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Cell Reports

Article
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SUMMARY

Gambogic acid (GA) is a natural compound derived
from Chinese herbs that has been approved by the
Chinese Food and Drug Administration for clinical
trials in cancer patients; however, its molecular
targets have not been thoroughly studied. Here, we
report that GA inhibits tumor proteasome activity,
with potency comparable to bortezomib but much
less toxicity. First, GA acts as a prodrug and only
gains proteasome-inhibitory function after being
metabolized by intracellular CYP2E1. Second, GA-
induced proteasome inhibition is a prerequisite for
its cytotoxicity and anticancer effect without off-
targets. Finally, because expression of the CYP2E1
gene is very high in tumor tissues but low in many
normal tissues, GA could therefore produce tissue-
specific proteasome inhibition and tumor-specific
toxicity, with clinical significance for designing novel
strategies for cancer treatment.

INTRODUCTION

Gambogic acid (GA) is the principal pigment of gamboge resin of

several Garcinia species. The gamboge resin has been used as

a coloring material and traditional Chinese medicine for the

treatment of human diseases (Gruenwald and Jaenicke, 2000).

Recent studies have demonstrated that GA has anticancer

effects and inhibits the growth of multiple types of human cancer

cells in vitro and in vivo (Zhang et al., 2004; Pandey et al., 2007; Yi

et al., 2008). GA has been approved by the Chinese Food and

Drug Administration for the treatment of different cancers in clin-

ical trials (Zhou and Wan, 2007).

In both animal tumor models and clinical trials, GA efficiently

inhibits tumor growth with minimal side effects, with little toxicity

on immune and hemopoietic systems (Guo et al., 2003; Zhou

and Wan, 2007). Thus, identification of the specific molecular

targets responsible for GA-mediated anticancer effect should

have great clinical significance. Somepotentialmolecular targets

of GA have been reported that may contribute to its cytotoxicity

and anticancer activity, including binding to the transferrin recep-

tor and suppressing nuclear factor-kB (NF-kB) signaling pathway

(Pandey et al., 2007) and inhibiting VEGFR2 (Yi et al., 2008).

Intracellular P450 is mainly responsible for the metabolism

of GA (Liu et al., 2006). The metabolites of GA have been well

studied in vivo and in vitro. In rat liver microsomes, GA is rapidly

metabolized to two phase I metabolites, MT1 and MT2 (Liu et al.,

2006). MT1 and MT2 are probably the epoxide metabolite and

hydration metabolite of GA, respectively. Other phase II metab-

olites of GA were also identified in rat bile, such as 9,10-epoxy-

gambogic acid-30-O-glucuronide and 10-hydroxylgambogic

acid-30-O-glucuronide (Feng et al., 2007). Recently two sulfonic

acidmetabolites of GA, 10-a sulfonic acid and 10-b sulfonic acid,

were also found present abundantly in the fecal samples of rats

after intravenous administration (Yang et al., 2011). However, the

major circulatingmetabolite of GA in humanswas identified to be

MT2 (Yang et al., 2010).

Bortezomib (Velcade, Vel) as the first proteasome inhibitor

anticancer drug has been approved by US FDA for the treatment

of multiple myeloma. However, relapses and toxicities were

found to be associated with Vel treatment (Adams, 2004; Ri-

chardson et al., 2005), suggesting the need for discovery of novel

proteasome inhibitors with no or low toxicity.

The current study reports the following findings: (1) protea-

some is a specific molecular target of GA and GA at a thera-

peutic dose exerts anticancer effect through proteasome

inhibition without off-targets; (2) GA is a proteasome inhibitor

prodrug that is metabolized to an active proteasome inhibitor

by CYP2E1; (3) due to the selective distribution of CYP2E1, GA
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induces tissue-specific proteasome inhibition and cytotoxicity,

an advantage over other proteasome inhibitors including Vel.

RESULTS

GA Indirectly Inhibits Proteasome Activities
Most recently, we have reported that the combination of GA with

the classic proteasome inhibitor MG132 or MG262 synergisti-

cally inhibited tumor cell growth and induced cell death (Huang

et al., 2011a). To elucidate the involved molecular mechanism,

we measured the levels of the proteasome inhibition in human

leukemia K562 cells after treatment with GA alone, MG132 or

MG262 alone, or their combinations. As expected, MG132 or

MG262 treatment alone inhibited proteasomal activity in K562

cells, as measured by increased levels of ubiquitinated proteins

(Figure 1A, lanes 3 and 5). Surprisingly, GA alone was also able to

accumulate the ubiquitinated proteins (Figure 1A, lane 2), which

was dose dependent (Figure 1B). Most importantly, the combi-

nation of GA+MG132 or GA+MG262 resulted in higher levels of

ubiquitinated proteins and greater proteasome inhibition than

each treatment alone (Figure 1A, lanes 4 and 6).

To further study the proteasome-inhibitory effect of GA, we

transfected SH-SY5Y cells with a GFPu plasmid, a surrogate

proteasome substrate. We found that GA treatment caused

accumulation of both GFP and ubiquitinated proteins dose

dependently (Figure 1C), confirming that GA is able to inhibit

the cellular proteasome activity.

To determine whether GA is a direct proteasome inhibitor, an

in vitro peptidase assay using an AMC fluorescence proteasome

substrate was performed. GA at up to 5 mM failed to inhibit the

chymotrypsin (CT)-like activity of the purified 20S proteasome

(Figure 1D). Only at 10–50 mM doses, GA exhibited a partial inhi-

bition (IC50�25 mM, Figure 1D). These results demonstrated that

GA itself is not a potent proteasome inhibitor. Consistently, the

computational modeling studies predict that the GA metabolite

MT1, but not GA and MT2, has the potential to interact with

and inhibit the proteasomal b5 chymotryptic subunit (Figure S1;

see Extended Results).

MT1 and CYP2E1 Are Responsible for GA-Induced
Proteasome Inhibition in Tumor Cells
To provide experimental evidence for MT1 as a direct protea-

some inhibitor, MT1 was chemically synthesized and purified,

and its effect on the CT-like activity of purified 20S proteasome

was determined. As shown in Figure 2A, MT1 inhibited the puri-

fied 20S proteasomal CT-like activity with IC50 value of�0.5 mM,

while in a sharp contrast, GA was inactive at up to 2.5 mM (IC50

�25 mM, Figure 1D).

