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Abstract. The remarkable work of L. G. Brown, R. Douglas and P.

Fillmore on operators with compact self-commutators once again ties

together algebraic topology and operator theory. This paper gives a compre-

hensive treatment of certain aspects of that connection and some adjacent

topics. In anticipation that both operator theorists and topologists may be

interested in this work, additional background material is included to

facilitate access.

0. Introduction. L. G. Brown, R. Douglas and P. Fillmore [14], [15], [16]

(referred to as BDF) have forged a new link between operator theory and

algebraic topology. Given a bounded operator £ G £ with £* £ - ££* G %,

the compact operators, they define an element [£] lying in an abelian group

S\t(X), where X = a^rT) C C is the spectrum of the projection of £into the

Calkin algebra 31 = £/9C. This class is zero if and only if £ is a compact

perturbation of a normal operator. BDF then prove that

&xl(X)=¿É°(C-X),

the group of locally  constant  functions from  the bounded components

of Ç - X to Z. The explicit form of the isomorphism yields

Theorem (BDF). Suppose TES, with T*T- TT* compact. Then T is a

compact perturbation of a normal operator if and only if the Fredholm index of

(T — XI) is zero for every X in a bounded component of the complement ofo{mT).

To carry through their proof, BDF were led to define $\\(X) for compact

metric spaces of arbitrary dimension: set Sxt(A') equal to equivalence classes
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64 JEROME KAMINKER AND CLAUDE SCH0CHET

of C*-algebra injections r: C(X) -* 2Í, where the relation is unitary equiva-

lence in 2Í.

BDF establish that Sxt(A') is a covariant functor from the category of

compact metric spaces to abelian groups. The natural wish, then, is to relate

Sxt(A") to more common functors in topology. Let

mn r m - /Sxt^)>       wodd'
(o.i) en(x) - (gxt(sn     „even)

where SX is unreduced suspension. Then S^(X) satisfies the axioms for a

reduced generalized homology theory (with some minor modifications). BDF

also prove that on the subcategory of finite complexes, &+ is reduced homology

if-theory K^.

The purpose of this paper is to study, from the point of view of algebraic

topology, the theory S# on compact metric spaces. We take this to mean:

(1) an ability to compute S*(X) in specific cases,

(2) developing general information about the homology theory S+ and its

relation to ^-theory,

(3) exploring to what extent the classical results on the Chern character and

differentials in the Atiyah-Hirzebruch spectral sequence for finite complexes

extend to S# on compact metric spaces.

Our main tool is the homology theory invented by Steenrod [49]. He called

it "homology based on regular cycles" but it is now called Steenrod homology.

We denote it by SH^ (X ). There are several reasons for its relevance (aside from

the after-the-fact observation that it works). First, Steenrod homology was

introduced to study compact metric spaces, precisely the domain of the BDF

theory. Second, the theories S# and SH^ satisfy the same axioms. This is very

important. For example, Milnor [39] uses the axioms to show that the

following lim1 sequences are exact. Let X be the inverse limit of finite

complexes X¡. Then

(0.2)       0 -» proj lim1 #„+,(*;) -» %(X) -* proj lim Hn(Xj) - 0,

(0.3)       0 -> proj lim1 $n+x(X¡) -» S„(X) -* proj lim $„(Xj) -* 0

are exact. The first was essentially proved by Steenrod [49].

As a last bit of evidence, the following two "Universal Coefficient Theorem"

sequences are exact:

(0.4)       0 -> Ext (ñn+l(X),Z) -* %(X) -» horn (Hn(X),Z) -* 0,

(0.5)      0 -* Ext (Kn+\X),Z) -» Sn(X) -» hom(K"(X),Z) -* 0.
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ÂT-THEORY AND STEENROD HOMOLOGY 65

The first is due to Eilenberg and Mac Lane [20]. The second is due to Larry

Brown [14].

Our primary contribution is the development (and use) of tools for

computing &+ on compact metric spaces. Our concern is with compact metric

spaces which in general are not CW-complexes. In that case the spaces have

no "skeleta" defined, so the Atiyah-Hirzebruch spectral sequence may not be

directly applied to compute S+ -homology. Nevertheless, using Steenrod ho-

mology, we prove the following theorem:

Theorem A. Let X be compact metric of dimension d < oo. Then there is a

spectral sequence converging to S* (X ), with E +   = £°° and

E2M = %{X;Sq{S")).

The spectral sequence is natural in X.

This leads to a complete description of &*(X) for X C R .

Theorem B. Let X be a compact subset o/R4. Then there are natural short

exact sequences

0 -» %(X) -* SX{X) -» %{X) -» 0,

0 -* %(X) -> S0{X) -> %(X) -> 0.

The first of these sequences always splits. The splitting is natural if X is a finite

complex.

Our approach is axiomatic. We work almost entirely from an axiom system

for a generalized Steenrod homology theory which is a modification of

Milnor's system [39]. The theory S+ comes tailor-made for this approach.

There is an alternate approach possible. Given a representable cohomology

theory on CW-complexes, there is an associated Steenrod homology theory on

compact metric spaces. It is constructed roughly &s'hk(X) = h"~k(Sn+l - X)

if A- is a closed subset of S"+l. This approach has certain conceptual

advantages. It is the subject of a forthcoming paper by the authors and D. S.

Kahn. The axiomatic approach of the present paper leads more quickly to

computations and is technically simpler, hence more palatable (we hope!) to

the nontopologist.

We now outline the paper. §1 introduces Steenrod's homology theory and

the machinery of fundamental complexes, which is essential to study the

algebraic topology of compact metric spaces. In §2 Milnor's axiomatic
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66 JEROME KAMINKER AND CLAUDE SCHOCHET

description of Steenrod homology is used to define "generalized Steenrod

homology"

1. Steenrod homology

2. Generalized Steenrod homology

3. The spectral sequence

4. BDF homology
5. BDF homology and AT-theory

6. Some calculations of S*(X)

7. The Chern character and differentials in the spectral sequence

8. The algebraic structure of Sxt^ ). (S+ being the example of interest). If

A* is such a theory then Milnor's lim1 sequence for a space X = proj lim Xj

reads:

0^thn(X)-^hn(X)^hn(X)^0.

The notation is meant to imply that the groups thn(X)

= proj lim'A^,^-) and hn(X) — proj lim hn(Xj) are independent of the

choice of approximating spaces X¡. In §3 the spectral sequence of Theorem A

is derived for a generalized Steenrod homology theory (which the reader is free

to take to be S+) and certain technical results regarding differentials are

verified. §4 presents the basic results of BDF on Sxt (X) and %(X). In §5

the basic connections between S*, sHjf, and K^ are developed. The case is

made that St is the most natural and useful extension of homology AT-theory

to the category of compact metric spaces.

The latter sections contain applications. §6 features an extension of the

BDF low-dimensional calculations and a proof of Theorem B.

In §7, theorems of Atiyah-Hirzebruch concerning the differentials in the

spectral sequence and the Chern character are extended to S*. Here the

differences between the classical situation (with finite complexes) and our

present setting become most apparent.

§8 studies the algebraic structure of &*(X) from the viewpoint of infinite

abelian group theory. In particular, only certain abelian groups may be

realized as Sxt (X). We also relate £//+ to ES*.

The authors are deeply indebted to BDF for supplying early manuscripts of

their work and for a good deal of personal correspondence. This paper builds

upon their original work-in particular, they were the first to see the close

relations to topology.

Our knowledge of Steenrod homology is derived from Steenrod [49] and

Milnor [39]. Since compact metric spaces are presently somewhat out of

fashion in algebraic topology and since Milnor did not publish his paper, we

have included some expository material and have reproduced some of their

results. Some of these results were announced in [56].
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AT-THEORY and steenrod homology 67

Our colleagues at Indiana University have been very generous and patient

in teaching us the requisite functional analysis-we are especially grateful to

John Conway and Joe Stampfli for their assistance.

Analysts who wish to see the applicability of our methods should first read

§§4, 6, 7.

1. Steenrod homology. This section is devoted to the classical Steenrod

homology theory of regular cycles and to Milnor's treatment [39] of Steenrod

homology. Let 0311 denote the category of compact metric spaces and

continuous functions. A compact metric pair (X,A) consists of a compact

metric space X and a closed subspace A.

The following definition of Steenrod homology is a variant of Steenrod's

original definition (cf. Skljarenko [45]). Let X be compact metric, let K be an

abstract countable locally finite simplicial complex with VK = vertices of K

and let G be some abelian group. A regular map is a map/: VK -> X such that,

for each e > 0, the images of all but finitely many simplices of K have

diameters less than e. A regular q-chain on A" is a triple {f,K,cq), where

/: VK -* X is a regular map and c„ is a (possibly infinite) a-chain on K with

coefficients in G. The sum of two regular a-chains is given by the formula.

(K,f,c9) + (K',f',c'q) - (K U K',f U f',cq + c'q).

The regular a-chains on X with this operation and with —(K,f,cq) = (K,f,

-c ) form an abelian group denoted by CqR(X; G).

The graded abelian group C+(X; G) becomes a complex via

(1.1) d{K,f,cq) = (K,f,dcq)

and reduced Steenrod homology is defined by

(1.2) sñq(X;G) = Hq+x(cf(X\G)).

If g: X -* y in GD1L, then a chain map

g,:C*(*;G)-C*(r;<?)

is defined via g$(K,f,cq) = (K,gf,cq) which induces

The unreduced groups %{X; G) are defined by %(X; G) = %(X+; G),

where X+ denotes X with a disjoint point adjoined. Relative groups are

defined in a standard way: if (X,A) is a compact metric pair then let

C*(X,A) = C${X)/C?{A). Then sHq{X,A;G) a Hq+X(C?(X,A;G)). The
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68 JEROME KAMINKER AND CLAUDE SCHOCHET

following is a known, but apparently unpublished, theorem.

Theorem (1.2) (Steenrod). sH^(-;G) satisfies all the Eilenberg-Steenrod

axioms for a homology theory.

