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Abstract The advent of complete-genome genotyping across phenotype cohorts has provided a rich source of in-

formation for bioinformaticians. However the search for SNPs from this data is generally performed on a study-by-

study case without any specific hypothesis of the location for SNPs that are predictive for the phenotype. We have 

designed a method whereby very large SNP lists (several gigabytes in size), combining several genotyping studies at 

once, can be sorted and traced back to their ultimate consequence in protein structure. Given a working hypothesis, 

researchers are able to easily search whole genome genotyping data for SNPs that link genetic locations to pheno-

types. This allows a targeted search for correlations between phenotypes and potentially relevant systems, rather 

than utilizing statistical methods only. HyDn-SNP-S returns results that are less data dense, allowing more thorough 

analysis, including haplotype analysis. We have applied our method to correlate DNA polymerases to cancer pheno-

types using four of the available cancer databases in dbGaP. Logistic regression and derived haplotype analysis indi-

cates that ∼80 SNPs, previously overlooked, are statistically significant. Derived haplotypes from this work link 

POLL to breast cancer and POLG to prostate cancer with an increase in incidence of 3.01- and 9.6-fold, respectively. 

Molecular dynamics simulations on wild-type and one of the SNP mutants from the haplotype of POLL provide in-

sights at the atomic level on the functional impact of this cancer related SNP. Furthermore, HyDn-SNP-S has been 

designed to allow application to any system. The program is available upon request from the authors. 
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1. INTRODUCTION 

In recent years, the amount of genomic data on disease 

phenotypes has increased exponentially. The decreasing 

cost of genetic testing, along with the future promise of 

personalized medicine has resulted in a boom in individual 

genomic data [1–5]. Most bioinformatic techniques deter-

mine clusters of mutations that may be followed and used 

as a diagnostic tool in various diseases [6–9]. Traditional 

analysis of genome wide association studies (GWAS) fo-

cus on a single phenotype, and aim to find SNPs that show 

statistically significant association with the phenotype in 

any of the measured genes. In most cases these analysis do 

not have an a priori hypothesis of the locations of the SNPs. 

Therefore, very stringent statistical criteria are needed to 

obtain SNPs that are predictive, resulting in only a small 

number of SNPs being identified. Few studies have lever-

aged the vast information generated to identify new SNPs 

with clear functional impact on disease onset [10–13]. 

Moreover, tracking a mutation resulting from these 

SNPs through transcription and translation to their ultimate 

effects in a cell is largely left to the scientific community at 

large. In addition, correlating a mutation to a phenotype is 

a daunting task for researchers who typically work at a 

cellular level. Most biochemists or molecular biologists 

have a biosystem of interest, and broad sweeping GWAS 

studies are typically intractable for their purposes. It was 

our intent to create a tool that would allow a user to query 

genomic-level data for their system of interest. There have 

been examples previously where this has been done on a 

single GWAS study, but not on combined data sets [14]. 

To this end, we developed an algorithm whereby a re-

searcher can directly query one or several GWAS studies 

for their gene region of interest. We term this method hy-

pothesis driven SNP search (HyDn-SNP-S). The software 

returns all SNP mutations within their gene region, along 

with information on which phenotype the mutation occurs 

in. Further statistical methods can then be applied to the 

GWAS data. Additionally, by returning a focused set of 

mutations, tracking the consequences of the mutations 

through the RNA and protein levels becomes trivial. 

The workflow shown in Fig. 1 outlines the process 

used in HyDn-SNP-S. Researchers can select one or many 

GWAS for the phenotypes of interest, apply the SNP-

Phenotype program to search for their gene of interest, and 

further analysis can be carried out as desired. Our program 

returns both intronic and exonic SNPs, allowing the inves-
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tigation of impact on RNA, gene processing or protein 

sequence. The simplicity of the software implementation 

makes this method ideal for researchers not comfortable 

with large-scale bioinformatic analyses, or those who lack 

the resources to perform such studies. 

 

 
 
Fig. 1. Flowchart of the HyDn-SNPs method. Upon development of 
a hypothesis, researchers select GWAS studies with relevant phe-
notypes, and obtain locations of the genes of interest. Following 
application of the algorithm, SNPs can be separated by intronic or 
exonic. Further analysis can be performed by in vitro validation or 
computational studies. 

