
Wayne State University

Mathematics Faculty Research Publications Mathematics

1-1-2005

Gap Labeling
Claude Schochet
Wayne State University, clsmath@gmail.com

This Article is brought to you for free and open access by the Mathematics at DigitalCommons@WayneState. It has been accepted for inclusion in
Mathematics Faculty Research Publications by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
C. Schochet, Gap Labeling, featured review in Mathematical Reviews 2005f:46121
Available at: https://digitalcommons.wayne.edu/mathfrp/13

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/mathfrp
https://digitalcommons.wayne.edu/math


Previous Up Next Article

MR2018220 (2005f:46121a)46L55 (19K14 35J10 37B50 46L80 52C23 58J42 81V70)

Benameur, Moulay-Tahar (F-LYON-GD); Oyono-Oyono, Herv́e (F-CLEF2-LPM)
Gap-labelling for quasi-crystals (proving a conjecture by J. Bellissard). (English summary)
Operator algebras and mathematical physics(Constanţa, 2001), 11–22,Theta, Bucharest, 2003.Citations
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FEATURED REVIEW.
This joint review covers the two papers in the heading as well as an article by J. Bellissard,

R. Benedetti and J.-M. Gambaudo [“Spaces of tilings, finite telescopic approximations, and gap-
labeling”, Comm. Math. Phys., to appear] (hereafter BO, KP and BBG, respectively).

The gap labeling theorem was originally conjectured by Bellissard [inFrom number theory to
physics (Les Houches, 1989), 538–630, Springer, Berlin, 1992;MR1221111 (94e:46120)]. The
problem arises in a mathematical version of solid state physics in the context of aperiodic tilings.
Its three proofs, discovered independently by the authors above, all lie inK-theory. Here is the
core result of these papers:

Let Σ be a Cantor set and let
Σ×Zd → Σ

be a free and minimal action ofZd onΣ with invariant probability measureµ. Let

µ:C(Σ)→ C
and

τµ:C(Σ) o Zd → C
be the traces induced byµ and denote likewise their induced maps inK-theory. Then

µ (K0(C(Σ))) = τµ

(
K0(C(Σ)×Zd)

)
as subsets ofR.

We shall try to explain why this core result has anything to do with something called gap labeling.
This review is organized as follows:

(1) The origin of the problem and its formulation in mathematical terms.
(2) Foliated spaces as a setting for the common formalism.
(3) The BBG proof.
(4) Common features of the BO and KP proofs.
(5) The BO proof.
(6) The KP proof.
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(7) Earlier partial results.
1. The origin of the problem. We model the motion of a particle in a solid via the tight binding

approximation as follows. The solid is modeled by a tiling, where the tiles represent the locations
of the atoms, and the particle hops from tile to tile. The (simplified!) quantum mechanical model
of this motion is a certain self-adjoint Schrödinger operator on the space of square summable
functions on the set of tiles. So the position of the particle is represented by a tile and momentum
corresponds to translation. We are interested in the spectrum of this operator. In the crystal
context, Bloch theory shows that the periodic structure of the atoms leads to a spectrum consisting
of bands—i.e., a union of closed intervals, and hence there are gaps in the spectrum. The challenge
in the present problem is to determine the gaps in the spectrum of the Schrödinger operator in a
solid which is not periodic but is almost periodic.

More formally, a tilingT of Rd is a collection of subsets{t1, t2, . . . } called tiles, such that their
union isRd and their interiors are pairwise disjoint. We assume that each tile is homeomorphic to
a closed ball. Any translateT +x of T by somex ∈ Rd is again a tiling. Take the setT +Rd of all
translates and endow it with a metric: for0 < ε < 1, say, the distance betweenT1 andT2 in T +Rd

is less thanε if there are vectorsx1, x2 of length less thanε such thatT1 +x1 andT2 +x2 coincide
on the open ballB(0, 1/ε). Let Ω denote the closure ofT + Rd in this metric. ThenRd acts on
Ω; the action is denotedω. The spaceΩ is the continuous hull of the tiling. (This is the quick and
dirty definition of the metric andΩ: there are much better and more natural definitions—cf. BBG.)