In particular, Steenrod homology is naturally equivalent to singular and

simplicial homology on the category of finite simplicial complexes. There are

two additional axioms which concern us. The first is the

Relative Homeomorphism Axiom (RH): If/: (X,A) -* (Y,B) is a relative

homeomorphism of compact metric pairs (i.e.,f\X — A: X — A -* Y — B is a

homeomorphism) then the induced map

(1.3) &:%(X,A,G)^%(Y,B;G)

is an isomorphism.

The statement of the second additional axiom requires some point-set

topology preliminaries. Suppose {Xj)¡Bj is a family of pointed compact metric

spaces (Xj,Xj). The strong wedge [40] of the family {Xj}, denoted VjXj, is the

(closed!) subspace of the (compact) space FJy X¡0I those points differing from

the basepoint (*.) in at most one coordinate. If J is a finite set this agrees with

the usual wedge (defined by the weak topology) but in general the strong

wedge has fewer open sets. In this paper, VjXj always denotes strong wedge.

Also, the set J is understood to be countable unless stipulated otherwise, so

that VjXj is compact metric. There are canonical maps X -* VjXj -> XT.

Note that if jf is a compact metric space with subspaces X, such that

X, O Xj - {*0} for all / ¿j and if diam (Xj) -> 0 then X at VjXj. For

example, the Hawaiian earring

A
Figure 1

is the space VySy (the strong wedge of a countable family of circles S .)

The wedge axiom (W) for Steenrod homology asserts that if VX is the

strong wedge of a countable number of compact metric spaces, then the

natural maps VX, -* Xk induce an isomorphism

(1.4) %(\/Xj,(Xj); G) -» TI %(Xj,Xj; G).
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tf-THEORY AND STEENROD HOMOLOGY 69

Milnor proves [39] that Steenrod homology is uniquely determined by Axioms

1-7, W, and RH. Precisely,

Theorem (1.5) (Milnor). Ifh* is a homology theory on 0311 pairs satisfying

the Eilenberg-Steenrod Axioms 1-17 as well as RH and W then there exists a

natural equivalence of homology theories between h+ and SH+ (-; h0 (point)).

Steenrod homology is related to Cech homology as follows. Suppose

X = proj lim X, where the Xj are compact metric. Cech homology is contin-

uous:

(1.6) ß*(X) = proj Urn #»(*,)

whereas Steenrod homology is not. The following exact sequence is due to

Steenrod:

(1.7) 0 -* proj lim1 Hn+x(Xj) -* %(X) -> Ñn(X) -* 0,

so SH+ is continuous precisely when it agrees with ff0.

Remark (1.8). If {G¡,pj} is an inverse sequence of abelian groups then

proj lim Gj and proj lim1 G} are defined to be the kernel and cokernel (respec-

tively) of the homomorphism \p: JJ 6} -* II G} defined by

$(g0'8\>82>--) = (So~PoS\'Sl -Pi82"--)-

The following facts are well known (cf. [4], [29], [42]).
(i) If each G, is finitely generated then proj lim1 G¡ is either zero or an

uncountable divisible group.

(ii) If {Gj,pj} satisfies the Mittag-Leffler condition (M-L), then proj lim1 Gj

= 0. In particular, proj lim1 Gj = 0 if each Gj is a finite-dimensional vector

space over a field, or if each Gj is a compact topological group and each p, is

continuous.

(iii) If 0 -» [Aj] -* {Bj} -+ {Cj} -* 0 is an exact sequence of inverse sequenc-

es, then there is a 6-term exact sequence

0 -* proj lim Aj -* proj lim Bj -* proj lim C,

-* proj lim1 Aj -+ proj lim1^- -+ proj lim'Cy -» 0.

Steenrod developed SH+ to repair the defects of Gech theory. Trial spaces for

him were the solenoids which we now define. Let G be an additive subgroup

of the rational numbers, regarded as a discrete abelian group. The solenoid 2C

is defined to be the character group of G. It is a compact connected abelian
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70 JEROME KAMINKER AND CLAUDE SCHOCHET

topological group. Write G as the direct limit of a directed system {Z,X¡},

where each X¡ is multiplication by a power of a prime. Then

2C = hom (G,Sl) = hom (inj \im{Z,Xj},Sl)

= proj lim{hom (Z.S1),^} = proj lim^1,^-},

so solenoids may be regarded as inverse limits of circles. If G = Z[l/n], write

2„for2G. It is easy to compute ^(Sg). For convenience the dyadic

solenoid 22 is illustrated.

Proposition (1.9). The homology groups of the dyadic solenoid 22 are given by

A 2J    lo, j > 0,

where Z2 is the group of 2-adic integers.

Proof. If/ > 1 then the sequence (1.7) implies IÄ-(22) = 0- The remaining

case is SHQ(X). The sequence

0 -» proj lim'iZ^} -» %(Z2) -* #0(20) -» 0
II
0

implies that

^0(22) = projlim1{Z,2}

reducing the rest of the proof to an exercise in algebra.

The short exact sequence of inverse sequences of abelian groups

0

0

* Z-► Z-► Z/2"-► 0

• ■    2n~1     '*■

*Z->Z-»-Z/2"-1-»-0
I l ' t
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^-theory and steenrod homology 71

induces a 6-term lim-lim sequence (1.8). The relevant portion is

proj lim{Z,2} -* proj lim{Z, 1} -» proj lim{Z/2",77n}

-» proj lim'{Z,2} -» proj lim'{Z, 1}

which is the sequence

0->Z ->Z2-> proj lim'{Z,2}->0.   D

The group sñ0(2.2) = Z2/Z is uncountable and divisible. In general, if G is

a connected compact metric abelian group, then SH0(G) is in 1-1 correspond-

ence with the set of path components of G.

Remark (1.10). Singular theory is also ill-behaved on 03L Milnor and

Barratt [40] show that the singular homology of S/jS2 (strong wedge) is

nonzero in infinitely many dimensions (despite the fact that VjSj is a

compact subset of S3). But %(VjSj2) = TJ, H+(S2) by (W), so 'Hk(VjSf)
= 0fork>3.

The remaining part of this section is devoted to fundamental complexes.

These provide a key technical tool in the study of 03L We follow Milnor's

presentation.

Suppose X is compact metric and {%,-},->0 is a sequence of finite open covers

of X with %0 — {X}, % refining %,-_,, and mesh (%) -* 0. Associated to this

data is a convergent nerve system (CNS) X — {Xj,Pj} which is constructed as

follows. Let X¡ be the geometric realization of %,-. Then X¡ is a finite simplicial

complex. The maps p¡: X¡+x -> X¡ are defined as follows. If v G Xi+X is a

vertex of Xi+X corresponding to an open set V E %+x, let p¡(v) be the

barycenter of that simplex of X¡ which is spanned by the vertices correspond-

ing to those open sets of %,- containing V. Then p¡ is defined on the vertices of

X¡+x and extends linearly to a continuous function Xi+X -> X¡. Note that p¡

sends vertices to barycenters, so that/?,-: Xi+X -* X\ is simplicial (where X\ is

the barycentric subdivision of A)).

The CNS X satisfies two important properties. First, A = proj lim Xj.

Second, given e > 0 and i > 0, there exists/ > / such that/?,- ° "• °pj-i- X,

-* X¡ maps each simplex into a set of diameter less than e. This "convergence"

condition makes possible the naturality of the following constructions, which
is essential.

Given a compact metric space A and CNS A = {Xj,Pj}, there is associated

a countable locally finite, contractible CW-complex £ = £(A), constructed

as follows. Let Mi be the mapping cylinder of /?,-. It admits the structure of a

finite complex with X¡ and Xi+X as subcomplexes. Identify M¡ and Mi+X along

their common part Xi+X (this requires barycentric subdividing Xi+X in M¡ and
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72 JEROME KAMINKER AND CLAUDE SCHOCHET

extending this to a subdivision of M¡ without changing X¡). Let FQ = (point)

and for / > 1, let

(1.11) F¡ = M0l) Mxl> ••• U M¡_x/~

and

(1.12) F-W-^JJ.

Then F(X) is a countable locally finite CW-complex, the fundamental complex

oftheCNSX
Let T(X) = proj lim^.p,}, where p,\ Fi+X -> F¡ is the obvious retraction.

Proposition (1.13) (Milnor). Let X be a CNSfor X. Then

(1) T(X ) is a contrac tibie compact metric space.

(2) There is an embedding F(X) -* T(X) with F(X) an open, dense subset of

T(K). T(X)-F(X) = X.

(3) T(X)\F(X) = X.   D

Now a bit of notation. If A" is a locally compact Hausdorff space, let X

denote its one-point compactification. A proper map /: X -* Y induces

/: X -» Y. Note that if A" is a countable, locally finite cw-complex, then X is

compact metric.

Proposition (1.14). LetX be a CNSfor X. Let FJ C F(X) be thej-skeleton

of the fundamental complex. Then

(1) Fp/Fp~l s VjBj Sf, Jp is the set of p-cells of F(X\
(2)T(X)/XsxF(x).
Remark (1.15). The exact sequence of the pair (T(X),X) together with

(1.13) (1) and (1.14) (2) allows one to identify sHj(F(X)) = sHj-X(X). This

carries over to generalized Steenrod homology theories.

The following proposition uses the convergence condition for the first time.

Proposition (1.16) (Milnor). Let X and Y be compact metric spaces with

CNS X, X respectively, and let f: X -» Y. Then there is a map of triples

f: (T(X),F(X),X) -» (T(Y),F(I), Y)

withf\X = f, and the mapf\F(X) is a proper cellular map, inducing

F(f): F(X) - Hi).

Remark (1.17). Milnor showed [39] that Cech cohomology may be obtained

as the homology of a certain cochain complex and that the homology of the

dual chain complex was Steenrod homology. This immediately yields the

Universal Coefficient Theorem (0.5)
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ÍT-THEORY AND STEENROD HOMOLOGY 73

0 -» Ext(#n+,(A),Z) -> sHn(X) -» hom (Hn(X),Z) -» 0

due originally to Eilenberg and Mac Lane [20].

