are 

that the control RV must be statistically independent from the remaining RVs and be 

able to satisfy gfs = R(xi) - q = 0, for the expected range of values of Xi that will be 

obtained by the sampling method chosen.  The effect of control variable choice is 

discussed further in a later section. 

 

2. Assign random values to the RVs within R, (xi), using MCS or an alternative non-

MPP based simulation method.  In this paper, MCS is used and the potential 

advantages of using other methods with FS have not been explored. 

 

3. Determine the value of the control variable needed to satisfy gfs = 0: q = R(xi).   For 

implicit, nonlinear problems, a variety of numerical nonlinear solvers are available, 

but in general q is incrementally increased (or decreased) until the limit state gfs 

equals zero.    

 

4. Repeat steps 2-3 until a sufficient number of samples have been taken.  As with MCS, 

the most reliable way to determine appropriate sample size is to increase the number 

of samples until the solution converges.   Some guidance can be obtained from the 

example problems below. 
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5. Using the data from step 4, the PDF of R(Xi), fR, or its CDF, FR, can be estimated, as 

needed, depending on the method that will be used to calculate pf. If a sufficient 

number of samples are taken, good estimations of the statistical moments of R(Xi) as 

well as its distribution can be obtained, if desired.  The methods used to estimate fR 

and FR are discussed in the next section. 

 

6. With the statistical parameters of R(Xi) estimated, the problem is effectively reduced 

to a 2-RV linear problem as shown by eq. (2), where R(Xi) is now represented as a 

single random variable R, and Q as the control variable.  Although algebraically 

linear, this equation will likely be nonlinear in standard normal space, as R is typically 

non-normal.   Either reliability index or pf can now be readily computed using any 

desired method.  For the validation problems considered in this paper, two separate 

approaches were considered for comparison. The first is to calculate pf by numerically 

integrating eq. (1).  

 

There are various ways to estimate FR.  The most direct way is take FR as the CDF of 

the R(xi) samples; i.e. the cumulative probability of the n samples (FR(xi) =  s/(1+n)).  

As noted above, however, using this method offers little advantage over CE.   

Alternatively, if a PDF of the data samples is constructed, FR can be estimated by 

numerical integration of the PDF.  The advantage of this approach was discussed 

above (see Fig. 1).  This is the method used for FS, with specific implementation 

details given in the next section.    

 

Error in failure probability prediction caused by error in the FS-estimated CDF as 

compared to the of the original resistance data R(Xi) can be directly calculated as the 
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differences in the estimated contributions to failure probability from the two cases at 

the considered sample points, which can be numerically estimated as: 

  

( )[ ] )()()()(
1 ssq

n

s sFSRsRerr xwxfxFxFpf ∑ =
−≈   (3) 

 

where FR(xs) represents the CDF of the original data and is calculated based on the 

direct cumulative probability of the n samples: FR(xi) =  s/(1+n)); FR FS(xs) is 

calculated based on the FS-estimated CDF; i.e. formed by numerical integration of the 

PDF; and w(xs) is the interval width associated with resistance sample xs; w(xs) = (xs - 

xs-1)/2 + (xs+1 - xs)/2.  As the number of sample points taken increases, differences 

between FR(xs) and FR FS(xs), and thus the failure probability error estimate, decrease 

as the solutions converge. 

 

For the second approach used to evaluate the reliability of eq (2), a PDF of the data is 

constructed, then an analytical distribution is fit to the PDF.  This analytical 

distribution thus becomes an estimate of fR.  With R represented by a known 

distribution type, pf or β can be easily calculated from eq. (2) using any method.  In 

this paper, reliability index β was calculated using FORM with this approach.  

 

Although various functions are available for distribution fitting, the authors have 

obtained consistently good results with the Generalized Lambda Distribution (GLD), 

which is highly flexible and can accurately describe many distribution shapes.  The 

PDF of GLD has the form 
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where λi are parameters determined from the first four statistical moments of the 

simulated data.  Various references describe the GLD and how to obtain its 

parameters (Karian et al. 2000; Ozaturk and Dale 1982; Asif and Helmut 2000).  With 

this procedure, differences between the skew and kurtosis coefficients of the original 

data and the fitted curve can be used as a measure of how accurately the data are 

represented.  However, eq. (3) could also be used.  Note that once the FS samples are 

taken in step 4, no more calls are made to the original limit state gfs to evaluate eq. (1) 

or (4),  and the additional computational effort needed to conduct steps 5 and 6 to 

obtain pf or β is negligible (several seconds on a desktop computer).  

