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RESEARCH Open Access

Microenvironment generated during EGFR
targeted killing of pancreatic tumor cells by ATC
inhibits myeloid-derived suppressor cells through
COX2 and PGE2 dependent pathway
Archana Thakur1,2*, Dana Schalk1, Elyse Tomaszewski1, Sri Vidya Kondadasula1, Hiroshi Yano1, Fazlul H Sarkar2

and Lawrence G Lum1,3

Abstract

Background: Myeloid-derived suppressor cells (MDSCs) are one of the major components of the
immune-suppressive network, play key roles in tumor progression and limit therapeutic responses. Recently, we
reported that tumor spheres formed by breast cancer cell lines were visibly smaller in a Th1 enriched
microenvironment with significantly reduced differentiation of MDSC populations in 3D culture. In this study, we
investigated the mechanism(s) of bispecific antibody armed ATC mediated inhibition of MDSC in the presence or
absence of Th1 microenvironment.

Methods: We used 3D co-culture model of peripheral blood mononuclear cells (PBMC) with pancreatic cancer cells
MiaPaCa-2 [MiaE] and gemcitabine resistant MiaPaCa-GR [MiaM] cells to generate MDSC in the presence or absence
of Th1 cytokines and EGFRBi armed ATC (aATC).

Results: We show significantly decreased differentiation of MDSC (MiaE, p<0.005; MiaM, p<0.05) in the presence of
aATC with or without Th1 cytokines. MDSC recovered from control cultures (without aATC) showed potent ability to
suppress T cell functions compared to those recovered from aATC containing co-cultures. Reduced accumulation of
MDSC was accompanied by significantly lower levels of COX2 (p<0.0048), PGE2 (p<0.03), and their downstream
effector molecule Arginase-1 (p<0.01), and significantly higher levels of TNF-α, IL-12 and chemokines CCL3, CCL4,
CCL5, CXCL9 and CXCL10 under aATC induced Th1 cytokine enriched microenvironment.

Conclusions: These data suggest aATC can suppress MDSC differentiation and attenuation of their suppressive
activity through down regulation of COX2, PGE2 and ARG1 pathway that is potentiated in presence of Th1
cytokines, suggesting that Th1 enriching immunotherapy may be beneficial in pancreatic cancer treatment.

Keywords: 3D culture model, Pancreatic cancer, Activated T-cells, Bispecific antibody, Epidermal growth factor
receptor, Myeloid derived suppressor cells
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Background
Most cancers can evade the immune surveillance and cir-
cumvent antitumor immune defenses by several passive
and active mechanisms. Preclinical and clinical studies sug-
gest that regulatory/suppressor immune cells in the inflam-
matory tumor microenvironment can induce an immune
tolerizing effect and inhibit the ability of immune based
therapies or cancer vaccines to initiate robust anti tumor
immune responses [1,2]. Among many suppressor regula-
tors, myeloid-derived suppressor cells (MDSCs) are of great
interest because they have the capacity to suppress both the
adaptive immune response mediated by CD4+ and CD8+ T
cells [3-5] and the cytotoxic activities of natural killer (NK)
and NKTcells [6].
Increasing evidence suggests that tumor- and MDSC-

derived arachidonic acid metabolites, cyclooxygenase-2
(COX2) and prostaglandin E2 (PGE2) play critical roles
in T cell suppression [7-11]. One of the mechanisms of
COX2 and PGE2 mediated suppression of T cells is
through the induction of arginase-1 (ARG1) [12,13]. A
better understanding of these molecules in the tumor
microenvironment and assessment of the regulatory
cross talk between tumor cells and the immune cells
would help in developing clinically effective immu-
notherapeutic approaches against pancreatic cancer.
In our previous study in breast cancer 3D culture

model, we reported a significant reduction of MDSC in
the presence of Th1 cytokines and activated T cells
armed with anti-CD3 x anti-Her2 bispecific antibodies
(aATC) [14]. In this study, we investigated the mechan-
ism(s) of aATC mediated inhibition of MDSC in the
presence or absence of Th1 microenvironment. Further-
more, we examined whether presence of aATC in the
tumor microenvironment can shift the immune suppres-
sive tumor microenvironment to immune activating
anti-tumor Th1 microenvironment.

