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Constructing a More Powerful Test in 
Two-Level Block Randomized Designs 

 
Spyros Konstantopoulos 
Michigan State University 

East Lansing, MI 
 

 
A more powerful test is proposed for the treatment effect in two-level block randomized designs where 
random assignment takes place at the first level. When clustering at the second level is assumed to be 
known, the proposed test produces higher estimates of power than the typical test. 
 
Key words: Block randomized designs, statistical power, clustering, experiments. 
 
 

Introduction 
One important consideration when designing 
large-scale experiments is to ensure that the 
design is sensitive enough to detect the expected 
intervention effect. This task involves making 
decisions about sample sizes to ensure sufficient 
statistical power of the test of the treatment 
effect. Statistical power is defined as the 
probability of rejecting the null hypothesis when 
it is false. Extensive literature exists on the 
computation of statistical power (e.g., Cohen, 
1988; Kraemer & Thiemann, 1987; Lipsey, 
1990; Murphy & Myors, 2004). Much of the 
literature, however, involves the computation of 
power in studies that use simple random 
samples; hence nesting effects are typically not 
included in power computations. 

In education and the social sciences, 
populations of interest have often multilevel 
structures, for example, students are nested 
within classrooms or schools. Because 
individuals within aggregate units are often 
more alike than individuals in different units, 
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this nesting produces an intraclass correlation 
structure which is often called clustering in the 
sampling literature (Kish, 1965). Clustering 
should be taken into account both in 
experimental design and statistical analysis. 
Treatment conditions in experiments may be 
assigned either to individuals (e.g., students), 
subgroups (e.g., classrooms) or entire groups 
(e.g., schools). When treatments are assigned to 
individuals or subgroups within entire groups 
the designs are called block randomized designs; 
these designs are also known as multisite 
experiments or multisite trials because each site 
runs a self-sufficient experiment.  

In designs that involve clustering, the 
computation of statistical power is more 
complicated than in simple random samples 
designs. First, nested factors are usually 
assumed to have random effects, and hence, 
power computations should involve the variance 
components structures which are typically 
expressed via intraclass correlations of these 
random effects. In education for example, 
schools are clusters that are typically treated as 
random effects. Second, there is more than one 
sample size involved because there are units at 
different levels in the hierarchy. For example, in 
education where students are nested within 
schools the power of the test of the treatment 
effect depends not only on the number of 
students within a school, but also on the number 
of schools (Hedges & Hedberg, 2007; 
Raudenbush, 1997). The sample sizes at 
different levels may affect power estimates 
differently. Statistical theory for computing 
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power in two-level balanced designs has been 
documented (Barcikowski, 1981; Hedges & 
Hedberg, 2007; Raudenbush, 1997; Raudenbush 
& Liu, 2000). Hedges and Hedberg provided 
methods for computing statistical power in two-
level balanced cluster randomized designs where 
the second level units (e.g., schools) are 
randomly assigned to a treatment and a control 
group. Raudenbush and Liu (2000) provided 
methods for power analysis in two-level 
balanced block randomized designs where the 
first level units (e.g., students within schools) 
are randomly assigned to a treatment or a control 
group within second level units. These methods 
are helpful for a priori power analysis during the 
designing face of the experiment. Methods for 
power computations of tests of treatment effects 
in multi-level designs have also been discussed 
in the health sciences (Donner & Klar, 2000; 
Murray, 1998).  

Previous methods for power analysis in 
two-level balanced designs (e.g., students nested 
within schools) involved the computation of the 
non-centrality parameter of the non-central F- or 
t-distribution (Hedges & Hedberg, 2007; 
Raudenbush & Liu, 2000). Power is a function 
of the non-centrality parameter and of the 
degrees of freedom of the test, and higher values 
of these two factors correspond to higher values 
of statistical power. The non-centrality 
parameter is a function of clustering at the 
second level, which is typically expressed as an 
intraclass correlation, the number of level-1 and 
level-2 units, and the magnitude of the treatment 
effect. The degrees of freedom are a function of 
the number of the level-2 units.  