Remark (1.18). We indicate here how classical Steenrod homology is related

to other known theories. On the category of compact metric spaces, Borel-

Moore homology [11] is equivalent to Steenrod homology. The best-known

theories are singular and Cech. There are natural transformations

rrSing  _$_^ irr     J>       if
tlf. -*    tic  -*  i7#

where <i> is obtained by an acyclic models argument and ty is the map which

occurs in the lim'-sequence (1.7). Since ty is onto and (1.7) describes ker(i/0 it

is quite useful to us. The map £ is less useful, as the Barratt-Milnor example

(1.10) illustrates.

2. Generalized Steenrod homology. This section is devoted to the axiomatic

development of the properties of a generalized Steenrod homology theory A*.

(The word "generalized" indicates that the dimension axiom has been

omitted.) The basic examples are the BDF theory S+ and Steenrod homology

sñ^. lim1 Fundamental complexes are used to prove's Theorem (2.7). The lim1

subgroup thn(X) C hn(X) is then studied in some detail. In many cases it

vanishes; sometimes it does not. Either way it represents how S^ differs from

the Cech extension J?# of homology Ji-theory to compact metric spaces and is

thus of considerable interest. As a spin-off of our study we show that the

natural map sHt (A; G ) -» Ñ+ (A; G) is an isomorphism when G is algebraical-

ly compact, and hence ÏÏm(-, G) is a homology theory. This generalizes the

well-known Eilenberg-Steenrod results [21].

Definition (2.1). A generalized Steenrod homology theory consists of a

sequence h^ = [hn\n E Z} of covariant, homotopy invariant functors from

the cateogry 031L of compact metric spaces to abelian groups satisfying the

following axioms:

(E) If (A, A) is a compact metric pair, then the natural sequence

hn(A) -* hn(X) -» hn(X/A)

is exact for all n.

(S) There is a sequence of natural equivalences

called suspension, where S is unreduced suspension.

(W) If A = \j~\Xj is the strong wedge of a sequence of pointed compact

metric spaces then the natural projections A -* A. induce an isomorphism
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74 JEROME KAMINKER AND CLAUDE SCHOCHET

A*(*)-»n,M*>

We list three examples of such theories. First, note that Steenrod homology

theory SH+(X; G) satisfies (E), (S) and (W), and is thus a generalized Steenrod

homology theory.

The second example is (reduced) Cech homology theory [21], with appropri-

ate coefficients, denoted by Hn(X; G). (Note that the tilde is left off Hn for

simplicity.) For arbitrary groups G, this theory satisfies all the axioms except

exactness. Eilenberg and Steenrod show that exactness is satisfied when G is

compact or a vector space over a field, but not for G = Z. Later in this section

we show that H+ (X; G ) is exact and hence a generalized Steenrod homology

theory when G is algebraically compact. In that case it is naturally equivalent

to%(X;G).
The third example is Brown-Douglas-Fillmore homology S^(X), defined by

rSxt(n        «odd,
nK   '   'lSxt(SA),      n even.

This is discussed in detail in §4; it is the focus of this paper.

There are a number of very elementary consequences of the axioms. These

vary in occasionally consequential ways from the usual properties of a

generalized homology theory, so we list them.

Proposition (2.2). hn(point) — Ofor all n.

This is immediate from exactness applied to the pair (point, point). Thus the

theories considered here are "reduced" but yet not defined on a pointed

category. The coefficients of a generalized Steenrod homology theory are

M5°)- Note that

and

**•> = {0Z;
j even,

j odd.

Proposition (2.3). Let (X, A) be a compact metric pair with A contractible.

Then the natural map h^(X) -> h^(X/A) is an isomorphism.   D

Both (2.3) and the following Proposition (2.4) are proved in [15] for S* ; their

proofs hold in general. A Barratt-Puppe sequence type of argument and (2.3)

imply (2.4), but note that no cofibration requirement is stipulated for (2.4).
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/^-THEORY AND STEENROD HOMOLOGY 75

Proposition (2.4). Let (A, A) be a compact metric pair with A # 0. Then

there is a natural long exact sequence

• • • -+ hn(A) -» hn(X) -» hn(X/A) -» hn_x(A) ̂  • • •.    D

If S'A denotes unreduced suspension and SX denotes reduced suspension

(with any point of A taken as basepoint) then the quotient map S'A -» S.X

induces an isomorphism

MSA) ^(SA)

by (2.3). This is true despite the fact that varying the choice of basepoint may

alter the homotopy type of SA. For example, if A and £ are the two points

indicated on the Hawaiian earring Win Figure 1, then SA Wis not homotopy

equivalent to SBW. The difference is detected by singular homology, for

ún%(S_A W)*Q while Sing//3(S.5 W) = 0 (see (1.10)), but not by Steenrod

homology theory.

Proposition (2.5). Let X be compact metric. Let X be a CNS for X with

fundamental complex F and "compactification" T. Then hn(F) = hn_x(X).

Proof. Apply (2.4) to the pair (£,A) and use the fact that £is contractible

and £/A a £.   D

This proposition is the key to the construction of the spectral sequence. The

space A has no natural filtration but the space £ does.

Proposition (2.6). Let (X;A,B) be a triad of compact metric spaces with

X = A U £ and A f~l B # 0. Then there is a natural Mayer-Vietoris sequence

• >--*hn(An B) -^^ hn(A) e hn(B) -^^U hn(x) -» hn.x(A n b)

The proof is standard; see [21]. We now obtain a version of Milnor's lim -

sequence.

Theorem (2.7) (Milnor [39]). Let X be compact metric and let X be a CNS

for A. Let h^ be a generalized Steenrod homology theory. Then there is an exact

sequence

0 ^ proj lim1/^,^.) ^ hn(X) -» proj lim hn(Xj) ̂  0.

Proof. Let £ be a fundamental complex for X- Set
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F0 = Mx U M3 U M5 U • • •,

Fe = M0U M2U M4U ■•-.

Then

F=F0öte,

tg n fe = V Xj+       (Y+ = Y with disjoint basepoint, )

È0= V M2+¡+x,       Fe= V M2+¡.0    j>0   ¿J+l e    j>o   2J

Apply Proposition (2.6) and (W) to (F,FQ,Fe) to obtain the commutative

diagram

-^n+i(KnFe)^hn+l(F0)®hn+1(Fe)-*hn+l(F)-^ •••

Î * Î
Uhn+1(x;)  Wn+i .jgi^^)

Some careful identifications and the serpent lemma imply that

ker *„+1 = Pr°Jlim K+1 (xj)>      cok t+1 = Pr°J lirfll K+1 (*})•

Then the sequence

0 -+ proj lim1 hn+1(Xj) -► A„+1(F) -> proj lim An(A)) -♦ 0

IK

yields the theorem.   D

Remark (2.8). Milnor shows that if X = proj lim X, for any inverse

sequence of compact metric spaces X, then the above theorem still holds.

Definition (2.9). A natural transformation of generalized Steenrod homolo-

gy theories is a sequence of natural transformations hn -* h'n which commute

with suspension.

Proposition (2.10). Let r\: h^ -» h'^ be a natural transformation of Steenrod

homology theories and let X be a CNSfor the compact metric space X. Then there

is a commutative diagram
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proj lim1 hn + 1(Xj)-► h„(X)-► proj lim hn(X¡) -»■ 0

lim1 nx
i

0^ proj lim1 h'n + 1(X¡)

\¡x

h'n(X)

lim vXj

-»■ proj lim h'n(X¡) -+ 0

The proof is immediate.   D

Proposition (2.11). The \in¿-sequence (2.7) is natural with respect to maps.

Proof. Let/: A -* X' be a map of compact metric spaces and let JfT and if

be CNS for A, A' respectively. There is a cofinal CNS A of iC such that the

map

/: (£(A),£(A),A) -> (£(A'),£Qf ),A')

obtained via (1.16) preserves mapping cylinders. Then £(/) induces a map of

triads

£(/):(£;£0,£e)->(£';£;,£;)

and hence a commutative diagram

0 -* proj lim1 hn + l(Xj) -*■ h„(X) -•> proj lim hn(X¡) -»• 0
•It

1

0 — proj lim1 hn + iq¡) -► A„(A) -► proj lim ¿„(A/,) — 0

/* /* /*

0 -+ proj lim1 hn + Í(X¡)-+ hn(X') ■— proj Urn hn(X¡) -+ 0

Composing the vertical maps yields the desired diagram.   D

Corollary (2.12). The group lim1 hn+x(X¡) is independent of CNS. Denote it

by thn(X). Then thn(-) is homotopy invariant on 03L

Proof. Apply (2.11).   D

Proposition (2.13). Suppose At is a generalized Steenrod homology theory

with h+(S ) of finite type. Then thn(X) is divisible and the sequence
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0 -» th„(X) -H, hn(X) -* h\(X) -* 0

splits unnaturally.

Proof. A Mayer-Vietrois argument shows that h^(Xj) is of finite type for

any finite complex Xj. Then (1.8)(i) implies that thn(X) is divisible.   D

If X is a finite complex then there exists a CNS X with p.: h^(Xj+x)

-» A* PC) an isomorphism for ally > 1. Thus {h*(Xj),PjJ satisfies M-L (see
(1.8)(ii)) and so th* (X) = 0.

Remark (2.14). The theory of shape, due to Borsuk, provides a classification

of compact metric spaces which is coarser than homotopy equivalence [12]. In

this theory there is the notion of movable compacta. These are a class of spaces

more general than ANR's but less pathological than arbitrary compact metric

spaces. If X is a movable metric compactum, then {h^(Xj),Pjt} satisfies M-L

for any CNS X [36]. Thus X movable implies that hn(X) = h„(X).

Mardesic shows [34] that if X is n-dimensional and (n — 1) homologically

locally connected, then X is movable. We mention this since homological local

connectivity has been used in a related context by Ekman [22].

Nonzero elements of thn(X) are the homology analogue of "phantom"

cohomology classes-that is, classes * £ h*(X), where X is an infinite CW-

complex, which are nonzero but which vanish upon restricting to finite skeleta

of X. The corresponding fact for "phantom" homology classes is given by the

following proposition.

Proposition (2.15). Let h+ be a Steenrod homology theory, and let X be

compact metric embedded in the Hubert cube I". Then a class x E hn(X) is in

the subgroup thn(X) if and only if for every neighborhood U of X in Ia, the

induced map hn(X) -* hn(U) sends x to zero.

