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Abstract 

Numerous simulation and sampling methods can be used to estimate reliability index or failure 

probability.  Some point sampling methods require only a fraction of the computational effort of  

direct simulation methods.  For many of these methods, however, it is not clear what trade-offs 

in terms of accuracy, precision, and computational effort can be expected, nor for which types of 

functions they are most suited.  This study uses nine procedures to estimate failure probability 

and reliability index of approximately 200 limit state functions with characteristics common in 

structural reliability problems.   The effects of function linearity, type of random variable 

distribution, variance, number of random variables, and target reliability index are investigated.  

It was found that some methods have the potential to save tremendous computational effort for 

certain types of limit state functions.  Recommendations are made regarding the suitability of 

particular methods to evaluate particular types of problems. 

 

Introduction 

For many practical problems in structural reliability, an analytical determination of failure 

probability is unattainable.  This is especially so when complex structures are modeled with 

numerical techniques such as the finite element method, where generation of an explicit 
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expression of load or resistance, and thus limit state function, is typically not  possible.  

Although a direct Monte Carlo simulation is a valid approach for such cases, it is often 

practically infeasible to conduct due to the large number of simulations required for sufficient 

accuracy.  To address this problem, numerous simulation and sampling methods were developed 

by various researchers that can aid the determination of failure probability or reliability index.  

Currently, there exists a large number of competing schemes to estimate statistical parameters 

from a significantly reduced number of samples.  A review of many of these methods can be 

found in [1].  Unfortunately, when presented in the literature, the accuracy and efficiency of 

these schemes are typically evaluated for only a small number of simple example cases and 

without significant comparison to other methods [1-12]. 

  

For many schemes,  the relationship between computational effort and accuracy is not apparent.  

Nor is it clear which schemes are most suitable for a particular type of problem,  in terms of 

number of random variables, degree of nonlinearity, random variable distributions and variances, 

and so on.  The lack of a readily-available evaluation and comparison among competing methods 

presents an obstacle to proper method selection, particularly for those without extensive 

experience using these methods.  This paper attempts to fill this gap by examining a number of 

simulation and sampling methods that may be used to estimate failure probability (Pf) or 

reliability index (β) in structural reliability analysis.   In this study, a subset of methods with 

specific typical formulations is considered.  Of particular interest in this study are point sampling 

methods, which promise to provide large reductions in computational effort.  These methods 

require a fixed number of simulations based on the number of random variables in the problem.   

Three point sampling methods are considered:  Rosenblueth’s 2n+1 point estimation method [6] 
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(ROS) and Zhou’s n+1 (N+1) and 2n (2N) point integration methods [7].  These methods are 

characterized by having a fixed number of pre-determined samples and are used to calculate β.  

Five simulation methods are also considered: traditional Monte Carlo Simulation (MCS), Latin 

Hypercube (LH) stratification [8], Importance Sampling [9] (IS), Plane-based Adaptive 

Importance Sampling [13] (AISP), and Curvature-based Adaptive Importance Sampling (AISC) 

[10].   These methods have an open-ended number of samples, and are used to calculate Pf  

directly.  The Rackwitz-Feissler procedure [5] (RF), a well-known first order analytical method 

suitable for non-normal distributions, is considered as well.  By evaluating 198 different 

functions, these seven methods are compared in terms of accuracy, precision, and computational 

effort for parameters that include linearity of the limit state function, number of random variables 

(RVs), type of RV distribution, variance, and target reliability index.   

 

As the results presented here are empirical, they cannot be used to make universal conclusions 

for a method’s effectiveness for all possible functions.  However, the results may  serve to aid 

the process of  initially selecting a simulation or sampling method appropriate for a particular 

type of problem, given specific accuracy, precision, or computational effort constraints.  

 

Methods Considered 

Thorough discussions of MCS are presented elsewhere [4, 15-17].  With MCS, as the accuracy 

of the estimate of Pf depends on the number of simulations, a desired degree of precision  must 

be chosen.  In this study, the number of MCS samples needed is estimated by [18]: 

   
f

f
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P
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Where Pf is the failure probability of the limit state function to be estimated and N the number of 

samples.  To keep the number of simulations reasonable, N was chosen such that the expected 

COV of the result is 5%.  

 

There are several stratification techniques available [8, 16, 19].   In general, the Latin Hypercube 

(LH) technique involves partitioning the probability density function of each RV into vertical 

strata.  For each simulation, a random strata is sampled for each RV, with the condition that 

every strata is sampled only once in the entire procedure.  In this study,  strata are formed from 

equal probability weights.  To reduce the possibility of spurious correlations occurring, a 

correlation reduction technique as described by Iman and Conover [19] is employed.  The 

number of strata (samples) was chosen such that the accuracy results were close to those 

obtained from MCS. This number varies depending on function failure probability.  Specific 

quantitative results are discussed later.  

 

The Rackwitz-Feissler Procedure [5] is a commonly used first-order iterative method that 

calculates β rather than Pf.  It accounts for non-normal distributions by converting these to 

‘equivalent normal’ distributions at the design point on the failure boundary.  It provides 

excellent results for linear problems, but has two potential sources of inaccuracies for nonlinear 

limit states.  First, as it computes β, the shortest distance from the failure region to the origin of 

reduced coordinates, the same reliability index may be achieved for failure regions of different 

(hyper)volumes and thus failure probabilities.  The conversion of reliability index to failure 

probability (Pf = Φ(-β)) is therefore not always accurate.  A second source of error may occur if 

the failure (hyper)surface is not consistently convex or concave, but has multiple local 
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minimums.  Since the iteration is begun at a single trial design point (typically at the mean 

values), the search algorithm will stop when it finds the first local minimum.  This may or may 

not be the global minimum.  

 

Note that RF first requires one evaluation of the limit state function (g) to insure that the design 

point is on the failure boundary (this will require more than 1 evaluation if at least 1 RV is not 

linear with respect to g), then a small number of iterations as the search algorithm attempts to 

find the minimum distance from the failure surface to the origin of reduced coordinates.  Each 

iteration requires the computation of one derivative per RV in the problem (the partial derivative 

of g with respect to the reduced RV), as well as another evaluation of g to place the updated 

design point on the failure boundary once again.   If the limit state is not explicitly given, such as 

in the case where a finite element procedure is used, RF must be evaluated numerically.   

Derivatives can be evaluated with a finite difference approach, which would require at minimum 

one evaluation of g (if a forward or backwards difference scheme is used), or call to the finite 

element code, per RV.   In this case, the total number of samples required for RF is a minimum 

of  1 + (n+1)i, where n is the number of RVs and i is the number of iterations required for β 

convergence.  This does not include the special case where if all RVs are nonlinear with respect 

to g.  Here, the unit values in the above expression must be replaced with an unknown number of 

iterations, based on the specific problem and nonlinear solver used, to allow the design point to 

converge on the failure boundary.   The number of iterations i needed for convergence varies, but 

is often small.  For this study, three iterations were sufficient for most cases.  Thus, 4+3n 

samples would be required to evaluate the limit states considered.   
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The fundamental approach of importance sampling (IS) is to shift the probability densities of the 

RVs close to the design point, such that the modified limit state will produce a high rate of 

failures.  These failures can then be captured with a much-reduced number of samples, and a 

failure probability can be calculated.  The final failure probability is then adjusted to account for 

the shifted distributions.   Two key needs of IS are 1) to identify the design point (the point of 

maximum likelihood), or a point close to it, and 2) to choose an appropriate importance sampling 

function, which is used to adjust the final calculated failure probability.  There are many ways 

proposed in the literature to satisfy 1) and 2) [3, 9, 20-26].  For this study, the design point is 

found with the RF method, while the importance sampling function is taken as the  joint 

probability density function of the original limit state, with RV means shifted to the design point.  

The failure probability is evaluated with 50 MCS runs.  This procedure was found to give close 

results to the crude MCS method for most functions studied.  Quantitative results are discussed 

later.  Allowing for three RF iterations, this procedure required [(4+3n) + 50] total samples.  

Since RF is used to identify the design point for use in IS, this procedure is subject to the same 

errors as RF. 

 

Adaptive Importance Sampling (AIS) schemes adjust the sampling region as the analysis 

progresses, refining the sampling space to maximize sampling in the failure region.  For highly 

non-linear or non-normal limit states, depending of the shape of the failure surface, sampling 

uniformly around the MPP, as with IS, may not produce a high failure rate and thus may give a 

poor estimate of failure probability.  For AIS, after the MPP is identified, a small number of  

initial samples are taken.  If  few samples will fall within the failure region, the sampling 

boundary is adjusted, and a new set of samples is taken.   The process repeats until a satisfactory 
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number of failures is achieved.  As with IS, the computed failure probability is then adjusted to 

account for the shifted sampling region.  Many adaptive methods exist [2, 9, 10, 13, 14, 27-30]. 