Methods
Cell lines
The human pancreatic cancer (PC) cell lines (MiaPaCa-
2 cells with epithelial characteristics [MiaE] and gemci-
tabine resistant MiaPaCa-GR cells with mesenchymal
characteristics [MiaM]) were maintained in DMEM cul-
ture media (Lonza Inc., Allendale, NJ) supplemented
with 10% FBS (Lonza Inc.), 2 mM L-glutamine (Invitro-
gen, Carlsbad, CA), 50 units/ml penicillin, and 50 μg/ml
streptomycin (Invitrogen). MiaM was maintained in 200
nM gemcitabine in DMEM media. MiaE show typical
epitheloid like morphology whereas MiaM show mesen-
chymal like morphology. The reason for using chemo
sensitive and resistant pancreatic cell lines was to evalu-
ate whether ATC armed with bispecific antibodies can
be effective, irrespective of chemo resistance of the cell

lines. Both cell lines showed high expression of EGFR by
flow cytometry (data not show).

Expansion and generation of ATC
CD3+ T cells from PBMC were activated and expanded
using 20 ng/ml of OKT3 and 100 IU/ml of IL-2 for
14 days at a concentration of 1–2 × 106 PBMC/ml in
RPMI-1640 supplemented with 10% FBS [15].

Production of anti-OKT3 x anti-EGFR bispecific antibodies
(EGFRBi)
Bispecific Antibodies (BiAb) were produced by chemical
heteroconjugation of OKT3 (a murine IgG2a anti-CD3
monoclonal antibody, Ortho Biotech, Horsham, PA) and
Erbitux (a humanized anti-EGFR IgG1, Genentech Inc.,
San Francisco, CA) as described [15,16]. ATC were
armed with EGFRBi (aATC) using a previously opti-
mized concentration of BiAb of 50 ng/106 ATC.

3D culture in matrigel
Cells were prepared at a concentration of 2,500 cells/ml
in RPMI-1640 or DMEM culture media. Single cells are
overlaid on a solidified layer of Matrigel measuring ap-
proximately 1 mm in thickness as described [14]. Briefly,
wells were coated with 100% Matrigel in 0.25-ml ali-
quots in 24-well glass bottom plates and allowed to so-
lidify by incubating at 37°C for 30 min. Pancreatic
cancer cells were then seeded onto the matrigel base as
a single-cell suspension in the medium containing 2%
matrigel, in the presence or absence of Th1 cytokines
(10 ng/ml IFN-γ and 100 IU/ml IL-2). PBMC were
added either simultaneously or after 5–7 days when
tumor spheres were formed, PBMC were added at 10:1
ratio (10 PBMC:1 tumor cell). EGFRBi aATC were added
after 7 days of tumor cell and PBMC 3D co-culture at
10:1 (10 aATC/1 tumor cell) ratio. The medium was
replaced every 4 days. Tumor spheres were visualized in
5–7 days in 3D culture.

Cytotoxicity assay
Tumor cells were seeded in 24-well plate at 100,000
cells/well in volume of 1 ml. Cells were allowed to ad-
here followed by incubation with aATC for 3–5 days at
1:1 E:T in the presence or absence of Th1 cytokines. At
the end of incubation, 3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide (MTT) was added (40 μL/
well of 5 mg/mL MTT in PBS) to each well and incu-
bated in the dark for 3 h at 37°C. After removal of the
medium, the dye crystals formed in viable cells were
dissolved in isopropanol and detected by reading the ab-
sorption at 595 nm in the Tecan Ultra plate reader.
Experiments were repeated three times in quadruplicate
wells to ensure reproducibility.
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Flow cytometry to identify MDSC
Flowcytometry was done at the Microscopy, Imaging and
Cytometry Resources Core at Karmanos Cancer Institute,
Wayne State University. The phenotype of MDSC gener-
ated in 3D co-culture of tumor cells with PBMC was evalu-
ated for expression of CD33, CD11b, CD14 and HLA-DR.
After non-adherent cells were collected, matrigel was
digested to collect tumor cells or tumor associated MDSC
and, washed with FACS buffer (0.2% BSA in PBS). Cells
collected prior to digestion were pooled with matrigel
digested single cell suspension before staining. Cells were
stained for 30 min on ice with mixtures of fluorescently
conjugated mAbs or isotype-matched controls, washed
twice with FACS buffer and analyzed. Antibodies used for
staining include: anti-CD11b, -CD14, -CD15, -CD33,
-HLA-DR, (BD Biosciences San Jose, CA). Cells were ana-
lyzed on a FACScalibur (BD Biosciences) and data were
analyzed using CellQuest software (BD Biosciences). Cells
were gated on CD11b+/CD33+ population and analyzed for
CD14+/HLA-DR- and CD15+/HLA-DR- expression.