Proof. Let {X) be a sequence of compact ANR's with Xj Q Ia, X

C int (Xj), X = DjXj and Xj Q Xj+X Q • • •. The sequence {Xj} forms an

ANR system X in the sense of Mardesic-Segal and so, also, does any CNS

X = {Xj) for X. By [37, Theorem 12] there exists a homotopy equivalence of

ANR systems /: X -* X making the natural diagram

f
proj lim htt(X¡)—g+ proj lim hn(X¡)

i

K(X)
\
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commute. Thus £A„(A) ss kerf s ker<p. Let F be a closed neighborhood of

A in I". Then there exists an n with A Ç A„ Ç V and the result follows.   D

The above proof shows that fin(X) = proj lim hn(Xj) where {Ay} is any

ANR system, and similarly for thn(X).

Remark (2.16). The subgroup <Zhn(X) may also be characterized as those

elements x G hn(X) such that g±(x) = 0 for all maps g: X -> Y, Y a finite

complex.

Corollary (2.17). Let h^ and h'^ be generalized Steenrod homology theories

with coefficients of finite type, and suppose h# is naturally equivalent to A'# on the

category of finite complexes. Then, for any compact metric space X, A,(A)

=£ A*(A) (unnaturally .)

Proof. Apply (2.13).   D

Remark (2.18). Corollary (2.17) is a very weak uniqueness theorem. In the

case of ordinary Steenrod homology, Milnor [39] produces an equivalence of

homology theories At -* A'#. His proof relies upon the fact that SH^(X) may

be described as H(C+(F(X)))- If one were given a natural transformation

9t: A# -» h'i which was an equivalence on finite complexes then a spectral

sequence argument would allow one to conclude that % was an equivalence

on finite-dimensional compact metric spaces. However, the question at hand

is whether the axioms uniquely characterize the Steenrod extension of a

generalized homology theory. This is unknown to us.

Definition (2.19) [23, pp. 159-168]. An abelian group is algebraically
compact if it is algebraically a direct summand of a group that admits a

compact topology.

For example, divisible groups and compact groups are algebraically com-

pact.

Theorem (2.20). Suppose G is an algebraically compact group. Then so is

Hn(Xj\ G) for a finite complex X and tsH^(Y; G) = 0 for any compact metric

space Y.

Proof. Write G ® H = C, where C is compact and A = proj lim A where

Xj are finite complexes. Then

(2.21) %(Y; C) = %(Y\ G) © %(Y;H)

for any space Y in 03L The group Hn(Xj\ C) is compact; hence Hn(Xj\ G) is

algebraically compact. Further,

(2.22) £/?%(A;C) = 0

since the sequence
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-+Hn(Xj;C)^>Hn(Xj_l;C)-*

is a sequence of compact groups and continuous homomorphisms (1.8)(ii). But

(2.21) implies that

t%(X; C) « £%(X;G)® t%(X; H)

and then (2.22) implies that tsH^(X; G) = 0.   D

Corollary (2.23). Cech homology with coefficients in an algebraically com-

pact group G satisfies the exactness axiom and hence is a homology theory on G3L

Proof. %(X;G) = #„,(X; G).   D

We close this section with a comment upon notation. Let A, be a

generalized homology theory on finite complexes. Then it corresponds (via

Spanier-Whitehead duality) to a cohomology theory h* on finite complexes. E.

Brown's representability theorem guarantees (with mild hypotheses) that

(2.24) hn(X) = [X,En]

for some space En. There are two natural extensions of h" to 0DL The

"representable" theory uses (2.24) as a definition. The "Cech" extension is

obtained by taking a cofinal sequence of nerves of finite covers, realizing them

by finite complexes X,, and setting h"(X) = proj lim h"(Xj). In fact this is

equivalent to (2.24) [32], so there is no ambiguity.

Note that for cohomology K-theory, K°(X) may also be defined directly for

compact spaces [6]. This functor is continuous [43]. Hence it is equivalent to

the Cech extension K° of ^-theory from finite complexes.

3. The spectral sequence. In this section a spectral sequence converging to

h+(X) is constructed, where h# is a generalized Steenrod homology theory and

X is compact metric of finite dimension. It will be shown that

Elq = *np(X;hq(S0)).

Various naturality considerations are examined. In subsequent sections the

spectral sequence will be applied to the case /z„ = S#, the BDF homology

theory. The construction parallels that of the Atiyah-Hirzebruch spectral

sequence but with major differences since compact metric spaces do not come

equipped with an obvious filtration.

Let X be compact metric and let X be a CNS for X, with corresponding

fundamental complex F. The space F is a CW-complex so it is filtered by its

skeleta F', and the one-point compactification F is filtered by closed subspaces

F'. Following Massey [38], form an exact couple, with
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(3.1) E\A = hp+q+x(F^/FP),       £¿? = hp+q+x(F"+l),

and the maps

W DPA ~* EP4'

kP.r Ep,q ~* Dp-lq>

which are obtained from the exact sequences of the appropriate pairs. Let

(Ep ,dp ) be the associated spectral sequence. (When we wish to indicate the

(seeming) dependence uponJC we use Ep (X)) Then each Er is a bigraded

group, dr: Erp<q -* E^q+r_v and H(Er) = £'+1.

There are now several tasks. One must relate the limit term of the spectral

sequence to A*(A), the E2 term to Steenrod homology, remove the depend-

ence upon the choice of X, and check various naturality claims.

Recall from (2.5) that hp+q+x(F) is naturally isomorphic to hp+q(X). Define

^p'q to be the image of the composite

hp+q+x(F»+]) - hp+q+x(F) -** hp+q(X).

Then

0 = ^-1-/'+?+1 c <S0,p+q c <^x'p+^~x c • • •

(3-2) ,       t
Cçk,p+q-k  c  ...  rzhp+q(X)

provides a filtration of hp+q(X).

Proposition (3.3). The filtration <3M in (3.2) is independent of the choice of

CNS. IfX has finite dimension d then

*PA    — £M — S     I d

Proof. Suppose that A, A are two CNS's for A. By (1.16), the identity map

on A induces a map of triples

5:(T,i;A)-+(T,£,A)

with  9|A = 1^  and  5|£ a  proper  cellular  map.  Then  \: hp+q+x(j£)

-» hp+q+x(f) is filtration-preserving and the diagram
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hP+q + l(Êr)-^hp+q + 1(Èr)

■       5*
hP+q+id)->kP+a+i(3

hp+qW

commutes, showing the independence of <%p,q.

If dimOO = ¿then proj lim^^F') = hp+q+x(F). In fact, Fd+X = F,
so <3d'p+q d = hp+q(X) and the proposition follows.   D

Proposition (3.4). Suppose X and Y are compact metric with CNS X, X

respectively. Let f: X -> Y. Then there is a morphism of spectral sequences

fr: Er(X) -» Er(X) which is covered on the F°° level by jj, : h+(X) -> h^(Y).

Proof. By (1.16),/induces a map of triples/: (T,F,X) -* (T',F', Y) with

/| X — f and /| F a proper cellular map. Then/induces a morphism of exact

couples and hence a morphism of spectral sequences covering £.   □

Remark (3.5). If r¡: h+ -* «'„, is a natural transformation of generalized

Steenrod homology theories, then the map h^(X) -» h\(X) is covered by a

morphism of spectral sequences.

Next, the E term is identified. The result will imply that the spectral

sequence Epq(X) is independent of the choice of CNS from E2 onward

(justifying the notation Epq(X)) and that the morphisms (3.4) are canonically

determined.

Proposition (3.6). Epq(X) is naturally isomorphic to sHp(X;hq(S0)) via 0X

(to be defined).

Proof. First observe that the chain complex {Epq,dpq} is precisely the

infinite cellular chain complex of the countable locally finite CW-complex F,

with coefficients in h (S°). That is, if Jn is an index set for the «-cells of F, then

Kq = Wl(^+V^)  » Wl(vS'+1)

= Tlhq(S0) = C™x(F;hq(S0))
jp+\

and the boundary map dp   is defined so that
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Cp-+1(F;«g(S°))<-

9P-M

C(F; hq(S0)) <-

Jp,q

¿Id

=—El

commutes. Thus there is an isomorphism

(3.7) Elq=iHp+x(C?(F;hq(S0)))

which is natural for proper cellular maps. Milnor [39] shows that

Hp+x(C?(F;hq(S0))) a *Hp+x(F;hq(S0))

and the isomorphism is natural for proper cellular maps.

Define 6X to be the composite isomorphism

E)A - Hp+x(C?(F;hq(S0))) - *Hp+x(F;hq(S°)) -> sÑp(X;hq(S0)).

Now check that 6 is natural for maps: if /: X -* Y then the proof of

Proposition (3.4) implies that the diagram

Elq(X)—^%(X;hq(S0))

Elq(Y)^^°Hp(Y;hq(S0))

commutes.   D

Remark (3.8). If r¡: h^ -» h'^ is a natural transformation of Steenrod

homology theories then the diagram

ftc-2 =    ,?í
EP,a(X) = Hp+l(C;(F; hq(S0)) -=-♦ *Hp(X; h(S0))

Vx

p\-    -qy

h'Elq(X) = Hp+l{<Z(ft h'q(S°)) -¿U %(X; h'«0))

commutes, so 9X is natural for transformations of theories as well. If in

addition there is a short exact sequence
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o^hJs°)-^h'(s°) o,

then there is a long exact sequence

(3.9)       -> hE2M(X) ->♦ h'E2q(X) -> %_X(X; G) -* hE¡_x>q -+ • • •

which is useful in studying the Chern character. In particular, there is a long

exact sequence in Steenrod homology corresponding to a short exact sequence

of coefficient groups.

The main theorem of this section can now be stated.

Theorem (3.10) = Theorem A. Let A„, be a generalized Steenrod homology

theory and let X be a compact metric space of finite dimension d. Then there is a

first quadrant spectral sequence of groups converging to At(A)  with E2

— SH (X; hq(S )). The spectral sequence is natural in X and in generalized

Steenrod homology theories A*. Furthermore, Ed+l = £°°.