We assume that for anyR > 0 there are only finitely many subsets ofT whose union has diameter
less thanR (the so-called finite pattern condition), which ensures thatΩ is compact. The orbit of
T is obviously dense. We assume that every orbit is dense: in other words, that theRd action on
Ω is minimal. This is the case if and only if for every finite patchP in T there is someR > 0
such that for eachx ∈ Rd there is a translate ofP contained inT ∩B(x,R). This is called the
repetitivity condition.

There is an equivalent version of this construction using the notion of repetitive Delone sets
of finite type due to Lagarias. Bellissard, D. J. L. Herrmann and M. Zarrouati [inDirections
in mathematical quasicrystals, 207–258, Amer. Math. Soc., Providence, RI, 2000;MR1798994
(2002a:82101)] replaced a discrete point set by the sum of mass one Dirac measures at each site.
The compactness of the hull is then a trivial consequence of well-known theorems in measure
theory. This point of view is more natural from the point of view of the hull topology.

A tiling T is aperiodic ifT + x 6= T for all x ∈ Rd r {0}, and a tiling is strongly aperiodic ifΩ
contains no periodic tilings. Assume henceforth thatT is strongly aperiodic and satisfies the finite
pattern and repetitivity conditions; thusΩ is compact with a free and minimalRd-actionω. There
is a naturalC∗-algebra to model the situation, namelyC(Ω) o Rd, referred to by Bellissard as the
noncommutative Brillouin zone. Bellissard’s deep insight was to regard the dynamical system via
thisC∗-algebra as a noncommutative space, in the sense introduced by Alain Connes, and to show
that the resolvents of the Schrödinger operator lie in it. Gaps in the spectrum will yield projections
in C(Ω) o Rd and the classes of those projections lie inK0(C(Ω) o Rd). Any trace on theC∗-
algebra yields a homomorphismK0(C(Ω) o Rd)→ R whose image is a countable subgroup of
R. For natural choices of the trace, these numbers have physical and mathematical meaning. They
are related to the integrated density of states and also can be obtained experimentally. Thus it is
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worthwhile to try to determine this subgroup ofR.
L. A. Sadun and R. F. Williams [Ergodic Theory Dynam. Systems23 (2003), no. 1, 307–316;

MR1971208 (2004a:37023)] showed that the hullΩ contains a Cantor setΣ with a minimal
Zd-action such that there is a homeomorphism

Σ×Zd Rd ∼= Ω.

(The setΣ can be constructed as a canonical transversal. To do so, each prototile is associated
with a point in its interior; then takeΣ to be the union of the tilings having one tile with point
at the origin. ThenΣ is defined modulo the choice of a point in each prototile. In the description
via a Delone set there is no choice, since the position of atoms is already fixed and therefore
the transversal becomes “canonical”.) This homeomorphism does not conjugate theRd-actions.
However, KP show that there is a strong Morita equivalence of associatedC∗-algebras

C(Σ) o Zd ≈ C(Ω) o Rd

and so these twoC∗-algebras have isomorphicK-theory groups. We regardΣ with its Zd-action
as a discrete model for the foliated spaceΩ.

2. Foliated spaces. Every point inΩ has an open neighborhood of the formU ×N , whereU is
open inRd andN is a Borel subset ofΩ. If N were an open subset of Euclidean space then this
would be the local picture of a foliated manifold. This is not the case generally. Instead, this is the
local picture of a foliated space.

A side note on terminology. In ancient times a lamination was a space obtained by deleting some
leaves of a foliated manifold. C. C. Moore and the reviewer [Global analysis on foliated spaces,
Springer, New York, 1988;MR0918974 (89h:58184); second edition, Cambridge Univ. Press, to
appear] introduced foliated space to describe a space whose local picture isU ×N as above.
This includes laminations as well as other situations such as the continuous hull. This usage is
found, e.g., in [A. Candel and L. Conlon,Foliations. I, Amer. Math. Soc., Providence, RI, 2000;
MR1732868 (2002f:57058)]. More recently,É. Ghys [in Dynamique et ǵeoḿetrie complexes
(Lyon, 1997), ix, xi, 49–95, Soc. Math. France, Paris, 1999;MR1760843 (2001g:37068)] and
others have taken to using lamination for this more general concept. We will stick with the foliated
space terminology.

