"Increased production of pro-inflammatory cytokines and enhanced T cell responses afte . . ." by Amy Wesa and Anne Galy
 

Document Type

Article

Abstract

Abstract

Background

Various microbial, inflammatory and immune signals regulate the activation of dendritic cells (DC), determining their ability to interact with naïve T cells and to produce cytokines that direct T cell development. In particular, CD40L and IL-1 cooperatively activate DC to secrete high levels of IL-12. The immuno-stimulatory capacity of such DC is otherwise not well-defined prompting further characterization of the effects of IL-1 and family members on DC activation in comparison with other pro-inflammatory stimuli.

Results

Human DC co-activated in vitro by CD40L and IL-1β expressed numerous cytokine genes including IL-12β, IL-23 p19, IL-1β, IL-1α, IL-1Ra, IL-10, IL-6, IL-18 and IFN-γ. These DC produced high levels of IL-12 protein and appeared capable of producing IFN-γ. Potent CD4+ and CD8+ T cell-stimulatory properties were acquired by DC under conditions that also induced IL-12. Notably, these DC induced rapid differentiation of fluMP-specific CD8+ T cells. Molecules related to IL-1β, like IL-1α, co-induced IL-12 secretion whereas IL-18 did not. Conversely, the inhibitor IL-1Ra, produced endogenously by DC curtailed IL-12 production in response to CD40L.

Conclusions

IL-1 and IL-1Ra play a biologically-relevant role in the positive and negative regulation of DC activation. In conjunction with CD40L, IL-1 sends a powerful activation signal to DC that could be distinguished from other modes of activation. This signal enables the production of pro-inflammatory cytokines by DC, and enhances the differentiation of naïve T cells into effectors of type-1 cellular immune responses.

Disciplines

Medical Immunology | Medical Microbiology

Share

COinS