Previous work has demonstrated that 
statistical power is an increasing function of the 
number of level-1 (e. g. students) and level-2 
units (e.g., schools), and the magnitude of the 
treatment effect, but a decreasing function of the 
intraclass correlation (Hedges & Hedberg, 2007; 
Raudenbush, & Liu, 2000). Also, the number of 
level-2 units (e.g., schools) has a larger impact 
on power than the number of level-1 units (e.g., 
students). An implicit assumption in these 
methods, that are useful for a priori power 
analysis, is that the researcher has an idea about 
the value of the population intraclass correlation 
and the treatment effect in order to conduct the 
necessary power computations.  

Hedges and Hedberg (2007) showed that 
in two-level balanced cluster randomized 
designs, where, for example, entire groups such 
as schools are randomly assigned to a treatment 
and a control condition, the power of the t-test 

has 2( m  – 1) degrees of freedom (assuming no 

covariates), where m  is the number of level-2 
units (e.g., schools) assigned to each condition. 
When w covariates are included at the second 
level the degrees of freedom of the t-test are 2(
m  – 1) – w. In such designs however, a more 
powerful test can be constructed when the 
intraclass correlation structure is assumed to be 
known (Blair & Higgins, 1986). Blair and 
Higgins showed that in two-level cluster 
randomized designs using an exact F-test with 
larger degrees of freedom is more powerful than 
that used by Hedges and Hedberg. Specifically, 
the test provided by Blair and Higgins had 2(
 mn  – 1) degrees of freedom (assuming no 

covariates), where n  is the number of level-1 
units (e.g., students) within each level-2 unit 
(e.g., school). 

As in two-level cluster randomized 
designs a test with larger degrees of freedom can 
also be constructed for two-level block 
randomized designs when the intraclass 
correlation (clustering) structure is assumed to 
be known. This test is more powerful than the 
typical test based on level-2 unit means because 
it preserves the degrees of freedom that are 
associated with level-1 units (e.g., students). 
Also, the test is exact, examines the same 
hypothesis about the treatment effect and has the 
same non-centrality parameter as the test 
presented by Raudenbush and Liu (2000) in the 
balanced case using the ANOVA framework.  

The only difference between the two 
tests is in the degrees of freedom. The exact t-
test for the treatment effect carried on level-2 
unit (e.g., school) means assuming one treatment 
and one control group has m – 1 degrees of 
freedom when no covariates are included at any 
level, and m – 1 – w degrees of freedom when w 
covariates are included at the second level, 
where m is the total number of level-2 units. 
Note that in this test the number of first level 
units is not taken into account in the degrees of 
the freedom of the test. However, following 
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Blair and Higgins (1986) a more powerful test 
for two-level block randomized designs can be 
constructed that includes the number of level-1 
units in the degrees of freedom of the test. This 
article provides methods for constructing a more 
powerful test for treatment effects in two-level 
block randomized designs; these methods are 
useful for a priori power computations during 
the design phase of an experiment. 
 

Methodology 
A Two-Level Block Randomized Design 

Following Graybill (1976) and Blair and 
Higgins (1986) consider a simple case of the 
general linear model in matrix notation as 
 

= +y Xβ ε ,                        (1) 
 
where y is a 1N ×  vector (N is the total number 
of observations), X is a 2N ×  (assuming one 
treatment and one control group) design matrix 
for the regression coefficients, β  is a 2 1×  
vector of the regression coefficients to be 
estimated (i.e., treatment and control means), 
and ε  is a 1N ×  vector of residuals that 
follows a multivariate normal distribution with a 

mean of zero and a variance matrix 2σ V , that is 
2( , )ε N 0 Vσ , where 2σ  is the total variance 

in the outcome and is factored out of the 
variance covariance matrix V. If the level-1 
units are nested within level-2 units (the 
clusters), then matrix V has elements that 
represent variances or intraclass correlations and 
ones within each cluster and zeroes between 
clusters. If these variances or intraclass 
correlations are assumed to be known, then 
matrix V is positive definite and known 
(Graybill, 1976). 