Suppose given aZd-invariant probability measureµ:C(Σ)→ C. This gives rise to an invariant
transverse measure onΩ with corresponding Ruelle-Sullivan currentCµ and associated homology
class

[Cµ] ∈Hτ
d (Ω).

HereHτ
∗ denotes tangential homology [cf. C. C. Moore and C. L. Schochet, op. cit. (Chapter III)].

This gives rise to traces
µ:C(Σ)→ C and τµ:C(Σ) o Zd → C

and associated homomorphisms

µ:K0(C(Σ))→ R and τµ:K0(C(Σ) o Zd)→ R.

The groupK0(C(Σ)) is isomorphic toC(Σ, Z), the continuous, integer-valued functions onΣ,
and we may describe its image under the traceµ(K0(C(Σ))) as the subgroup ofR generated by
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the measures of the clopen sets ofΣ. It is not very hard to prove that

µ
(
K0(C(Σ))

)
⊆ τµ

(
K0(C(Σ) o Zd)

)
.

The deepest part of the gap labeling theorem is to demonstrate that this inclusion is actually an
equality of sets.

Note that each gap in the spectrum of the self-adjoint operator associated to the motion of the
particle in the initial tiling corresponds to a projection in theC∗-algebraC(Ω)oRd of the foliated
spaceΩ and hence to a class in

K0(C(Ω) o Rd)∼= K0(C(Σ) o Zd).

Bellissard, Herrmann and Zarrouati [op. cit.] proved that the integrated density of the states of the
operator depends only upon the noncommutative spaceΩ itself, and not upon the operator. Thus
the possible values of the gap labeling are independent of the choice of operator; they depend only
upon the noncommutative topology ofΩ.

All three proofs of the gap labeling theorem proceed by translating the gap labeling problem
to tangential cohomology via some version of the Chern character and then by a combination of
direct computation and deep general results.

3. The BBG proof. BBG consider a somewhat more general situation than described above. As
this review focuses upon theK-theory result, we must omit details. We urge the reader to study
the paper, as it has interesting applications beyond the immediateK-theoretic concern of the gap
labeling theorem. BBG provide a geometric analysis of the foliated space itself. They represent
Ω as topologically conjugate to the inverse limit of expanding flattening sequences of branched
oriented flat manifolds of dimensiond (BOF d-manifolds) withRd action by parallel transport
under constant vector fields. The cohomology of the BOF manifolds is analyzed combinatorially
via cellular cohomology and a spectral sequence is used to calculate theK-theory of the associated
C∗-algebras. Taking direct limits then yields a very concrete description ofK∗(C(Ω o Rd)). The
associated Ruelle-Sullivan maps are then explicitly calculated. BBG use a partial Chern character
mapc and then must deal with the diagram

K0(C(Ω) o Rd) c−−→ Hd
τ (C(Ω) o Rd)yτµ

y(−)∩Cµ

R
∼=−−→ R

where∩Cµ is the cap product by the class[Cµ] ∈Hτ
d (Ω) of the Ruelle-Sullivan current induced

by the trace. Their proof requires the use of Connes’ Thom isomorphism theorem [A. Connes,
Adv. in Math.39 (1981), no. 1, 31–55;MR0605351 (82j:46084)] as well as cyclic cohomology
[A. Connes, inGeometric methods in operator algebras (Kyoto, 1983), 52–144, Longman Sci.
Tech., Harlow, 1986;MR0866491 (88k:58149)].
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4. Common features of the BO and the KP proofs. Consider the diagram

K0(C(Σ))
µ−−→ Ryi∗

y∼=
K0(C(Σ o Zd))