We then determined which isotype of CYP enzymes is respon-

sible for metabolizing GA to MT1 and whether inhibition of this

CYP enzyme could mitigate GA-induced proteasome inhibition

by using a cell-based peptidase assay. We tested inhibitors of

various CYP enzymes for their effects on GA-induced decrease

in proteasome activities. We found that the inhibitors of CYP2D6

(Quinidine/Qui), CYP2C9 (sulfaphenazole/Sul), and CYP3A4 (ke-

toconazole/Ket) did not alter GA-induced proteasome inhibition

in K562 cells (Figure 2B). However, diethyldithiocarbamate

(DDC), a CYP2E1 inhibitor, dramatically rescued GA-induced

proteasome inhibition (Figure 2B), suggesting that CYP2E1

may be responsible for metabolizing GA into MT1. Indeed,

DDC rescued GA-induced proteasome inhibition in K562 cells

in a dose-dependent manner (Figure 2D), and such rescuing

ability could be neutralized by increased concentrations of GA

(Figure 2C). We have also noticed that GA only slightly inhibits

the proteasomal caspase-like activity and dose not have any

effect on the proteasomal trypsin-like activity (Figure S2), indi-

cating that GA (or MT1) selectively inhibits cellular proteasomal

CT-like activity. Furthermore, DDC was also able to suppress

GA-induced proteasome inhibition in Jurkat T, P388, and

HepG2 cells (Figures 2E and 2F; Figure S3).

To further validate the involvement of CYP2E1, we used

small interfering RNA (siRNA) technology to silence intracellular

CYP2E1, which should mimic the effect of its inhibitor DDC.

siRNAs 1 and 2, but not 3 after transfection for 48 hr (Figure 2G)

Figure 1. GA Indirectly Inhibits Proteasome Function

(A) GA enhanced ubiquitinated protein accumulation by MG132 and MG262 in

human leukemic K562 cancer cells. K562 cells were treated with GA (0.5 mM)

for 12 hr in the absence or presence of proteasome inhibitors (MG132: 0.5 mM;

MG262: 0.025 mM), followed bywestern blotting for total protein ubiquitination.

GAPDH was used as a loading control. The western images were represen-

tatives from at least three independent experiments.

(B) GA dose dependently accumulated ubiquitinated proteins in K562 cells.

K562 cells were exposed to either DMSO (DM) or GA for 12 hr, and ubiquiti-

nated proteins and GAPDH were assayed as described in (A).

(C) GA induced the accumulation of GFPu and ubiquitinated proteins in GFPu-

5Y cells. GFPu-5Y cells were treated with GA as indicated for 9 hr, and GFP

expression was detected by an inverted epifluorescence microscope or

western blotting.

(D) GA at 5 mM or lower doses had no effect on 20S proteasome peptidase

activities. Purified 20S proteasomes were treated with GA at the indicated

doses in a Tris reaction system (pH 7.4). The CT-like peptidase activity was

measured using specific synthetic fluorogenic substrates. Mean ± SD (n = 3).

See also Figures S1 and S2.
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or siRNA 2 transfection for 72 hr (Figure 2H), were able to partially

decrease the CYP2E1 protein in human HepG2 cells, associated

with decreased levels of CT-like activity inhibition by GA. We

further compared the CYP2E1 and CYP1A2 protein level in

some of the cell lines by using human mesenchymal stem cell

(hMSC) as a control. It was found that K562, P388, and HepG2

cancer cells have a higher level of CYP2E1 than other cells

including normal cell (hMSC), while all the cell lines except

hMSC have the similar level of CYP1A2 (Figure 2I).

It has been reported that proteasome inhibition could induce

typical gene expression profile in many cancer cell lines. We

then compared the gene expression profiles between GA and

Vel treatment.We found that GA andVel yielded not only a similar

gene expression profile but also the similar proteasome inhibi-

tion-specific genes (Figure S4; see Extended Results).

Proteasome Inhibition Induced by the Metabolite
Produced by CYP2E1 Is Required for GA’s Cytotoxicity
We next determined whether proteasome inhibition con-

tributes to GA-induced cytotoxicity. We found that inhibition of

CYP2E1 by DDC not only partially rescued GA-induced protea-

some inhibition (Figure 2), but also inhibited GA-induced cell

death in P388 and K562 cells (Figures 3A–3G). Exposing

P388 cells to 1 mM of GA for 6 hr in the absence or presence of

DDC resulted in �60% and �20% cell death, respectively (Fig-

ures 3A and 3B). Furthermore, GA induced cleavage of PARP

and activation of caspase-9 (but not caspase-8) and caspase-

3 dose dependently, which was completely inhibited by DDC

(Figures 3C).

The result that inhibition of CYP2E1 suppressed GA-induced

proteasome inhibition (Figure 2) suggests that MT2 has no pro-

teasome-inhibitory activity. Since it is known that CYP1A2 is

the major P450 that is responsible for metabolizing GA to MT2,

one would expect that inhibition of CYP1A2 would lead to no

production of MT2 from GA, which would result in presumably

increased levels of MT1 and consequent proteasome inhibition.

It has been shown that a-naphthoflavone (ANF) at a concentra-

tion of 12.5–100 mM is a strong CYP1A2 inhibitor (Liu et al.,

2006). In K562 cells, GA+ANF treatment produced higher levels

of ubiquitinated proteins than each treatment alone (Figure 3D).

Figure 2. MT1 Directly Inhibits Proteasome

Peptidase Activity and DDC or CYP2E1

siRNA Partially Disrupts GA-Mediated Pro-

teasome Inhibition

(A) MT1 dose dependently inhibited 20S CT-like

activity. 20S proteasomewas treatedwith different

doses of MT1 and GA, and CT-like activity was

detected as in Figure 1D. Mean ± SD (n = 3).