Consider a two-level block randomized 
design where level-1 units such as students are 
randomly assigned to one treatment and one 
control condition within level-2 units such as 
schools (the blocks). Suppose that there are m 
level-2 units overall and that the total variance is 

2 2 2
eσ σ τ= + , where 2

eσ  is the level-1 variance 

and 2τ  is the level-2 variance; matrix V then 

has the same structure as the matrix V* which is 

block diagonal { }** m j= ⊗V I V  with m blocks 

(the total number of level-2 units in the sample), 
I is the identity matrix, and ⊗  is the kronecker 

product. The diagonal elements of matrix *
jV  

for cluster j are * 2 2(1 )iitj ev σ ϑ τ= + +  for level-1 

units that receive the treatment within the level-2 

unit, and * 2 2
iicj ev σ τ= +  for level-1 units that do 

not receive the treatment within a level-2 unit, 

where 2 2/tϑ τ τ=  is the proportion of level-2 

unit by treatment variance to the total level-2 
variance ( 0 1ϑ≤ ≤ ) and subscripts i, j, t, c 
represent level-1, level-2 units, and treatment 
and control groups respectively. The off 

diagonal elements of matrix *
jV  are * 2

ikjv τ= . If 

the intraclass correlation are defined as the 
proportion of the between level-2 unit variance 

to the total variance, namely 2 2/ρ τ σ=  and 

the total variance 2σ  is factored out from matrix 
V* matrix V is constructed, which has ones in 
the main diagonal for level-1 units in the control 
group, 1 ϑρ+  in the main diagonal for level-1 

units in the treatment group, ρ  in the off 
diagonal between level-1 units within each 
level-2 unit and zeroes between level-2 units 
(see Appendix). If the intraclass correlation ρ  

and ϑ  are known, which essentially means that 
the proportion of the level-2 unit by treatment 
variance to the total variance is known, then 
matrix V is known.  

To illustrate the structure of matrix V 
consider a simple case where there are two 
schools and within each school two students are 
randomly assigned to a treatment and two 
students to a control group. Assuming the first 

two students receive treatment, * 2/j j=V V σ  

for school j is 
 

1

1

1

1

j

ϑρ ρ ρ ρ
ρ ϑρ ρ ρ
ρ ρ ρ
ρ ρ ρ

+ 
 + =
 
 
 

V , 

 
and V is 
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j

j

 
=  
  

V 0
V

0 V
 

 
where 0 is a 2x2 matrix of zeros, namely 

[0,0,0,0]=0 , expressed as a row vector. In 
this simple case when no covariates are included 
the matrix X is  
 

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1
T  

=  
 

X , 

and  

1

2

β

β
β  

=  
 

. 

 
Finally, the vectors y (the outcome) and e (the 
residuals of y) are expressed as row vectors 

[ ] [ ]1 8 1 8y ,..., y , e ,...,eT T= =y e . 

According to Graybill (1976) when matrix V is 
known the regression estimates of the general 
linear model are computed as  
 

 1 1 1( )T Tβ − − −= X V X X V y ,            (2) 
 
the total variance is estimated as  
 

 2
1 1 1 1 11

( ( ) )
2

T T T

N
− − − − −= −

−
y V V X X V X X V yσ

(3) 
 
and the variances of the regression estimates are 
computed as  
 

 2 1 1var( ) ( )Tβ − −= X V Xσ .          (4) 
 
Following Graybill (1976) and Blair and 
Higgins (1986) the test constructed for the 
hypothesis  

0Hβ =  
 
is a general F-test  
 

 



1 1 1

2

( 0) ( ( ) ) ( 0)
/1

T T T T

F
β β− − −− −= H H X V X H H

σ
(5) 

with 1 and N − 2 degrees of freedom (assuming 
one treatment and one control group). Matrix H 
is a 1×2 design matrix that facilitates the 
contrast among the two treatment conditions and 

 2σ  is defined in equation (3). Specifically, when 
there is one treatment and one control group and 
a researcher is interested in testing the equality 
between the two means, the vector of contrasts 
H = [1, −1], and the vector of coefficients is 

1 2[ , ]Tβ = β β . Note that the proposed test can 

be used to test hypotheses for many general 
linear models including one-way, factorial 
ANOVA, and ANCOVA (Blair & Higgins, 
1986; Graybill, 1976). When the null hypothesis 
is false the test follows a non-central F-
distribution with a noncentrality parameter  
 

1 1 1
2

2

( 0) ( ( ) ) ( 0)
λ

2

T T T T− − −− −= β βH H X V X H H
σ

(6) 
 
and 1, N − 2 degrees of freedom. This test can 
be used for unbalanced or balanced data. 
 