 

 

The database of genotypes and phenotypes (dbGaP, 

http://www.ncbi.nlm.nih.gov/gap) was developed to “ar-

chive and distribute the results of studies that have investi-

gated the interaction of genotype and phenotype”. Data is 

distributed in the form of either raw genotyping data 

tagged with individual specific data such as gender, race 

and onset of phenotype; or as catenated lists of SNPs. This 

repository provides an ideal source of GWAS data useful 

to researchers with a targeted interest. Users are able to 

freely download the sets of SNPs, in a standard format for 

use with our software. Any phenotype of interest that is 

represented in this database would be a possible point of 

study for a HyDn-SNP-S study. 

In this contribution, we present the development of 

HyDn-SNP-S and its application to search for cancer relat-

ed SNPs on all human DNA polymerases. These enzymes 

are involved in all processes related to DNA replication, 

repair and recombination. The efficiency and fidelity of 

these processes are critical since errors can lead to carcino-

genesis. Numerous studies indicate that mutations in DNA 

polymerases affect characteristics ranging from fidelity, to 

nucleotide incorporation rate, to cell proliferation [15–26]. 

However, a direct link has not been established between 

these mutations and cancer onset. 

Our results uncovered a large number of cancer related 

SNPs on DNA polymerases. Statistical analysis on selected 

studies reveals for the first time the possibility that DNA 

POLL could be a major contributor to cancer risk. Molecu-

lar dynamics simulations were performed on wild-type and 

a SNP mutant on POLL to further investigate the function-

al impact of the mutation. 

2. METHODS 

In this section we describe the algorithm to search for dis-

ease related SNPs based on a given hypothesis and its im-

plementation in an easy to use software package. Subse-

quently we describe the statistical methods to determine 

the association of the SNPs with the phenotype. This is 

followed by a description of the graph analysis of the re-

sulting data from HyDn-SNP-S for the present studies. 

Finally, the details of molecular dynamics (MD) simula-

tions on DNA polymerase lambda structures are described. 

2.1. HyDn-SNP-S 

SNP collections for each phenotype are obtained from 

studies deposited on the database of genotypes and pheno-

types (dbGaP). A header is appended to each data set de-

claring the phenotype associated with each individual 

study. Mutations listed relative to the HuRef and Celera 

genomes are removed, as we are working within the frame 

of reference of the GrCh37 human genome reference build. 

All files containing the SNP collections are subsequently 

catenated into a single searchable resource file. This single 

file allows HyDn-SNP-S to search all relevant SNPs for 

every phenotype that was included in the resource file in 

one single run. Following the generation of this resource 

file, the program HyDn SNPs was used to search for muta-

tions within the gene region of interest. Users enter the 

chromosome, and gene range for searching, and point the 

program to the resource file. Sample resource files are 

available with the HyDn SNPS download. Further infor-

mation and instructions are available in the documentation 

for this program. Any SNPs found that match the chromo-

some and gene location range are deposited into a results 

file. This file lists all the SNP associated information, such 

as ss and rs number, allele, chromosome, chromosomal 

location, contig number, and contig location, and type of 

chip used in the original genotyping experiment. These can 

then be categorized by location; intronic, exonic, or at a 

splice site. For our purposes, exonic SNPs were then com-

pared to reference SNPs to ascertain the extent of prior 

investigation, as well as relative allele frequency in the 

natural population. The consequence of any given SNP 

was determined either by use of the reference SNP data-

base, or in the case of previously unreported SNPs, trans-

lated by use of a DNA codon table in conjunction with the 

gene sequence and protein sequence. HyDnSNPs is availa-

ble upon request from the authors. 

2.2. Statistical analysis 

We utilized four publically available case/control genome 

wide association studies (GWAS) from dbGAP (access 

request #1961) across multiple cancer types (including 

breast, melanoma, lung and prostate cancers) [27–32] to 

determine if SNPs or haplotypes constructed from SNPs in 

our genes of interest (genes coding for all human polymer-

ases) are associated with any of these disease phenotypes. 
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Additionally, we determined if any synergistic results 

across multiple databases exist that may imply a common 

cancer genesis. Multiple genetic modes of inheritance were 

examined: additive, dominant, recessive and genotypic in a 

covariate-adjusted logistic regression analysis associating 

each SNP with the disease phenotype. The maximum like-

lihood estimate of the posterior probabilities of haplotypes 

for each observation was produced using the EM algorithm. 