(B) The effects of P450 inhibitors on CT-like

activities in cultured cells. K562 cells were

exposed to P450 inhibitors (DDC, Ket, Qui, and

Sul) for 6 hr, and then cell-based CT-like activity

was detected. Mean ± SD (n = 3).

(C) DDC partially reversed CT-like activity

decrease induced by GA. K562 cells were incu-

bated with GA in the presence of DDC (100 mM) for

6 hr, and CT-like activities are shown. Mean ± SD

(n = 3).

(D) DDC reversed GA-induced proteasome inhi-

bition in a dose-dependent manner. K562 cells

were treated with various doses of DDC in the

presence of GA (1 mM) for 6 hr, and CT-like activity

was assayed. Mean ± SD (n = 3).

(E and F) DDC (100 mM) partially reversed

GA-induced proteasome inhibition in Jurkat and

P388 cancer cells. As treated in (C), Jurkat cells

and P388 cells were used for CT-like activity

assay. Vel was used as a positive control. Mean ±

SD (n = 3).

(G and H) CYP2E1 siRNA partially silenced

CYP2E1 expression and reversed proteasome

inhibition. HepG2 cells were transfected with

three CYP2E1-siRNA by using lipofectine 2000

agent for 48 hr, and western blotting was

performed to detect the CYP2E1 protein level

(#1 and #2 were effective, G, upper). At 48 hr

transfection time point, various doses of GA

were added, and CT-like activity was assessed after 6 hr treatment (G, lower). As in (G), HepG2 cells were transfected with CYP2E1-siRNA (#2) for 72 hr,

and CYP2E1 (upper) and CT-like activity (lower) were detected (H). Mean ± SD (n = 3).

(I) CYP2E1 and CYP1A2 protein distribution in cancer cell lines by western blot. Human mesenchymal stem cells were used as control. Protein loading was

detected by Coomassie blue.

See also Figures S3 and S4.
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ANF alone has no effect on the levels of the proteasome activity

and ubiquitinated proteins. Furthermore, GA+ANF treatment re-

sulted in higher levels of apoptotic cell death than each treatment

alone, as measured by increased PARP cleavage and caspase

cleavage/activation (Figure 3D). ANF also enhancedGA-induced

cell death with propidium iodide (PI) staining in living cells (Fig-

ure 3G), and with annexin V/PI double staining by flow cytometry

(Figures 3E and 3F). We have also found that GA-induced pro-

teasome inhibition and cytotoxicity could be partially reversed

by DDC-mediated CYP2E1 inhibition in myeloma cancer cells

(Figure S5; see Extended Results).

To further confirm that the cell death induction by GA is due to

CYP2E1, CYP2E1- and CYP1A2-siRNA were used to silence

CYP2E1 or CYP1A2, respectively. We found that, similar to

proteasome inhibition, silencing CYP2E1 partially rescued GA-

induced cell death, whereas silencing CYP1A2 enhanced GA-

induced cell death (Figure 3H; Figure S6). These results clearly

showed that GA-induced cytotoxicity relies on its proteasome-

inhibitory activity, which is mediated mainly by CYP2E1 and its

metabolite MT1.

We also found that similar to Vel, GA was able to induce endo-

plasmic reticulum (ER) stress, as measured by increased levels

of ER-stress-related proteins, CHOP, Bip, PERK, and IRE-1a

(Figure S7). The profiles of other ER-related proteins PDI, Ero1-

1a, and calnexin were also similar between GA and Vel treat-

ment. GA at 0.75 mM yielded the similar effect on ER stress

responses and PARP cleavage to 50 nM dose of Vel in HepG2

cells (Figure S7). These results demonstrated that, similar to

Vel, GA induced the ER stress responses that are associated

with proteasome inhibition-mediated cytotoxicity.

GA Treatment Increases the Survival of P388-Bearing
Mice and Inhibits H22 Tumor Growth and Proteasome
Function In Vivo
We next determined the anticancer effect of GA in vivo by

recording the cumulative survival of mice bearing P388 tumors.

Male KMF mice were inoculated by intraperitoneal (i.p.) injection

with P388 cells and then started i.p. bolus injections of drug

vehicle or 1.5 mg/kg GA for 7 consecutive days, followed by

monitoring survival for the next 60 days (Figure 4A). We found

that all the mice in the vehicle-treated group died within

23 days. In a sharp contrast, only two mice in the GA-treated

group died on day 20 and day 33, respectively, and all the others

survived to the end of the experiment (Figure 4A).

Figure 3. DDC Treatment or CYP2E1

Silencing Partially Reversed while Inhibiting

CYP1A2 Enhanced GA-Induced Cell Death

in Cultured Cancer Cells

(A and B) DDC partially reversed GA-induced cell

death in P388 cells. P388 cells were treated with

GA for 6 hr in the presence of DDC (100 mM), and

cell death was detected by Annexin V and PI

staining with a flow cytometer. Cell death data

were summarized (A) (n = 3), and typical images

were shown (B).

(C) Similar to (B), DDC (100 mM) partially rescued

GA-induced caspase activation and PARP

cleavage by western blotting using specific anti-

bodies as indicated.

(D) a-Naphthoflavone (ANF) enhanced GA-

induced caspase activation and PARP cleavage.

K562 cells were treated with GA for 9 hr in the

presence of ANF (25 mM), followed by western

blotting using specific antibodies.

(E and F) ANF enhanced GA-induced cell death by

flow cytometry. Similar to (D), cell death was as-

sayed and summarized (E), and representative

flow images were shown (F).

(G) ANF enhanced GA-induced cell death by PI

staining in living cells. K562 cells were treated

with GA, with or without ANF (25 mM), cell death

was detected by PI staining in living cells.

Representative images at 24 hr were shown. Scale

bar = 50 mm.

(H) Silencing CYP2E1 partially reversed GA-

induced cell death while silencing CYP1A2

enhanced GA-induced cell death. HepG2 cells

were transfected with CYP2E1-siRNA and

CYP1A2-siRNA for 48 hr, and then cells were

treated with 0.75 mMof GA for 12 hr, and cell death

was stained with Annexin/PI double staining in situ

and recorded under an inverted fluorescence

microscope.