In this study, two AIS methods are considered, as described by Wu [10, 13 ,14].  In one method, 

the limiting surface is parabolic, and is refined by adjusting curvatures at the MPP (AISC), while 

the other method uses a planar surface (AISP), and is refined by shifting the plane closer or 

further away from the MPP.   The AIS process considered here is as follows.  After the MPP is 

found (such as from RF), the limit state is linearized at that point then converted to a parabolic 

surface as described by Tvedt [31].  Failure probability is then estimated using a second-order 

method [10].  Ten initial MCS samples are then taken by evaluating the actual limit state 

function at the estimated MPP within the confines of the estimated parabolic failure surface.  If 

samples fall outside of the true failure region, for AISC, the curvatures of the limiting surface are 

reduced to further enclose the failure region (or distance of the planar surface in the case of 

AISP), such that the change in estimated failure probability is approximately 10%.  Here 

additional samples  are taken only within the changed region.  The failure probability estimate is 

then updated.  This process of adjusting limiting surface curvatures and resampling in the 

incremented region is repeated until the failure probability estimates converge.  Allowing three 

increments and ten samples per increment for AISC and 5 increments and 15 samples for AISP 

(AISP typically requires more samples for equivalent results), the scheme requires 44 + 3n + 

n(n-1)/2 samples for AISC and 79+3n samples for AISP.  As with IS, since the AIS methods 

depend on an initial location of the MPP,  the method used to find the MPP may influence the 

quality of the final results.  
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Many point sampling methods exist [6-8, 32].  The focus of this study is on those methods that 

specify a small number of simulations, which realize the least computational costs.   The N+1 

and 2N point integration methods are based on Gauss quadrature.  The derivation of the methods 

is given elsewhere [7].   Point values are given as a function of the number of random variables 

in the limit state, the position of an RV in the considered set, and the simulation run number.  

N+1 point values are given in Table 1.  In the table, Zij  refers to the simulation run number i and 

random variable j, while n refers to the number of random variables in the problem.  Here i is 

from 1 to n+1 while j is from 1 to n.  For 2N, each sample is conducted by setting all RVs equal 

to 0 (i.e. the mean value in standard normal space) except one, which is set to n
1/2

.  To conduct 

the simulation, the RV that takes the value of  n
1/2 

is alternated until all RVs are considered, to  

generate n samples.  n additional samples are generated by repeating the above procedure but by 

using  -n
1/2

 as the value for the non-zero RV.  Application of  the point integration methods 

generates standard normal space values for each of the system random variables.  These values 

are then transformed to basic variable space values for input to the limit state function using 

standard transformations,  just as with MCS or LH.  From the total sample of limit state 

evaluations, the mean value and standard deviation of the function are calculated.  β is then 

estimated by dividing mean value by standard deviation.  Zhou [7] provides no evaluation as to 

the expected effectiveness or limitations of the methods, nor could this be found in the available 

literature.  However, based on the small number of samples, it is expected that accuracy will be 

degraded for nonlinear functions. 

 

The derivation and use of Rosenblueth’s 2n+1 point estimate is substantially different from N+1 

and 2N [6].  Although it is referred to as “2n+1”, if β is to be estimated, only 2n samples are 
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needed (a single additional sample is required if the function’s mean value is needed).  It is used 

by first evaluating the limit state function with one of the RVs  shifted upward in value by one 

standard deviation (yi
+
), while the remaining RVs in the function are kept at their mean values 

(y).  This is repeated until the function is evaluated n times, where each time a different RV has 

its value shifted.  This process is then repeated n times again, but now with the value of each RV 

shifted downward by one standard deviation (yi
-
).   The COV of the function can then be 

calculated as [6, 32]: 

  ( ) 11
1

2 −

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



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=
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Reliability index can then be estimated by taking the inverse of the function’s COV.  The method 

reportedly works best for functions that are linear with low skew and low variation.  As neither 

nonlinearities nor distributions are taken into account, reliability index computed from this 

method may not provide an accurate indication of failure probability for non-normal and 

nonlinear functions. 

 

Limit State Functions Considered 

Each of the methods discussed above will be used to evaluate the failure probability and 

reliability index of a general limit state function under the influence of a variety of parameters.  

The parametric cases considered are given in Table 2.  In the table, ‘mixed’ means that the RVs 

are given different distributions or coefficients of variation (COV).  For the non-mixed cases, 

RVs are given identical distributions or COVs.   Each of the 22 cases in Table 2 is repeated three 
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times, varying the number of elements in g that are RVs, to create a total of  66 subcases.  In 

turn, each of these subcases is repeated three times, with a different target reliability index, for a 

total of 198 different limit state functions.  A summary of the parameters considered is as 

follows: 

• Linearity:  ½ of the functions are linear,  ½ are nonlinear. 

• Distributions: Approximately ¼ have all normal RVs, ¼ are all lognormal, ¼ are all 

extreme I, and ¼ have mixed distribution types. 

• Variance: Approximately 
1
/3 have all RVs at 5% COV, 

1
/3 have all RVs  at 35% COV, 

and 
1
/3 have different RV COVs (mixed among 5, 15, and 35%).  One exception is the 

extreme I distributions, in which no mixed COV cases were considered. 

• Random Variables: 
1
/3 have 2 RVs, 

1
/3 have 5 RVs, and 

1
/3 have 15 RVs. 

• Target Reliability Index:  
1
/3 have a ‘low’ β, 

1
/3 have ‘moderate’ β, and 

1
/3 have ’high’ β. 

The low group has an average β of 1.3 with range of 0.3 to 2.  The moderate group has an 

average β  of 3.5 with range of 2 to 5.  The high group has an average β of 10 with range 

of 5 to 15. 

Specific parameter values were chosen such that the mean reliability index is consistent among 

different parametric comparison groups.  This is important because a function’s failure 

probability influences the accuracy at which it can be estimated.  For example,  the normal and 

non-normal distribution groups have the same average β, as do functions with 2, 5, and 15 RVs.   

Two exceptions to this rule are the COV groups (the low COV functions have, on average, a 

higher β than the higher COV functions), and linearity (the linear functions have a higher 

average β than the nonlinear functions).   When making data comparisons for β, COV, and 
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linearity parameters, the bias that target reliability index brings to the results is accounted for and 

is discussed below in the results section.   

 

 To assess the effectiveness of the methods, a general function g was developed in which 

parameters such as number of random variables, target reliability index, and linearity could be 

adjusted in a consistent way.  The limit state functions have the general form: 

∑ ∑
= =

−=
n

i

k

j jj

jj

i
IE

wL
cdkg

1 1

4

      (4) 

Although g represents specific numerical problems for this study, function g was chosen such 

that its form is mathematically similar to many typical limit states encountered in structural 

reliability; those containing sums of products and quotients of RVs.  Depending on the choice of 

RVs, three forms of g (with respect to linearity) were considered: linear,  nonlinear with positive 

exponents, and nonlinear with positive and negative exponents (i.e. inverse) problems.   The 

RVs, distributions, and COVs for each RV subcase (2, 5, 15) are given in Table 3.  Some 

reliability problems may involve hundreds or thousands of RVs, but many practical problems in 

structural reliability, particularly those used for code calibration, and even some system 

reliability problems, involve a dozen or less RVs. Solving reliability problems with a large 

number of RVs generally requires tremendous computational effort and are beyond the scope of 

this work.  However, some important trends can be seen based on the number of RVs considered 

here.  For the mixed cases in Table 3, distribution type and COV values chosen for the RVs were 

influenced based on the problem that g represents, as discussed in the next paragraph.   
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As specific formulations of g must be chosen for evaluation, constants as well as RV values were 

defined such that g represents one (for 2 RV problems), two (for 5 RV problems), or five (for 15 

RV problems) simple, uniformly-loaded beams in parallel with multiple load effects (such as 

dead load and live load) applied, and failure defined as exceeding a non-deterministic midspan 

deflection limit.   For all problems, c = 5/384, L = 6.1 (m), E = 2x10
8
  (kPa), and I = 6.452x10

-4
 

(m
4
), and w = 73600 (N/m), wDL = 19300 (N/m) and wLL = 54300 (N/m).  These values may be 

either constants or the mean values of RVs, depending on how the element is used in the specific 

problem.  Values for d and k are problem-specific and chosen such that three different target 

reliability indices (within the ranges of low, medium, and high, quantified above) could be 

examined for each subcase.  These values are given in tables 4 and 5.  Clearly, as COV or 

distribution changes, the range of possible β values also changes, and β is particularly limited for 

high COV or extreme I distributions.  In each case, the intent was to examine the effectiveness of 

the seven considered procedures over a wide range of failure probabilities.   For the 2 RV 

problems, n=k=1.  For the 2 RV linear problems,  d1 and w1 are the RVs. For the 2 RV nonlinear 

problems, d1 and L1 are the RVs.  For the 5 RV linear problems, n=2 and k=3, while di and wi are 

taken as RVs.  For 5 RV nonlinear problems, n=k=1 and d1, w1, E1, I1, and L1 are RVs.  For the 

15 RV linear problems, n=5, k=10, and RVs are di and wi.  For the 15 RV nonlinear problems, 

n=k=3 and RVs are di, wi, Ei, Ii, and Li.  Substituting these values into equation (4) results in the 

following, where random variables are in bold and subscripted: 

 

The 2 RV Linear Case is: 

11 wd
EI

cL
kg

4

−=       (5) 

The 5 RV Linear Case is: 
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The 15 RV Linear Case is: 

( )

( )LL5DL5LL4DL4LL3DL3DL2DL2LL1DL1
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The 2 RV Nonlinear Case is: 
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w
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4

1
1
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The 5 RV Nonlinear Case is: 

11

4
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1
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The 15 RV Nonlinear Case is: 
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Special Problems 

Engelund  and Rackwitz [9] identified six limit states that posed potential problems for various 

importance sampling schemes.  These limit states have been included in this study for evaluation 

as well.   One limit state was a linear function that considered various numbers of random 

variables and failure probabilities, the characteristics of which are fully covered in the linear 

limit states above.  The remaining five limit states are listed below. 
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1.  Exponential nonlinearity.   