τµ−−→ Rym.e.
y≡

K0(C(Ω o Rd))
τµ−−→ Rx∼=ϕc

x≡
Kd(C(Ω)) Rychd

y≡
Hd

τ (Ω; R)
∩Cµ−−→ R

whereΣ is the given Cantor set with the givenZd action,

Ω = Σ×Zd Rd

is the suspension of the action,ϕc is Connes’ Thom isomorphism,i∗ is the map induced by the
inclusion ofC∗-algebras, m.e. is the isomorphism induced by the Morita equivalence of theC∗-
algebras, and (this is a result of T. Fack and G. Skandalis [Invent. Math.64 (1981), no. 1, 7–14;
MR0621767 (82g:46113)])

ϕc([E]) = inda[DE] ∈K0(C(Ω o Rd))

whereinda[DE] is the analytic index of the DiracD operator twisted by the bundleE. The top
square commutes by the definition of the traces. The middle square is shown to commute by
looking carefully at properties of the Morita equivalence.

The bottom rectangle commutes by the index theorem for foliated spaces. KP prove this as KP
2.4, and BO prove it as BO 4.2. (SinceΩ is a foliated space but not a foliated manifold, one needs
the version of the Index Theorem established by Moore and the reviewer [op. cit.].) The analogous
result of BBG is Theorem 6.1, which they prove by reduction to a result in cyclic cohomology [A.
Connes, op. cit.;MR0866491 (88k:58149)].

5. The BO proof. BO filter the leaves ofΩ and obtain a pair of spectral sequences

E2 = H∗(Zd;C(Ω, Z)) =⇒K∗(C∗(C(Ω) o Rd))

and
Ẽ2 = H∗(Zd;C(Ω, R)) =⇒H∗

τ (C(Ω) o Rd).

The Chern character induces a natural transformation

ch : Er → Ẽr.

Both spectral sequences collapse at theE2 level, essentially becausech⊗Q is an isomorphism.
This makes it possible to explicitly identify the image of

ch : K∗(C∗(C(Ω) o Rd))−→H∗
τ (C(Ω) o Rd)

asH∗(Zd;C(Ω, Z)). This integrality result leads to an identification of the top component of the
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Chern character and implies the gap labeling theorem.
6. The KP proof. KP rely on a less commutative approach. Letπ : Σ×Rd → Ω be the quotient

map, letL denote the union of the hyperplanes parallel to the coordinate axis and going through
the points ofZd, letY = π(Σ×L) andj: Ω−Y → Ω be the inclusion, and let

α : K0(C(Σ))→K0(C(Ω) o Rd)

be the map described by Connes in [Noncommutative geometry, Academic Press, San Diego,
CA, 1994;MR1303779 (95j:46063)(p. 120)] (modified for foliated spaces) that associates—to a
clopen set in a transversal to a foliation—a projection in its foliation algebra. They show (KP 3.2)
that the natural diagram

K0(C(Σ)) α−−→ K0(C(Ω) o Rd)yβ
xϕc

Kd(C0(Ω−Y ))
j∗−−→ Kd(C(Ω))

commutes, whereβ is Bott periodicity. Then an explicit study of the partial Chern characterchn

implies the gap labeling theorem.
7. Earlier results. To complete this review, we note that there were previous partial results

on the problem. The conjecture was first established in the cased = 1 by Bellissard [op. cit.]
using the Pimsner-Voiculescu long exact sequence, and the cased = 2 was done by A. van Elst
[Rev. Math. Phys.6 (1994), no. 2, 319–342;MR1269302 (95f:46122)] using a similar technique.
The d = 2 result was reestablished using the Kasparov spectral sequence in [J. Bellissard, E.
Contensou and A. Legrand, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 2, 197–200;
MR1646928 (99h:46131)]. In the case where the hull is given by an action ofZd on a Cantor
setΣ, A. H. Forrest and J. R. Hunton [Ergodic Theory Dynam. Systems19 (1999), no. 3, 611–
625;MR1695911 (2000e:19006)] used spectral sequence techniques to prove that theK-theory
group is isomorphic to the group cohomologyH∗(Zd;C(Σ, Z)), which made calculation possible
in many practical situations that occur in physics, as well as the cased = 3.
{Editorial remark: The paper by Bellisard, Benedetti and Gambaudo (BBG) is expected to

appear, and will be linked to this review once it is indexed in the MR database.}
Reviewed byClaude Schochet
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