Molecular Pathways of Chemokine Receptor Desensitization by IL-16 Pertinent to Multiple Sclerosis

Dusanka S. Skundric
Wayne State University, skundric@wayne.edu
NOTICE IN COMPLIANCE WITH PUBLISHER POLICY: This is an open access article distributed under the terms of the Creative Commons Attribution-Noncommercial No Derivative 3.0 License, which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially.
Article:

Reduction of CD8+ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate


Letter in Response to Above Article:

Molecular pathways of chemokine receptor desensitization by IL-16 pertinent to multiple sclerosis

Dusanka S. Skundric, Assistant Professor

Department of Immunology and Microbiology, Wayne State University, Detroit, MI, USA

Multiple sclerosis (MS) is a progressive, autoimmune CD4+ T cell-mediated, inflammatory, demyelinating disease of central nervous system (CNS). Long-term MS therapy increases risk of opportunistic viral infections due to non-specific immune down-regulation. The important study from Spencer et al. revealed distinct changes within lymphocyte and leukocyte subsets in MS patients treated with dimethyl fumarate (DMF). [1]

An overall reduction in immune cell counts and pronounced down-regulation of CD8+ T cells weaken innate immune responses to viruses in DMF treated MS patients. Viral infection can trigger autoimmune responses primary to development or progression of MS. Migration of chemokine receptor expressing activated autoimmune cells can be potentially controlled by viral chemokines. Crystallography data revealed interaction between viral vMIP-II and CXCR4. [2] CXCR4 and its endogenous ligand chemokine CXCL12 are implicated in MS. A CD4+ T cell specific chemotactic factor, cytokine IL-16, by binding to CD4 co-receptor induces receptor desensitization of CXCR4 independent of p56lck enzymatic activity. [3] Production of IL-16 corresponds to CD4+ T cell inflammation, demyelination, and axonal degeneration in MS lesions. [4] Multifaceted properties of IL-16 include regulation of autoimmune and viral responses. [5] I propose use of IL-16 in combination MS therapy to avert complications of immune suppression.


For disclosures, please contact the editorial office at nnnjournal@neurology.org.

Published April 1, 2015

http://nn.neurology.org/content/2/3/e76.short/reply#nnn_el_60 retrieved on 5/19/15