See also Figures S5, S6, and S7.
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To confirm whether GA inhibits the proteasome function

in vivo, dynamic changes of the endogenous proteasome

substrates were assessed. A separate cohort of male KMF

mice was inoculated with P388 cells. Five days later, mice

bearing P388 ascities were i.p. injected with 2 mg/kg of GA. At

different time points, ascities were collected for western blotting

assay. It was found that the proteasome substrate proteins,

including IkBa, p21, p27, p53, and Bax as well as ubiquitinated

proteins all accumulated in a time-dependent manner (Fig-

ure 4B), indicative of rapid proteasome inhibition after GA injec-

tion. We also tried to measure the CT-like activity in these p388

cancer cells. However, like in other cultured cells, CT-like activity

inhibition could be detected only by cell-based activity assay but

not by in vitro assay using AMC-conjugated proteasome

substrate after GA treatment (data not shown). These results

suggest that the binding of metabolite of GA to proteasome b5

subunit is unstable or transient during protein extraction pro-

cess, indicating that GA-induced proteasome inhibition is mostly

reversible.

We then determined the antitumor effect of GA in a solid tumor

model in vivo. Male KMF mice were inoculated subcutaneously

(s.c.) in the left armpit with H22 cells, followed by treatment

with GA at 1.5 and 2.0 mg/kg for 7 consecutive days, or Vel at

1 mg/kg every 3 days. Ten days after the inoculation, all the

mice were sacrificed, and the tumors were weighed. As shown

in Figure 4C (upper), tumor weight in the vehicle-treated group

reached�1,900 mg on average, while tumor weight from groups

treated with 1.5 or 2.0 mg/kg GA was �1,400 and �1,100 mg,

respectively, demonstrating �24% and �45% inhibition. At

both doses, GA did not affect the body weight at the end of

Figure 4. GA Prolongs Survival of Ascities

Bearing P388 Leukemic Cells and Sup-

presses Solid Tumor Growth In Vivo

(A) GA’s effect on cumulative survival in KMF mice

bearing P388 leukemic cells. Mice bearing P388

cells were treated with i.p. bolus injections of either

vehicle (Veh) or 1.5 mg/kg /day GA for consecutive

7 days. The mice were then kept for 60 days.

(B) GA inhibited proteasome proteolytic function

in vivo. Mice were inoculated with P388 cells for

5 days, and then GA (2 mg/kg) was i.p. injected

once. At 1, 3, 5, 7, and 11 hr after GA injection,

ascities were collected for western blot assay.

(C) GA inhibited tumor growth in vivo. H22 allo-

grafts in male KMF mice were treated with either

vehicle or GA at 1.5, 2.0 mg/kg, or 1 mg/kg of Vel

(ten mice each group) for consecutive 7 days. Two

days later after that, the mice were sacrificed;

body weight and the tumor tissues were weighed.

Mean ± SD, *p < 0.0001.

(D) GA inhibited proteasome proteolytic function in

solid tumor in vivo. Mice bearing mouse H22 tumor

were i.p. treated with GA (2 mg/kg) once; at 1, 3, 5,

7, and 11 hr after GA injection, tumor (T) and

muscle tissues (M) were collected for western blot

assay.

(E) GA and Vel only induced PARP cleavage in

tumor tissues in vivo. As in (D), three mice bearing

H22 tumor were i.p. injected with GA (3 mg/kg)

once, and 12 hr later after injection, tumor, muscle,

and liver tissues (L) were collected for detecting

ubiquitinated protein, p27, Bax, PARP, CYP2E1,

and CYP1A2 by western blot. One representative

western image was shown.

(F) GA relative content in mouse tissues. KMFmice

were i.v. injected with GA (8 mg/kg) for 5 or 15 min,

and GA content was detected by high-perfor-

mance liquid chromatography assay. The peak

area of GA in various tissues was calculated

(average of three repeats).

(G) Accumulation of ubiquitinated proteins in

spleen tissues. Mice were i.p. injected with GA

(2 mg/kg) or Vel (1 mg/kg) as in (D), and ubiquiti-

nated proteins in spleen tissues were detected by

western blot.
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the experiment (Figure 4C, lower). At 1 mg/kg, Vel could inhibit

�23%of the growth of H22 allograft close to 1.5mg/kg GA treat-

ment, and the body weight in Vel-treated mice was similar to the

control mice.

To investigate whether GA could selectively inhibit the pro-

teasome function in solid tumor tissues over normal tissues,

KMF mice bearing H22 tumor were i.p. injected with 2 mg/kg

of GA. At different time points after GA injection, proteasome

substrate proteins p27 and Bax as well as ubiquitinated pro-

teins were found to be accumulated in tumor tissues but not

in muscle tissues (Figure 4D). We further measured and com-

pared the levels of proteasome inhibition, PARP cleavage, and

CYP2E1/CYP1A2 in normal and tumor tissues in mice bearing

H22 tumor after i.p. injection with either GA (3 mg/kg) or Vel

(1 mg/kg) for 12 hr. As shown in Figure 4E, accumulation of pro-

teasome substrate proteins p27 and Bax could be detected in

tumor tissues but not muscle tissues, although ubiquitinated

proteins were found to be increased in both tumors and liver

tissues but not normal muscle tissues (Figure 4E) after GA

and Vel treatment. Furthermore, GA and Vel selectively induced

PARP cleavage only in tumor tissues but not in normal muscle

and liver tissues (Figure 4E), indicating that cancer cells are

more sensitive to proteasome inhibition than normal cells.

Importantly, after treatment of GA and Vel increased expression

mainly in CYP2E1 (and slightly in CYP1A2 protein) was found

in tumors, but not in normal muscle tissues (Figure 4E). The

increased CYP2E1 protein should be able to enhance the effects

of GA. These data demonstrate that GA treatment inhibits H22

solid tumor growth and significantly improves animal survival

in leukemic mice, associated with proteasome inhibition at early

hours.

To further test whether GA is a tissue-specific proteasome

inhibitor in vivo, we detected GA distribution in some of the

relevant normal tissues after GA injection in mice. It was found

that GA could be detected in liver, muscle, and spleen tissues

(Figure 4F), consistent to a previous report (Hao et al., 2007).