MDSC isolation and co-culture with T cells
Cells were collected from the digested matrigel cultures.
CD33+ cells were isolated from each culture using
anti-CD33 magnetic microbeads (Miltenyi Biotec) as
previously described [14]. The purity of isolated cell

populations was found to be >80% by flow cytometry.
Effect of MDSC on T cell proliferation was measured by
co-incubation of CD33+ cells with purified CD3+ T-cells.
Briefly, purified CD3+ T-cells plated at 0.5 7 × 105 cells/
well in 24-well plates coated either with anti-CD3 anti-
bodies (0.5 μg/ml in PBS) or isotype matched control
antibodies. Irradiated (2500 rads) CD33+ cells were then
added at various MDSC: T cells or ATC ratios ranging
from 1:5–1:20 in a final volume of 500 μl of medium.
Control wells did not receive any MDSC. The plates
were incubated for 24–72 hrs (for CD3+ T cells) or
4 hrs (for ATC) at 37°C in humidified 5% CO2 atmos-
phere followed by a flow cytometric analysis of T cell ac-
tivation and function using anti-CD71, anti-CD62L,
anti-NKG2D and anti-IFN-γ antibodies.

Inhibition of T cell proliferation and cytotoxicity by MDSC
Inhibitory activity of the CD33+ cells isolated from
matrigel co-cultures towards T cell proliferation and
cytotoxicity was examined as described previously (14).

Flow cytometric analysis for COX2 and arginase-1 positive
cells
Co-cultures were evaluated for the expression of,
COX2 and Arginase-1 (ARG1) using anti-ARG1-PE,
and anti-COX2-FITC antibodies along with anti-
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Figure 1 Effect of Th1 cytokines on pancreatic cancer cells. A) Shows reduced percentage of monocytic CD33+/CD11b+/CD14+/HLA-DR- and
granulocytic CD33+/CD11b+/CD15+/HLA-DR- MDSC populations in the presence of aATC for MiaE (p<0.0021) and MiaM (p<0.046) in the presence
of aATC or aATC+Th1 cytokines [MiaE (p<0.00041) and MiaM (p <0.0002)] compared to control co-cultures (n=3). B) Shows that increased
cytotoxicity by EGFRBi armed ATC after 3 days at an E:T ratio of 1:1 when grown in the presence of Th1 cytokines.
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CD11b, -CD14, -CD15, -CD33, -HLA-DR (BD Bios-
ciences San Jose, CA) in a 7-color analysis by FACS-
calibur (BD Biosciences). Data were analyzed using
FloJo software. Total COX2 or ARG1 positive cells
as well as ARG1 or COX2 positive MDSC were ana-
lyzed. Cells were gated for CD33+/CD11b+/HLA-DR-

and analyzed for CD14 or CD15 versus ARG1, CD14
or CD15 versus COX2 expression.

PGE2 production
Analysis of PGE2 was performed by EIA kit as per man-
ufacturer’s instruction (Enzo Life Sciences, Plymouth
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Figure 2 aATC can attenuate the suppressive properties of MDSC. CD33+ cells isolated either from control condition or from co-cultures
containing aATC were added to cytotoxicity assay, proliferation assay and anti-CD3 stimulated T cells for 24-72 h. A) Shows the suppressive effect
of CD33+ MDSC on anti-CD3-stimulated autologous T-cell proliferation. Proliferation was significantly suppressed by more than 50% in the
presence of CD33+ MDSC isolated from control co-cultures, and this suppression was reversed if CD33+ MDSC were isolated from aATC
containing co-cultures. B) Shows the suppressive effect of CD33+ MDSC on aATC mediated cytotoxicity. C) Top panel, right histogram shows
CD71 expression on stimulated CD3+ T cells (positive control); middle histogram shows suppressive effect of CD33+ MDSC isolated from control
co-cultures (without aATC) and right histogram show attenuated suppressive effect on CD71 expression when CD33+ cells were isolated from co-
cultures that contained aATC. Second panel, right histogram shows NKG2D expression on stimulated CD3+ NK T cells (positive control); middle
histogram shows the suppressive effect of CD33+ MDSC isolated from control co-cultures (without aATC) and right histogram shows the
attenuated suppressive effect on NKG2D expression when CD33+ cells were isolated from co-cultures that contained aATC on anti-CD3-
stimulated T-cells. Third panel, right histogram shows IFN-γ positive T cells upon stimulation with PC cells (positive control); middle histogram
show suppressive effect of CD33+ MDSC isolated from control co-cultures (without aATC) on IFN-γ production and right histogram show
attenuated suppressive effect on IFN-γ production when CD33+ cells isolated were from co-cultures that contained aATC. Bottom panel, right
histogram shows CD62L expression (migration marker) on naive T cells (positive control); middle histogram show suppressive effect of CD33+