Proof. By the previous results in this section, it remains only to prove that,

for fixed A* and A, the spectral sequence is independent (from E2 on) of the

choice of CNS. So letX A' be two CNS's for A. Then there is the usual map

5:(£,£,A)^(£',£',A)

with 51A = 1^- and 5|£: £ -» £' proper and cellular. This induces a morphism

of spectral sequences

$r: E'

and on the £  level the diagram

Jp,d

5,

£2    -=

->#p+1(£; Afl(S°)) -^h. #p(A; Aq(S0))

->°Hp+1(F';hq(S°)) -=-»#p(A; A,(S°))

commutes. Thus 52 is a canonical isomorphism £2 -»   E2, and the two

spectral sequences may be identified.   D

Remark (3.11). An example of D. S. Kahn [30] (see also J. Taylor [51])

shows that the spectral sequence

%(X;Kq(S°))=>6*(X)
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need not converge in general. He constructs an example of an infinite-

dimensional compact metric space A with fi*(X) = 0 (hence S#*(A) = 0 by

the Universal Coefficient Theorem (0.4)) but ^'(A) = Z/3 (hence S^A)

=£ 0 by the Universal Coefficient Theorem (0.5)). In that case £2 ■ 0 so it has

no chance of detecting the nonzero elements of S*(A).

4. BDF homology. The Brown-Douglas-Fillmore theory revolves about a

functor Sxt(A), which we now describe. The following C*-algebras are

required: C(A), the continuous complex-valued functions on a compact

metric space A; £, the bounded operators on an infinite-dimensional separable

Hubert space; % C £ the compact operators; and t/% = 2Í, the Calkin

algebra. An extension is a short exact sequence of C*-algebras and C*-algebra

morphisms of the form 0 -» % -* & -» C(A) -» 0 where S is a C*-algebra

containing % and / (the identity operator) and contained in £ This data

produces the important diagram

0->%-► $-+CX.X)-►<>

+ * Y

0->%-►£—^91->0

illustrating that an extension may also be viewed as a C*- injection

t: C(A) -> 2Í. Two extensions t and t' are equivalent if there is a unitary

« G 21 such that t'(/) = u*r(f)u for all/ G C(A).

If t,, t2: C(A) -» 21 are extensions, then their sum t, © r2 is defined to be

the composite

C(A) -&**» 21, © 2Í2 ̂  21 ® M2 s 21

where M2 is the 2 x 2 matrix ring. The isomorphism 21 ® M2 s 21 is unique

up to unitary equivalence. With this definition of addition, unitary equivalence

classes of extensions form an abelian group, denoted by Sxt(A). (The identity

under addition may be represented by any extension t: C(A) -» 21 which

factors through £. It is not trivial to exhibit additive inverses.)

Suppose that/: A -> y is a continuous surjection. Then the correspondence

C(A) J» 21 h» C(Y) -A C(A) -*♦ 21

induces a homomorphism of abelian groups

^:Sxt(A)->Sxt(y).
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In fact the same idea with a simple modification works for any continuous

function/.

Proposition (4.2) (BDF [15], [ 16]). Sxt is a covariant functor from compact

metric spaces to abelian groups. Further, Sxt is homotopy invariant-iffQ ^¿fx:X

-* Y then

fo. = fu: Sxt(X) ̂  Sxt(Y).   D

It follows that if X and Y are homotopy equivalent spaces, then Sxt(.i)

^ Sxt(K). (For example, the circle Sl and the annulus S1 x [£, 1] are

homotopy equivalent.)

The functor Sxt was devised by BDF to study several sorts of problems in

operator theory.

Problem 1. Given an essentially normal operator T E £(i.e., an operator T

with T*T- TT* E 90. when is T of the form (normal) + (compact)?

Solution (BDF). Any operator of the form N + K = T has ind (T-XI)

= 0 for all X Ç o(ttT) = ae(T) (the essential spectrum). This condition is

sufficient.

Problem 2. When are two essentially normal operators TQ, Tx unitarily

equivalent modulo compacts?

Solution (BDF). If Tx = U*T0 U + K then oe(Tx) = ae(T0) = X and

ind(T0 -XI) = ind(Tx - XI)

for all X & X. These two conditions suffice.

In both of these cases the relevant obstruction group Sxt(A") which arises

has X C C. So restrict to that case temporarily. Here is one way to produce

elements of Sxt(A'). Pick an essentially normal operator T with ae(T) = X.

Let &T be the C*-algebra in £ generated by the identity /, T, and X Then the
short exact sequence

0 -» % -* Sr -* Sr/3C s C(X) -+ 0

yields an element [T] E S xt (A"). In fact every element of Sxt(A") arises in this

fashion (for X C C!).

Following BDF, let us now describe Sxt(<V) for X C C (from which follows

the solutions to Problems 1 and 2 above).

Recall first that an operator F G £ is Fredholm if it has closed range and

ker T and ker T* are finite dimensional. In that case define the Fredholm

index of T to be

index (T) = dim ker T - dim ker T*.
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By Atkinson's theorem, £ is Fredholm if and only if itT is invertible in 21.

Let t G gxt(A). Then t may be represented as t: C(A) -» 21. Restrict t to

those functions in C(A) which never assume the value 0. Then t: C(A)' -» 21'

(where A is the group of invertible elements in the ring A). The Fredholm

index may be regarded as a continuous homomorphism of groups ind: 21

-» Z. Composing yields

ind ° T: C(A)' -» Z

which is continuous, respects homotopies and induces a map

yx(T):ir\X)^Z.

Here it1 (A) is the group of based homotopy classes of maps from A to S1. One

checks that in fact y, is a homomorphism

yx:Sxt(X) -» hom(7r,(A),Z).

An easy topological argument shows that hom(7rl(X),Z) ^ Ñ°(C - X)

where H°(C - A) denotes homotopy classes of maps from the bounded

components of C — A to Z; i.e., locally constant integer-valued functions on

the bounded components of C - A. Let y: Sxt(A) -» H°(C - A) be the

composite.

Theorem (4.3) (BDF) . Let X be a compact subset of C. Then y: Sxt(A)

-» H°(C — A) m an isomorphism of groups.   O

It is easy to describe y explicitly in terms of the classes [£] G Sxt(A) - the

function y[T] is that function which assigns to X G C — A the Fredholm index

of £ - XI. Thus y[T] = 0 if and only if ind (£ - XI) = 0 for all X for which
it is defined.

An extension 0 -» %-* & -^* C(X) -* 0 represents the zero element of

Sxt(A) if and only if there is a C*-algebra morphism o: C(X) -* S which is a

section; ira = 1. In the case at hand, [£] = 0 means irT «■ itottT, so

?r(£ - oirT) — 0, implying £ = o-7r£ + K where K is compact and oirT is

normal. Thus £ is (normal) + (compact) if and only if ind (£- XI) = 0

where defined, vindicating the solution recorded above to Problem 1. The

solution to Problem 2 is similar.

Remark (4.4). It seems plausible that there may be an "operator theoretic"

proof of Theorem (4.3), and hence an "operator theoretic" solution to the

operator-theory problems which originally motivated BDF. But for A (£ C the

situation is much more complicated topologically. Special cases of (4.3) do

have "operator theoretic" proofs-cf. Douglas [18] (A = S1), Deddens-

Stampfli [17] (A = S1 X /), Behncke-Leptin [10] (A C R).
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5. BDF homology and Ä-theory. For JÍCC, Theorem (4.3) gives a very

satisfying description of Sxt(A'). But of greater interest to topologists is the

behavior of &\t(X) for higher dimensional spaces. The key result is Theorem

(5.1). (Recall that S2X is the second unreduced suspension of X.)

Theorem (5.1) (BDF). Let X be compact metric. Then there is a natural

isomorphism &xl(S2X) sz Sxt (X).    O

Let us refer to this as the Bott periodicity isomorphism, since Sxt is related

to K-theory (as will be indicated). Define groups &„(X) for n E Z by

&"{X) - \&xt(SX),

if n is even.

Theorem (5.2) (BDF). S+ is a generalized Steenrod homology theory on the

category of compact metric spaces. The coefficient groups are given by

K<?) » {*
// n is odd.

Note that S* is not additive (S^(VjXj) ¥= ©,S+(A^)) and is not a "represen-

table" homology theory on the category of compact metric spaces. On the

(smaller) category of finite complexes St is representable; it is naturally

equivalent to R+ (see Theorem (5.4)).

Remarks on the Proof of (5.2). The theory S* satisfies the suspension

axiom (S) by fiat and Theorem (5.1). Axioms (E) (exact sequence) and (W)

(wedge) are proven for Sxt in [15] and this easily extends to S#. The

computation of Sn(S°) = Sxt(S"_1) is basic. The group Sxt(s') is isomorphic

to H°(C - Sl ) = Z and the group Sxt(5°) is isomorphic to H°(C - S°) = 0

(4.3).
Given Theorem (5.2), it is natural to inquire whether or not S* has

previously been studied by topologists. The best known homology theory of

period 2 is complex homology K-theory. BDF prove that S# = K0 on finite

complexes. We wish to capitalize upon this theorem-this requires a short

digression into AT-theory [2], [6], [19], [27].

The cohomology theory K* is defined by means of vector bundles. For

some purposes, however, the following "analytic" description (due to Atiyah

and Jänich [6], [28]) is more convenient. Since K" = Kn+2 it suffices to define

K° and K1.)

K°(X) - [X,n       K](X) = [XM,

where 5" is the space of Fredholm operators in £ (with the norm topology),

% = inj lim %(n) the infinite unitary group, and [X, Y] denotes homotopy
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classes of maps from A to Y. Note also that ff ~ 21', the invertibles in the

Calkin algebra. Then K* is a generalized cohomology theory. The map (point)

-* A induces a split exact sequence

0 -» £*(A) -» £J*(A) -» ^*(point) -» 0

and

tf"(point) = R(S°) = {£
if n is even,

if « is odd.