GA relative content is 0.69 in rat spleen tissue and 1.15 in

liver tissue after GA intravenous (i.v.) injection for 45 min

(spleen:liver: �60%) (Hao et al., 2007). When tested in mice,

Vel relative content is �3,100 in spleen tissue and �4,500 in

liver tissue after i.v. injection of Vel for 60 min (spleen:liver:

�68%) (Adams et al., 1999). We therefore further detected

the proteasome substrate accumulation in spleen tissues after

treatment with GA or Vel. We found that Vel, but not GA, could

dramatically accumulate ubiquitinated proteins (Figure 4G).

Other proteasome substrates like p27 and Bax were not de-

tected (data not shown). Therefore, although low levels of GA

were detectable in spleen, it did not cause proteasome inhibi-

tion in this organ, unlike Vel. These results have further demon-

strated that GA induces tissue-specific proteasome inhibition,

compared to Vel.

The Reduced Form of GA Fails to Induce Proteasome
Inhibition and Cytotoxicity
To investigate the requirement of the C9-C10 double bond of

GA for proteasome inhibition, C9-C10-disrupted GA (GA�), a

reduced form of GA, was chemically synthesized (Figure 5A).

K562 cells were treated with various doses of GA and GA� for

6 hr. Cell-based CT-like activity was detected. It was found

that GA� lost its ability to inhibit proteasome activity at a dose

up to 5 mM, and the IC50 of GA� for proteasome inhibition is

around 10 mM, 40-fold higher than the IC50 of GA (0.25 mM, Fig-

ure 5B). Accordingly, GA dose dependently inhibited cell

viability after 24 or 48 hr treatment in K562 cells, while GA� at

<2 mM did not exert any effect on cell viability (Figure 5C);

0.75 mM of GA induced typical cell death, while GA� at up to

5 mM did not induce any cell death after 18 hr (Figure 5D).

Further studies in K562 cells found that GA induced PARP

cleavage and ubiquitinated protein accumulation, while GA�
did not (Figure 5E). Similar results were found in a myeloma

cell line NCI-H929: at 1 mM or lower doses, GA� did not inhibit

CT-like activity, while GA inhibited CT-like activity with an IC50

between 0.25�0.5 mM (Figure 5F). Consistent to what was

observed in K562 cells, GA� at <1 mM did not exert any effect

on cell viability (Figure 5G) and at <5 mM did not affect cell

death either (Figure 5H), while GA at <1 mM dose dependently

inhibited cell viability and induced cell death in NCI-H929 cells.

These results clearly demonstrated that GA-induced cytotox-

icity and cell death definitely depend on the existence of

C9-C10 double bond, which is required for its mediated protea-

some inhibition.

GADoes Not Decrease Lymphocyte Survival in CYP2E1-
Deficient Peripheral Blood Cells In Vitro and In Vivo
To further study this importance of CYP2E1 in mediating GA-

induced proteasome inhibition and cytotoxicity, the red blood

cells were collected after 24, 48, and 72 hr from mice treated

with either GA (3 mg/kg, i.p.) or Vel (1 mg/kg, i.p.). GA 3 mg/kg

is an effective dose of anticancer therapy (Yi et al., 2008). As ex-

pected, only Vel but not GA at the tested doses inhibits the pro-

teasomal CT-like activity in the peripheral blood cells (Figure 6A)

by in vitro peptidase assay. We further detected the peptidase

activity in peripheral blood cells by using cell-based CT-like

activity assay and found that GA did not inhibit CT-like activity

in whole blood cell culture either (Figure 6B). These data demon-

strate that GA could inhibit the proteasome function in a cell-

specific manner.

Using a whole blood cell culture system, we next com-

pared the effects of GA and Vel on the survival of blood cells.

We first screened the optimal dose of GA and Vel yielding the

similar effect on cell viability in cancer cells. It was found that

in HepG2 cells, 500 nM of GA yielded the similar effect on

cell viability to 50 nM of Vel (data not shown). In the next

peripheral blood experiment, the relative high dose of GA and

Vel was used. As expected, GA at 1 mM did not show any

effects on the survival of blood cells during 7 days of culture

(Figure 6C), while Vel at 0.1 or 0.5 mM dose inhibited white

blood cell and lymphocyte survival as expected (Figure 6D).

These results show that GA led to cell-specific proteasome

inhibition.

One of the most important side effects of chemotherapy is

the inhibition of the hemopoetic system (Richardson et al.,

2005). To further confirm whether therapeutic dose of GA could

affect white blood cell number, the CYP2E1 and CYP1A2 protein

distribution in mouse and human bone marrow cells were

compared with cancer cell lines (Figure 6E). In mouse bone
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marrow cells, CYP1A2 was highly, while CYP2E1 was weakly,

expressed compared to the cancer cells (Figure 6E, left). It was

further found that CYP2E1 and CYP1A2 proteins were weakly

expressed in normal human bone marrow cells compared with

the bone marrow cells from leukemic patients (Figure 6E, right).

These results indicated that both normal mouse and human

bone marrow cells weakly express CYP2E1 protein, indicating

an inability for the bone marrow cells to metabolize GA. Second,

Balb/c mice were treated with both GA (4 mg/kg) or Vel (0.5,

1 mg/kg) for 2 weeks, and then peripheral white blood cells

were counted. GA at 4 mg/kg once every other day is effective

anticancer therapy (Guo et al., 2006) and 0.5 mg/kg or 1 mg/kg

dose of Vel is also effective dose of anticancer therapy. GA

was i.v. injected once every other day and Vel was i.v. injected

once every 3 days. It was found that therapeutic dose of GA

(4 mg/kg) did not affect either body weight or peripheral white

blood cells, and Vel (0.5 mg/kg) did not affect these changes

either, while Vel at 1 mg/kg dose did not affect body weight

but dramatically decreased the peripheral white blood cell

number (Figure 6F). These results demonstrated that GA did

not affect cell survival in CYP2E1-deficient cells either in vitro

and in vivo.