Clustering 

The test proposed herein assumes that 
matrix V is known. This implies that the 
variance of the treatment effect across level-2 
units is known. Eventually, this translates to 
knowing the intraclass correlation ρ  and ϑ , 
which means knowing the proportion of level-2 
unit by treatment variance to the total level-2 
variance. Typically values of population 
parameters are not likely to be known exactly. A 
more realistic assumption for a priori power 
analysis is that there is a range of intraclass 
correlations which will most likely capture the 
real value of the population parameter. Hedges 
& Hedberg (2007) provided a comprehensive 
collection of intraclass correlations for 
achievement data based on national 
representative samples of students. Specifically, 
they gave an array of plausible values of 
intraclass correlations for achievement outcomes 
using recent large-scale studies that surveyed 
national probability samples of elementary and 
secondary students in America. This compilation 
of intraclass correlations is useful for planning 
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two-level designs. The values of intraclass 
correlations ranged typically between 0.10 and 
0.20 for typical samples and were smaller than 
0.10 for more homogeneous samples (e.g., low-
achieving schools). Evidence from two-level 
models of the National Assessment of 
Educational Progress (NAEP) trend data and 
Project STAR data (Konstantopoulos & Hedges, 
2008; Nye, Hedges & Konstantopoulos, 2000) 
also points to intraclass correlations between 
0.10 and 0.20. Finally, evidence from Project 
STAR has suggested that the between school 
variance of the small class effect is typically less 
than 50 percent of the between school variance.  
 
The ANOVA Model 

The proposed test presented in equation 
(5) is a general test that can be used in both 
unbalanced and balanced designs. To simplify 
computations, how the proposed test can be used 
in simple two-level balanced block randomized 
designs is now discussed. Using the ANOVA 
framework the noncentrality parameter of a test 
can be computed, which facilitates power 
computations. In this model, level-1 units are 
randomly assigned to treatment and control 
groups within level-2 units. The number of 
level-2 units are represented by m, and the 
number of level-1 units within each condition by 
n. The assumption is that there is one treatment 
and one control group and hence the total 
sample size is 2N mn= . At this point the 
model does not include any covariates. A 
structural model for a student outcome ijkY , the 

kth level-1 unit in the jth treatment in the ith level-
2 unit can then be described as 
 

ijk j i ij ijkY α β αβ ε= + + + ,           (7) 

 
where αj is the (fixed) effect of the jth treatment 
(j = 1, 2) within level-2 unit i, iβ  is the random 

effect of level-2 unit i (i = 1, …, m), ijαβ  is the 

treatment by level-2 unit interaction random 
effect, and ijkε  is the error term of student k (k = 

1, …, n) within treatment j, within level-2 unit i. 
The level-1, level-2 and treatment by level-2 

unit random effects have variances 2 2 2, ,e tσ τ τ  

respectively. The random effects at different 
levels are orthogonal to each other.  

The objective is to examine the 
statistical significance of the treatment effect, 
meaning to test the hypothesis: 
 

H0: 1 2α α=  or 1 2 0α α− = . 

 
Suppose that a researcher wants to test the 
hypothesis and carries out the usual t- or F-test. 
When the null hypothesis is false, the test 
statistic F has the non-central F-distribution with 

a non-centrality parameter 2λ . In the balanced 
case the non-centrality parameter is defined as 
the expected value of the estimate of the 
treatment effect divided by the square root of the 
variance of the estimate of the treatment effect, 
namely  
 

( )
2 1

2 1 1
2 mn
λ

n
=

+ −
δ

ϑ ρ
             (8) 

 
(Hedges & Hedberg, 2007; Raudenbush & Liu, 
2000). This F-test is based on the level-2 unit 
means and hence the degrees of freedom of the 
denominator of the test are m – 1 assuming no 
covariates at the second level. The power of the 
F-test at level α is  
 

p = 1 – Η[c(α, 1, m–1), 1, m–1, λ2], 
(9) 

 
where c(α,1,ν) is the level α critical value of the 
F-distribution with 1, ν degrees of freedom (e.g., 
c(0.05,1,20) = 4.35) and Η(x, 1, ν, λ) is the 
cumulative distribution function of the non-
central F-distribution with 1, ν degrees of 
freedom and non-centrality parameter λ2. 
Equivalently, the test of the treatment effect and 
statistical power can also be computed using the 
t-statistic that has a non-central t-distribution 
with m – 1 degrees of freedom and a non-
centrality parameter λ  (the square root of 
equation (8)).   