There is a basic connection between S* and K* due to BDF. Define

•^ : Sxt(A ) -> hom^1 (A ), Z) as follows: let t: CA -> 2t and [/] G Ä"1 (A ) be

represented by/: A -* %(«) (such an n exists since A is compact). Let

(5.3) %oto(/) = ind((T«l)/)

where t ® 1: C(A) ® Af„ -* 2t ® Af„ s 21. The map ̂  is well defined and is

a natural generalization of y. (This may be made more explicit by observing

that Kl(X) at tt^A) if A C C.) The map ■&, should be thought of as a

Kronecker pairing, analogous to the more familiar maps Hn(X)

-* hom(//',(A),Z) for ordinary homology.

Given any cohomology theory defined on finite complexes, there is an

associated homology theory. This was first systematized by George Whitehead

[53] using spectra. He showed, moreover, that Spanier-Whitehead duality

could be used to pass from a cohomology theory to a homology theory. This

is the appropriate point of view in our context.

Suppose A is a finite simplicial complex embedded in S"+1. An n-dual of A

is a finjte simplicial complex Dn X C S"+1 - A which is a deformation retract

of S — A. Such duals exist, for given a complex A embedded linearly in

some triangulation K of Sn+1, the supplement of A in the first derived of K is

an «-dual of A. Moreover, any two duals Dn X and Dm X are of the same stable

homotopy type. Taking duals is essentially unique in the sense that A is an n-

dual of DnX. Taking duals "commutes" with suspension in the sense that

S_£»„A is an (n + l)-dual of A and £»„+iSA is an «-dual of A. (Recall that

S_X = S   A A denotes reduced suspension.)

Homology £J-theory is defined by

Kj(X) = R-j(D2nX).

It can be shown that K+ is a generalized homology theory on finite complexes

[53]. There is more than one reasonable definition of £+(A) for more general

spaces A; one aim of this paper is to argue for S4 as being the appropriate

extension of K+ to compact metric spaces.
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Theorem (5.4) (BDF) [55]. On the category of finite complexes there is a

natural equivalence of homology theories ê# = Ñ+.

One first needs to construct a natural transformation of homology theories

1^: &*(X) -* K*(X) such that 1^ is an isomorphism when X = S", all n.

(The argument is then completed by induction or by appeal to a spectral

sequence.) The map Tx is constructed as follows.

If X C S2n+1 then there is a canonical duality pairing [47], [48]

X A D2nX
,2/i

and hence a canonical map

X A SD2nX = X A D2nX A S1 —>S2" A S1 = S2n+l

where [ß] E w2„+1(^l) = Z represents the Bott generator [19]. Then [¡i\

E [X A S.D2nX,^l]0 (where [X, Y]0 is based homotopy classes of basepoint-

preserving maps). The map Tx: &xt(X) -+ KX(X) is to be the composite

(5.5)

eval. on \ß]

Sxt(X) —L-* hom([X A SD2nX,<&]0, [SD2nX, Sl ]0)
\
\

\ [SD2nX, 21']
\
\

\
V

Kl(X)=Kl(D2nX)=K°(SD2nX)

and it remains to define y. The map y is a special case (with Y = SD2nX) of

the map

yY: Sxt(X) -♦ hom([^ A Y,%,[YX ]0)

which is defined as follows.

Let X and  Y be finite complexes and t G Sxt (A'). Represent t as

t: C(X) -» St. Let/: AT A y -» % represent an element of [A" A y,%]0. The
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map / factors through some %(n). Let /: Y -> %(«) be the adjoint. Then

1(y) = (Jjj(y))> is an nXn matrix of complex-valued functions on X.

Applying T to each term gives r(f(y)) = (tf^y)), an invertible element of

21 ® Mn s 2t. The correspondence y h» r(f(y)) defines a continuous function

y -+ 21 which is a representative of yY(r).

Now bring the results of §3 to bear on S*. For convenience we restate (in

specialized form) the main theorems.

Theorem (5.6). Let X be compact metric of dimension d < oo. Then there is

a spectral sequence which is natural in X, converges to S+ (X ), has E = £°°,

and

Elq = *Hp(X;Kq(S0))^^
p(X),       qeven,

q odd.

Note that the even differentials d2r are identically zero, since Er = 0 for q

odd. The first potentially nonzero differential is thus d3.

Theorem (5.7). The lim1 sequence

0^QÑn(X)-*Sn(X)^Kn(X)^0

is exact and natural for maps of spaces.

The third main computational tool is the Universal Coefficient Theorem for

S*, denoted UCT. This theorem was proved for finite complexes by D. W.

Anderson [3]. The general case is due to L. G. Brown [14]. His interesting

proof uses algebraic ^-theory to identify ker-^.

Theorem (5.8) (UCT) (Anderson, Brown). Let X be compact metric. Then

there is a natural short exact sequence

0 -» Ext (K°(X),Z) -* Sxt(*-) ̂  homO^A-XZ) -* 0

which (unnaturally) splits (and similarly for &„(X)).

Remark (5.9). The "Ext" appearing in the statement is from homological

algebra: Ext (A, B) is equivalence classes of short exact sequences of abelian

groups of the form 0->5-»G-^^-*0. For example, if ^°(A') is a free

abelian group then Ext(£°(A'),Z) = 0 and -¡^ is an isomorphism.

Theorem (5.8) implies

Corollary (5.10). Let X and Y be compact metric spaces. If X and Y have

the same shape then &st.(X) = Sj)¡(Y).
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Proof. Since K°(X) = [A,^] and K'(X) = [A,%] and ^ and % are

ANR's, the functors K° and K1 are shape-invariant [32]. Apply the split exact

sequence (5.8) to obtain S*(A) ss &*(Y).   D

6. Some calculations of S#(A). In this section S*(A) is computed in various

cases. Some cases involve translating known results on K*(X) via Theorem

(5.8). The main reference is Atiyah's book. The presentation of these facts is

intended to give analysts a feeling for which groups are associated to which

spaces. The later cases require techniques which use properties of S+ itself.

Proposition (6.1) ([6, p. 80]). Let X be a finite cell complex such that

%(2k) _ x(2k+\) jQr an £ fg^ çp"^ complex grassmanns, flag manifolds,

complex quadrics). Then &X(X) = 0 and S0(X) = Z where r is the number

of cells of X.   D

Proposition (6.2) ([6, p. 107]). £Ae groups S*(RPk) are given by &Q(RPk)

= Oand

&x(RP2n) = Z/2",       S1(££2"+1) = Z © Z/2".   D

Proposition (6.3) ([6, p. 116]). £Ae? groups S*(%(/i)) are given by

&x(%(n)) = Z2""'   and   S0(%(n)) - Z2""'-1.   D

Remark (6.4). Atiyah shows that K*(%(n)) is an exterior algebra on the n

exterior power representations of %(«). More generally, Hodgkin [26] has

shown that if G is a compact, connected, simply connected Lie group then

K*(G) is an exterior algebra on certain representations of G. Thus S#(G) is

free abelian.

Remark (6.5). The lens space L"(p) = S2/l+1//? has S, (£"(/?)) = Z

© (Z/ps+l)r © (Z/ps)p~r~\ where n = s(p - I) + r and 0 < r <p - 1;

thus S, (£"(/?)) has a/?-group summand.

The second class of spaces we shall consider are those for which lim1

techniques are appropriate. The classical examples are the solenoids Sc

described in §1.

Proposition (6.6). The S^-groups of the dyadic solenoid 22 are given by

S,(22) = 0 andS0(22) = Z^Z.

Proof. The lim1 sequences read

0^£S,(22)-*S,(22)^ë,(22)->0,
II
0

0 -* £S0(S2) ̂  S0(22) -* S,(22) -* 0.
I
0
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Further, ë,(22) = proj lim(Z,2) = 0, and

£So(22) " Pr°J lim'iZ^) = Z^Z

by the proof of (1.9).   D

Remark (6.7). Proposition (6.6) also follows from the spectral sequence and

(1.9), or alternatively from the UCT using the fact that Kl(22) - Z{\\.

The third type of spaces we consider are those which embed in low-

dimensional Euclidean space.

Theorem (6.8). Suppose that X is a finite connected complex in R . Then the

spectral sequence converging to &*(X) has E2 = £°° and there is a natural

isomorphism

(6.9) Sxt(A-) s %(X) © SH3(X).

Proof. The BDF identification of S* with K+, Spanier-Whitehead duality

and simplicial approximation together imply that

Sxt(X)=z[D4XM3)]

where %(3) is the group of 3 x 3 unitary matrices. The fibration %(2) -> %(3)

-* S induces an exact sequence

(6.10) [D4X,QS5] -» [D4XM2)] -> [D4XM3)\ -» [D4X,S5].

Since D4X is i finite complex in R5, [D4X,S5] = Ñ5(D4X) = 0. Similarly

the group [D4X,QS5] = 0, since

[D4X,QS5] = [SD4X,S5] = H5(SD4X)

by the Steenrod classification theorem [47, p. 460] and

H5(SD4X) = Ñ\D4X) = fí0(X) = 0

since A" is connected. Then (6.10) implies that Sxt(A") at [D4X,<&(2)]. But

%(2) is topologically equivalent to S'xS3. Assembling this information

yields

Sxt(A") s [D4XM2)] s [D4X,S:] © [D4X,S3].

But the natural map [D4X,S3] -> H3(D4X) is an isomorphism since

ñ5(D4X) = 0 and H\D4X;Z/2) = 0; hence

Sxt(A") s ÑX(D4X) © ñ3(D4X) S3 H3(X) © HX(X)
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as claimed, and all isomorphisms are natural. This forces the differential

d3: H4(X) -* ÜX(X) to be trivial, so £2 = £°°, completing the proof.   D

Theorem (6.12) (Theorem B). Suppose X is a compact subspace of (R) .

Then the spectral sequence converging to S#(A) Aa5 £2 = £°° and the groups

S+ (A ) are given by the exact sequences

(6.12) 0^sHx(X)^Sx(X)^%(X)^0,

(6.13) 0^sH0(X)^S0(X)^sH2(X)-*0.

The sequence (6.12) naturally splits, if X is a finite complex, and it unnaturally

splits in general.

Proof. Suppose first that A is a finite complex contained in (R) . Then

SA is a finite connected complex contained in (R) , so Theorem (6.8)

applies. Observe that S„(SA) = Sn+,(A). Then Tneorem (6.11) holds for

finite complexes, since (6.12) and (6.13) follow directly from the collapse of the

spectral sequence.