This highly nonlinear limit state is given by: 

 

( )[ ] Cug
i

i ±−Φ±= ∑
=

20

1

ln     (11) 

Where ui are normally distributed random variables.  Although Engelund and Rackwitz 

considered various values for C, in this study the function of highest curvature is considered, 

C=41.05, which gave the poorest reported results [9].    RVs are given means of 1.0 and standard 

deviations of 0.15.   Reliability index is approximately 4.  

 

2.  Multiple reliability indices. 

This limit state is hyperbolic with two minimum and one maximum beta values.  It is given by: 

14.14621 −= xxg      (12) 

Where the means of x1 and x2 are 78064.4 and 0.0104, while their standard deviations are: 

11709.7, 0.00156.  Both are normally distributed.  Reliability index is approximately 4.2. 

 

3. Series System. 

The series system is given by: 

 ( )321 ,,min gggg =      (13) 

Where: 
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x1-x5 are lognormally distributed with means of 60.0 and standard deviations of  6.0, while x5 

and x6 have extreme type I distributions with means of 20 and 25 and standard deviations of 6.0 

and 7.5, respectively.  Reliability index is approximately 2.1. 

 

4. Parallel System. 

This limit state is given by: 

( )4321 ,,,max ggggg =     (14) 

Where: 

544
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500.2
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All gi are standard normal random variables.  Reliability index is approximately 3.5. 

 

5. Noisy Limit State. 

This limit state has a fluxuating boundary and is: 

 ∑
=

+−−+++=
6

1

654321 )100sin(001.05522
i

ixxxxxxxg  (15) 

All xi are lognormal.  x1-x4 have means of 120 and standard deviations of 12; x5 has mean of 50 

and standard deviation of  15; and x6 has mean of 40 and standard deviation of 12.  Reliability 

index is approximately 2.3. 

 

 

 



 16 

Results 

Tables 6-8 and figures 1-10 present results in terms of β, while tables 9-11 and figures 11-20 

give results in terms of Pf.  In figures 1-10, results are presented for each method based on a 

subset of cases, to examine the effect of the various parameters considered (linearity, normality, 

COV, number of RVs, target β).    Results are measured in two ways: accuracy and precision.  

Accuracy refers to closeness to the exact value, and is measured by mean value.  This is 

calculated by first normalizing the β computed by a particular method to the exact value 

(calculated β / exact β) for each limit state in the subset, then the mean value of this fraction is 

taken for the subset.  Precision refers to the degree of consistency of the results.  This is 

measured by coefficient of variation of the mean (COV).  Note that an exact solution would have 

a (normalized) mean of 1.0 and a COV of 0.   For figures 11-20, the same procedure is used to 

report results in terms of Pf.   “Overall” in the figures refers to the results of all of the limit states 

(198)  evaluated by a particular method.    

 

The tables present data specifically for each of the 66 subcases and results are calculated for the 

subset of 3 limit states composing each subcase (i.e. the mean and COV are computed from the 

results consisting of functions with the same number of random variables, distribution types, and 

COV, but different βs).   For the simulation methods, some functions had Pf  beyond the practical 

range of applicability.  These cases are designated with a “n/a” in the tables.   Because such a 

small set of data (3) is considered for mean and COV results presented in the tables, results 

should not be considered as reliable as those presented in the figures.  However, results in the 

tables are useful to identify trends as well as specific problem areas, as discussed in detail below. 
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General Observations 

For all of the methods considered, it is clear by observing the patterns in the tables that some 

types of functions are inherently easier or more difficult to estimate well.  In terms of β, most of 

the point sampling methods gave high precision results for cases 1-4, 9,10, and 14 (table 6).  

These cases are primarily linear and contain distributions other than extreme I.  Cases estimated 

with high accuracy by most sampling methods were similar: 1-3, 9, and 14.  These are primarily 

linear and contain normal distributions.  Low precision as well as low accuracy results for most 

sampling methods were predominately found for nonlinear cases with non-normal distributions 

(5, 8, 12, 13, 15, 16, 18-21 in table 7).  The simulation methods give good results for most cases.  

There is some degradation in accuracy and precision for two cases, however (13 and 21).  These 

are nonlinear functions with high variation.  Overall, MCS, IS, and AISC gave best results for 

accuracy, while AISP, AISC, and RF gave best results for precision. 

 

The analytical method (RF) also provides very good overall results, with nearly all cases 

estimated with high accuracy and precision (table 8).  Quality does degrade as number of RVs 

increases.  The 15 RV functions for cases 13, 16, 19, and 21 (nonlinear with high variation) are 

particularly troublesome.  As the number of RVs increases, the failure surface becomes more 

complex, with potentially many local minimum.  As such, the search algorithm may get ‘stuck’ 

in a local but not global minimum, thereby introducing error in β estimation.  This is evidenced 

by the fact that RF always overestimates β if it errs, but never underestimates it. 
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If Pf is considered, the differences between the point sampling methods and simulation methods 

are magnified, the former providing poor performance.  For RF, as with β results, the most 

inaccurate and imprecise cases are 13, 16, 18, 19, and 21.   These are primarily nonlinear with 

high variation.  The cases that have primarily low target β are 2, 10, 13, 16, and 21.  The most 

accurate and precise cases as estimated by most of the point sampling methods considered tend 

to fall into this group.  For example, cases 2, 10, 13, 18, and 21 are the most accurate of the 

sampling methods, while case 2 is the most precise (while the remaining cases show little 

difference; see table 9).  Although this is not as clearly defined for the simulation methods (table 

10), there is still significant overlap; cases 21 and 7 are the most precise, while cases 2, 21, 11, 

and 18 are the most accurate.   Trends become clearer when inter-dependent factors are 

controlled for, as discussed below. 

 

Although β precision results are quite reasonable in many cases, overall precision of Pf results 

was low.  Although superior to all other methods except RF, the precision of MCS was also 

lower than expected, having an overall COV of Pf results of 0.18 (but 0.06 for β) rather than the 

0.05 predicted using eq. (1).  It should be noted that this approximate formula does not adjust for 

function characteristics (RV distribution, linearity, or RV COV), which, in addition to Pf, also 

affect precision.   With regard to LH, for lower failure probabilities (Pf ≥ 0.00001), the method 

could reduce the number of MCS simulations by a factor of 50 for similar accuracy,  but for 

higher Pf, proportionally more samples (relative to MCS) were needed.  This varied from no 

reduction (for Pf ≤ 0.10),  while for 0.10 ≤ Pf  ≤ 0.00001, a reduction factor of about 10 was 

achieved. It should be noted that, although the LH approach used here provided equivalent 

accuracy to MCS, a higher degree of variation was observed than with MCS (overall COV for β 
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= 0.08; overall COV for  Pf = 0.34).  Clearly, increasing the number of samples for both of these 

methods would reduce variation.  Overall, MCS, LH, AISC, and RF gave best results for 

accuracy, while MCS, AISP, AISC, and RF gave best results for precision. 

 

Note that although many of the procedures studied produced large errors in Pf in some cases, to 

keep the results in practical perspective, most civil engineering structures designed by codes that 

lack a reliability-based calibration (pre-Load and Resistance Factor Design versions) typically 

have variations in Pf of orders of magnitude.  Even with calibrated codes, the expected variation 

of Pf is typically greater than a factor of 2 [33]. 

 

Linearity 

Because the nonlinear functions, taken as a whole, have a lower average β than the linear 

functions (mean β of linear subset = 5.6; mean β of nonlinear subset = 4), results may be biased, 

as accuracy and precision are not independent of target reliability index (low β functions are in 

general estimated with higher accuracy).  To eliminate this bias, a smaller set of functions was 

also considered (about half the of the original), such that the limit states which have a significant 

difference in β between their linear and nonlinear forms were not included in the set (the average 

β of the controlled linear and nonlinear sets are both equal to 3.1).  The linear and nonlinear β-

controlled results are indicated as “lin B ctrl” and “nonlin, B ctrl” in figures 1-2 and 11-12.  It is 

these results that should be compared to understand the true effect that linearity has on accuracy 

and precision.   As shown in figures 1-2 and 11-12,  for the β -controlled results, all methods 

display better accuracy for linear functions and worse accuracy for nonlinear functions.  

However, in terms of β (figure 1), differences due to linearity are minor for the most part.  
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Exceptions are ROS and RF, which display a significant bias in accuracy toward linearity.  When 

failure probability is considered, these differences are magnified, particularly with N+1, which 

demonstrates a significant advantage in accuracy with the linear functions.  For precision, the 

same trend is realized, with a few exceptions.  It appears that MCS (figures 2 and 12) results are 

worse for the β -controlled linear cases than the overall results.   This is not a general trend, 

however, but due to a high-error  outlying sample which throws off the results.  If this point 

(within case 3, 5 RV) is eliminated from the set, the trend returns to that which is expected 

(linear cases are more precise).  

  

Normality 

In figures 2-4 and 13-14, functions are grouped into those that have all RVs with normal 

distributions (“normal”) and those that have any or all RVs with a non-normal distribution (“non-

normal”).  The mean β for each of these groups is identical.  For the point sampling methods, RV 

distribution clearly affect accuracy as well as precision, where all-normal functions have a 

distinct advantage.  This is not so with the simulation or RF methods, however, where there is no 

difference in accuracy.  In terms of precision, the simulation and RF methods appear to have a 

slight advantage for all-normal functions.  Two exceptions are ROS (figure 3), and MCS (figures 

4 and 14), which show a reverse trend.  This again, is due to a single outlying datum (within case 

13, 15 RV for ROS and case 13, 2 RV for MCS), and if this datum is removed, ROS and MCS 

also shows better results for all-normal functions. 
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Number of RVs 

In figures 5-6 and 15-16, functions are grouped into those which have 2 and 15 RVs.  The mean 

β for each of these groups is identical.  For all of the point sampling methods, accuracy decreases 

as number of RVs increases.   In each, there is a significant difference in the 2 RV and 15 RV 

cases.  Interestingly, for precision, however, the reverse trend is true, such that the high RV cases 

are most precise.   