 

Although the authors expected the first approach (direct integration of the data 

samples using eq. (1)) to give superior results than the curve-fitting method of 

approach 2 using the GLD, in most cases, little difference in accuracy was found 

between these two approaches.   

 

Example Problems 

Three representative problems are chosen to illustrate the results of FS: 1) a material-only 

nonlinear structural system problem; 2) a dynamic problem with a discontinuous limit state; 

and 3) a large strain, large displacement problem with nonlinear geometric and material 

response.    
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Note that for each of the numerical problems, the MPP could not be located, and thus FORM, 

SORM,  Importance Sampling, and other popular methods that rely on MPP cannot be 

accurately applied here.   

 

As with any simulation method, the accuracy of FS tends to improve as the number of 

simulations increases.   In this paper, 1000 simulations were taken for most problems as the 

baseline for consistent comparison.  For all problems, considering the first FS approach 

discussed in step 6 above, for use in eq. (1),  fR was estimated by dividing the 1000 R(xi) 

results into 50 intervals. A 50-point estimation of FR was then obtained by numerically 

integrating fR. Finally, pf was calculated from eq. (1) by integrating with the trapezoidal rule 

using 100 intervals, then the standard normal transformation )(1

fp
−Φ−=β  was used to 

report generalized β (given as the result “FS (NI)” in the tables).   

 

When the second approach discussed in step 6 was considered, the GLD was fit to the fR 

estimate as described above.  Reliability index was then computed using FORM from the 2 

RV problem g = R - Q based on eq. (1), with results given as “FS (GLD)” in the tables.    

 

For comparison, the problems were also solved with traditional conditional expectation (CE), 

Monte Carlo simulation (MCS), and a common quadratic response surface approach (RS).  

For MCS, often no solution could be obtained if the computational effort is limited to that of 

FS; this is reported as ‘no failures’, or ‘n.f.’ in the results tables (in this case, failure 

probability would be estimated as 0 with MCS).  For RS, a design of experiments was used to 

approximate the limit state function with a full quadratic response equation (full factorial 

composite design) using the code VisualDOC (Vanderplaats 2008), then MCS was used to 

evaluate failure probability of the response surface using a large enough number of samples 
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to obtain an ‘exact’ pf estimation of the response surface.   For complex problems, CPU time 

is proportional to the number of function calls to the true response (i.e. FEA code), which is 

reported in the solutions.  For consistent comparison, CPU time was kept constant for the 

comparison methods (FS, MCS, and CE), since a typical FS or CE sample takes more 

computational time than a MCS or RS sample, as discussed above.   

 

For all methods, multiple trials were conducted and the average of absolute value of error, or 

‘typical’ error, is presented, as well as the coefficient of variation of reliability index, 

reported as COV in the tables.  Also indicated is whether a method usually produces a 

reliability index higher or lower than the true solution, which is indicated with a positive or 

negative value on the reported error, respectively.  Most of the example problems have a 

range of β from 2-4, which we consider a realistic range for most structural reliability 

problems, though problems with β as high as 8 were also accurately solved with this 

approach.  

 

Problem 1. Nonlinear  Static Truss 

The truss shown in Figure 3 is subjected to a random load P. The material is modeled as steel 

with a bi-linear stress-strain curve.  Each member i has 4 independent RVs for cross-sectional 

area A (mean 2 sq. in, COV 0.05), yield strength σy (mean 50 ksi, COV 0.10), and post-yield 

modulus E2 (mean 1,200 ksi, COV 0.25).  Mean load P is taken as 40 or 55 kips, with COV 

of 0.10, for a total of 31 RVs.  All RVs are normal.  Failure occurs when the maximum stress 

in member no. 1 (only) σ1 reaches its yield strength σy1.   The limit state function is 

 

 ),,,( 211 iiyjy AEPg σσσ −=  for i = 1 to 10, j = 2 to 10  (5) 

 



 14 

The limit state was evaluated with the commercial FEA code MSC Nastran (2005) using a 

Newton-Raphson solution. For FS and CE, P was taken as the control variable and the 

bisection method was used to find the value for which gfs = 0 (error tolerance taken as 0.01).  