Score statistics for the association of the haplotypes with 

the cancer phenotype were constructed using these posteri-

or probabilities. We use the R package “haplo.stats” to 

implement these haplotype functions [33]. Logistic regres-

sion is also used to estimate the association of a haplotype 

with the disease phenotype, given the genetic context. As 

we focus on the SNPs in only a few genes, we avoid issues 

with multiple testing, which are burdensome when trying 

to evaluate the association between genetic markers and a 

disease phenotype when measuring thousands or millions 

of genetic variants. 

 

 
 
Fig. 2 Edge-node network of the HyDn-SNPs results. Phenotypes 
and polymerases are shown as nodes, edges are weighted by total 
number of SNPs connecting each phenotype to each polymerase. 
This is also available as an interactive map at 
http://www.chem.wayne.edu/cisnerosgroup/gexf-js2/index2.html 

 

2.3. Graph analysis 

For ease of visual analysis, the data resulting from the 

HyDn-SNP-S search has been transformed into edge-node 

format to allow visual interpretation of the networks of 

phenotypes and polymerases involved in tumorigenesis. 

Frequently more than one polymerase was found to have 

single point mutations within a cohort of cancer patients; 

network analysis allows for easy visual interpretation. 

Edge-node tables were csv formatted for use in Gephi [34], 

visualization was performed with a Fruchterman–Reingold 

[35] algorithm using an area of 15,000 and a gravity of 7.0. 

Nodes and edges were weighted by degree; for these anal-

yses, weight was the number of mutations occurring be-

tween each phenotype and polymerase. 

2.4. MD simulations 

MD was performed on wild-type and the R438W mutant of 

DNA POLL in the binary and ternary conformations 

(PDBID: 1RZT, 2PFQ) using NAMD. The simulations 

were performed using a parallel build of NAMD [36] em-

ploying the CHARMM [37] force field on the XSEDE 

Teragrid. The structures were solvated, and appropriate 

counterions were added to reach 0.5 mM NaCl. A timestep 

of one femtosecond was used, a Langevin thermostat was 

used to maintain temperature at 300 K, and a Nose–Hoover 

Langevin combination method was used to control pres-

sure. The systems were solvated with TIP3P water, neutral-

ized with counter ions and subjected to 1000 steps of con-

jugate gradient minimization and temperature ramped to 

300 K. After equilibration, the systems were run for at least 

14 ns of production time. Frames from the trajectories were 

written every 1 ps. The solvation boxes included a 15 Å 

pad on each face of the box. Long range electrostatics were 

calculated using particle mesh Ewald [38], and van der 

Waals were calculated with a nonbonded cutoff of 8 Å and 

a switching function between 7 and 8 Å. 

 

 
 
Fig. 3. (A) Overlay of Polλ in the binary and ternary conformations. 
DNA is shown in light blue, and the Loop 1 is shown in purple. (B) 
Differences in Loop 1 orientation between the two conformations. 
Distance between position 438 and Loop 1 following an interpola-
tion between the two structures at its furthest (Panel D) and closest 
(Panel C) approaches. 

 

 

Correlation analysis by residue was carried out for 

each system using the ptraj module of Amber11, across the 

entire simulation. An all residue correlation was performed 

and difference plots were calculated using Mathematica 
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[39]. Correlation between the mutated residue and the resi-

dues in Loop 1 were also calculated and plotted. General-

ized masked Delaunay analysis was carried out using the 

TimeScapes software from the D.E. Shaw group [40]. Tra-

jectories were prepared using VMD [41], and all solvent 

and nucleic acids were excluded from analysis. A sliding 

window of 5% of the total number of frames was used, and 

total events per frame were calculated and plotted against 

frame number. 

3. RESULTS AND DISCUSSION 

The HyDn-SNP-S method returns results from whole ge-

nome genotyping studies rapidly, far faster than traditional 

bioinformatic methods. Pre-screening with HyDn-SNP-S 

dramatically decreases the time required to perform statis-

tical analysis on GWAS data, by excluding all mutations 

not relevant to a researcher’s hypothesis. As proof of con-

cept four genotyping studies have been statisti cally ana-

lyzed following application of the HyDn-SNP-S method. 