 

MCS appears to decrease in accuracy for a high number of RVs if failure probability is measured 

but to increase in accuracy for a high number of RVs if β is measured.  This discrepancy occurs 

because of the nonlinear relationship between β and failure probability (figure 21, discussed 

further below under the effect of target β).  For the 2 RV cases, data in two outlying cases (10, 

12) contain large errors.  These have low average β (1.4).  For the 15 RV cases, functions with 

the worst results (within cases 5, 6, 10, 12, 14, 15, 20), have a much higher average β (5.0).  The 

errors in this latter group, once converted to Pf, are greatly increased relative to those of the low 

β set.  Thus, a different trend with regard to β and Pf is observed.  If these worst cases are not 

included in the data sets, there is no difference is results between the 2 and 15 RV cases.  In 

terms of precision, it appears that MCS has an increased precision for a low number of RVs.  

This is also due to the results of two outlying data points (within cases 13, 21).  Eliminating these 

two points results in the low and high RV case having the same COV result (0.02).  Thus for 

MCS, the number of RVs does not appear to affect accuracy or precision.  When LH is 

considered, both accuracy and precision degrade as the number of RVs increases.  This is an 

overall trend that can be seen in tables 7 and 10 and figures 5-6 and 15-16 and is not due to one 

or two very poor results.  This result is interesting, as the expectation is that LH would show the 
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same trends as MCS.  It appears that the particular process of PDF stratification used in this 

study [19] may cause results to degrade for a higher number of RVs.  For RF and IS, as expected, 

both accuracy and precision decrease for the high RV case.  This is also true for AISP and AISC, 

though to a lesser extent. 

 

COV 

Regardless of the limit state load and resistance values, each limit state has a upper bound of 

reliability index depending on the function variance.  Although functions with low variance can 

have high βs, functions with high variance cannot.  The resulting effect is that, the low variance 

functions have both high and low β results, but the high variance functions only have (relatively) 

low β results.  As target reliability index affects accuracy and precision, this effect must be 

controlled for.  In figures 7-8 and 17-18,  the category “5, low B” represents the set of limit state 

functions in which all RVs have a COV of 5%, and for which the high β cases were removed, 

such that the mean β of this set is equal to the mean β of the set of limit states with high variation 

(COV for all RVs = 35%).  To determine the unbiased effect of COV on accuracy and precision, 

these two cases (“5, low B” and “35”) should be compared.  In general, the trend is that as COV 

increases, accuracy and precision decrease.   

 

The figures dealing with failure probability (17-18) clearly show that the low COV cases, 

controlled for target β (“5, low B”) are better than the high COV cases, as well as the 

uncontrolled low COV cases (5% uncontrolled, which includes high failure probability cases).  

One exception is LH, which has an outlying datum (case 18, 15 RVs).  If this point is eliminated, 

the trend matches those of the other methods.  Considering reliability index (figures 7-8), notice 
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that for most results, the results for all low COV cases (“5”)  are better than the low COV cases 

for which β is controlled (“5, low B”).  Low β cases in general show a worsening of results due 

to the nonlinear transformation between failure probability and reliability index.  This occurs 

because the low COV cases have a higher average reliability index than the β-controlled low-

COV cases. Errors for the higher β cases, when converted to failure probability, are reduced 

much more than those of the lower β set.  However, the low COV, controlled β cases (“5, low 

B”) are of course still more accurately and precisely predicted than the high COV cases (35%).  

Here there are two exceptions in terms of accuracy, LH and IS, which again are caused by 

outliers (case 18, 15 RV for LH, and case 7, 15 RV for IS).  

 

Target Reliability Index 

In the figures (9-10, 19-20), functions are grouped into the low target β set (β of 2 and below, 

with mean of 1.3), a high β set (all β greater than 2, with mean of 6.75).  Since all high COV 

functions must be within the low β group, results may be biased, as COV affects accuracy and 

precision as well.  Therefore, an additional data set is considered which controls for COV (low, 

low V).  This is the set of functions that have low COV (i.e. COVs other than 35%) and low β.  

These should be compared to the high β set (which also all have low COV) to ascertain the affect 

that target reliability index has on the results.  As can be seen from the failure probability figures 

(19-20), target reliability index may have a significant effect on accuracy and precision.  In 

general, as failure probability decreases (and reliability index increases), results worsen.  For the 

simulation methods (MCS, LH), this is because failure probability is calculated as the number of 

failures sampled (i.e. where g < 0) divided by the total number of samples.  Clearly, at low 

failure probabilities there are fewer failures to sample, so an error here can have significant effect 
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on the overall computed result.  For low target βs, since many more failures are expected as a 

proportion of the total samples, errors in assessing the number of failures is not as significant.  

The point sampling methods also display a decrease in precision and accuracy for low failure 

probability functions, but for a different reason. As the point sampling methods are used to 

compute β, the result must be transformed to failure probability.  As reliability index increases, 

small errors in β cause increasingly larger errors in failure probability (fig 21).    For accuracy 

and precision, the low β, COV-controlled case (low, low V), as expected, is better than the high 

β case.  The difference is extreme for N+1 and 2N.  An exception is LH, which is again due to a 

outlying datum. 

 

Because of the reliability index-failure probability transformation, when β is considered (figs. 9 

and 10), the expectation is that the high β cases would show an increase in accuracy and the low 

β cases a decrease in accuracy.  In general, the expected trend occurs.  This is particularly so 

with N+1 and 2N.  For precision (figure 10), four of the seven methods (N+1, 2N, LH, RF) gives 

poor results for the low- β, COV-controlled cases.  For each method, the same single function 

within case 20, for 15 RVs and a low target reliability index (0.80), is very poorly predicted.  

Eliminating this outlying datum returns the trends to match that of the three other methods.  

 

Special Problems 

Tables 12 and 13 give results for the five special problems considered.  Here the calculated 

reliability index is divided by the exact value for comparison.  For the nonlinear limit state 

(problem 1),  all simulation methods gave good results, most within a few percent of the exact 

value.  All three point estimation methods, however, failed to provide a meaningful result, as 



 25 

each predicted a coefficient of variation very close or equal to zero, leading to a unreasonably 

high reliability index (200+).   This is because each of the 20 RVs in the problem have identical 

mean, COV, as well as low sensitivity of the limit state for both positive and negative 

perturbations.   In the case of ROS, the sum of the positive and negative perturbations cancel out 

(see equations 2 and 3),  resulting in zero COV.  For N+1 and N+2, the low sensitivity of the 

limit state to any single RV results in a gross under-prediction of COV, as the specified 

perturbation value leaves the limit state practically unchanged.    

 

The multiple beta value case (problem 2) gave trouble for each of the simulation methods that 

use an analytical method to locate the MPP.  Just as with RF, the maximum rather than the 

minimum MPP was found, and thus results were sampled about a local rather than a global 

minimum, over-predicting reliability index by about 35% in this case.  Here use of prior 

knowledge of the proper MPP location would have prevented this.  Note that MCS and LH, 

which sample without reference to the MPP, provided accurate results.  The point estimation 

methods gave results of varying quality, with ROS close to the exact value. 

 

The series system (problem 3) was accurately evaluated by all simulation methods, as well as 

RF, although the point methods uniformly over-predicted reliability index by about 30%.  The 

parallel system (problem 4) was likewise accurately identified by the simulation methods.  Here 

RF significantly under-predicted reliability index, while the point estimation methods gave 

varying results. 
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The noisy limit state (problem 5) was accurately predicted by all methods except N+1.  It 

appears that small fluxuations  in the limit state boundary are not nearly so difficult for the 

numerical algorithms to deal with than large-scale shape nonlinearities. 

 

Efficiency  

If accuracy and precision were the only considerations for structural reliability calculations, it is 

clear that point estimation methods would have little usefulness, as in most cases they are out-

performed by the simulation methods (as well as RF) by a wide margin.  However, the 

performance of the sampling methods varies greatly with the type of limit state considered (in 

terms of linearity, number of RVs, distribution type, variance, and target reliability index), and in 

some  instances, may provide suitable accuracy and precision to solve practical problems.   

Tables 14 and 15 present such data.   First, the results for all functions considered in this study 

are given for a particular method (“OVERALL”).  The next columns list a subset of functions for 

which a particular method was found to give best results in accuracy and precision.  These 

results are highlighted in the table for each method.  Note some methods (LH, IS, AISP, AISC, 

RF) estimate several different types of limit states equally well, and so have more than one result 

highlighted in the table.   The data reveals that the point sampling methods can be very accurate 

and precise for certain types of limit states.  In terms of reliability index (table 14), the N+1, 2N, 

and ROS methods are equivalent to MCS (overall) accuracy for limit states that are: normal with 

low COV (N+1);  have low COV (2N); and have a low number of RVs (ROS).  Moreover, these 

functions may even exceed MCS (overall) in terms of precision for limit states that are normal 

and linear, based on the number of MCS samples conducted in this study.  Such results make it 
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clear that, at least as important as the number of samples chosen is how the samples are chosen 

(i.e. randomly, as in MCS, versus selected, as with the point estimation methods). 