When using the bisection method, an algorithm was written that bases the gfs= 0 starting point 

for future sample iterations on extrapolations from past root values, which considerably 

reduces iteration effort for future samples.  

 

Results are given in Table 1, where the exact solution is taken from the result of 1x10
6
 MCS 

samples, which required approximately 430 total CPU hours shared among multiple 

processors.  Here, direct simulation could conduct approximately twice the number of calls as 

FS during the same CPU time, achieving similar results as FS for the low β (1.24) case.  For 

the high β (3.31) case, MCS could not provide a solution for the CPU time given, and CE 

resulted in 20% error for the low-β case, whereas FS gave a reasonable error between 2-3%.  

A full quadratic response surface would require much more computational effort than 

allocated for this problem (i.e. 2
n
 + 2n + 1, or  2.14x10

9
 samples with n=31 RVs), so a 

fractional design was used with 2111 samples, which resulted in just slightly more than the 

computational effort allocated to the other methods.  Here, RS performed reasonably well but 

with higher error than FS. 

 

Example Problem 2.  Dynamic Problem with Discontinuous Limit State 

 This problem is taken from Eamon (2007).  A 4 ft x 8 ft plywood panel on the corner of a hip 

roof is secured to five roof trusses with 33 nails as shown in Figure 4.  The panel is subject to 

4 independent dynamic wind loads, each described by a 3-minute pressure time-history.  

These time histories apply uplift and downwards pressure loads normal to the panel surface, 

with peak uplift pressures of approximately 25 psf.   RVs are the withdrawal strengths of 
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three critical nails n1-n3 (it was found that these nails governed the panel failure), the pressure 

magnitude of the dynamic wind loads W1-W4, and panel dead load, for 8 RVs.  RVs Ni are 

independent and normally distributed with mean of 169 lb and COV of 0.40, while dead load 

is also normal with mean of 3.5 psf with COV of 0.10.  Wind pressure RVs Wj are 

lognormally distributed with COV of 0.41.  The mean value of each Wj is taken as 1.0, which 

represents the factor applied to the entire pressure time-history of the load area corresponding 

to Wj.  The panel is modeled with plate elements while the nails are modeled with bar 

elements using MSC Nastran.  For evaluation of the limit state, a transient dynamic analysis 

is conducted.  If the withdrawal strength (axial force) of a nail is exceeded (the non-RV nails 

have a deterministic withdrawal strength of 169 lb), the analysis is stopped and the 

‘withdrawn’ nail element is removed from the panel.  The analysis is then restarted from the 

time in the load history that it was stopped and continues for the remaining duration of time 

or until all nails are withdrawn. Failure is defined as the event when all 33 nails are removed.  

The limit state is given by: 

 

g = R(Ni)  - Q(Wj)     (6) 

 

Where R is the function of panel resistance, as a function of the nail withdrawal capacity 

RVs, while Q is the function of load effect on the panel, as a function of the wind load RVs. 

This is a difficult problem since the limit state response may be discontinuous, as it is a 

function of the sequence of discrete nail removals.  Results are given in Table 2.   The exact 

solution is taken from the result of 1x10
5 

MCS samples, which required approximately 7200 

total CPU hours shared among multiple processors.  For FS the control variable was taken as 

W1.  For this problem, only the numerical integration approach for FS (NI) was considered, 

as the GLD could not be fit to the simulation data.  Similarly, CE could not be applied here 
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due to computational difficulties with this method.  Here FS produced an excellent result at 

1% error, while MCS and RS produced significantly higher errors.  The effect of partial 

correlation on the nail strength RVs was also considered (ρ=0.50).  In this case, reliability 

index increased slightly but had no significant effect on the accuracy of the FS solution. 