MDSC isolated from control co-cultures (without aATC) and right histogram show attenuated suppressive effect on CD62L expression when CD33+

cells added were isolated from co-cultures that contained aATC.
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Meeting, PA) in the culture supernatants from 3D co-
cultures.

Cytokine profiling of co-cultures
Cytokines were quantitated in culture supernatants col-
lected from matrigel co-cultures in the presence or ab-
sence of Th1 cytokines and in the presence or absence of
ATC or armed ATC using a 25-plex human cytokine
Luminex Array (Invitrogen, Carlsbad, CA) on a Bio-Plex
system (Bio-Rad Lab., Hercules, CA). The limit of detec-
tion for these assays is < 10 pg/mL based on detectable
signal of > 2 fold above background (Bio-Rad). Cytokine
concentrations were automatically calculated by the
BioPlex Manager Software (Bio-Rad).

Statistical analysis
Quantitative data are presented as the mean of at least
three or more independent experiments ± standard devi-
ation. A one-way ANOVA was used to determine whether
there were statistically significant differences among differ-
ent conditions within each experiment. Differences between
groups were tested via an unpaired, two-tailed t test.

Results
Armed ATC induced Th1 cytokine microenvironment
inhibits MDSC differentiation
Consistent with our earlier studies [14], proportions of
monocytic CD33+/CD11b+/CD14+/HLA-DR- and gran-
ulocytic CD33+/CD11b+/CD15+/HLA-DR- MDSC popu-
lations were reduced in the presence of aATC for both
MiaE (p<0.00021) and MiaM (p<0.0046) in the presence
of aATC compared to control co-cultures. Reduction in
CD33+/CD11b+/CD14+/HLA-DR- and CD33+/CD11b+/
CD15+/HLA-DR- MDSC populations were highly signifi-
cant in MiaE (p<0.00041) and MiaM (p <0.0002) when
both aATC and Th1 cytokines were added to co-cultures
(Figure 1A). These data suggest that the microenviron-
ment induced by interactions of aATC with tumor cells
is inhibitory for MDSC differentiation and this effect
was more pronounced in a Th1 cytokine enriched micro-
environment (n=3). Figure 1B shows that tumor cells
become more susceptible for EGFRBi armed ATC
mediated killing when grown in the presence of Th1
cytokines.

MDSC mediated suppression of T cell proliferation and
cytotoxic activity was partially reversed by EGFRBi
armed ATC
CD33+ MDSC isolated from various co-culture condi-
tions were incubated with OKT3 stimulated T cells at
1:5 ratio. T cell proliferation was suppressed by more
than 50% in the presence of CD33+ cells isolated from
cultures without aATC. However, CD33+ MDSC isolated

from aATC containing co-cultures showed significantly
reduced capacity to inhibit proliferation of T cells
(p<0.02). Likewise, the cytotoxicity mediated by aATC
directed at SK-BR-3 targets was inhibited by 70% at
1:10:2 ratio (Tumor cell:aATC:CD33+) after adding
CD33+ cells isolated from control conditions. The
inhibitory effect of CD33+ cells on T cell cytotoxicity
was significantly attenuated (p<0.001) in the presence of
Th1 cytokines (n=3; Figure 2A and B).

MDSC mediated suppression of activated T and NK cells
was partially reversed by aATC
T cells from three different culture conditions were stained
for T cell activation markers CD71 (Upper panel) and
NKG2D (Lower panel at the end of 72 h co-cultures).
OKT3 stimulated T cells showed 63.8% CD71 positive cells,
this was considered as 100% positive control. CD71 expres-
sion was suppressed by 55% in the presence of CD33+ cells
(isolated from co-cultures without aATC). This suppression
was partially reduced to 38% when T cells were incubated
with CD33+ cells isolated from aATC containing co-
cultures (n=3; Figure 2C, top panel). Immunostaining for
NKG2D showed 31.2% of T cells positive for NKG2D (Posi-
tive control, 100%) and this expression was decreased to
20.3% (35% inhibition from control) by the addition of
CD33+ cells isolated from co-cultures without aATC. This
inhibition was reversed by adding CD33+ cells isolated from
aATC containing co-cultures, restoring the expression of
NKG2D to 28.8% (n=3; Figure 2C, second panel). These
data suggest that aATC inhibited the immune suppressive
ability of MDSC.