Additionally, one mutation, both determined to be statisti-

cally significant and of structural interest was subjected to 

molecular dynamics studies and consequent analysis. 

Upon searching four cancer phenotype studies (mela-

noma, breast, lung and prostate cancer) [27–32] for muta-

tions in all polymerase genes, a total of 708 mutations were 

found. Of these mutations 491 were intronic, and 217 were 

exonic. Additionally, four of the exonic mutations were 

found to be at splice sites. As per the workflow described 

above, all four searches were carried out simultaneously, 

and results were available within a few minutes. Following 

application of the HyDn-SNP-S analysis, the four studies 

were subjected to traditional biostatistical analysis. The 

focused nature of the search allows for relaxation of the 

more stringent mathematical methods, and facilitates more 

thorough analysis of the resulting mutations. Haplotype 

analysis on whole genome genotyping data is frequently 

not performed as the combinatorial nature of these studies 

across all mutations would be prohibitively computational-

ly expensive. As the dataset used for analysis following the 

HyDn SNP-S method has significantly reduced complexity, 

these targeted studies can detect mutations of moderate 

significance that would be overlooked in traditional bioin-

formatic analyses and perform these searches more rapidly 

than is typically possible. 

Logistical regression and haplotype analysis was per-

formed on these studies to determine statistical signifi-

cance. The prostate cancer case/control database examined 

yielded 69 SNPs in the genes of interest. Eleven of them 

were statistically significantly associated with prostate 

cancer status for at least one genetic model. The melanoma 

cancer case/control database examined yielded 215 SNPs 

in the genes of interest. Twenty-six of them were signifi-

cantly associated with melanoma case/control status for at 

least one genetic model after controlling for age and gen-

der. The breast cancer case/control database examined 

yielded 100 SNPs in the genes of interest. Twenty-two of 

them were statistically significantly associated with pros-

tate cancer status for at least one genetic model. The lung 

cancer case/control database examined yielded 51 SNPs in 

the genes of interest. Twenty of them were statistically 

significantly associated with prostate cancer status for at 

least one genetic model. Table S1 reports all of the signifi-

cant SNPs, their p-value and corresponding POL gene. 

Analysis was performed to determine the association 

between the derived haplotypes from each gene and dis-

ease status. No haplotypes were predictive of disease status 

for the lung cancer study nor the melanoma study using 

any of the three genetic models. However, the haplotypes 

constructed from SNPs on POLL were borderline signifi-

cant for the breast cancer study using a recessive (p-value 

= 0.048) or additive (p-value = 0.091) model formulation. 

This haplotype is constructed from two SNPs: rs3730477 

(C > T; R438W) and rs3730463 (A > C: T221P). The odds 

ratios from individual significant and borderline significant 

contrasts within each model type are reported below. In the 

case of the additive model, for each additional C–A haplo-

type observed, the odds of breast cancer are multiplied by 

1.15 (p-value = 0.029). Similarly, for each additional C–C 

haplotype observed, the odds of breast cancer are multi-

plied by 0.812 (p-value = 0.062), i.e., a protective genotype. 

For the recessive model, having 0 or 1 copy of the C–A 

haplotype results in the odds of breast cancer being multi-

plied by 0.829 relative to having 2 copies of the C–A hap-

lotype (p = 0.026). Having 0 or 1 copy of the C–C haplo-

type results in the odds of breast cancer being multiplied 

by 3.01 relative to having two copies of the C–C haplotype 

(p = 0.099). The haplotypes constructed from SNPs on the 

PolG genes were significant for prostate cancer. This hap-

lotype is constructed from three SNPs: rs3087374, 

rs2351000 and rs2247233. The odds ratios from individual 

significant contrasts within each model type are reported 

below. For the recessive model, having 0 or 1 copy of the 

G–T–G haplotype results in the odds of prostate cancer 

being multiplied by 1.33 relative to having 2 copies of the 

G–T–G haplotype (p = 0.005). Having 2 copies of the G–

C–A haplotype results in 9.64 of the odds of prostate can-

cer as compared to having 0 or 1 copy of the G–C–A hap-

lotype (p = 0.008). 