 

Example Problem 3. Crush Tube 

An aluminum hollow tube 400 mm long with an 80 mm square cross-section representing a 

idealized vehicular side-rail (Rais-Rohani et al. 2006) is subjected to an initial velocity and 

impacts a rigid wall.  The tube is modeled with shell elements as shown in Figure 5 in its 

failure state.  A concentric point-mass applied at the end of the tube represents the relevant 

portion of the vehicular mass.  Random variables are the density of the tube (ρt ), point mass 

(M); wall thickness (T); initial velocity (V);   elastic modulus (E); yield stress (σy); and post-

yield modulus (Et).  Statistical parameters of these RVs are given in Table 3.  Failure is 

defined as the event when the length-wise deformation of the tube (D) exceeds more than 

50% (200 mm) of its original length at a time of 20 ms into the analysis.  The limit state is 

given as 

 

 g = 200 - D(ρt, M, T, V, E, σy, Et)  (7)   

 

The limit state is evaluated with the finite element code LS-DYNA (2003).  Due to the 

computational cost of this problem, only 100 FS samples were considered.  Initial velocity V 

was taken as the control variable.  As each FS sample took approximately three times as long 

as an MCS sample, MCS and RS could achieve approximately 300 samples for the same 

CPU time.  Results are shown in Table 4.  The exact solution is taken from the result of 1x10
5
 

MCS samples, requiring approximately 4000 total CPU hours shared among multiple 
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processors.  The MCS samples were plotted on probability paper to verify results.  Here only 

FS was able to provide an accurate solution. As with the previous problem, only the 

numerical integration approach for FS (NI) was considered, as the GLD could not be fit to the 

simulation data. 

  

Effect of  Reducing Sample Size 

As noted earlier, the computational time for 1000 samples was somewhat arbitrarily chosen 

to compare solutions.  The effect of reducing sample size on FS results is investigated by 

considering a previously studied problem.  Table 5 gives results for example problem 1 for 

mean P = 40. As expected, sample size greatly affects the quality of the pf estimate, although 

significant reductions in sample size below 1000 can often be maintained with acceptable 

results. As shown in the table, less than 5% error was obtained between 50 and 250 samples 

this problem, for β = 3.31.   

 

Effect of control variable selection 

Changing the control variable will create an equivalent but different limit state function.   The 

FS solution procedure applied to these different limit states will create different distributions 

for R in gfs, as the control variable is changed.  As with CE, selecting an FS control variable 

with the most variability typically results in the best solutions, as that variance is removed 

from the formation of fR and FR.  To explore the effect of these differences on the FS 

solution, problem 3 was reconsidered with different selections of control variable.  The 

results given in Table 6 show that there is less than a 2% difference in the final solution 

regardless of control variable choice, with error ranging from 1.4-3.1%   As expected, 

selecting a control variable with highest COV (RV T) results in the lowest error. For all 
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control variable choices, however, error tends to decrease toward the exact solution as the 

number of samples is increased.  These results are typical. 

 

Note that, for some oddly-formulated  problems, it may not be possible to satisfy gfs = 0, 

depending on the control variable selection and the sampled values of the remaining RVs.  

For this situation, FS (and CE) cannot be applied.  It would be incorrect to disregard the non-

conforming sample, as this would amount to eliminating the corresponding MCS samples, 

biasing the results, and likely producing a poor solution.  

 

Another special case involves the situation where the chosen control variable has multiple 

roots in gfs =0.   For this problem, a separate distribution for R would have to be generated for 

each root, and a separate failure probability calculated for each case.  The solution would 

then be taken as the mean failure probability of the cases. 

 

Conclusion 

A reliability analysis method was presented that is a modification of conditional expectation, 

and the results of three representative example problems were shown for comparison.  A 

variety of additional problems were considered for validation, with variations in failure 

probability, level of variance, distribution types, degree of non-linearity, and resistance RV 

correlation, with similar results (Charumas 2008).  For the problems considered, FS produced 

reasonable, relatively efficient, and in most cases, very accurate solutions.   

 

As FS represents complex limit state functions with an algebraically linear, two random 

variable problem, the complexity of the original model is discarded and the success of the 
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solution depends on the accuracy of the estimation of R(Xi). Other considerations when using 

FS were given in the section above.  