GA Induces More Cytotoxicity and Proteasome
Inhibition in Cancer Cells from Leukemic Patients Than
in Human Peripheral Mononuclear Cells
We have confirmed that GA induced cytotoxicity and protea-

some inhibition in cancer cell lines and in vivo; next, we further

compared the effects of GA on cytotoxicity and proteasome

inhibition in cancer cells obtained from ten leukemia patients

(five AML-M5, three AML-M2, one ALL, one CLL) and in periph-

eral mononuclear cells from six normal volunteers. It was found

that GA at all the dosesmore dramatically decreased cell viability

in leukemic cells than in normal cells while the difference of

Vel-mediated cytotoxicity in leukemic cells and normal cells is

not as high as GA (Figure 7A); GA, similar to Vel, also induced

leukemic cancer cell death (Figures 7B–7D). GA 0.75 mM yielded

the similar effects on cell viability and cell death induction to

100 nM Vel. To determine the levels of proteasome inhibition,

ubiquitinated proteins were detected by western blot. As

shown in Figures 7E and 7F, 50 nM Vel markedly induced

accumulation of ubiquitinated proteins and PARP cleavage in

normal mononuclear cells while GA only slightly induced these

changes compared to Vel; but in leukemic cancer cells, GA at

all the three doses markedly induced both ubiquitinated protein

Figure 5. C9-C10-Disrupted GA Fails to

Induce Proteasome Inhibition, Proliferation

Inhibition, and Cell Death

(A) Chemical structure of GA and GA�. C9-C10

double bond was disrupted by adding a piperazine

to C10.

(B) GA� failed to inhibit CT-like activity in K562

cells. K562 cells were treated with GA and GA� for

6 hr, and CT-like activity in living cells was de-

tected as described above. Mean ± SD (n = 3).

(C) GA� failed to inhibit cancer cell viability in K562

cells. K562 cells were treated with GA or GA� for

24 or 48 hr, and cell viability was detected by MTS

assay. Mean ± SD (n = 3).

(D) GA� lost its ability to induce cell death in K562

cells. K562 cells were treated with GA or GA�, PI

was added to the cultured cells after 6 hr treat-

ment, and PI-positive staining was monitored

under an inverted microscope and typical images

at 18 hr time point were shown.

(E) GA� failed to induce accumulation of ubiquiti-

nated proteins and PARP cleavage. K562 cells

were treated with various doses of GA or GA� for

12 hr, and cells were collected. PARP cleavage

and ubiquitinated proteins were detected by

western blot.

(F) GA� failed to inhibit CT-like activity in

NCI-H929 cells. NCI-H929 cells were treated as

in (C), and CT-like activity was detected. Mean ±

SD (n = 3).

(G) GA� failed to inhibit cancer cell viability in NCI-

H929 cancer cells. NCI-H929 cancer cells were

treated as in (C), and cell viability was detected.

Mean ± SD (n = 3).

(H) GA� lost its ability to induce cell death in NCI-

H929 cells. NCI-H929 cells were treated and cell

death was detected as in (D). PI-positive staining

was monitored under an inverted microscope, and

typical images at 6 hr time point were shown.
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accumulation and PARP cleavage (Figures 7G and 7H). These

results demonstrated that GA, compared to Vel, selectively

induced proteasome inhibition and cytotoxicity in leukemic

cancer cells.

DISCUSSION

GA Is Metabolized to a Potent Proteasome Inhibitor by
P450 Enzyme in the Cell
In the current study, we report that GA inhibits activity of cellular

26S proteasome but not purified 20S proteasome, suggesting

that GA is a proteasome inhibitor prodrug. Furthermore, we

found that GA-induced proteasome inhibition is mediated by

P450 enzyme. The proteasomal subunits b5, b2, and b1 in 20S

Figure 6. GA Does Not Inhibit White Blood

Cell Survival In Vitro and In Vivo

(A) GA did not inhibit proteasome CT-like activity of

red blood cells in vivo. Balb/c mice (n = 3) were i.p.

injected with Vel (1 mg/kg) or GA (3 mg/kg) once,

and red blood cells were collected for CT-like

activity assay after 24, 48, and 72 hr. Veh: vehicle.

Mean ± SD.

(B) GA did not affect CT-like activity in cultured

blood cells. Human peripheral whole blood was

exposed to GA for 6 hr, and CT-like activity was

assayed in living cells by using a cell-based CT-

like assay substrate. The relative CT-like activity

was shown (n = 3). 100 nM of Vel was used as

a positive control.

(C) GA did not inhibit lymphocyte survival in vitro.

Human peripheral whole blood was cultured in the

absence or presence of 1 mM GA for 1, 3, 5, and

7 days. The cell count data of polymorphonuclear

(PMN) cells and lymphocytes in DMSO (DM) or

GA-treated groupwere shown, respectively. Mean

± SD (n = 3).

(D) As in (C), the cells were treated with Vel (0.1,

0.5 mM) instead of GA, and the cell count data were

shown, respectively. Mean ± SD (n = 3).

(E) CYP2E1 and CYP1A2 distribution in mouse and

human bone marrow cells. CYP2E1 and CYP1A2

protein in mouse and human bone marrow cells

(normal control and leukemic sample) were de-

tected by western blot. Cancer cell lines as

indicated were used as controls. CYP2E1 and

CYP1A2 western images in mouse bone marrow

were one representative of the three repeats.

CYP2E1 andCYP1A2 in human bonemarrowwere

repeated twice, and representative images were

shown.

(F) Therapeutic dose of GA (4 mg/kg) did not

decrease the white blood cell count in vivo. Balb/c

mice were i.v. injected with GA (4 mg/kg) once

every 2 days and Vel (0.5, 1.0 mg/kg) once every

3 days for a total of 14 days. Relative level of white

blood cell count and body weight were summa-

rized. Mean ± SD (n = 3). *p < 0.05, versus vehicle

(Veh) control.

catalytic core are responsible for three

main proteolytic activities of the protea-

some, CT-like, trypsin-like, and cas-

pase-like activities, respectively. A threonine residue at the N

terminus (Thr1) of these subunits imparts the catalytic activity

of the proteasome (Groll et al., 2005). The atom Og of Thr1

(Thr1 Og) is activated to be nucleophilic by proton shuttling

from Thr1 Og to the proton acceptor Thr 1 N. Compounds with

electrophilic functional groups are able to react with the nucleo-

philic Thr 1 Og, causing interference of the proteasomal activity.