A literature search indicates that only one of these sta-

tistically evaluated mutations has been explored in vitro 

[42]. Experimental analysis of the mutations we report here 

is outside the scope of this work. However, the mutations 

arising from these SNPs present interesting targets for fur-

ther experimental studies. 

The data resulting from a HyDn-SNP-S search can not 

only be discussed at the molecular level, and in the context 

of predictive power, but due to the nature of these studies, 

on a much broader basis. Relating many phenotypes to 

many polymerases generates a network of data best repre-

sented by an edge-node interactive diagram. Using the 

number of SNPs as a weighting property, it is possible to  
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Fig. 4. Correlation difference plots for the binary (A) and ternary (B) conformations relative to the wild type. Increases in correlation are shown 
in orange, while increases in anti-correlated motions are shown in blue. In both cases, alterations in the correlation plots are visible, more 
notably in the ternary complex. The highest values from the ternary complex correlation plots were mapped back to the residues affected, and 
are colored orange in Panel C. Notably many of these residues are on Loop 1. Panel D shows the individual correlation values for each of the 
residues in Loop 1. While the binary complex shows moderate alteration on several, the ternary complex shows considerable differences for 
several residues, particularly between residues 469 and 472. 

 

 

 

broadly examine the complete network of phenotype–

polymerase interactions. Fig. 2 shows a flattened version of 

this data, limited to statistically explored phenotype data, 

which is available in interactive form online at 

http://www.chem.wayne.edu/cisnerosgroup/gexf-

js2/index2.html. Both polymerases and phenotypic studies 

are represented as nodes, sized according to SNP density. 

By clicking on a node, all connections to that node will be 

listed. Clicking on any of those connections will return all 

connections to that selected node. 

The interactive map allows investigation of the net-

work associations of various phenotypes and polymerases 

and the complete list of connections is available from the 

dropdown menu at the top of the page. A complete list of 

all connections is available upon request from an-

dres@chem.wayne.edu. This file also includes the translat-

ed mutations. Many diseases are not caused by a single 

point mutation, but rather by a collection of factors. As the 

formatting for the results of HyDn-SNP-S is well suited to 

network analysis, and additional data can be garnered as 

desired from the genotyping studies, this approach may 

have critical importance in searching for combinations of 

factors that may be predictive for disease. Due to the tar-

geted nature of the search, there is a significant reduction 

in the analytic space and thus, more thorough analysis can 

be performed. The haplotype described above is one ex-

ample; individually the two mutations would have been 

overlooked by traditional analysis, but in combination they 

are strongly predictive. 

To further validate that hypothesis driven analysis of 

whole genome genotyping data is valuable to researchers, 

we sought to study a mutation with statistical significance 

that would have been overlooked by traditional methods. 

Of the two mutations that comprise the haplotype linking 

POLL to breast cancer, only the mutation R438W is in the 

polymerase domain. This position is not close to the active 

site, but it is within 14 Å of Loop 1, which has been shown 

to be critical for fidelity [43]. The R438W SNP mutation 

has been previously shown to contribute to decreased fidel-

ity in vitro, increased mutation frequency, and generation 

of chromosomal abnormalities [44]. An eightfold increase 

in inaccurate substitutions was observed in base substitu-

tion assays and karyotypic analysis of several cell lines 

carrying this mutation also reported a high level of

http://www.chem.wayne.edu/cisnerosgroup/gexf-js2/index2.html
http://www.chem.wayne.edu/cisnerosgroup/gexf-js2/index2.html
mailto:andres@chem.wayne.edu
mailto:andres@chem.wayne.edu
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Fig. 5. GMD plots for the binary and ternary complex simulations in both wild type and mutant form. No drastic differences are apparent be-
tween the four simulations indicating that all four are showing the same general level of physical activity. This indicates that the overall motions 
of the polymerase are not perturbed. In light of the data presented in Fig. 4., this indicates that the significant alterations in conformational 
space are restricted to the Loop 1 region. 

 

 

spontaneous or IR-induced chromosomal aberrations. With 

ample evidence to suggest a molecular basis for these re-

sults, we selected DNA polymerase lambda R438W for 

further study. 