In the general case, the spectral sequence (Theorem A) converging to ^(A)

has £2 = 0 unless q is even and p = 0, 1, 2, 3. Then there is an exact

sequence 0 -> %X -> S,(A) -» ker¿3 -* 0 where ker(</3) C SH3(A). It thus

suffices to prove that &X(X) maps onto H3(A) to complete the proof.

Let A = proj lim A,- as usual. Apply (6.9) and take inverse limits to obtain

S, A = ñx(X) © H3(X). But note that t%(X) = 0, so Ñ3(X) as %(X).

Thus each of the maps

&l(x)-+èl(x)-*n3(x) = %(x)

is onto, so keri/3 = SH3(X).

To complete the proof it suffices to show that (6.12) splits. But consider the

diagram

0 0

1 i
0 —» e^,(A)-y i%(A)-»-0

i i       i
o —► %iX)-► &x(x)-► %(X) —► o

i i       1
0-^(A)- gj(X)-^ %(X) —> o

1 i       i
0 0 0

Thus
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Sx (X ) - êx (X) © £% (X )   (unnaturally)

= ñx(X) © SH3(X) © £%(X)

= %(X)®SÑ3(X)

so (6.12) splits unnaturally.   D

Remark (6.14). For arbitrary subsets of (R) there may possibly be

nonzero ^-differentials, corresponding to natural transformations

H4(X)^IÑX(X)   and   %(X) -* %(X).

Remark (6.15). The nonzero ^-differentials on finite complexes correspond

to the cohomology operation ßSq2 [9].

We close this section with an application of our calculation of Sxt(A") for

X C R4 to operator theory. (The relevance of S# in higher dimensions to

operator theory was first noted by BDF [16, p. 119].) Suppose Ax and A2 are

essentially normal operators such that mAx and 7r,42 commute. When do there

exist compact perturbations

Aj = Bj + Kj,      j = 1, 2,

with Bx and B2 commuting normals? Let X =jtae(Ax,A2) be the joint

spectrum of trAx and vA2, let S be the C*-algebra generated by %, I, Ax, A2,

and let t[Ax,A2] E Sxt(A") be the extension 0 -» % -> S -> C(A") -* 0. Then

T[^!,y42] = 0 precisely when the perturbation exists. But note that X C R4;

hence

0 -* SHX(X) -» Sxt(A-) -^ *#3(A-) -* 0

is exact. The group SHX(X) measures the "one-dimensional holes" in X and

corresponds to the usual Fredholm index. (In particular, it is obvious that

r(Ax,A2) = 0 implies ind (Ax — XI) — 0 where defined; this information is

carried by % (X).)

Proposition (6.16). Suppose that Ext(H2(X),Z) = 0. //ind (A, -XI) = 0

where defined and Tt[Ax,A2] = 0 (e.g. if H3(X) = 0) then the perturbation

exists.

This theme is expanded upon in [57].

Remark (6.17). It seems to be difficult to identify t^,.^] even if one is

given ae(Ax) and oe(A2). For our purposes, identify means to identify certain

classes in certain homology groups. The following example indicates the two-

fold difficulty involved. Let S = Ax + iA2 be the unilateral shift, written as the

sum of its real and imaginary parts. Then
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ae04,) = or(¿2) = [O,l],

jtoe(Ax,A2) = oe(S) = S\

so a new "hole" has been created. But the situation is even worse. The

operators Ax and A2 have index invariants in trivial groups (since [0,1] is

contractible). But the element r[/4,,^2] = t[S] G Sxt(S') is nonzero (corre-

sponding to the well-known fact that the unilateral shift cannot be written as

S = Bx + i£2mod3C, with £, and £2 commuting selfadjoints). Even if

(6.18) jto,(4ltA2) s ae(Ax) X ae(A2)

there may be nontrivial index invariants created, as it were, ex nihilo. The case

of operators Ax, A2 satisfying (6.18) is considerably easier to handle, however.

It would be of interest to find sufficient conditions on Ax, A2 to ensure (6.18).

If the joint essential spectrum of the operators involved is quite simple then

Sxt can on occasion be computed. The case of essential projections (operators

which are compact perturbations of projections) illustrates this point.

Corollary (6.19). Let Ax,...,Ak be essential projections, let N be an

essentially normal operator with oe(N) — Y homeomorphic to a subset o/R and

suppose that the C*'-algebra generated by {/, •nAx,..., trAk,trN) is commutative.

(Denote it as C(X).) Then there exist commuting normals £,, ..., Bk,C with

Aj = Bj + Kj, (hence the Bj are essential projections), N + K = C and the Kj

and K are compact.

Proof. The space A is homeomorphic to a subspace of y X (0,1} which

embeds in R. Thus so does A, and Sxt(A) = 0. The extension t[Ax,. ..,Ak,

N] is thus zero.   D

Remark (6.20). The case of several almost commuting operators Ax, ..., An

proceeds as in the two-operator case, up to a point. The critical invariant is

T[Ax,...,An]E&xl(X)

where A = jtae(Ax,... ,An) C £2".

But, lacking further information on A, there is no reason to suppose that

Sxt(A) is effectively computable. The whole connection between Ax, ...,An

and ^(A) seems mysterious. For example, what conditions on the Aj would

ensure that^(A) = 0?

7. The Chern character and differentials in the spectral sequence. Suppose

that A is compact metric and £2 = £°° in the spectral sequence converging

to S+(A). Then, modulo group extension difficulties, one has

«$,(*) sa ®sÑ2J+l(xr -
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This suggests, first of all, a connection in general between &xl(X) and

©/ÂL+i (A"), and, second of all, the need to avoid group extension difficulties.

The Chern character executes both of these ideas.

First some notation. If A+ is a graded abelian group, let A+ = ®nA2n,j4--

~ ®n^2n+i ancl ^»* = A+® A_ regarded as a Z/2 graded group. In coho-

mology replace sums by products: A+ = HnA2",A~ = TlnA2"*1, and A**
= A+(BA- = T[nAn.

Proposition (7.1) (Atiyah and Hirzebruch) [8]. There is a natural

transformation of Z/2 graded cohomology theories

di:K*(X)®Q-*H"(X;Q)

called the Chern character, which is an isomorphism if X is a finite complex.   D

In this section we define

ch: MA-)-» #*(*"; Q) - %(x;Ql

Then the map

ch®Q:S»(A')®Q->Ä„(A';Q)

will be an isomorphism on finite complexes. (Recall that to simplify notation,

we understand H+ to be reduced Cech homology theory.)

Suppose X is compact metric, with X = proj lim X,, the inverse limit of

finite complexes. Then

(7.2)      R*(X) = inj lim R*(Xj)   and   H*(X) = inj lim H*(Xj)

so there is a natural isomorphism ch, defined to be the composite

K(X) ® Q = (inj lim K*(X¡)) 0 Q = inj lim^A;) ® Q)

(7.3) inj lim(ch)

H**(X; Q) = inj lim(tf**(A}; Q))

Now horn the diagram (7.3) into Q and observe that

(7.4) %.(X; Q) = hom(H"(X; Q),Q)

via the UCT (0.4). Then (7.3) yields a natural isomorphism
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(7.5) ch* : *#.,(A; Q) -► hom(Â;*(A) ® Q, Q).

Finally, define the Chern character for S+ to be the composite

S*(A) -^ hom(£*(A), Z) -* hom(K*(X), Z) ® Q

1
hom(K*(X)®Q, Q)

(7.6) ch

ch*

#**(A; Q) - SH**(X; Q) = hom(#**(A; Q), Q)

where y^ is the index map (5.3). When convenient, consider ch to be cho © ch,

where ch,-: S,(A) -> Ñ±(X;Q).

Obviously ch vanishes on the torsion subgroup of S+(A). The precise

identification of the kernel and cokernel of ch ® Q is of some interest.

Theorem (7.7). Let X be compact metric of finite dimension and let {Er,dr} be

the spectral sequence converging to S*(A) with E2 = SH+(X; ©„.(S0)). £Ae« the

following are equivalent:

(a) £Ae differentials in {Er,dr} are torsion-valued and ch ® Q: &*(X) ® Q

-» ^„(A; Q) 15 an isomorphism.

(b) hornig (A ),Q/Z)® Q = 0.
Remark (7.8). To assert that differentials are torsion-valued means that the

image of each dr (for r > 2) is contained in the torsion subgroup of Er, or

equivalents, that dr ® Q = 0. Note that ̂ (A; Q) ® Q = sHm(X; Q).

Let G(A) = hom(/i,Q/Z) ® Q for convenience.

Lemma (7.9). G(Ñ*(X)) = 0 if and only if the natural map i: %(X) ® Q
-+ Sñ+(X; Q) is an isomorphism.

Proof. Consider the long exact coefficient sequence for Steenrod homology

associated to Z -* Q -» Q/Z. Apply ® Q and it reads

• - - -> %+x(X; Q/Z) ® Q -> %(X) ® Q -4- J/7n(A; Q)

-*#„(*-; Q/Z) ®Q;

hence t is an isomorphism exactly when SH^(X; Q/Z) ® Q = 0. But the UCT

implies that ^(A; Q/Z) = hom(#*(A),Q/Z) (since Q/Z is divisible) and
hence

%{X\Q/Z) ® Q = G(tf*(A)).   D
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Now to the proof of Theorem (7.7), which is essentially the same as Atiyah-

Hirzebruch [8]. Let Eq = Er ® Q. This is a Z/2 graded spectral sequence

converging to $^(X) ® Q, with Eq = SH^(X;S^(S0)) ® Q. Thus statement

(a) is equivalent to

(a') FÂ = Eq and ch ® Q is an isomorphism.

Let ET (T for "trivial") be the Z/2 graded spectral sequence obtained by

regarding Ñt,(X;Q) as a generalized Steenrod homology theory. Then

E\ = Ej = H„{X; Q). Since ch ® Q is natural, it induces a morphism of

spectral sequences (3.5)

V £q ~* et

such that t2 = t and t^ is the associated graded map to ch ® Q. Thus (b) is

equivalent to

(b') t2 is an isomorphism by Lemma (7.9). It remains to show that (a') is

equivalent to (b').