MDSC mediated suppression of T cell IFN-γ production
was reversed by aATC
We asked whether addition of MDSC to ATC would sup-
press the ability of ATC to produce IFN-γ when stimulated
with MiaE targets at a 1:10:2 ratio (Tumor cell:ATC:CD33+)
for 4 hrs. Stimulated ATC showed 9.7% cells positive for
intracellular IFN-γ (positive control, 100%). Incubation of
stimulated ATC with CD33+ cells isolated from co-cultures
without aATC inhibited IFN-γ production by 54%. This in-
hibition was partially reverted when ATC were mixed with
CD33+ cells isolated from aATC containing co-cultures to
37% (n=3; Figure 2C, third panel).

MDSC mediated suppression of CD62L expression on
naive T cells was reversed by aATC
Since, MDSC have been shown to mitigate the expres-
sion of L-selectin (CD62L) on naïve T cells [17], we
asked whether incubation of T cells with MDSC isolated
from various culture conditions can alter the expression
of CD62L differentially. Naïve T cells showed 70.8% ex-
pression of CD62L (positive control, considered 100%),
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CD62L expression was inhibited by 65% in the presence of
CD33+ cells (isolated from co-cultures without aATC).
CD33+ isolated from aATC containing co-cultures showed
significantly reduced suppression of CD62L expression
(12%) on naive T cells (n=3; Figure 2C, bottom panel).

Armed ATC mediated microenvironment inhibits MDSC
differentiation by suppressing MDSC-associated
suppressive factors
Previous studies have shown that COX2, PGE2, and ARG1
axis plays a critical role in MDSC development [12,18], and
that ARG1 activity is accompanied by decreased expression
of CD3ζ and diminished production of IFN-γ in activated T

cells [13,19,20]. We investigated whether EGFRBi armed
ATC modulate the COX2, PGE2 and ARG1 pathway lead-
ing to the inhibition of MDSC function. Addition of
EGFRBi aATC in co-cultures exhibited significantly
reduced numbers of COX2+ (MiaE, p<0.0045; MiaM,
p<0.0048) monocytic MDSCs compared to control co-
cultures without aATC (Figure 3A). Since COX2 is the key
enzyme regulating PGE2 synthesis, we measured PGE2 in
the culture supernatants of MiaM cells. PGE2 levels were
significantly reduced (MiaM, p<0.03) in co-cultures con-
taining EGFRBi aATC (Figure 3B). Next, we determined
the ARG1+ cells (Figure 3C) in co-culture, which followed
the same pattern as COX2 and PGE2 showing significantly
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Figure 3 Increased accumulation of MDSC is associated with increased levels of lipid mediators and ARG1. A) Shows accumulation of
COX2+ cells in co-cultures containing MiaE or MiaM cells in the presence or absence of aATC or aATC+Th1 cytokines. Bottom panel show a
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reduced numbers in co-cultures containing EGFRBi aATC
and MiaE (p<0.01) or MiaM (p<0.05). Reduction in COX2,
ARG1 and PGE2 levels were highly significant in co-
cultures of MiaE (p<0.0005) and MiaM (p<0.005) in the
presence of both aATC and Th1 cytokines. More interest-
ingly, there was a strong correlation between the COX2,
PGE2 and ARG1 expression and the accumulation of
monocytic (CD14+) or the granulocytic (CD15+) MDSC
Lower panels of Figure 3A, 3C and left panels of 3C. These
data suggest that aATC induced Th1 cytokines may inhibit
the tumor- and MDSC-derived immunosuppressive factors
in the tumor microenvironment. aATC mediated inhibition
of MDSC activity was more potent in the presence of IL-2
and IFN-γ.