Four MD simulations were performed, using crystal 

structures 1RZT and 2PFQ. These structures were selected 

as they represent the binary and ternary complexes of Pol 

lambda, respectively. The binary complex includes Pol 

lambda and the template DNA, the ternary complex in-

cludes Pol lambda with both the template and incoming 

nucleotide. The change in Loop 1 conformation between 

the two structures is shown in Fig. 3. Panel A overlays the 

binary and ternary complexes, Loop 1 is shown in purple 

to illustrate the alteration in conformation. Panel B shows a 

closer view of the loop conformations, indicating both bi-

nary and ternary conformations. Panels B and C illustrate 

the relative proximity to the R438W mutation. As the 

structure transits between the two loop conformations, the 

mutation ranges from roughly 12.6 Å to 14.3 Å away. A 

video illustrating the position of the mutation and the visu-

al interpolation of the binary and ternary conformations is 

available as Movie S1. Mutations in this loop have been 

shown to have no effect on catalytic rate while simultane-

ously increasing the number of misincorporations, thus 

Loop 1 is critical for polymerase fidelity [43]. Following a 

14ns simulation, correlation analysis was carried out to 

determine whether the residues in Loop 1 were affected by 

the mutation. 

As shown in Fig. 4, the binary complex shows little 

change in correlation between the wild-type and mutant 

structures. Conversely, the ternary complex shows high 

correlation and anti-correlation in two regions. The highest 

points of correlation are between residues at positions 438 

and 569, as well as between 438 and 420. Residues show-

ing the greatest change in correlation in the ternary com-

plex were mapped to the structure and colored orange as 

shown in Fig. 4C. It is notable that a majority of these resi-

dues are on Loop 1. To further understand the impact of 

the SNP mutation on Loop 1, the correlation data between 

position 438 and all residues in Loop 1 was extracted and 

plotted. Fig. 4D shows that although there is higher corre-

lation in the ternary complex between the wild-type and 

mutant, both complexes show altered correlation between 

the wild-type and mutant. The sum of these analyses sug-

gests that the introduction of the R438W mutation alters 

the overall correlation pattern in the ternary complex, but 

more importantly, directly affects the motions of Loop 1 in 

the both complexes. As Loop 1 regulates fidelity, and 

transit between the two conformations shown in Fig. 3 is 

required for catalysis, the SNP leading to the R438W mu-

tation likely has direct effects on polymerase activity in 

vitro and in vivo. 

In addition to the correlation analysis, generalized 

masked Delaunay (GMD) analysis was performed to de-

termine the impact, if any, on the overall activity of the 

simulations. The results are shown in Fig. 5, events are 

plotted on the Y-axis, and frame number is plotted on the 
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X-axis. GMD defines events as persistent motions across 

the masked Delaunay reduced representation of the protein 

structure. Panels A and B show the wild type activity for 

both the binary and ternary complexes, with average activi-

ty levels of roughly 0.2 events per frame. These patterns 

are typical of stable simulations, where no major rear-

rangement is occurring. The alteration in the correlation 

plots combined with the stability of the GMD indicates that 

the mutation induces only local alterations in activity. 

The sum of the correlation and GMD analysis indi-

cates that the R438W mutation appears to modify only the 

movement of Loop 1, while the overall dynamics are not 

significantly altered. This provides context for the experi-

mental work by Terrados et al. [44]. Their experiments 

indicated that the R438W mutation increases the error rate 

of Pol lambda, but does not alter the overall rate of 

polymerization. Our results indicate that the R438W muta-

tion alters only the behavior of Loop 1, while leaving the 

overall conformational motions of Pol lambda unperturbed. 

This would agree with the behavior observed experimen-

tally. The R438W mutation alters the behavior of Loop 1, 

thus decreasing fidelity, while the overall behavior of the 

polymerase is unaffected, allowing it to maintain a normal 

rate of polymerization. 

4. CONCLUSIONS 

We have developed a powerful method that allows re-

searchers to interact with whole genome genotyping data in 

a focused, hypothesis driven way. By allowing researchers 

to find data on their own systems of interest, we will expe-

dite the study of any mutations that may logically be con-

nected to a phenotype. Also, the focused nature of these 

searches will allow more thorough statistical analysis, and 

appropriate recognition to combinations of factors that 

would be difficult to fully assess in an extremely broad 

GWAS analysis. By applying this methodology to our sys-

tem of interest we were able make the first direct statistical 

link between DNA polymerases and cancer, define two 

haplotypes with strong predictive power, and trace a can-

cer-associated mutation to a structural effect in the trans-

lated protein and investigate its functional impact by com-

putational simulations. 
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APPENDIX A. 