 

When considering failure probability, the point methods do not show as great of an 

improvement, relative to MCS (overall), as with β.  N+1 and 2N, for example, for low β, low 

COV functions, still do not match MCS (overall) accuracy or precision.  However, considering 

the range of variation expected with failure probability, results from these methods are very 

reasonable.  For normal, linear functions, ROS provides excellent results, and may exceed MCS 

(overall).   Most precise results for N+1 and 2N appear for low COV, low RV functions, which 

appears different from the best results for β (normal, linear).  Here the nonlinear transformation 

from failure probability to reliability index effects results.  Although the very best results are 

highlighted in the tables, notice that the actual differences between some types of functions are 

small.   

 

The total number of samples used for a particular type of limit state given a particular method is 

shown in Table 16.   All methods considered except  MCS and LH have a lower limit of the 

number of required simulations based on the number of random variables in the problem.  As 

shown in the table, the number of simulations is held constant for all limit states of a given 

number of RVs for statistical comparisons to be consistent and meaningful.  The basis for the 

number of samples taken is described previously in  Methods Considered, but in general these 

were chosen such that most limit states evaluated by a particular method gave results close to 

that of  MCS.  Note that for MCS and the AIS methods, the number of simulations 

indicated is approximate.  Of course, increasing the number of simulations for all methods for 
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which this is possible (i.e. all but the point sampling methods), should produce more accurate 

and precise results. 

 

The difference in computational time needed to execute a single loop in any of these methods for 

most complex problems is negligible.  That is, for practical problems where minimizing 

computational effort would be a concern (such as those which call a FEA code to evaluate g) the 

computational effort needed to evaluate the limit state far exceeds that for the reliability 

algorithm to utilize that information (no more than a fraction of a second).  Thus, computational 

effort is directly proportional to the number of simulations used as given in Table 16, 

independent of reliability method.   By comparing the number of simulations used and the results 

of the various methods for certain types of limit states, it is clear that, in some cases,  the point 

methods can reduce the required number of samples tremendously, often by several orders of 

magnitude, and yet may retain equivalent accuracy and precision as the simulation methods.   

 

Conclusions and Recommendations 

For certain types of functions, it was found that it is possible to tremendously reduce 

computational effort using point sampling methods and yet still maintain competitive accuracy 

and precision.  It was also found that all problems could be accurately evaluated by at least 

several methods.  To select an appropriate method for use, several important factors must be 

considered: 

1) what computational resources are available? 

2) what accuracy and precision are required? 
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3) what are the characteristics of the limit state function (number of RVs, distribution 

type, variance, linearity, and target reliability index)?  

4)  is reliability index or failure probability of primary interest? 

Based on the data presented in tables 14 and 15, some results and recommendations can be 

summarized.   The versions of MCS, LH, IS, and AIS investigated in this study can be expected 

to have similar and good overall results for a wide range of limit states, and are recommended for 

nearly all problem types.  For all types of limit states, MCS predicts average reliability index 

within 1%, with mean COV of 6%, while LH over predicts reliability index by 4%, with COV of 

8%.  For LH, results appear to degrade for a higher number of RVs.  For reliability index, 

maximum COV is 15% for 2 RV cases with a typical COV of 3% or less, with a typical beta 

value within of 1-2% of the true value  (Tables 7, 14).  The 15 RV case, however, has a 

maximum COV of 37% with an value of 15%.  Results are similar for beta value.   For high RV 

problems, it may be prudent to avoid the formulation of LH used in this study.   IS predicts 

reliability index within 1% with COV of 6%, while AISP over predicts reliability index by 4%, 

with 3% COV.  AISP almost always gives a slightly higher (usually within a few percent) 

estimate of beta value than AISC, which predicts average reliability index within 1% and COV 

of 3%.    

 

RF can excel at nearly all types of limit states (typical beta and COV are nearly exact) except 

those that have a high number of RVs or that are highly nonlinear; here results may be very poor 

(15 RV forms of cases 13,16,19, and 21 have an estimated beta over twice the actual value and  

COVs of 26-45%; see table 8).    Thus it can be recommended for all but these types of 

problems.   
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Considering all types of limit states,  the point methods give mixed results.  Overall, N+1 under 

predicts reliability index by 20%, with COV of 15%.  2N under predicts reliability index 12%, 

with COV of 15%, while ROS over predicts reliability index by 12%, with COV of 12%.    

Limiting results to specific types of problems, if reliability index is of primary interest, all three 

point methods appear to give excellent results for functions that have normally distributed RVs, 

and are linear and/or have low variance.  Specifically, for normal, low COV problems, all 

methods give nearly-exact results, generally within a few percent for beta, and all simulation 

methods are within 2%.  ROS is the worse performer here, on average over predicting beta by 

13%.  For COV, all simulation methods provide an average COV within 2% and a beta value no 

higher than 2%.  All three point methods result in a COV no higher than  6%.   If failure 

probability is needed and will not be converted to reliability index, in addition to the 

characteristics above, functions that have low target β (around 2 or less, or expected failure 

probabilities of about 0.02 or more) may be estimated well with the point methods.  For normal, 

linear problems, all methods likewise give excellent results within 1% on average for beta.  Here 

the worst method is N+1, under predicting average beta by 10%.  Most also give good estimates 

for COV, as all methods are within 4%, where all point methods are within 1%.  Therefore, for 

these specific types of problems, point methods, including n+1, can be useful and accurate. 

 

For the special types of problems considered, results are mixed.  Point methods will fail or give 

very poor results for cases like special problem 1 (many RVs with the same mean and COV and 

the limit state has a low sensitivity to each), and thus cannot be used for this problem type.   For 

problems with multiple beta values,  RF and importance sampling methods may focus on a local 
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rather than a global minimum beta, over-estimating reliability index.   This occurred in this study 

when these methods over-predicted beta by about 35% for special problem 2.  Unless the actual 

minimum MPP is known, RF, IS, and AIS methods that use RF-like searches should be used 

cautiously if at all for these problems.  The series system evaluated here gave no trouble for the 

simulation methods, although point methods over predicted beta by about 30%.  Similarly, the 

simulation methods gave good results for the parallel system, while RF under predicted beta by 

54% and the point methods gave unreliable results.  Clearly, some caution should be used if RF 

or point methods are applied to system problems.  The noisy limit state was well-predicted by all 

methods except N+1 (40% over prediction of beta). 

 

Note that in structural reliability analysis, precision is often more important than accuracy.  That 

is,  it is often of interest to compare the differences in reliability among structures. This is 

typically true in code calibration efforts, for example, where a small error in accuracy may not be 

important, as long as the error is consistent from one structure to the next.  Further, in many 

cases, good accuracy with poor precision has little meaning.  That is, although the mean value 

for a set of different functions may be estimated well, the expected result for any specific 

function may be poor, as indicated by a high COV in the results.  Good accuracy in these cases 

(i.e. high accuracy but low precision) comes from high and low values averaging out, not a 

consistently good estimation of the functional values, which would be indicated by a low COV.  

If the object is to estimate the value of a single function, as often occurs, rather than a group of 

different functions, then the accuracy results must be considered with reference to COV. 
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This study is intended to be used to aid the initial consideration of a method appropriate for a 

specific type of problem.  For some problems, point sampling methods may save tremendous 

computational effort.  It must be kept in mind that these results are based not on the infinite set of 

all possible limit states, but for a sample of functions with characteristics commonly occurring in 

structural reliability analysis.  Some particular functions are not typical to the overall trends; 

some are better, while some are worse.  This must be considered when a method is chosen.  

Some guidance can be provided by observing the ‘outliers’ in the data discussed earlier, as 

indicated in tables 6-8 and 9-11.  In any case, it is strongly recommended that, once a method(s) 

is initially selected,  some degree of verification for the specific problem at hand is conducted to 

ensure that the method provides suitable results. 
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Figure Captions 

 

Figure 1. Effect of Linearity on Accuracy (β) 

Figure 2. Effect of Linearity on Precision (β) 

Figure 3. Effect of Normality on Accuracy (β) 

Figure 4. Effect of Normality on Precision (β) 

Figure 5. Effect of Normality on Accuracy (β) 

Figure 6. Effect of Normality on Precision (β) 

Figure 7. Effect of Normality on Accuracy (β) 

Figure 8. Effect of Normality on Precision (β) 

Figure 9. Effect of Normality on Accuracy (β) 

Figure 10. Effect of Normality on Precision (β) 

Figure 11. Effect of Linearity on Accuracy (Pf) 

Figure 12. Effect of Linearity on Precision (Pf) 

Figure 13. Effect of Normality on Accuracy (Pf) 

Figure 14. Effect of Normality on Precision (Pf) 

Figure 15. Effect of Normality on Accuracy (Pf) 

Figure 16. Effect of Normality on Precision (Pf) 

Figure 17. Effect of Normality on Accuracy (Pf) 

Figure 18. Effect of Normality on Precision (Pf) 

Figure 19. Effect of Normality on Accuracy (Pf) 

Figure 20. Effect of Normality on Precision (Pf)
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Table 1. Point Values for N+1. 
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Table 2. Parameters Considered 

 