 

As the available advanced simulation methods may offer different advantages for particular 

types of problems, the authors would recommend that the various alternate solution 

possibilities be considered when approaching complex and computationally demanding 

reliability problems.  
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Nomenclature 

 

CDF  cumulative distribution function 

CE  Conditional Expectation 

fg  PDF of g; also, PDF of the GLD (eq 4) 

FQ   CDF of  Q 

FORM  First Order Reliability Method 

fQ  PDF of Q 

FR  CDF of R(Xi) 

fR  PDF of R(Xi) 

FS  Failure Sampling 

g  limit state function 

g’  CE limit state function 

gfs  FS limit state function 

GLD  Generalized Lambda Distribution 

MCS  Monte Carlo simulation 

MPP  most probable point of failure 

NI  numerical integration 

PDF  probability density function 

pf  failure probability 

Q  control RV 

q  a specific value of Q 

R(Xi)  resistance function 

R  R(Xi) represented as a single equivalent resistance RV 

RS  quadratic response surface 

RV  random variable 

s  simulation number 

VRT  variance reduction technique 

Xi  set of RVs 

xi  a set of specific values for RVs Xi 

β  reliability index 

λi  GLD parameter 

Ф  standard normal CDF 
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Table 1.  Problem 1 (Truss) Results 

 nominal mean P = 55 mean P = 40 

method no. of calls β %err  COV β %err COV 

Exact Solution  1.24 -- -- 3.31 -- -- 

FS (NI) 1000 1.19 -2.7 0.014 3.39 2.3 0.0068 

FS (GLD) 1000 1.21 -2.5 0.025 3.42 3.4 0.002 

MCS 2000 1.20 -3.7 0.062 n.f. -- -- 

CE 1000 0.99 20 0.023 3.38 2.2 0.010 

RS 2111* 1.29 4.2 -- 3.47 4.8 -- 
*Fractional factorial design used 

 

 

Table 2. Problem 2 (Dynamic Roof Panel) Results 

method 

nominal no. 

of calls 

β 

%err 

COV 

Exact Solution  2.85 -- -- 

FS (NI) 1000 2.83 1.0 0.051 

MCS 5000 3.09 5.1 0.45 

RS 273* 3.98 39 -- 
*maximum, as controlled by number of RVs. 

 

Table 3. Problem 3 RV Statistical Parameters 

RV Mean  COV Distribution 

ρ 2.70x10
-6

 kg/mm
3
 0.05 normal 

M 800 kg  0.15 normal 

T 4 mm 0.01 normal 

V 9.5 m/s 0.10 normal 

E 69 GPa 0.10 lognormal 

σy 0.175 GPa 0.15 normal 

Et 0.265 GPa 0.15 normal 

 

Table 4. Problem 3 (Crush Tube) Results 

 nominal mean V = 11 mean V = 9.5 

method no. of calls β %err  COV β %err  COV 

Exact Solution  2.28 -- -- 3.89 -- -- 

FS (NI) 100 2.23 -2.3 0.036 3.89 0.04 0.027 

MCS 300 2.11 7.1 0.43 n.f. -- -- 

CE 100 3.22 41 0.092 4.66 20 0.040 

RS 143* 2.02 -11 -- 3.42 -12 -- 
*maximum, as controlled by number of RVs. 

 

 

 

 

 

 

 

 

 



 25 

 

Table 5. Effect of Reduced Sample Size on FS Results for Example Problem 1.  

 no. of calls β %err COV 

Exact solution  3.31 -- -- 

FS 25 fail -- -- 

 50 4.39 33 0.050 

 250 3.42 3.4 0.028 

 500 3.40 2.5 0.011 

 1000 3.39 2.3 0.007 

 

 

Table 6. Comparison of the Effect of Selected Control Variable on FS Results 

control variable β % err COV 

T 2.31 1.4 0.027 

V 2.23 -2.3 0.036 

σy 2.35 3.1 0.041 

M 2.34 2.6 0.035 

   

 



 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. PDFs of g and R(xi) for Example Problem 1, stress limit (β = 3.31, mean P = 

40). 
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CDF of original samples (left) and CDF estimate used by FS (right) for Example Problem 1.  

 

 
CDF of original samples (left) and CDF estimate used by FS (right) for Example Problem 3.  

 

Figure 2. Example CDFs of original samples (left) and CDF estimates used by FS 

(right). 

 

 
 

Figure 3.  10-bar Cantilever Truss 
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Figure 4. Plan view of Dynamically-Loaded Panel.  The grid is the FEA mesh of plate 

elements, while dots represent the location of nails.  Dotted lines separate wind load areas. 

 

 

 
 

 

Figure 5. Crush Tube.  Figure of the typical deformed shape at t=20 ms.  The end of the 

hollow tube is covered with a plate.  
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