 

Table S1. Statistical results form applying HyDN-SNP-S to four cancer phenotypes. 
 

Breast Cancer Prostate Cancer Lung Cancer Melanoma Cancer 

Genotypic Genetic Model 

SNP Gene p.value Location SNP Gene p.value Location SNP Gene p.value Location SNP Gene p.value Location 

rs1292504 POLD3 0.006 5' UTR rs10898995 POLD3 0.045 5' UTR rs675450 POLD3 0.002 5' UTR rs2908280 POLD2 0.021 intron 

rs524051 POLN 0.047 intron rs2351000 POLG 0.024 intron rs1787091 POLD3 0.024 5' UTR rs1945132 POLD3 0.022 3' UTR 

rs3218651 POLQ 0.023 H1201R rs3218651 POLQ 0.018 H1201R rs645541 POLD3 0.019 5' UTR rs1638566 POLD4 0.003 intron 

                rs676537 POLD3 0.016 5' UTR rs2514258 POLD4 0.005 intron 

                rs10793091 POLD3 0.013 5' UTR rs7951732 POLD4 0.013 intron 

                rs10793092 POLD3 0.007 5' UTR rs1790735 POLD4 0.002 intron 

                rs1433972 POLD3 0.031 5' UTR rs41549716 POLG 0.02 Y831C 

                rs7113533 POLD3 0.031 5' UTR rs3135056 POLN 0.039 intron 

                rs7943085 POLD3 0.016 intron rs1745335 POLN 0.029 intron 

                rs10793095 POLD3 0.002 3' UTR rs487848 POLQ 0.006 A581V 

                rs3176175 POLG 0.013 intron rs532411 POLQ 0.005 A2304V 

                rs758130 POLG 0 intron rs3218634 POLQ 0.004 
L2538V/ 
L2538F 

                rs6793252 POLQ 0.019 intron rs702019 POLQ 0.045 intron 

Recessive genetic model 

SNP Gene p.value Location SNP Gene p.value Location SNP Gene p.value Location SNP Gene p.value Location 

rs7113533 POLD3 0.05 5' UTR rs10898995 POLD3 0.022 5' UTR rs675450 POLD3 0.008 5' UTR rs2908280 POLD2 0.007 intron 

rs7932922 POLD3 0.038 3' UTR rs1292504 POLD3 0.03 5' UTR rs663016 POLD3 0.041 5' UTR rs2887046 POLD3 0.028 no data 

rs9328764 POLN 0.023 R425C rs1638566 POLD4 0.033 intron rs674306 POLD3 0.041 5' UTR rs1945132 POLD3 0.022 no data 

rs6830513 POLN 0.021 T378T rs8305 POLI 0.044 A731T rs10793091 POLD3 0.007 5' UTR rs1638566 POLD4 0.017 intron 
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rs10011549 POLN 0.036 G336S rs3218651 POLQ 0.02 H1201R rs1433972 POLD3 0.008 5' UTR rs2514258 POLD4 0.023 intron 

rs10018786 POLN 0.033 M310L         rs7943085 POLD3 0.019 intron rs7951732 POLD4 0.013 intron 

rs3117813 POLN 0.041 intron         rs10793095 POLD3 0.004 3' UTR rs1790735 POLD4 0.025 intron 

rs3117816 POLN 0.035 intron         rs6592579 POLD3 0.041 3' UTR rs41549716 POLG 0.02 Y831C 

rs3117819 POLN 0.042 intron         rs10219168 POLD3 3041 3' UTR rs6941583 POLH 0.041 M647L 

rs524051 POLN 0.015 intron         rs3176175 POLG 0.013 intron rs6899628 POLH 0.039 3-UTR 

rs1745335 POLN 0.049 intron         rs758130 POLG 0.008 intron rs3734690 POLH 0.028 T478T 

rs529966 POLN 0.042 intron         rs6793252 POLQ 0.019 intron rs4640970 POLM 0.045 intron 