Suppose (a') holds. Then t^ is an isomorphism (since ch ® Q is). But then

one has

i»   T    ii

FTq—^e~t

(Eq — Eq by assumption (a')), so t2 is an isomorphism, proving (b').

Conversely, suppose that (b') holds; t2 is an isomorphism. Then rr is an

isomorphism for all r < oo, the spectral sequence FA collapses, so Eq = Eq

and tm is an isomorphism. Now t^, is the associated graded map to ch ® Q.

Then ch ® Q is clearly surjective and a direct argument shows it is injective,

proving (a').   D

Remark (7.10). If A" is a finite complex, then G(Ñ*(X)) = 0. In fact,

G (A) = 0 if and only if rankg A < oo and Ext (A,Z) is a torsion group.

For an example of a space X with G(Ñ* (X)) *£ 0, take the dyadic solenoid.

Then ̂ (A") = Z[|] and G(H*(X)) = Q2, the 2-adic numbers.

It is possible to explicitly say when ch ® Q is an isomorphism.

Theorem (7.11). There is a natural short exact sequence

0 -» cok(ch ® OJ-» C7(£*(A")) -> ker(ch ® Q) -> 0

so ch ® Q is an isomorphism if and only if G(K*(X)) = 0.

Proof. The map ch ® Q is the composite
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$*(X) ® Q —-► hom(K*(X), Z) ® Q -*-> hom(K*(X), Q)

i"
#**(A;Q)

Since y^ is surjective and k is injective, it is immediate that

ker(ch ® Q) = ker(-^ ® Q) = Ext(£*(A),Z) ® Q

and

cok(ch ® Q) = cok(/c).

Applying hom(£*(A), -) ® Q to the sequence 0 -> Z -» Q -» Q/Z -» 0

yields the long exact sequence

0 -* hom(K*(X), Z) 0 Q -*-+ hom(K*(X), Q)

-&-+ G(K*(X)) -$-+ Ext(Ây*(A), Z) ® Q -*• 0

II

ker(ch ® Q)

Thus imô = ker(ch ® Q). Further,

cok(ch ® Q) = cok(fc) = hom(^*(A),Q)/im(K)

= hom(^*(A),Q)/ker(ß)

s im(ß) - ker(5).

Then the natural commutative diagram

0 —► ker(S)-► G(K*(X))-► im 5-► 0

IB II II?

0 —► cok(ch ® Q) —*■ G(K*(X)) -* ker(ch ® Q) —► 0

yields the theorem.   D

Remark (7.12). The functor G(A) = hom(A,Q/Z) ® Q spotlights a cu-

rious phenomenon. We have shown

(i) G(K*(X)) = 0 if and only if ch ® Q is an isomorphism, and

(ii) G(H*(X)) = 0 if and only if ch ® Q is an isomorphism and the
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differentials in the appropriate spectral sequence are torsion valued.

Thus G(Ñ*(X)) = 0 implies that G(K*(X)) = 0. Is the converse true?

8. The algebraic structure of Sxt(A"). This section is devoted to coping with

the problems which arise from the fact that Sxt(A") need not be a finitely

generated abelian group.

Recall that if X = proj lim X where the Xj are finite complexes and h+ is a

Steenrod homology theory then we have defined

Hn(X) - proj lim h„(Xj)   and   thn(X) = proj lim1 hn+x(Xj)

and have shown that these groups are independent of the CNS2Í = {A^}. Let

H+(X) = ®jH2j(X) and H_(X) - ®jH2j+x(X). Note that we may assume

dim AT > dimA^. in calculating the above groups.

Theorem (8.1). Let X be compact metric of finite dimension. Suppose that

£//*(*) = 0. Then £S%(A") = 0 andSxi(X) = KX(X).

Proof. We give the proof for £S0(A*). The cohomology Chern character

K°(X)-+ Ñ+(X;Q) induces a natural transformation c: R°(X)/tR°(X)

-» H+(X; Q) where tA is the torsion subgroup of A. The image of c may not

be integral (i.e. it may not lie in the image of H+(X) -* H+(X; Q)). However

Adams [1] shows there is an integer ju(j') such that c, = jtt(/) • c is integral for

all finite complexes Y of dimension < /. The map

c¡: R°(Y)/tK°(Y) ^ H+(Y)/tH+(Y)

is a natural injection, and <p(Y) = coker (c,) is a finite group.

The sequence

0 -^ hom(H+(X,)ltH+(Xi), Z) — hom(P(A-,)/fP(A}), Z)

i
Ext(^(A/.),Z)^0

is thus exact, for each/. Take inverse limits over/ to obtain

proj lim1 Ext(v?(A}), Z) <— proj Urn1 hom(K°(Xj)ltK0(Xj), Z)

Il t

0

proj lim1 hom(H+(Xj)ltH+(Xj), Z)

Then Theorem (8.1) follows from this lemma.
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Lemma (8.2). Let A* = £° or H+ and A* = S0 or SH+. Then

th*(X) - proj lim1 hom (h*(Xj)/th*(Xj),Z).

Proof. Both K° and H+ satisfy the UCT. Thus the natural map

Kty/th^Xj) -» hom(A*(A;.),Z)A nom(h*(Xj),Z)

is an isomorphism. But

hon\(A,Z)/t hom(/l,Z) =s nom(A/tA,Z)

for finitely generated abelian groups A. Thus

K(Xj)/th*(Xj) a hom(A*(^-)AA*(Ay),Z)

for each/. Take limits; then

£A+(Ay) - proj \imx (h^/th^Xj))

= proj lim1 hom(A*(A;.)/íA*(Ay),Z)

proving the lemma.   D

Recall that the generalized index map y^: S,(A) -» hom (^'(A),Z) fits

into the UCT (0.5). In the following theorem ker^) is decomposed into

profinite and divisible subgroups.

Theorem (8.3). The sequence

0 —► £ P,(A) —► Ex.t(K°(X), Z) -»■ proj hm^iA})) -+ 0
II

kerfr«,)

is exact and natural for compact metric X = proj lim A,-. In particular, if X is

movable then

ker(^) = proj lim(/£,(Ay))

which is profinite.

Proof. For each/ the sequence

0 -» Ext(£0(A;.),Z) -* Rx(Xj) -+ hom (£'(Ay),Z) -> 0

is exact, by the UCT. Taking limits yields
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0 -» proj lim Extí^A}), Z) -»• ^(A) -» hom^A), Z)

1
0 = proj Urn1 Ext(K°(X¡), Z)

and hence the following diagram has exact rows and columns.

0 0 0

i 1 1
fiSiW —► Ext(P(A), Z)—> proj lim Ext^A,), Z)

1 1 1
(8.4)    O-»   eS^A)-^Si(A)- — ^(A)-       -► 0

homí^íAO.Z)

1
0

■+ horn^A^Z)->0

1
0

The serpent lemma (with y^ as the second map) yields the exact sequence

0 -> £SX(X) -> Ext (^(XXZ) -> proj lim ext(Jv0(A;.),Z) -► 0
II

projlimO^A;.))

proving the theorem.   D

Remark (8.5). If X is a movable compact metric space then ker(ch,)

= proj lim(tKx(Xj)), a profinite group. The strong wedge of a countable

number of projective planes is a movable space for which ch, is not injective.

The   following   theorem   exhibits   how   ES^A")   sits  in   Ext(#°(A'),Z)

- M%o)-

Theorem (8.6). Let X be compact metric. Then £S, (X ) is the maximal divisible

subgroup of &xt(X ).

Proof. In the sequence (8.3), every divisible subgroup of exl(K°(X),Z)

maps to zero. Thus £S, (X ) contains all divisible groups and, being divisible

itself, is the maximal divisible subgroup of ker (■£<>) and hence also of Sxt(A")

(since im (-¡^ ) is reduced).   D

Remark (8.7). It follows from Fuchs [23] that (8.6) is equivalent to each of

the following statements:

(i) £Si(A) = P Ext (K°(X),Z), the pure exact sequences.
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(ii) ES, (A) = r\Ä:ext(£;0(A)>Z),

the first Ulm subgroup of Ext(J?°(A),Z).

Remark (8.8). We have shown that

(8.9) ker(ch) sa 66,(A) © proj lim(l£:,(A))).

It would seem, in light of (8.9), that there are two sorts of phantom map

behavior for $„,. The first, corresponding to ßS#, is familiar; Proposition (2.15)

gives a geometric interpretation analogous to the K* phantom classes. The

second, corresponding to proj lim tR+ (A.), consists of extensions which are of

finite order when extended to any neighborhood of A in the Hubert cube, yet

are not themselves of finite order.

Note that the groups G(â"*(A)) (whose vanishing guarantees that ch ® Q

is an isomorphism) and Ext(^*(A),Z) ® Q (the kernel of ch ® Q) are related

by a short exact sequence

0 -» (n(Q/Z)) ® Q ̂  G(R*(X)) -> Ext(^*(A),Z) ® Q -> 0

where the number of copies of Q/Z equals the rank of R*(X).

Theorem (8.10). Let X be compact metric. Then Sxt(A) « (unnaturally)

isomorphic to the following sum:

Sxt(A) = ßS,(A) © proj \im(tKx(Xj)) © hom (RX(X),Z).

The first summand £S, (A) is divisible; the second is profinite.

Proof. Immediate from (8.9) and the UCT (0.5).   D

This theorem indicates the algebraic possibilities for the group Sxt(A ) in the

same sense that Nunke-Rotman [41] does for singular cohomology.

Remark (8.11). We close by observing that Milnor's lim1 sequence (0.3) and

L. G. Brown's UCT (0.5) carry essentially the same information. In light of

(8.10), the lim1 sequence may be written

(8.12) 0 -> £S,(A) -» S,(A) -» proj lim(tRx(Xj)) © hom (R\X),z) -» 0

while the UCT may be written

(8.13) 0 -» ES,(A) © proj lim(f£,(A,)) -» S,(A) ■&+ hom (£'(A),Z) ^ 0

and both sequences split unnaturally. Thus the sequences differ only as to

where the profinite group proj lim(/^,(A)) sits-in KX(X) or in ker^).
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