Armed ATC induce cytokines and chemokines that are
suppressive for MDSC differentiation and activation
We recently reported that in Th1 cytokine enriched
microenvironment, MIG/CXCL9 and IP-10/CXCL10
were upregulated while IL-1β and IL-6 were downregu-
lated with concomitant reduction in the percentage of
MDSC in a 3D breast cancer model [14]. Consistent
with these observations, either aATC or aATC in Th1

cytokine containing co-cultures showed significantly
lower levels of proinflammatory cytokine IL-6 and
higher IL-1β/IL-1Ra ratio compared to control condi-
tions without aATC or aATC and Th1 cytokines. On the
other hand, levels of IFN-γ, IL-2, IL-2R and IL-12p41/71
were significantly higher in culture supernatants from
aATC or aATC and Th1 cytokines containing co-
cultures compared to control condition (Figure 4A).
Likewise, chemokines that are known to suppress MDSC
differentiation and activation such as CXCL9/IP-10 and
CXCL9/MIG were significantly higher in culture super-
natants either from aATC or aATC and Th1 cytokines
containing co-cultures compared to control condition
(Figure 4B). High levels of IFN-γ, IL-2, IL-12, CXCL9
and CXCL10 corroborate with reduced number of
MDSC.

Discussion
Recently, we reported that tumor spheres formed by
breast cancer cells were visibly smaller in size in a Th1
enriched microenvironment, differentiation of granulo-
cytic CD14−/HLA-DR−/CD11b+/CD33+ and monocytic
CD14+/HLA-DR−/CD11b+/CD33+ MDSC populations
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Figure 4 Cytokine profile of culture supernatants measured by multiplex luminex system. A) shows the increased levels of cytokines IL-6
and IL-1β/IL-1Ra ratio, and low levels of cytokines IFN-γ, IL-2, IL-12 and TNF-α in control co-cultures (without aATC or Th1 cytokines) compared to
culture supernatants containing aATC or aATC and Th1 cytokines. B) Shows low levels of CXCL10/IP-10, CXCL9/MIG, CCL3/MIP-1α, CCL4/MIP-1β
and CCL5/RANTES expression in control co-cultures (without aATC or Th1 cytokines) compared to culture supernatants containing aATC or aATC
and Th1 cytokines. */**/*** signifies statistically significant differences (*P < 0.05, **P < 0.01, ***p<0.001).

Thakur et al. Journal of Translational Medicine 2013, 11:35 Page 7 of 10
http://www.translational-medicine.com/content/11/1/35



was reduced with further reduction and attenuation of
their suppressive activity in the presence of aATC
[14]. In this study, we investigated the mechanism(s) of
aATC mediated inhibition of MDSC in the presence or
absence of Th1 microenvironment. We show signifi-
cantly decreased differentiation and accumulation of
MDSC in the presence of aATC or aATC and Th1 cyto-
kines. The decreased percentage of MDSC was paral-
leled by significantly lower levels of IL-6, COX2, PGE2,
ARG1 in the presence of aATC or aATC and Th1 cyto-
kines. While, levels of IFN-γ, IL-2, TNF-α, IL-12 and
chemokines CXCL9 and CXCL10 were higher in the
presence of aATC or aATC and Th1 cytokines.
Consistent with other studies that inflammation is

associated with the expansion of MDSC [21,22], our
data also show that increased numbers of MDSC
were accompanied by increased levels of proinflam-
matory cytokines IL-6 and IL-1β/IL-1Ra ratio. A
delayed accumulation of MDSC and reduced primary
and metastatic tumor progression was reported in
mice that have reduced inflammation due to IL-1 re-
ceptor-deficiency [23,24]. On the other hand, exces-
sive inflammation in IL-1R antagonist-deficient mice
promoted the accumulation of MDSC and produced
MDSC with enhanced suppressive activity [23,24].
Relevance of increased levels of TNF-α in the pres-
ence of Th1 cytokines or Th1 cytokines + aATC in

the context of MDSC is not clear. TNF has been
shown to play a crucial role in the differentiation of
myeloid cells [25,26]. However, binding of TNF to
TNFR-1 and TNFR-2 activates distinct signaling
pathways [27-30]. Depending on TNF signaling path-
way it may favor tumor growth and differentiation of
MDSC or may induce immune responses [31].
In addition to cytokines, bioactive lipid mediators,