When the intraclass correlation structure 
is assumed known, however, a more powerful F- 
or t-test can be constructed (see equation (5)). In 
the balanced case the non-centrality parameter 
of the test is the same as that reported in 
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equation (8). However, this test has larger 
degrees of freedom, because σ  in equation (5) 

is estimated by σ  in equation (3). Because the 

degrees of freedom associated with σ  are N – 2, 
the degrees of freedom of the denominator of the 
proposed test are N − 2 = 2(mn – 1) assuming 
one treatment and one control and no covariates. 
The power of the F-test at level α is 
 

p = 1 – Η[c(α, 1, 2(mn – 1)), 2(mn – 1), λ2]. 
(10) 

 
Equivalently, the t-statistic has a non-central t-
distribution with 2(mn – 1) degrees of freedom 
and a non-centrality parameter λ . 
 
The ANCOVA Model 

When covariates are included at the first 
and second level the linear model is 
 

1 2 ( )
T T

ijk Aj Ai ijk i Aij A ij kY = + + + + +θ θX Zα β αβ ε  

(11) 
 

where 1
Tθ  = (θ11, …, θ1r) is a row vector of r 

first-level covariate effects, 2
Tθ  = (θ21, …, θ2w) 

is a row vector of w second-level covariate 
effects, Xijk is a column vector of r first-level 
covariates (e.g., student characteristics) in the jth 
treatment in the ith second level unit, Zi is a 
column vector of w second-level covariates (e.g., 
school characteristics); all other terms have been 
previously defined. The subscript A indicates 
that both the treatment and the random effects 
are adjusted by the covariates in the model. In 
principle however, assuming randomization is 
successful, the treatment effect is orthogonal to 
the covariates and the error term and the 
expected value of the adjustment is zero. The 
first and second level random effects are 
adjusted by first and second level covariates 
respectively. The first level covariates are 
centered around their second level unit means 
and therefore they do not explain variance of the 
random effects at the second level (i.e., group-
mean centering). Centering also ensures 
orthogonality among predictors at the first and 
second level. All first level covariates are treated 
as fixed at the second level. When covariates are 

included in the model the level-1 and level-2 

residual variances are defined as 2 2,Re Rσ τ  

respectively, and the residual total variance is 
2 2 2
RT Re Rσ σ τ= +  (and R indicates residual 

variances because of the adjustment for the 
effect of covariates). The adjusted level-2 
intraclass correlation is defined then as 
 

2

2 2
R

A
RT

= τρ
σ

.                         (12) 

 
Covariates are useful when conducting 

power analysis because they typically increase 
the power of the test for the treatment effect. 
Specifically, covariates that are significantly 
associated with the outcome typically explain 
some proportion of the variance in the outcome, 
which in turn results in a reduction of the 
unconditional intraclass correlations and the 
standard errors of the treatment effects. In 
experimental studies this indicates that the F- or 
the t-tests for the treatment effects will have 
higher values when covariates are included in 
the model because the treatment effect remains 
virtually unchanged due to the fundamental 
principle of randomization, which assumes 
independence between treatment effects and 
covariates. That is, a researcher can achieve 
optimal power estimates (e.g., 0.80) without 
having to increase sample size. In fact, as Cook 
(2005) argues covariates with considerable 
predictive power are important for reducing the 
number of larger units such as schools needed, 
and for making the study less expensive or 
affordable given a fixed budget. Powerful 
covariates at the first level, when modeling 
achievement data, include previous achievement 
and socioeconomic status (Hedges & Hedberg, 
2007). Powerful covariates at the second level 
include school aggregate measures of 
achievement or socioeconomic status.  