Consistently, in the computational modeling study, MT1 but not

GA nor MT2 was docked to the proteasomal b5 subunit that was

suitable for nucleophilic attack by Thr 1 of the b5 subunit (Fig-

ure S1). As expected, further studies confirmed that the C9-C10

double bond of GA is a prerequisite for GA-induced proteasome

inhibition (Figure 5). It was also found that GA induced the similar

ER stress responses (Figure S6) and yielded the similar gene

218 Cell Reports 3, 211–222, January 31, 2013 ª2013 The Authors



expression profile (Figure S4) to the specific proteasome inhib-

itor Vel. These results confirm that GA indirectly and potentially

targets tumor proteasome in the cell.

Even though the metabolite MT1 could directly inhibit CT-like

activity, we could not completely exclude the possibility for GA-

induced metabolite MT1 to interact with the 19S proteasome

mainly for two reasons: (1) MG132 at 0.5 mM and MG262 at

0.25 mM completely inhibit the proteasome CT-like activity, but

these doses of agents and GA could still synergistically accumu-

late ubiquitinated proteins; (2) the optimal IC50 value of MT1 for

20S proteasome CT-like activity is around 0.5 mM, but the IC50

value in some of the leukemic cells was as low as 0.25 mM, indi-

Figure 7. GA-Induced Cytotoxicity and Pro-

teasome Inhibition in Cancer Cells from

Patients with Leukemias

(A) GA dose dependently decreased leukemic cell

viability. Mononuclear cells isolated from either

patients or volunteers were treated with GA and

Vel for 24 hr, and cell viability was detected by

MTS assay. Control group: n = 6; Leukemia group:

n = 9. *p < 0.05, **p < 0.01, versus each dose of

leukemia group.

(B–D) GA induced cell death in leukemic cancer

cells. Leukemia cells were treated by three doses

of GA and two doses of Vel for 24 hr, cells were

labeled with PI and Annexin F-FITC, and the fluo-

rescence was detected with flow cytometry or

observed under a fluorescence microscope. Total

samples from seven leukemia patients were de-

tected for cell death assay. One representative

morphological image is shown in (B) and flow

image is in (C). Cell death data from seven patients

by flow cytometry are shown in (D). Mean ± SD

(n = 7), *p < 0.05, **p < 0.01, compared to the

vehicle control.

(E–H) GA induced more ubiquitinated protein

accumulation and PARP cleavage in leukemia

cancer cells than in normal cells. Mononuclear

cells were incubated with GA and Vel (50 nM) for

15 hr, and ubiquitinated protein and PARP were

detected by western blot. GAPDH was used as

a loading control. A representative western image

from three repeats is shown in (E), and the band

intensities of ubiquitinated proteins (n = 3) are

summarized in (F) in normal mononuclear cells,

while, in leukemia cancer cells, a representative

western image from three repeats is shown in (G),

and the band intensities of ubiquitinated proteins

(n = 3) are summarized in (H). *p < 0.05, **p < 0.01,

versus vehicle control.

cating that GA could possibly affect both

20S and 26S proteasome.

We have found that GA’s metabolite

MT1 metabolized by CYP2E1 is respon-

sible for the proteasome inhibition. As

DDC could inhibit both CYP2E1/

CYP2A6 and CYP1A2 activity (Kot and

Daniel, 2009), silencing CYP2E1 only

partially reversed GA-induced protea-

some inhibition and GA could still induce

ubiquitinated protein accumulation in the absence of CYP2E1

in normal mononuclear cells (Choudhary et al., 2005). We could

therefore not completely exclude other P450 enzymes besides

CYP2E1 involved in the metabolism of GA to MT1.

GA at Therapeutic Dose Induces Cytotoxicity via
Proteasome Inhibition
We then determined whether proteasome inhibition is re-

quired for GA’s cytotoxicity and anticancer activity. We found

that blocking the CYP1A2 pathway enhanced, while blocking

CYP2E1 pathway reversed GA-induced proteasome inhibition

and cell death. Importantly the IC50 of GA for cancer cellular
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proteasome activity is 0.25–0.75 mM, similar to its IC50 (0.5–

1.5 mM) for cytotoxicity (Zhang et al., 2004). These data imply

that proteasome inhibition is a prerequisite for GA-induced cell

proliferation arrest and cell death. An early study reported that

transferrin receptor is an important target of GA and the lowest

IC50 for inhibiting transferrin receptor is >2 mM (Pandey et al.,

2007), but the IC50 of GA’s cytotoxicity is <1 mM, mostly

0.5 mM in cancer cell lines (Zhang et al., 2004). Another reported

important target is related to angiogenesis (Yi et al., 2008), but

based on our data, leukemic cancer cells were more sensitive

to GA compared to other nonleukemic cells, and GA significantly

improved mouse survival bearing P388 ascities in which no

angiogenesis exists.

Even though CYP2E1 inhibition by either chemical inhibitor

DDC or siRNA could partially reverse GA-induced proteasome

inhibition and cytotoxicity, we still could not completely exclude

the off-target effect of GA on cell viability and cell death. Since

the C9-C10 double bond of GA is responsible for GA-induced

proteasome inhibition, we therefore synthesized a reduced

form of GA by disrupting the C9-C10 double bond of GA. After

disruption of this double bond, as expected, GA� lost its ability

to inhibit proteasome activity within 5 mM dose. Accordingly,

GA� at <5 mM did not induce any cell death, indicating that pro-

teasome inhibition is required for GA-induced cell death. The

most important is that both in NCI-H929 and K562 cancer cells,

GA� at <1 or 2 mM doses did not affect either the cell viability or

cell proliferation, indicating that proteasome inhibition deter-

mines GA-induced cell growth arrest. Since GA at < 1 mM has

almost completely inhibited cell viability, we suggest that GA-

induced decreased cell viability and cell death rely on protea-

some inhibition. However, further studies are needed in order

to confirm whether there is any off-target mechanism involved

in GA-mediated effect.