rs618262 POLN 0.034 intron                 rs3135056 POLN 0.025 intron 

rs7659386 POLN 0.029 intron                 rs6800901 POLQ 0.018 intron 

rs3218651 POLQ 0.006 H1201R                 rs5744990 POLE 0.036 L1903L 

Additive genetic model 

SNP Gene p.value Location SNP Gene p.value Location SNP Gene p.value Location SNP Gene p.value Location 

rs7113533 POLD3 0.023 5' UTR rs2075070 POLD2 0.037 intron rs10793091 POLD3 0.028 5' UTR rs1945132 POLD3 0.022 intron 

rs9328764 POLN 0.018 R425C rs10898995 POLD3 0.014 5' UTR rs10973092 POLD3 0.007 5' UTR rs7951732 POLD4 0.013 intron 

rs6830513 POLN 0.016 T378T rs1292504 POLD3 0.035 5' UTR rs1433972 POLD3 0.008 5' UTR rs41549716 POLG 0.02 Y831C 

rs10011549 POLN 0.027 G336S rs1638566 POLD4 0.044 intron rs7943085 POLD3 0.004 intron rs6941583 POLH 0.045 M647L 

rs10018786 POLN 0.026 M310L rs2351000 POLG 0.033 intron rs6592581 POLD3 0.024 3' UTR rs6899628 POLH 0.043 3-UTR 

rs3117813 POLN 0.041 intron         rs3176175 POLG 0.013 intron rs3734690 POLH 0.031 T478T 

rs1923775 POLN 0.019 intron         rs6793252 POLQ 0.019 intron rs3135056 POLN 0.046 intron 

rs524051 POLN 0.025 intron         rs574316 POLN 0.041 intron rs6800901 POLQ 0.037 intron 

rs1745335 POLN 0.038 intron                 rs702019 POLQ 0.018 intron 

rs529966 POLN 0.032 intron                 rs5744990 POLE 0.031 L1903L 

rs618262 POLN 0.027 intron                         

rs7659386 POLN 0.022 intron                         

rs6599418 POLN 0.046 intron                         
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rs3218651 POLQ 0.007 H1201R                         

rs3730463 POLL 0.047 T221P                         

Dominant genetic model 

SNP Gene p.value Location SNP Gene p.value Location SNP Gene p.value Location SNP Gene p.value Location 

rs1292504 POLD3 0.002 5' UTR rs1673041 POLD1 0.029 intron rs675450 POLD3 0.019 5' UTR rs1638566 POLD4 0.049 intron 

rs3730814 POLI 0.037 intron rs2075070 POLD2 0.042 intron rs1787091 POLD3 0.019 5' UTR rs2514258 POLD4 0.049 intron 

rs1923775 POLN 0.049 intron rs3824999 POLD3 0.018 intron rs645541 POLD3 0.008 5' UTR rs1790735 POLD4 0.012 5' UTR 

rs3821367 POLQ 0.018 intron rs2351000 POLG 0.014 intron rs663555 POLD3 0.041 5' UTR rs3218784 POLI 0.041 I261M 

rs3911713 POLQ 0.047 intron rs1427463 POLG2 0.018 A169T rs676537 POLD3 0.019 5' UTR rs9328764 POLN 0.03 R425C 

        rs607877 POLI 0.032 intron rs10793082 POLD3 0.002 5' UTR rs6830513 POLN 0.03 T378T 

                rs7113533 POLD3 0.041 5' UTR rs10011549 POLN 0.03 G336S 

                rs7943085 POLD3 0.041 intron rs10018786 POLN 0.03 M310L 

                rs10793095 POLD3 0.041 3' UTR rs2022302 POLN 0.03 H441H 

                rs758130 POLG 0 intron rs1745335 POLN 0.009 intron 

                        rs487848 POLQ 0.008 A581V 

                        rs532411 POLQ 0.008 A2304V 

                        rs3218634 POLQ 0.008 
L2538V/ 
L2538 

                        rs702019 POLQ 0.035 intron 
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Figure S1. Correlation plots from the four Polymerase Lambda simulations. These original correlation plots were 
used to generate the difference plots shown in Fig. 4. 
 

 
Movie S1. An animation of a mathematical interpolation between the binary and ternary conformations is shown. 
Loop 1 is colored purple, and the site of mutation R438 is shown in red and labeled. Within the conformational 
space available to Loop 1 visualized by this interpolation, the mutation is between 12Å and 14Å away. 
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