In a balanced design within the 
ANCOVA framework the objective is to 
examine the statistical significance of the 
treatment effect net of the possible effects of 
covariates, namely to test the hypothesis 
 

H0: 1 2A A=α α  or 1 2 0A A− =α α  
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which involves the computation of the typical t 
or F-test statistic. When the null hypothesis is 
false, the F-test statistic has the non-central F-
distribution with a non-centrality parameter  
 

( )
2

1 2 1

1

2
2
A

mn
λ ,

n
=

+ −
δ

η η ϑ η ρ
     (13)  

where  
2 2 2 2

2 1R Re e/ , /η τ τ η σ σ= =             (14) 

 
(Hedges & Hedberg 2007; Murray, 1998). The 
η’s indicate the proportion of the variances at 
each level of the hierarchy that is still 
unexplained (percentage of residual variation). 
For example, when 1η = 0.25, this indicates that 

the variance at the first level decreased by 75% 
due to the inclusion of covariates such as pre-
treatment measures. The degrees of freedom of 
the F-test are 1, 2(mn – 1) – w – r. The power of 
the F-test at level α is 
 

1
 2

a

c( ,1,2( mn – 1) – w – r ),
p –

1,2( mn – 1) – w – r,

α 
= Η  λ 

 

 (15) 
 
Equivalently, the t-statistic has a non-central t-
distribution with 2(mn – 1) – w – r degrees of 

freedom and a non-centrality parameter Aλ  

(square root of equation (13)). 
 

Results  
Computational Example 

Power comparisons between two t-tests 
are now discussed: the typical t-test carried out 
on level-2 unit means with m – 1 – w degrees of 
freedom and the proposed t-test with 2(mn – 1) – 
w – r degrees of freedom. The power 
computations are presented in Tables 1 and 2 
and apply to balanced designs. For this exercise 
power is computed assuming one treatment and 
one control group for two-tailed t-tests, or 
equivalently an F-test, at the 0.05 significance 
level assuming no covariates in the model. In 
Table 1 the effect size parameter is δ = 0.25, and 
in Table 2 the effect size parameter is δ = 0.40. 
Three values of intraclass correlations were 
used: 0.05, 0.10, and 0.20. These values have 

been reported in previous work as typical values 
for homogeneous and more heterogeneous 
samples (Hedges & Hedberg, 2007; Raudenbush 
& Liu, 2000). Results from Project STAR have 
also indicated that ϑ  ≤  0.50. The first step in 
the power analysis is to compute the 
noncentrality parameter. Suppose that there are a 
total of m = 6 schools, n = 15 students in each 
condition (30 students total per school) within 
each school and that δ = 0.40, ρ  = 0.10, and ϑ  
= 0.50. The noncentrality parameter using 
equation (8) is 
 

( )
2 6 15 1

0 4 4 36
2 1 15 0 5 1 0 10

*
λ . .

* . * .
= =

+ −
 

 
and the degrees of freedom are 6 – 1 = 5 for the 
test using the level-2 means and 2*(6*15 – 1) = 
178 for the proposed test. Using equation (10) 
the power is 0.39 and using equation (11) the 
power is 0.55 (see seventh row in Table 2). The 
functions for the noncentral F- or t-test are 
available in mainstream packages such as SPSS 
(the functions are Ncdf.F or Ncdf.T), SAS 
(using the cumulative distribution functions, 
CDF, of the F- or t-distribution), S-Plus (the 
functions are pf or ptnoncent) or R (the 
functions are pf or pt).  

The first column of Table 1 shows the 
number of level-2 units in the sample. The 
second column shows the number of level-1 
units within each condition within each level-2 
unit. The third and fourth columns show values 
of ρ  and ϑ , and columns five and six show the 
degrees of freedom for each test. Finally, 
columns seven and eight show power values for 
each test. The number of level-2 units ranges 
from 6 to 12, and the number of level-1 units per 
condition per level-2 unit ranges from 15 to 30. 
Results from Table 1 suggest that the power of 
the proposed test is always higher than the 
power of the typical test based on level-2 unit 
means. The difference in power is more 
pronounced when the number of level-2 units is 
smaller, the number of level-1 units is larger, 
and ρ , ϑ  are small. For example, when the 
total number of level-2 units m = 6, the number 
of level-1 units n = 30 in each condition per 
level-2 unit, δ = 0.25, ρ  = 0.05, and ϑ  = 0.25 
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the power is 0.54 for the proposed test and 0.39 
for the typical test that uses level-2 unit means. 
The difference in power becomes smaller 
however, as the number of level-2 units 
increases.  