such as PGE2 and COX2 produced by many tumors
are known to induce the inflammatory and immune
suppressive tumor microenvironment [10,32-34]. Kalinski
et al. showed that PGE2 can modulate the Th1 responses by
impairing IL-12, and IFN-γ expression [35-37]. PGE2 and
COX2 amplify ARG1 levels in MDSC and suppress the
adaptive immune response in part through ARG1 pro-
duction that enhances the L-arginine catabolism and
thus depletion of L-arginine [13,19,38,39]. Catabolism
of L-arginine is essential for the suppressive activity of
MDSC, which serves as a substrate for two enzymes,
oxide synthase (iNOS) and arginase 1 (ARG1). MDSCs
express high levels of both ARG1 and iNOS and both
these enzymes play roles in the inhibition of T-cell
function [13,19,20]. Depletion of L-arginine in the
tumor microenvironment leads to the inhibition T cell
proliferation by decreasing expression of the CD3ζ
chains [19]. and induction of T cell apoptosis [40]. Col-
lectively, these studies show a strong association

Anti-tumor 
Effectors

Immune
Suppressive Tumor 
Microenvironment

aATC ± 
IL-2/IFNγ

MDSC

MDSC

MDSC

MDSC

MDSC

COX2
PGE2

ARG1

IL-6

Teff NK

MDSC

aATC ± 
IL-2/IFNγ

Figure 5 Immune suppressive microenvironment can partially be reverted with aATC immunotherapy. A schematic summary of the
present study showing high levels of COX2/PGE2/ARG1 in the tumor microenvironment, which promote tumor growth and MDSC development
and maintain immune suppressive microenvironment inhibiting proliferation and activation of T cells and NK cells. aATC induced Th1 cytokines
may inhibit the tumor- and MDSC-derived immunosuppressive factors COX2, PGE2, ARG1 and IL-6 in the tumor microenvironment and may
restore the immune activating microenvironment.
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between expansion of MDSCs and inflammation
mediated by the arachidonic acid cascade. Consistent with
these findings, our data suggest a strong correlation be-
tween increased accumulation of MDSC and high levels of
COX2/PGE2/ARG1 expression.
Analysis of chemokines showed significantly reduced

levels of CCL3/MIP1α, CCL4/MIP-1β, CCL5/RANTES,
CXCL9/MIG and CXCL10/IP-10 in the supernatants
from control culture conditions (without aATC) which
increased dramatically when either aATC or aATC and
Th1 cytokines were added to the co-cultures. Co-cultures
with reduced chemokine levels contained a significantly
higher percentage of MDSC and significantly higher levels
of COX2 and PGE2. PGE2 has been shown to inhibit
mRNA and protein expression of chemokines including
CCL3/MIP1α, CCL4/MIP-1β, CXCL10/IP-10 in activated
monocytes and macrophages [41-44]. COX2 and PGE2
were reported to deregulate the chemokine production of
DCs, abrogating the CXCL9/MIG, CXCL10/IP-10 and
CCL5/RANTES-mediated ability of DC to attract naive,
effector, and memory T and NK cells [42,44-46].
Activated T cells express a variety of surface markers,

including CD25, CD71, CD95, CD137, HLA-DR, and se-
crete Th1 cytokines IL-2 and IFN-γ [47]. We analyzed
CD71, CD62L and IFN-γ as T cell activation and func-
tional markers and NKG2D as NK or NKT cell activa-
tion marker to assess the suppressive activity of MDSC
on T cells and NK cells. In the presence of MDSC iso-
lated from control (without aATC), the expression of all
the T cell activation markers were markedly downregu-
lated whereas MDSC isolated from aATC containing co-
cultures showed attenuated inhibition of T cells activa-
tion markers. Study by Ochoa et al. showed restoration
of IFN-γ production and T-cell proliferation after MDSC
depletion [12]. MDSC can abrogate the expression of
L-selectin (CD62L) on both CD4+ and CD8+ T cells,
subverting the homing of these cells to the tumor site
leading towards a dominant immunosuppressive micro-
environment [17].

Conclusion
We show that EGFRBi aATC can target both pancreatic
tumor cells and its microenvironment. EGFRBi aATC: 1)
can efficiently kill tumor cells; 2) EGFRBi aATC may dis-
able the COX2 and PGE2 mediated suppression of
CTLs, Th1, and NK cells by modulating immune sup-
pressive microenvironment to immune activating Th1
microenvironment. Our data suggest that cellular im-
munotherapy using aATC with low levels of IL-2 and
IFN-γ will not only target the tumor cells but may re-
verse the suppressive tumor environment to allow re-
cruitment of CTLs and NK cells at the tumor sites and
may induce an endogenous anti-tumor immune
responses (Figure 5).
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