Case 

Number 

Function 

Type 

RV 

Distribution 

Type 

RV 

COV 

1 linear normal 5 

2 linear normal 35 

3 linear normal mixed 

4 linear lognormal 5 

5 linear lognormal 35 

6 linear lognormal mixed 

7 linear extreme I 5 

8 linear extreme I 35 

9 linear mixed 5 

10 linear mixed 35 

11 linear mixed mixed 

12 nonlinear normal 5 

13 nonlinear normal 35 

14 nonlinear normal mixed 

15 nonlinear lognormal 5 

16 nonlinear lognormal 35 

17 nonlinear lognormal mixed 

18 nonlinear extreme I 5 

19 nonlinear extreme I 35 

20 nonlinear mixed 5 

21 nonlinear mixed 35 

22 nonlinear mixed mixed 
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Table 3. Random Variables, Distributions and COVs 

 
Mixed cases* Type of 

Problem 

RVs 

distribution COV (%) 

Linear 

   2RV  

d1 

w1 

norm 

ext I 

15 

5 

Nonlinear 

  2RV  

d1 

L1 

log 

norm 

15 

5 

Linear 

  5RV 

 

d1, d2 

w1 

w2 

w3 

norm 

norm 

ext I 

log 

15 

5 

35 

15 

Nonlinear 

  5RV  

d1 

w1 

E1 

I1, L1 

norm 

ext I 

log 

norm 

15 

35 

5 

5 

Linear 

  15RV 

d1-d5 

w1-w5 

w6-w8 

w9, w10 

norm 

norm 

ext I 

log 

15 

5 

35 

15 

Nonlinear  

  15RV 

d1-d3 

w1-w3 

E1-E3 

I1-I3, L1-L3 

norm 

ext I 

log 

norm 

15 

35 

5 

5 

*For non-mixed cases, RV distributions for a particular limit 

state are either all normal, all lognormal, or all extreme I, while 

COVs are either all 5% or all 35%, as shown in Table 2.
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Table 4.  Values of d and k for all cases except 7, 8, 18, 19. 
 

#of 

RVs 

Target β mean d 

(mm) 

k (linear 

cases)* 

2 high 112 0.925 

 medium 26.5 0.829 

 low 16.1 0.875 

5 high 138 0.216 

 medium 38.1 0.447 

 low 20.5 0.602 

15 high 37.7 0.541 

 medium 22.5 0.676 

 low 15.5 0.809 
*k = 1.0 for all nonlinear problems. 

 

 

 

 

 

 

 

Table 5. Values of d and k for cases 7, 8, 18, 19. 

 

Case #of 

RVs 

Target β mean d 

(mm) 

k (linear 

cases)* 

7, 18 2 high 24.6 0.532 

 2 low 12.5 0.879 

 5 high 25.4 0.404 

 5 low 12.8 0.728 

 15 high 15.8 0.703 

 15 low 11.5 0.917 

8, 19 2 high 605.0 0.072 

 2 low 34.5 0.478 

 5 high 902.9 0.026 

 5 low 41.0 0.298 

 15 high 127.1 0.142 

 15 low 21.7 0.573 
*k = 1.0 for all nonlinear problems. 
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Table 6. Accuracy and Precision of Point Sampling Methods, Reliability Index    

case     2 RV           5 RV           15 RV     

  
       
N+1           2N       ROS 

       
N+1           2N       ROS 

       
N+1           2N 

      
ROS   

  mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV 

1 0.82 0.00 0.87 0.00 1.00 0.00 0.91 0.01 0.95 0.00 1.00 0.00 0.98 0.02 0.99 0.01 1.01 0.01 

2 0.82 0.00 0.87 0.00 0.98 0.02 0.91 0.00 0.95 0.00 0.97 0.02 0.97 0.00 0.98 0.00 0.96 0.03 

3 0.82 0.00 0.87 0.00 1.00 0.00 0.91 0.00 0.95 0.00 0.98 0.02 0.97 0.00 0.99 0.00 0.98 0.03 

4 0.74 0.06 0.80 0.06 0.92 0.06 0.82 0.05 0.89 0.05 0.94 0.05 0.87 0.05 0.95 0.05 0.97 0.03 

5 0.54 0.33 0.62 0.33 0.69 0.32 0.59 0.12 0.71 0.12 0.77 0.10 0.51 0.10 0.64 0.09 0.86 0.06 

6 0.55 0.32 0.61 0.33 0.70 0.32 0.86 0.06 1.01 0.07 1.07 0.08 0.71 0.05 0.85 0.06 1.03 0.05 

7 0.80 0.12 0.92 0.13 0.99 0.18 0.73 0.02 0.85 0.01 0.90 0.11 0.57 0.05 0.69 0.02 0.92 0.09 

8 1.07 0.54 1.24 0.54 0.83 0.01 0.63 0.13 0.75 0.10 0.76 0.01 0.54 0.10 0.67 0.07 0.82 0.08 

9 0.99 0.12 0.96 0.05 1.22 0.17 0.96 0.05 1.04 0.06 1.11 0.06 0.93 0.03 1.00 0.03 1.06 0.02 

10 1.03 0.23 1.12 0.25 0.96 0.05 0.84 0.03 0.91 0.03 0.93 0.04 0.80 0.00 0.91 0.02 0.95 0.01 

11 0.78 0.02 0.88 0.06 0.99 0.01 0.91 0.10 1.02 0.09 1.08 0.10 0.79 0.08 0.91 0.07 1.06 0.06 

12 0.95 0.08 1.02 0.08 1.18 0.08 1.14 0.12 1.21 0.13 1.29 0.13 1.11 0.14 1.22 0.13 1.31 0.11 

13 0.65 0.39 0.74 0.42 0.95 0.39 0.87 0.35 0.78 0.59 1.29 0.16 0.42 0.26 0.66 0.10 2.54 0.16 

14 0.81 0.01 0.88 0.01 1.01 0.01 0.99 0.06 1.01 0.05 1.06 0.05 1.06 0.03 1.05 0.04 1.08 0.05 

15 0.97 0.13 1.07 0.13 1.24 0.13 1.12 0.19 1.24 0.19 1.34 0.20 1.06 0.17 1.24 0.17 1.39 0.15 

16 0.61 0.51 0.67 0.65 0.92 0.56 0.45 0.78 0.51 0.82 1.18 0.23 0.57 0.75 0.41 0.80 2.04 0.10 

17 0.64 0.32 0.71 0.33 0.82 0.33 0.86 0.11 1.02 0.11 1.10 0.11 0.77 0.10 0.97 0.09 1.19 0.08 

18 1.15 0.46 1.26 0.49 1.46 0.50 0.92 0.50 1.13 0.48 1.44 0.49 0.37 0.69 0.52 0.49 1.22 0.38 

19 0.63 0.17 0.69 0.28 0.88 0.08 0.44 0.67 0.52 0.78 0.99 0.08 -0.41 
-

1.94 -0.27 
-

2.35 1.96 0.11 

20 0.95 0.08 1.02 0.08 1.18 0.08 1.13 0.13 1.22 0.14 1.30 0.14 1.09 0.13 1.23 0.12 1.33 0.10 

21 0.60 0.38 0.68 0.41 0.90 0.38 0.82 0.37 0.81 0.49 1.26 0.15 0.07 0.17 0.45 0.84 2.40 0.09 

22 0.78 0.08 0.88 0.01 1.01 0.01 0.90 0.15 1.05 0.09 1.11 0.10 0.84 0.14 1.02 0.11 1.20 0.08 
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Table 7. Accuracy and Precision of Simulation Methods, Reliability Index      

case               2 RV                       5 RV       

  
       
MCS           LH          IS 

      
AISP  

      
AISC  

       
MCS           LH 

         
IS  

      
AISP  

      
AISC

  mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean

1 n/a  n/a  1.01 0.01 1.02 0.01 1.00 0.00 n/a  n/a  1.00 0.00 1.01 0.01 

2 0.99 0.04 1.03 0.02 1.01 0.03 1.01 0.01 1.00 0.01 1.01 0.03 0.98 0.01 1.00 0.07 1.02 0.01 

3 1.00 0.00 0.98 0.04 0.97 0.07 1.00 0.00 1.01 0.00 0.94 0.08 1.02 0.01 0.97 0.01 1.00 0.00 

4 n/a  n/a  1.00 0.02 1.01 0.00 1.00 0.00 n/a  n/a  1.00 0.00 1.01 0.00 

5 0.94 n/a 1.01 n/a 1.02 0.02 1.02 0.01 1.00 0.00 1.08 n/a 1.00 n/a 1.06 0.03 1.02 0.01 

6 1.00 n/a 1.01 n/a 0.97 0.06 1.02 0.01 1.00 0.00 1.00 0.02 1.05 0.10 1.26 0.40 1.03 0.01 

7 1.01 0.01 1.00 0.00 1.00 0.00 1.02 0.08 0.86 0.12 0.97 0.00 1.04 0.06 1.01 0.01 1.04 0.09 

8 0.99 0.00 0.96 0.05 1.00 0.10 1.05 0.06 0.99 0.06 0.95 0.05 1.03 0.06 1.03 0.10 1.08 0.03 

9 n/a  0.94 n/a 1.00 0.01 1.01 0.01 1.00 0.00 n/a  n/a  0.97 0.04 1.02 0.01 

10 0.98 0.05 1.08 0.15 0.97 0.07 1.05 0.04 1.03 0.04 0.97 0.00 0.97 0.03 0.94 0.01 1.03 0.00 

11 0.98 0.01 0.99 0.02 0.99 0.02 1.02 0.01 1.00 0.00 0.99 0.04 1.00 0.06 0.98 0.05 1.02 0.01 