The structure of Table 2 is identical to 
that in Table 1. As expected, because the effect 
size is larger, power estimates in Table 2 are 
larger. Again, the power of the proposed test is 
always higher than the power of the typical test 
based on level-2 unit means. As in Table 1, the 
difference in power is more pronounced when 
the number of level-2 units is smaller, the 
number of level-1 units is larger, and ρ , ϑ  are 
smaller. For example, when the total number of 
level-2 units m = 6, the number of level-1 units n 
= 30 in each condition per level-2 unit, δ = 0.40, 
ρ  = 0.10, and ϑ  = 0.25 the power is 0.84 for 
the proposed test and 0.66 for the typical test 
based on level-2 unit means. The difference in 
power becomes smaller as the number of level-2 
units becomes larger. Overall, power is 
positively affected by the effect size and the 
number of level-1 and level-2 units, and 
negatively affected by ρ , ϑ , which suggests 
that the larger the between level-2 unit variance 
of the treatment effect the smaller the power, 
other things being equal. 

These findings replicate the results 
presented by Blair and Higgins for two-level 
cluster randomized designs. The power 
estimates of the proposed test will always be 
larger than those obtained by the test based on 
the level-2 unit means, and the difference in 
power is larger when the number of the level-2 
units is smaller, the number of level-1 units is 
larger and the between level-2 unit variance of 
the treatment effect is smaller. However, as the 
number of level-2 units increases, the difference 
in power between the two tests decreases, and 
when the number of level-2 units becomes 
infinitely large the two tests provide almost 
identical estimates of power. 

 
Conclusion 

This study proposed a more powerful test for 
treatment effects in two-level block randomized 
designs where, for example, students within 
schools are randomly assigned to a treatment 
and a control group. The proposed test statistic is 

more powerful than the typical test based on 
level-2 unit means because it preserves the 
degrees of freedom that are associated both with 
level-2 and level-1 units. The test can be used to 
compute power both in unbalanced and balanced 
designs. However, this study focused on the 
balanced case. The assumption of the proposed 
test is that the between level-2 unit variance of 
the treatment effect is known, that is, ρ , ϑ  are 
known.  

In education, when the outcome is 
achievement, there is evidence that the level-2 
intraclass correlation ranges typically from 0.10 
to 0.20, and it is less than 0.10 for more 
homogeneous samples. There is also some 
evidence that the between level-2 unit variance 
of the treatment effect is typically less than 50 
percent of the between level-2 unit variance. As 
with some statistical procedures a limitation of 
the current test is that the information used to 
compute power is not always known exactly. 
Nonetheless, for a priori power analysis some 
knowledge of clustering and effect sizes is 
always necessary for computing power of the 
typical test based on level-2 unit means 
(Raudenbush & Liu, 2000). 

It is important to stress that the methods 
for a priori power computations provided are 
intended to serve simply as useful guides for 
experimental designs; the sample sizes 
proposed, although informative, should be 
treated as approximate and not exact (Kraemer 
& Thieman, 1987). The results of the methods 
presented are accurate as long as the 
assumptions about the model and the tests, as 
well as the estimates of effect sizes and 
intraclass correlations, are accurate. Regardless, 
assuming educated or accurate guesses for the 
information used to compute the power in the 
proposed test produce higher estimates of power 
than in the typical test, especially when the 
number of level-2 units and the intraclass 
correlations are small. The findings of this study 
are useful because in education and the social 
sciences many times researchers focus on 
homogeneous groups (e.g., minorities, 
disadvantaged students). In addition, sampling 
fewer level-2 units (e.g., schools) is cost-
effective because it reduces the cost of the study 
overall without compromising statistical power. 
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Table 1: Power Comparisons between a F-test Based on Level-2 Unit Means 
and the Proposed F-test: Effect Size is 0.25 