GA Is a Cell-Specific Proteasome Inhibitor Compared
to Vel
Proteasome inhibition has been used for cancer therapy and Vel

has been approved by US Food and Drug Administration for

treating multiple myeloma (Richardson et al., 2005; Adams,

2004). As the proteasome exists in all the cells, specific protea-

some inhibitors would definitely inhibit the proteasome function

to some extent. Therefore, one important approach is to dis-

cover new proteasome inhibitors with efficient antitumor effects

and cell-specific proteasome inhibition to decrease the toxic

side effects. Since the expression of the p450 system in red

blood cells and other peripheral blood cells is relatively low or

deficient (Choudhary et al., 2005), we hypothesize that GA may

not affect the proteasome activity in these cells in vitro and

in vivo. GA indeed did not dramatically affect these proteasome

activities in low CYP2E1-expressing whole blood cells. However

in purified human peripheral mononuclear cells, GA at a higher

dose could still induce accumulation of ubiquitinated proteins

to some extent, implying the possible existence of P450 enzyme

or other enzymesmetabolizing GA in human peripheral mononu-

clear cells. Since proteasome is the specific molecular target of

GA, next we compared the effects of GA and Vel on lymphocyte

in vitro and in vivo. At their efficient doses, GA did not dramati-

cally affect lymphocyte number both in vitro and in vivo consis-

tent to previous report (Guo et al., 2003), while a high dose of

Vel dramatically inhibits lymphocyte number in vitro and in vivo.

Consistent to the proteasome inhibition, GA could also induce

cytotoxicity to some extent in human peripheral mononuclear

cells but much lower than in leukemic cancer cells. Based

on these results, we conclude that the specific distribution of

CYP2E1 or other related P450 enzyme plays an important role

in determining GA-induced proteasome inhibition and cytotox-

icity. It was further found that Vel but not GA could induce pro-

teasome inhibition in spleen tissues in vivo. These results confirm

that GA induces cell-specific proteasome inhibition compared

to Vel.

Cell-specific proteasome inhibition would be significant in

designing a novel strategy to overcome multiple proteasome

malfunction-related diseases. In clinical cancer chemotherapy

including Vel therapy, one of the important side effects is

the toxic effect on immune system and hemopoietic system (Ri-

chardson et al., 2005; Adams, 2004). First, as expected, CYP2E1

is weakly or even not expressed in mature peripheral lympho-

cytes and hemopoietic cells (Choudhary et al., 2005). Since

these cells lack of CYP2E1 to metabolize GA, it is possible that

GA is less toxic on lymphocytes and the hemopoietic system

(Guo et al., 2003). Second, all the 60 NCI cancer cell lines dis-

played high P450 activity including CYP2E1 activity and in six

human myeloblastic and lymphoid cell lines (Nagai et al., 2002;

Yu et al., 2001), and our results also found that most of the

cancer cells have a relatively higher level of CYP2E1 compared

with the normal human MSC. Also, the normal tissues express

low levels of CYP2E1 except the liver and the kidney (Choudhary

et al., 2005), so GA should be an anticancer candidate that is less

toxic to normal tissues. Our results further confirm that CYP2E1

is very weakly expressed in bone marrow blood cells from

normal humans but highly expressed in bone marrow cells

from leukemic patients. Even though therapeutic dose of GA

does not dramatically affect the liver and the kidney (Guo et al.,

2006), consistent to the CYP2E1 distribution, a toxic dose of

GA could affect the function of the liver and the kidney (Qi

et al., 2008). Finally, compared with traditional proteasome

inhibitors, GA-induced proteasome inhibition is cell- or organ

specific, as a specific proteasome inhibitor it will potentially be

used in different organ dysfunction. In summary, we have identi-

fied GA as a potent proteasome inhibitor and GA-induced cell-

specific proteasome inhibition should be of great importance in

the future clinical trials.

EXPERIMENTAL PROCEDURES

Peptidase Activity Assay

In vitro CT-like peptidase assay was performed as described with the

synthetic fluorogenic peptide Suc-LLVY-AMC purchased from Calbiochem.

Cell-based peptidase assay was performed as reported (Huang et al.,

2011b). Briefly, cells (�4,000/well) were treated with an indicated agents at

37�C for 6 hr, followed by incubation with the Promega Proteasome-Glo

Cell-Based Assay Reagent (Promega Bioscience, Madison, WI) for 15 min.

Luminescence was detected with luminescence microplate reader (Varioskan

Flash 3001, Thermo, USA).

Models of H22 Allografts and P388 Ascities

All animal protocols used were approved by the Institutional Animal Care and

Use Committee of Guangzhou Medical College. The mice were obtained from
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Guangdong Laboratory Animal Monitoring Institute (SCXK2008-2002). P388

ascities mouse model was performed as reported (Yang et al., 2009). After

24 hr i.p. inoculation, male KMF mice were treated with i.p. bolus injections

of the drug vehicle (10% DMSO, 15% ethanol, and 75% PBS) or GA

(1.5 mg/kg) for 7 consecutive days, and kept for additional 60 days to monitor

survival daily.

H22 allograft model was performed as described (Yang et al., 2009). Murine

H22 cells (10 3 106) suspended in 0.2 ml of RPMI 1640 medium were inocu-

lated s.c. in the left armpit of each mouse. After 24 hr of inoculation, mice

(ten mice per group) were treated with either vehicle (10% DMSO, 30% Cre-

mophor, and 60% PBS) or GA (1.5, or 2.0 mg/kg of body weight) via daily

i.p. injection for 7 consecutive days, or Vel (1 mg/kg) every 3 days. Two days

after the treatment, the mice were sacrificed, and the tumor tissues were

weighed.

DNA Microarray Assay and Analysis

HepG2 cells were treated with GA or Vel for 9 hr, and then cells were extracted

with TRIzol agents. DNA microarray was performed by Kangchen biotech

company (Shanghai) in compliance to MIAME guidelines (for more details,

refer to the Extended Experimental Procedures).

Statistical Methods

Mean ± SD are presented where applicable. Unpaired Student’s t test or one-

way ANOVA is used for determining statistic probabilities. p value <0.05 is

considered significant.
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