12 0.99 0.02 1.03 0.02 0.99 0.00 1.02 0.01 1.00 0.01 1.00 0.02 1.01 0.02 1.00 0.00 1.02 0.00 

13 1.72 0.62 1.03 0.03 0.93 0.14 1.13 0.04 1.10 0.05 0.85 0.35 1.00 0.01 1.07 0.10 1.16 0.01 

14 0.98 0.01 0.98 0.00 1.01 0.05 1.00 0.00 1.03 0.01 0.99 0.02 1.02 0.01 1.02 0.05 1.00 0.00 

15 1.00 0.03 1.05 0.03 0.99 0.00 1.03 0.02 1.01 0.01 1.00 0.03 1.10 0.03 1.00 0.01 1.03 0.01 

16 0.98 0.10 1.00 0.02 0.93 0.11 0.91 0.05 0.85 0.05 1.01 0.04 1.00 0.02 0.98 0.04 1.00 0.00 

17 0.99 n/a 1.01 n/a 0.99 0.06 1.01 0.00 1.00 0.00 1.00 0.00 1.07 0.06 1.03 0.03 1.03 0.01 

18 1.01 0.02 1.05 0.03 1.05 0.04 1.12 0.03 1.05 0.02 1.03 0.04 1.16 0.18 1.02 0.00 1.00 0.05 

19 1.00 0.01 1.01 0.00 1.03 0.04 0.99 0.03 1.01 0.01 1.01 0.02 1.14 0.18 1.01 0.03 1.00 0.01 

20 0.99 0.03 1.03 0.05 0.99 0.00 1.02 0.01 0.99 0.01 0.98 0.03 0.98 0.05 1.00 0.00 1.00 0.02 

21 1.81 0.66 1.09 0.12 0.88 0.13 1.17 0.14 1.15 0.17 0.87 0.28 1.01 0.02 1.04 0.03 0.97 0.09 

22 0.98 0.01 1.00 0.02 1.00 0.02 1.02 0.03 1.03 0.02 0.99 0.00 1.00 0.04 1.02 0.03 1.00 0.00 
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Table 8.  Accuracy and Precision of 
Analytical Procedure (RF), Reliability 
Index 

case         2 RV          5 RV          15 RV 

  mean COV mean COV mean COV 

1 1.00 0.00 1.00 0.00 1.00 0.00 

2 1.00 0.00 1.00 0.00 1.00 0.00 

3 1.00 0.00 1.00 0.00 1.00 0.00 

4 1.00 0.00 1.00 0.00 1.00 0.00 

5 1.00 0.00 1.00 0.00 1.03 0.03 

6 1.00 0.00 1.00 0.00 1.04 0.06 

7 1.00 0.00 1.03 0.04 1.10 0.02 

8 1.00 0.00 1.00 0.00 1.07 0.00 

9 1.00 0.00 1.00 0.00 1.00 0.00 

10 1.00 0.00 1.00 0.00 1.05 0.07 

11 1.00 0.00 1.00 0.00 1.07 0.07 

12 1.00 0.00 1.00 0.00 1.00 0.00 

13 1.10 0.04 1.13 0.00 2.68 0.45 

14 1.00 0.00 1.00 0.00 1.00 0.00 

15 1.00 0.00 1.00 0.00 1.00 0.00 

16 1.00 0.00 1.00 0.00 2.23 0.26 

17 1.00 0.00 1.00 0.00 1.08 0.07 

18 1.00 0.00 1.00 0.00 1.23 0.06 

19 1.00 0.00 1.00 0.00 2.14 0.41 

20 1.00 0.00 1.00 0.00 1.02 0.03 

21 1.04 0.05 1.11 0.00 2.52 0.39 

22 1.00 0.00 1.00 0.00 1.09 0.08 
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Table 9.  Accuracy and Precision of Point Sampling Methods, Failure Probability    

case     2 RV           5 RV           15 RV     

  
       
N+1           2N       ROS 

       
N+1           2N       ROS 

       
N+1           2N 

      
ROS   

  mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV 

1 26.21 n/a 11.06 n/a 0.88 n/a 34.80 n/a 8.18 n/a 0.76 n/a 3.18 n/a 1.62 n/a 0.56 n/a 

2 2.52 0.55 1.95 0.42 1.04 0.06 1.71 0.26 1.36 0.16 1.18 0.02 1.24 0.11 1.12 0.07 1.24 0.01 

3 165.2 1.67 35.90 1.57 1.00 0.01 9.07 1.32 3.20 0.89 1.17 0.02 1.93 0.57 1.36 0.31 1.19 0.03 

4 54.14 n/a 17.53 n/a 1.40 n/a 895.4 n/a 55.48 n/a 4.85 n/a 352.0 n/a 10.54 n/a 2.42 n/a 

5 80.00 1.41 15.00 1.41 3.00 1.41 122.9 1.36 40.17 1.32 20.51 1.26 112.7 1.35 42.15 1.30 5.46 1.01 

6 1510 1.41 563.0 1.41 115.1 1.40 6.55 1.00 0.74 0.76 0.47 1.18 372.3 1.66 8.26 0.86 0.63 0.81 

7 2.52 0.59 1.16 0.15 0.75 0.89 6.53 1.11 2.61 0.74 1.31 0.05 12.60 1.23 5.97 1.08 1.21 0.02 

8 8.97 1.35 3.98 1.32 2.87 0.78 17.87 1.29 7.97 1.18 4.88 1.00 16.54 1.27 8.31 1.16 2.17 0.53 

9 0.79 1.40 0.34 n/a 0.03 n/a 0.67 n/a 0.03 n/a 0.00 n/a 61.60 n/a 2.82 n/a 0.06 n/a 

10 1.63 0.91 1.08 0.88 1.14 0.09 2.62 0.32 1.71 0.14 1.43 0.03 4.29 0.72 2.08 0.48 1.54 0.32 

11 20.78 1.73 2.88 1.73 1.09 0.03 1.88 0.08 0.68 0.93 0.48 1.26 23.37 1.36 2.03 0.19 0.49 1.05 

12 1.06 0.78 0.57 1.31 0.21 1.41 0.29 n/a 0.11 n/a 0.03 n/a 0.76 1.40 0.26 1.41 0.15 n/a 

13 1.75 0.23 1.31 0.12 0.81 0.79 1.09 0.46 1.20 0.60 0.50 0.96 1.55 0.39 1.25 0.17 0.36 0.88 

14 191.8 1.68 35.51 1.59 0.88 0.17 6.94 1.53 2.15 1.18 0.58 0.55 0.44 1.00 0.47 1.04 0.39 1.24 

15 0.72 1.28 0.45 1.40 0.17 1.41 0.16 1.41 0.09 n/a 0.02 n/a 1.69 1.29 0.41 1.41 0.11 n/a 

16 1.85 0.05 1.45 0.37 0.92 0.98 2.68 0.12 2.25 0.11 0.60 0.96 7.13 1.05 6.58 1.05 0.33 1.40 

17 18.77 1.25 6.71 1.08 1.51 0.48 922.6 1.73 9.78 1.63 1.08 1.16 61.33 1.56 0.96 0.69 0.24 1.63 

18 0.69 1.41 0.64 1.41 0.54 1.41 0.91 1.31 0.73 1.41 0.55 1.41 8.83 1.08 4.62 0.85 0.57 1.40 

19 7.53 1.07 3.49 0.67 1.58 0.28 11.45 1.10 4.24 0.55 1.35 0.45 8.71 1.13 8.28 1.13 0.36 1.41 

20 1.06 0.78 0.57 1.31 0.21 1.41 0.41 n/a 0.11 n/a 0.04 n/a 0.73 1.28 0.17 1.41 0.09 n/a 

21 2.15 0.42 1.55 0.07 0.90 0.65 1.21 0.36 1.16 0.56 0.52 0.92 1.71 0.22 1.37 0.16 0.37 0.89 

22 191.8 1.68 35.51 1.59 0.88 0.17 8.45 1.49 1.40 1.09 0.41 0.82 4.21 0.52 0.66 1.05 0.26 1.58 
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Table 10.  Accuracy and Precision of Simulation Methods, Failure Probability      

case              2 RV                       5 RV       

  
       
MCS           LH          IS 

      
AISP  

      
AISC  

       
MCS           LH          IS 

      
AISP  

      
AISC

  mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean

1 n/a n/a n/a n/a 0.73 n/a 0.78 n/a 0.96 n/a n/a n/a n/a n/a 1.07 n/a 0.56 n/a 

2 0.98 0.17 0.92 0.04 0.92 0.18 0.94 0.02 0.99 0.01 0.97 0.13 1.09 0.00 1.16 0.42 0.91 0.02 

3 1.01 0.02 1.36 0.40 1.04 0.41 1.01 0.01 0.82 0.14 2.52 0.84 0.85 0.18 1.38 0.17 1.02 0.04 

4 n/a n/a n/a n/a 0.69 n/a 0.81 n/a 1.00 n/a n/a n/a n/a n/a 0.81 n/a 0.54 n/a 

5 0.94 n/a 1.01 n/a 0.86 0.03 0.84 0.16 0.98 0.04 1.08 n/a 1.00 n/a 0.57 0.64 0.88 0.04 

6 1.00 n/a 1.01 n/a 1.20 0.38 0.81 0.11 0.98 0.03 0.97 0.10 0.66 0.92 0.71 0.93 0.68 0.37 

7 0.97 0.00 1.00 0.00 1.00 0.00 1.13 0.31 1.63 0.23 1.23 0.22 0.96 0.11 0.91 0.14 1.12 0.33 