Number of 
Level-2 
Units 

Number 
of Level-1 

Units 

Intraclass 
Correlation 

Theta 
df/Level-2 
Unit Means 

df/ 
All 

Observations 

Power/Level-2 
Unit Means 

Power/ 
All 

Observations 

6 15 0.05 0.25 5 178 0.25 0.35 

6 30 0.05 0.25 5 358 0.39 0.54 

6 15 0.05 0.50 5 178 0.22 0.31 

6 30 0.05 0.50 5 358 0.32 0.44 

6 15 0.10 0.25 5 178 0.23 0.31 

6 30 0.10 0.25 5 358 0.32 0.45 

6 15 0.10 0.50 5 178 0.19 0.25 

6 30 0.10 0.50 5 358 0.24 0.33 

6 15 0.20 0.25 5 178 0.20 0.27 

6 30 0.20 0.25 5 358 0.25 0.34 

6 15 0.20 0.50 5 178 0.15 0.20 

6 30 0.20 0.50 5 358 0.17 0.23 

12 15 0.05 0.25 11 358 0.53 0.60 

12 30 0.05 0.25 11 718 0.76 0.83 

12 15 0.05 0.50 11 358 0.47 0.54 

12 30 0.05 0.50 11 718 0.65 0.73 

12 15 0.10 0.25 11 358 0.48 0.55 

12 30 0.10 0.25 11 718 0.66 0.74 

12 15 0.10 0.50 11 358 0.39 0.45 

12 30 0.10 0.50 11 718 0.50 0.58 

12 15 0.20 0.25 11 358 0.41 0.48 

12 30 0.20 0.25 11 718 0.52 0.60 

12 15 0.20 0.50 11 358 0.30 0.34 

12 30 0.20 0.50 11 718 0.35 0.40 
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Table 2: Power Comparisons between a F-test Based on Level-2 Unit Means 
and the Proposed F-test: Effect Size is 0.4 

Number of 
Level-2 
Units 

Number 
of Level-1 

Units 

Intraclass 
Correlation 

Theta 
df/Level-2 
Unit Means 

df/ 
All 

Observations 

Power/Level-2 
Unit Means 

Power/ 
All 

Observations 

6 15 0.05 0.25 5 178 0.53 0.71 

6 30 0.05 0.25 5 358 0.75 0.91 

6 15 0.05 0.50 5 178 0.47 0.64 

6 30 0.05 0.50 5 358 0.65 0.83 

6 15 0.10 0.25 5 178 0.48 0.66 

6 30 0.10 0.25 5 358 0.66 0.84 

6 15 0.10 0.50 5 178 0.39 0.55 

6 30 0.10 0.50 5 358 0.51 0.69 

6 15 0.20 0.25 5 178 0.42 0.57 

6 30 0.20 0.25 5 358 0.52 0.70 

6 15 0.20 0.50 5 178 0.30 0.42 

6 30 0.20 0.50 5 358 0.35 0.49 

12 15 0.05 0.25 11 358 0.90 0.94 

12 30 0.05 0.25 11 718 0.99 1.00 

12 15 0.05 0.50 11 358 0.85 0.91 

12 30 0.05 0.50 11 718 0.96 0.98 

12 15 0.10 0.25 11 358 0.86 0.92 

12 30 0.10 0.25 11 718 0.97 0.99 

12 15 0.10 0.50 11 358 0.77 0.84 

12 30 0.10 0.50 11 718 0.88 0.93 

12 15 0.20 0.25 11 358 0.79 0.86 

12 30 0.20 0.25 11 718 0.90 0.94 

12 15 0.20 0.50 11 358 0.65 0.70 

12 30 0.20 0.50 11 718 0.71 0.79 
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Appendix 

The diagonal elements of matrix *
jV  for cluster j 

are * 2 2(1 )iitj ev σ ϑ τ= + +  for level-1 units that 

receive the treatment within the level-2 unit, and 
* 2 2
iicj ev σ τ= +  for level-1 units that do not 

receive the treatment within a level-2 unit. The 

off diagonal elements of matrix *
jV  are * 2

ikjv τ=

.  The structure of the block diagonal matrix *V  
is  
 

1

2*

m

 
 
 =
 
 
 







Α
Α

Α

0 0
0 0

V

0 0

 

 
assuming m level-2 units, where Aj is a 2n x 2n 
matrix 
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assuming n level-1 units per condition. 
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