8 1.02 0.01 1.09 0.03 0.79 0.57 0.92 0.08 1.34 0.40 1.15 0.03 1.06 0.21 0.63 0.45 0.63 0.67 

9 1.12 n/a 2.24 n/a 0.87 0.28 0.62 n/a 0.97 n/a n/a n/a n/a n/a 1.06 n/a 0.68 n/a 

10 1.01 0.20 0.65 0.97 1.03 0.25 0.85 0.02 0.94 0.09 1.21 0.08 1.12 0.12 1.56 0.28 0.84 0.11 

11 1.16 0.06 1.04 0.11 1.05 0.22 0.74 0.31 1.02 0.04 0.97 0.27 0.89 0.43 0.99 0.34 0.77 0.36 

12 1.05 n/a 0.83 n/a 1.13 0.13 0.73 0.28 0.96 0.06 1.04 n/a 0.90 n/a 0.96 0.06 0.63 0.39 

13 0.51 1.01 0.97 0.01 1.02 0.15 0.75 0.23 0.81 0.14 1.12 0.42 1.01 0.02 0.94 0.13 0.69 0.31 

14 1.10 0.02 1.14 0.09 1.23 0.33 0.99 0.01 0.74 0.31 1.11 0.17 0.88 0.03 1.02 0.23 1.00 0.00 

15 1.00 n/a 0.77 n/a 1.12 0.09 0.79 0.02 0.96 0.05 1.03 n/a 0.36 n/a 0.75 n/a 0.50 0.45 

16 1.18 0.28 1.04 0.07 1.07 0.12 1.35 0.29 1.56 0.38 0.95 0.11 0.98 0.06 1.10 0.14 1.00 0.00 

17 1.04 n/a 0.95 n/a 0.92 0.13 0.90 0.06 0.99 0.02 1.04 0.05 0.59 0.77 0.78 0.15 0.67 0.48 

18 1.00 0.04 0.86 0.06 0.82 0.10 0.57 0.53 0.72 0.44 0.92 0.02 0.74 0.27 0.88 0.14 0.96 0.08 

19 1.04 0.08 0.98 0.01 0.97 0.09 0.96 0.13 0.98 0.02 1.02 0.07 0.83 0.34 0.87 0.24 1.05 0.07 

20 1.05 n/a 0.83 n/a 1.13 0.13 0.82 0.02 1.16 0.26 1.19 n/a 1.29 n/a 1.06 0.13 0.98 0.30 

21 0.67 1.08 0.94 0.13 1.21 0.04 0.84 0.13 0.93 0.03 1.11 0.35 0.97 0.07 0.88 0.15 0.97 0.11 

22 1.10 0.02 1.10 0.20 1.07 0.21 0.88 0.11 0.67 0.33 1.11 0.05 0.93 0.26 0.97 0.30 1.04 0.07 
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Table 11.  Accuracy and Precision of 
Analytical Procedure  (RF), Failure 
Probability 

case         2 RV          5 RV          15 RV 

  mean COV mean COV mean COV 

1 1.00 0.00 1.00 0.00 1.00 0.00 

2 1.00 0.00 1.00 0.00 1.00 0.00 

3 1.00 0.00 1.00 0.00 1.00 0.00 

4 1.00 0.00 1.00 0.00 1.00 0.00 

5 1.00 0.00 1.00 0.00 0.90 0.16 

6 1.00 0.00 1.00 0.00 0.89 0.21 

7 1.00 0.00 0.96 0.06 0.66 0.43 

8 1.00 0.00 1.00 0.00 0.73 0.36 

9 1.00 0.00 1.00 0.00 1.00 0.00 

10 1.00 0.00 1.00 0.00 0.83 0.29 

11 1.00 0.00 1.00 0.00 0.68 0.41 

12 1.00 0.00 1.00 0.00 1.00 0.00 

13 0.83 0.13 0.75 0.23 0.37 0.29 

14 1.00 0.00 1.00 0.00 1.00 0.00 

15 1.00 0.00 1.00 0.00 1.00 0.00 

16 1.00 0.00 1.00 0.00 0.24 1.23 

17 1.00 0.00 1.00 0.00 0.61 0.59 

18 1.00 0.00 1.00 0.00 0.37 1.37 

19 1.00 0.00 1.00 0.00 0.25 1.10 

20 1.00 0.00 1.00 0.00 0.84 0.33 

21 0.97 0.05 0.77 0.19 0.38 0.32 

22 1.00 0.00 1.00 0.00 0.62 0.56 
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Table 12. Special Problems, Reliability Index Results 

                      

Problem N+1 2N ROS MCS LH IS IASP IASC RF 

1    nonlinear * * * 0.97 1.01 0.91 0.99 0.96 1.03 

2   multiple B 0.75 0.86 0.98 1.00 0.98 1.31 1.36 1.36 1.37 

3   series 1.31 1.28 1.36 0.96 0.95 1.00 1.00 0.99 1.00 

4   parallel 1.26 0.67 0.79 1.01 0.99 1.03 1.03 1.01 0.54 

5   noisy 1.40 1.11 1.14 1.02 1.05 1.00 1.03 1.00 1.05 

*all three point methods predicted approximately zero coefficient of variation. 
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Table 13. Special Problems, Failure Probability Results 

                      

Problem N+1 2N ROS MCS LH IS IASP IASC RF 

1    nonlinear * * * 1.47 0.92 13.63 1.12 1.77 0.67 

2   multiple B 26.7 7.34 1.31 1.00 1.41 0.005 0.002 0.002 0.001 

3   series 0.10 0.14 0.07 1.28 1.34 1.00 1.03 1.05 1.03 

4   parallel 0.03 29.6 10.1 0.84 1.07 0.65 0.70 0.90 76.63 

5   noisy 0.09 0.55 0.47 0.89 0.78 1.00 0.85 1.00 0.78 

*all three point methods predicted approximately zero coefficient of variation. 
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Table 14. Accuracy and Precision by Type of Limit State and Evaluation Method, Reliability 
Index 

                              

           Type of Problem            

Method OVERALL 
norm, low 
COV low RV 

low RV, 
linear 

normal, 
linear low COV 

low COV & 
RV 

  mean COV mean COV mean COV mean COV mean COV mean COV mean COV 

n+1 0.79 0.14 0.99 0.06 0.80 0.20 0.81 0.16 0.90 0.00 0.92 0.14 0.92 0.13 

2n 0.88 0.15 1.04 0.06 0.88 0.21 0.89 0.16 0.94 0.00 1.01 0.13 0.99 0.13 

ROS 1.12 0.12 1.13 0.06 0.99 0.17 0.93 0.10 0.99 0.01 1.16 0.14 1.15 0.15 

MCS 1.01 0.06 0.98 0.02 1.07 0.10 0.99 0.02 0.99 0.04 0.99 0.01 1.00 0.02 

LH 1.04 0.08 1.01 0.02 1.02 0.04 1.00 0.05 1.00 0.02 1.04 0.04 1.02 0.03 

IS 1.01 0.06 1.00 0.01 0.99 0.05 0.99 0.04 1.00 0.04 1.02 0.02 1.01 0.01 

AISP 1.04 0.03 1.02 0.01 1.03 0.03 1.02 0.03 1.01 0.02 1.03 0.02 1.03 0.04 

AISC 1.01 0.03 1.00 0.00 1.01 0.03 1.00 0.03 1.01 0.03 1.00 0.02 0.99 0.03 

RF 1.10 0.03 1.00 0.00 1.01 0.00 1.00 0.00 1.00 0.00 1.02 0.01 1.00 0.00 

               

  for best accuracy   for best precision     best for both accuracy and precision 
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Table 15. Accuracy and Precision by Type of Limit State and Evaluation Method, Failure 
Probability 

                          

         
Type of 
Problem            

Method OVERALL low RV normal low B,V normal, linear low COV & RV 

  mean COV mean COV mean COV mean COV mean COV mean COV 

n+1 82.00 1.02 104.0 1.08 25.00 0.85 1.78 0.39 27.00 0.75 10.90 1.04 

2n 15.00 0.91 33.70 1.04 6.00 0.77 1.31 0.34 7.30 0.57 4.04 1.12 

ROS 3.03 0.84 6.23 0.73 0.72 0.47 0.96 0.29 1.00 0.02 0.52 1.31 

MCS 1.11 0.18 1.00 0.23 1.16 0.28 1.02 0.06 1.26 0.25 1.03 0.02 

LH 0.95 0.34 1.04 0.16 1.01 0.24 0.85 0.38 1.11 0.17 1.09 0.03 

IS 1.20 0.36 0.99 0.19 1.13 0.31 0.98 0.26 0.91 0.30 0.94 0.12 

AISP 0.78 0.22 0.87 0.15 0.82 0.09 0.77 0.22 0.88 0.19 0.78 0.22 

AISC 0.95 0.20 1.01 0.16 0.94 0.14 0.95 0.18 0.94 0.20 0.98 0.21 

RF 0.90 0.13 0.99 0.01 0.94 0.04 1.04 0.07 1.00 0.00 1.00 0.00 

             

  for best accuracy   for best precision     
best for both accuracy and 
precision 
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Table 16. Number of 
Samples 

     

 Type of Problem 

Method 

2 
RV 5 RV 

15 
RV 

n+1 3 6 16 

2n 4 10 30 

ROS 4 10 30 

MCS   
3700 / 

1.7x10^6*   

LH   370 / 34000*  

IS 60 69 99 

AISP 85 94 124 

AISC 51 69 194 

RF 10 19 49 
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